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0.2.8 Definition. Let TP%(M)=U cp T" T, M). A I-form on M
is a function a: M—T* (M) such that a, €T*(T.M) and ( for any
Y €[(TM)) the function a(Y') given by a(Y)(x)=aY,)isin C*(M).

A tensor field of type (p,q) on M is a function St M= T M) such

that S, €T YT, M) and ( for any 1-forms «;,...,«, and vector fields
Y,.....Y, on M) the function S(@,..., e, Yis .o Y,) given by
S(@pyeens @y, Yooy YN X)Z S0 55000 Qs Yigreons Yy is in C2(M).
The space of all tensor fields of type (p,q) on M is denoted by
GraM). .

0.2.9 Definition. A k-form on M is a tensor field wES O-k(M) such
that w, € AX(T.M). The space of k-forms on M is denoted by A*(M).
For  €EAN(M) and BE N(M), we define aABENT(M) by (aNB),

S NAB,If @ U—-R" iy a chart eH:_,:; XN (xrecu)y. then
dx'...., dx" are defined to be those 1-forms on U with dx'(d,)=8]. Any
wE AN (M) can be written on U as

1 ; .
W=7 MS.._:.:S«: A s Ndx™

where w;

...:Heg:t.;m:vaSAQv.

0.2.10 Definition. If fEC®(M), then dfE€ A(M) is defined by
df(Y)=Y[[] for arbitrary Y EI(TM). For w€ A*(M), we define dw
10 be the (k+1)-form that when restricted to U (in the notation of
0.2.9) is given by

do=— Sd(w; .., )N dx" -~ Ndx'

= m._n Mm%S::.L dxi Adx' A -+ Adx',

We can prove that dw, as defined, is independent of the choice of
coordinates. In fact, dw can be defined (without reference to coordi-
nates) as that (k+1)-form such that for any X,,..., Xps1 ET(TM) we

0 PRELIMINARIES 11

have

k1 . i
dw( X, .. Xie1)= M Ai:,ik_ﬁeﬂk_:.; Kiveers XTI&

i=1

+ 3 T:_.:a:x...ﬁ.x_,..iﬁ,....&:.;xt;

Isi<j<n

where the circumflex means that the symbol beneath it is to be omitted.
The operation d: A"(M )= A**\(M) is called exterior differentiation.
If a€EN(M) and BE A(M), then ( from the coordinate definition) we
easily obtain d(aNB)=daNB+(— aAdB; and d*=dod=0.

0.2.11 Definition. If [ M—N is a map and wEAN(N), then
the pull-back f[*w €N (M) is defined by (f*o)(Yi.on YO)=
8:%\3%_:.:\*L\L\Ow Yioootn Y, ET M. When k=0, [*w=wo fE€
C*(M). It can be proved that df*w=*dw, .\*Tg>\wvn.\*:>\i\wv,
and (fog)*w=g**w.

0.2.12 Definition. In order to integrate forms, we introduce some
topological notions. A subset WCM is closed if its complement W=
(xeM|x& W} is open. The closure A of an arbitrary subset A CMis
the intersection of all closed subsets of M that contain A. Note that A is
the smallest closed set containing A. An open covering of ACM is a
collection U of open subsets whose union contains A. A subcover U’ of
QL is a subcollection (i.e., Q' CA) such that QL' is an open covering. A
subset K of M is compact if every open cover of K has a finite subcover.
The Hausdorff property of M ensures that a compact subset is closed. I f
S is a tensor field on M, then the support of S, denoted supp S, is the
closure of {x € M|S(x)70}.

0.2.13 Definition (Integration). A nowhere zero n-form v on an
n-manifold M is called an orientation for M. The pair (M, v) is called
an oriented manifold. Let a be an n-form on the oriented manifold
(M, v) such that K=supp is compact. The compactness of K ensures
that there is a finite number of charts @;: U-M,i=1,..., N, such that

i

KCU - UUy, and @ (U)CR" is bounded, and (see Kobayashi
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tr B=0)). This follows immediately from the formula det( Exp B)= eB

which is valid for any nXn matrix. We can prove this formula as

follows. Let f(t)=det( ExptB). At h=0, we have

f(1)= M&M\AI.SH .“mw mmmxmxﬁ tB) det(Exp hB)]

= det(Exp tB) or-det(I+hB)
=det(ExptB) tt B=(tr B)f(1).

Thus, f(1)=[(0)e"®" =e B and setting t=1 yields the result.

CHAPTER @

Principal Fiber Bundles and Connections

In the introductions to this and the following chapters, the topics
and results to be covered will be outlined, and some motivation will
be supplied to whet the grindstone, but no miracles are promised.
You may rest assured that you need not comprehend or agree with
the introductions in order to understand and accept the proper parts
of the chapters.

In this chapter, principal fiber bundles (PFBs) will be defined
and some nontrivial examples will be given (i.e., the double covering
of the circle and the frame bundle of a manifold). Three ways of
defining connections (ie., gauge potentials) will be proved to be -
equivalent. The connection of a PFB with group U(1) over space-time
will be physically identified as the four-dimensional vector potential
of electromagnetism.

David D. Bleecker, Gauge Theory and Variational Principles = ISBN 0-201-10096-7

Copyright © 1981 by Addison-Wesley Publishing Company, Inc., Advanced Book
Program/World Science Division. All rights resérved. No part of this publication
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@ . . SOLUTION The energy stored in the capacitor initially is (see Eq. 26-5)
‘ .
U, =4icv?,
—~ ’ where C = KeyA/d. After the dielectric is removed, the capacitance drops by a fac-
‘ -tor K but the voltage is increased by a factor K. Hence
1/C
U, = §<—K7>(KV)2 = K3CVv?) = KU,.

So the energy stored in the capacitor has increased by a factor K. Work is there-
fore required to remove the dielectric; and the amount needed (neglecting friction) is
W=U,~U; =4CV¥K - 1).

That work is needed to remove the dielectric can be seen intuitively from the fact
that there will be a force of attraction between the induced charge on the dielectric
and the charges on the plates (Fig. 26-7c) as it is pulled out. Hence an external

ig. force must be exerted to overcome this, and work must be done.
es

re,

e- *26—6 Gauss's Law in Dielectrics

We now discuss the use of Gauss’s law in a situation when a dielectric is present.
Consider a parallel-plate capacitor containing a dielectric that fills the space between
the plates as shown in Fig. 26-9. We assume the plates are large (of area A) com-
pared to the separation ! so that E is uniform and perpendicular to the plates. For

ek

S

S

1,;: our gaussian surface, we choose the long rectangular box indicated by the dashed
’ lines in Fig. 26-9, which just barcly reaches into the diclectric. The surface encloses
§§ both the free charge Q on the conductor, and the induced (bound) charge Q,,, on
E,, the diclectric, so
1 e
b & -0,
g i g; E-dA = 2~ Qina. (26-12)
-\ £y
Since, from Eq. 26-11b, 0,4 = O(1 — 1/K), we have Q — Q. = O(1 — 1 + 1/K) =
I Q/K.so
$E-dA = Q9 _2 (26-13)
At Key ¢
- This relation (Eq. 26-13), although obtained for a special case, is Gauss's law valid = -
3 in general when dielectrics are present. Note that Q in Eq. 26-13 is the free charge N B N o
only. The induced bound charge is not included since it is accounted for by the factor . '+ _: N
K (or ¢). {:+_| E |-
For the surface shown in Fig. 26-9, we have E = 0 within the conductor, so iy _l'—%,r
there is no flux through that part of the surface inside the conductor. Also there is Wy _,: +
essentially no flux through the short sides of the box, since E is nearly parallel to l N
| the sides, and besides the sides are very short so the contribution would be very small : +
anyway. So the only flux is that through the surface within the dielectric. Thus, +
Gauss’s law gives +
5 +
EA = QO _ g +
where we have used both Eqs. 26-12 and 26-13. E, represents the field inside the :
dielectric and is given by either ]! +
v E, = (2l 1} FIGURE 26-9 Gauss’s law in

oA a dielectric.
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or

In this result, as well as in the general form of Gauss's law, Eq. 26-13, we see that
our earlier relations for E are altered only by replacing &, by Kgo = &.

*96—7 The Polarization and Electric
Displacement Vectors (P and D)

The rectangular dielectric between the plates of the charged parallel plates in Fig.
26-9 has a dipole moment whose magnitude is

Qindl

where | is the thickness of the dielectric and Qjnq is the charge induced on the surface
of the dielectric. For any dielectric, we can define a new quantity, the polarization
vector, P, which is the dipole moment per unit volume. For a rectangular dielectric of
thickness | and whose faces have area A4,

Qindl = _Q_Lf}_(.l =

p= Al A ina-

Thus the magnitude of the polarization vector, in this case, is cqual to the surface
charge density induced on the diclectric.!

The polarization vector points from the negative charge sheet on onc sidc of
the dielectric to the positive charge shect on the other (just as a dipole moment does),
as shown in Fig. 26-9. For the surface shown, we can write

95 P-dA = PA = Qi (26-14)

since P is zero in the conductor and is parallel to the short sides of the rectangular
box chosen as our gaussian surface. Equation 26-14 is valid in general and we can
combine it with Eq. 26-12 to obtain

o2 1 Lp.
gj}E ax == EongP dA
or
95(8015 +P)-dA = Q. (26-15)

This is another way to write Gauss's law when dielectrics are present (see also Eqgs.
26-12 and 26-13), and it too is a general result. It can be written in terms of a new
vector called the electric displacement, D, defined as

D =¢E + P. (26-16)
Then Gauss’s law becomes
86 D-dA =0 (26-17)

In the dielectric between the plates of the parallel-plate capacitor of Fig. 26-9, this
relation gives

D= [parallel-plate capacitor] (26-18)

o

where Q is the free charge.

* For more complicated cases, ¢ is equal to the component of P perpendicular to the surfuace.
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_useful auxiliaries for more advanced work, althoug

There is a simple interpretation of the three vectors E, D, and P. The electric
field E is due to all charges, whether free or bound, as implied by Eq. 26-12. The

polarization vector P, as can be seen from Eq. 26-14, is connected only with the -
induced bound charge. Finally, the electric displacement vector D is associated with &

the free charge only, as implied by Egs. 26-17 and 26-18.

The vector E is, still, the basic electric field vector. The vectors P and D are

SUMMARY

h we will not use them much here.

A capacitor is a device used to store charge and consists of
two separated conductors. The two conductors generally
carry equal and opposite charges, 0, and the ratio of this
charge to the potential difference V between the conduc-
tors is called the capacitance, C; so Q = CV. The capaci-
tance of a parallel-plate capacitor is proportional to the
area of each plate and inversely proportional to their
separation. The space between the conductors contains a
nonconducting material such as air, paper, or plastic.
The latter materials are referred to as dielectrics, and the
capacitance is proportional to a property of dielectrics
called the dielectric constant, K (nearly equal to 1 for air).

If two or more capacitors are connected in parallel,

QUESTIONS

the equivalent capacitance C of the combination it
sum of the individual capacitances. If several capac
are connected in series, the reciprocal of the equiv:
capacitance C is equal to the sum of the reciprocals ¢
individual capacitances.

A charged capacitor stores an amount of electri
ergy given by 40V =1CV? = 10?/C. This energy ca
thought of as stored in the electric field between the p’
In any electric field E in free space the energy dc
(energy per unit volume) is 1g,E2. If a dielectric is prc
the energy density is 1KeoE? = $¢E?, where & = K¢, i
permittivity of the dielectric material.

1. Suppose two nearby conductors carry the same negative
charge. Can there be a potential difference between them?
If so, can the definition of capacitance, C = Q/V, be used
here?

2. Suppose the separation of plates d in a parallel-plate ca-
pacitor is not very small compared to the dimensions of the
plates. Would you expect Eq. 26-2 to give an overestimate
or underestimate of the true capacitance? Explain.

3. Suppose one of the plates of a parallel-plate capacitor
was slid so that the area of overlap was reduced by half,
but they are still parallel. How would this affect the
capacitance?

4. Suppose one plate of a parallel-plate capacitor is tilted at
one end away from the other plate so the separation at
that end is 2d. How would this affect the capacitance?

5. Explain how the relation for the capacitance of a cylin-
drical capacitor, Example 26-2, makes sense intuitively.
Use arguments such as those just after Eq. 26-2.

6. Describe a simple method of measuring & using a
capacitor. :

7. When a battery is connected to a capacitor, why do the
two plates acquire charges of the same magnitude? Will

this be true if the two conductors are different siv
shapes?

8. A large copper sheet of thickness | is placed betwel
parallel plates of a capacitor, but does not touch the |
How will this affect the capacitance?

9, Suppose three identical capacitors are connected
battery. Will they store more energy if connected in
or in parallel?

10. The parallel plates of an isolated capacitor carry op
charges, Q. If the separation of the plates is increa:
a force required? Is the potential difference changed?
happens to the work done in the pulling process?

11. How does the energy in a capacitor change if (a) t
tential difference is doubled, (b) the charge on each
is doubled, and (c) the separation of the plates is do
as the capacitor remains connected to a battery?

12. For dielectrics consisting of polar molecules,
would you expect the dielectric constant to changt
temperature? ‘

13. An isolated charged capacitor has horizontal plate
thin dielectric is inserted a short way between the |
how will it move when it is then released?

QUESTIONS
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other direction; the net result is a net dipole moment opposing the external field.)
Diamagnetism is present in all materials, but is weaker even than paramagnetism
and so is overwhelmed by paramagnetic and ferromagnetic effects in materials that
display these other forms of magnetism.

*30—9 Magnetization Vector and the
Extension of Ampere’s Law

The magnetization vector M, defined as the magnetic dipole moment per unit volume
in Section 30-8, is a useful concept for any magnetic material (ferro-, para-, or
diamagnetic). It is useful to write the magnetic field in terms of M when magnetic
materials are present, just as we wrote the electric field in terms of the polarization
vector P (Section 26-7).

Let us consider a torus, as in Section 30-7, which is filled with some material
(not necessarily ferromagnetic). The total field B is given by Eq. 30-8:

B=Bo+BM

where B, is the field due to the current in the coils and B, is the field due to the
magnetic material. (By is usually small compared to B, for para- and diamagnetic
materials, but much larger for ferromagnetic materials.) We have seen that B, is given
by .

N
Bo = ponl = py T I

where now N is the total number of coils in length L The field By due to the material
can be imagined as arising from currents within the atoms of the material. The net
cffect of all these atomic currents can be thought of as a current Iy (the “magnetization
current”) around the outer surface of the material, Fig. 30-24, in analogy to the
induced clectric charge on the surface of a dielectric, Fig. 26-7. (In fact one would not
be able to measure a current I, at the surface; the concept of a magnetization current
Iy is uscful, nonctheless, and to distinguish it from a rcal conduction current, I, we
call the latter a “real current.”) In analogy to our rclation above for B, we write
N. iIM

By = 1o “‘—‘“\I ’
where N/l is the effective number of loops per unit length (or, Nyly/l is the eflective
magnetization current per unit length). But the magnetic dipole moment is NylyA
(Eq. 29-10), where A is the cross-sectional area of the material, Fig. 30-24. Hence
the magnetic dipole moment per unit volume is

M = NMIMA = NMIMA - NMIM,

|4 Al [
where V = Al is the volume around which the total effective current Nyly flows. We
combine these last two relations and write By, in terms of M:

By = pM.

Then the total field B is
B = B, + yoM. (30-12)

Ampére’s law can be extended to include magnetic materials by including the
magnetization current, Iy, on the right side:

56 B-dl = gl + L), (30-13)

}
—

FIGURE 30-24
current, I, ina
material in” 1
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where I is the net real current and I, is the equivalent magnetization current enclosed
by the path of integration. If we now use Eq. 30-12, Ampére’s law becomes

6 (B + M) - dl = ol + Iy).

In the absence of any material, § By  dl = pol (remember By, refers to B when no
material is present), so from the last equation we obtain

gﬁ M-dl =1, (30-14)

a useful relation between M and the magnetization current. (This could serve as the
definition of I.) Again using § B, * dl = o], and combining it with Eq. 3012, we
obtain (after dividing through by po):

B — yoM
ng(—-—f‘i—) dl=1. (30-15)
Ho

This result, derived for a special case, is valid in general. It is usually written in terms
of a new vector H defined as

g = B~ #M (30-16a)
Ho
which can be rewritten
B = pioH + poM. (30-16b)

From Eq. 30-12 we can also write
B, = poH. (30-17)

In terms of H, Eq. 3015 becomes
GH-dl=1 (30-18)

The vector H is called the magnetic field strength and is to be distinguished from
B which is generally referred to as the magnetic induction. Equation 30-18 tells
us that the line integral of H around any closed path is equal to the total real
current (only) enclosed, even when magnetic materials are present. Thus H is much
like the vector D in electrostatics which is due only to free charges. The vectors
M, H, and B are the counterparts, respectively, of P, D, and E for the electric case
in dielectrics.

The vector H is often associated only with free currents, and M only with “mag-
netization currents,” and B with all currents. This “association” really refers to the
line integrals, Eqs. 3013, 30-14, and 30-18. It does not mean, for example, that
H is produced only by real currents. For example, at any point in free space (a
vacuum, no magnetic ‘materials), we have B = poH. This is true just outside the
pole piece of a permanent magnet, so H # 0 (since B # 0 there) even though no real
currents are present. From Eq. 30-18, it is easy to see that H must oppose B inside
the magnet.

This analysis in terms of H, M, and B is necessary for more advanced treat-
ments; we have included it here simply to give you a little familiarity with these
ideas. It is not expected, however, that you will acquire a working knowledge of M
and H from this brief treatment, and we will not need these ideas for most of what
follows in this book. We do mention here, for completeness, the magnetic suscepti-
bility, ¥, defined as:
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That is, y,, is the ratio of magnetization to magnetic field strength. For paramagnetic
and diamagnetic materials, y,, is constant as long as B is not too great; but it is not
constant for ferromagnetic materials. From Eqgs. 30-16, 30-17, 30-9, and 30-10,

Im = Km" 1
and

#=(1+ xutto.
In a vacuum, K, = 1, y,, = 0, and u = p,.

"SUMMARY

N~

Ampére’s law states that the line integral of the magnetic
field B around any closed loop is equal to Uo times the
total net current I enclosed by the loop:

gﬁB cdl = pol.

The magnetic field B at a distance r from a long
straight wire is directly proportional to the current I in the
wire and inversely proportional to r. The magnetic field
lines are circles centered at the wire. The magnetic field
inside a long tightly wound solenoid is B = uoghl where
n is the number of coils per unit length and I is the current
in each coil.

The force that one long current-carrying wire exerts
on a second parallel current-carrying wire a distance [
away serves as the definition of the ampere unit, and ultj-
mately of the coulomb as well.

The Biot-Savart law is useful for determining the
magnetic field due to a known arrangement of currents.
It states that

dl x

b k]

_ Kol
dB = 47 r

QUESTIONS

where dB is the contribution to the total field at some
point P due to a current I along an infinitesimal length
dl, and f is the displacement vector from dI to P. The
total field B will be the integral over all dB.

Iron and a few other materials can be made into
strong permanent magnets. They are said to be Serro-
magnetic. Ferromagnetic materials are made up of tiny
domains—each a tiny magnet—which are preferentially
aligned in a permanent magnet, but randomly aligned in
a nonmagnetized sample. When a ferromagnetic material
is placed in the magnetic field B, due to a current, say
inside a solenoid or torus, the material becomes mag-
netized. When the current is turned off, however, the mate-
rial remains magnetized, and when the current is increased

in the opposite direction (and then again reversed), the-

total field B does not follow B, due to the current; insteac,
the plot of B versus By is a hysteresis loop, and the fact
that the curves do not retrace themselves is called
hysteresis.

1. The magnetic field due to current in wires in your home
can affect a compass. Discuss the problem in terms of cur-
rents, depending on whether they are ac or dc, and their
distance away.

2. Compare and contrast the magnetic field due to a long
straight current and the electric field due to a long straight
line of electric charge at rest (Section 23-7).

3. Explain why a field such as that shown in Fig. 30-6b
is consistent with Ampére’s law. Could the lines curve up-
ward instead of downward?

4. Compare Ampére’s law to Gauss’s law.

5. (@) Write Ampére’s law for a path’ that surrounds both
conductors in Fig. 30-4. (b) Repeat, assuming the lower
current I,, is in the opposite direction (I, = -1,).

6. Can the integral in Ampére’s law be carried out over a
surface?

7. Suppose the cylindrical conductor of Fig. 30-5a has a
concentric cylindrical hollow cavity inside it (so it looks
like a pipe). What can you say about B in the cavity?

8. What would be the effect on B inside a long solenoid
if (a) the diameter of the loops was doubled, or (b) the
spacing between loops was doubled, or (c) the solenoid’s
length was doubled along with a doubling in the total
number of loops.

9. A type of magnetic switch similar to a solenoid is a reIa)‘».
A relay is an electromagnet (the iron rod inside the coil
doesn’t move) which, when activated, attracts a piece of
soft iron on a pivot. Design a relay (a) to make a doorbell

QUESTIONS
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Definition 2.9 Assume M is a manifold and that S is a subset of M.
If (U, z) is an admissible chart of M which has the submanifold property
with respect to S then the chart (UNS,xzs) of S defined in the paragraph
above is called the chart on S induced by (U,z). We also will refer to
Ts as being a chart induced from the manifold structure on M trusting
the reader to infer that if we use the notation xg for a chart on S then
it is indeed induced by a chart on M which is denoted x.

Theorem 2.3 If M is a manifold and S is a subset of M such that
eac‘h' point of S is in the domain of some admissible chart of M which
has the submanifold property relative to S then there is an atlas on S
each element of which is an induced chart (U,zs). There is a unique
maximal atlas on S which contains every atlas on S whose members
are charts induced by admissible charts of M. It follows that S along
with this unique mazimal atlas is a manifold.

Proof. We leave the details of this proof to the reader since they are
easy modifications of the proofs of the four Observations given above.

Definition 2.10 Assume that M is a manifold and that S is a subset
of M such that each point of S is in the domain of some admissible
chart of M having the submanifold property relative to S. If S is given
the differentiable structure which contains all the charts of S induced
by admissible charts of M then the manifold S is called a submanifold
of M. :

We conclude this section by proving a theorem which provides us
with a method of constructing submanifolds S of R™ without actually
having to produce an atlas of charts of S induced by admissible charts
of M.

Before getting into the details we need to consider a lemma from
matrix theory.

Lemma. Assume A is an m X n matrix having rank m. Then there
exists a nonsingular m x m matrix E and a nonsingular n x n matrix
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P such that EAP = [0|I,,] where I, is the m x m identity and 0 is the
m x (n—m)
zero matrix.

Proof. Recall that there is a sequence of row operations which trans-
forms A into its row echelon form. Since A has rank m its row echelon
form has m nonzero rows such that for each 1 < i < m, row % takes the
form (0, ...,0,1, %, %,..., x) where the asterisk denotes unspecified num-
bers and where the leading nonzero entry of the (i — 1) — th row occurs
prior to the first nonzero entry of the i — th row. Moreover if a matrix
M is transformed to a matrix N by a row transformation then there is
an elementary matrix F' such that FM = N. Consequently there is a
matrix E which is a product of elementary matrices such that FA=R
where R is the row echelon form of A.In a specific case R thus may
assume a form such as

0 0 1 % % % *x * * *
R=100001 % % % *x *
0 000O0O0O01 % %

Since every elementary matrix is nonsingular, E is nonsingular. At this
point one may use column transformations to transform each nonzero
entry (other than the leading nonzero entry) of the i — th row of R
to zero.Thus in the specific example of a row-echelon matrix R given
above the matrix R may be transformed to

0010000000
0000100000
0000000100

It follows that we have nonsingular matrices E and F such that
EAF not only is in row- echelon form but additionally each column
contains at most one nonzero entry as in the second example matrix
given above. Recall that each row is in fact nonzero since the rank of
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EAF is the same as that of A which is m. By interchanging appropriate
columns of the matrix EAF one can transform EAF to a matrix of the
form [0|],,] where O denotes a m X (n — m) zero matrix and I, is the
m x m identity.Recall that if one wishes to interchange the i — th and
j—th columns of an m xn matrix J then one need only multiply J on the
left by the matrix P,; obtained from the identity I, by interchanging the
i—th and j—th columns of I,,. Clearly the matrix P,; is nonsingular and
since the matrix EAF can be transformed to [0|1,,] via a finite number
of column interchanges it is clear that there is a matrix @ which is
the product of a finite number of matrices of the form F;; such that
EAFQ = [0|1,,].Clearly P = FQ is an n X n nonsingular matrix such
that FAP = [0]/,,) and the lemma follows.

Theorem 2.4 Assume that U C R" is an open set and that f : U —
R™ is a class C" function. If n > m and the Jacobean matriz J¢(p)
has rank m for each point p in the level set

S = f10) = {u: f(u) =0}

then S is a submanifold of R*. Moreover the dimension of S is n—m.

Proof. By Theorem 2.3 we need only show that each point of S is in
the domain of an admissible chart (U, z) of R™ having the submanifold
property relative to S. If we do this each point of S will be in the
domain of a chart of S which is induced by an admissible chart of M
as is required by Theorem 2.3 . So fix a point p of S and let F and P
be nonsingular matrices (whose existence is guaranteed by the Lemma)
such that EJ;(p)P = [0|]]. Let

Lg:R™"—R™ and Lp:R"—R"
be linear maps defined by
Lg(v) =vE' and Lp(u)=uP’

for all veR™ and ueR™.Consider the function Lgo foLp. If ¢ = L3 (p)
then :

JLEc’fOLP(q) = JLE(f(p))Jf(p)JLP(q) = EJf(p)P = [Ollm]'
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If ¢ = (a,b)eR™™ x R™ then it follows from the remark at the end of
Chapter 1 that

Dy(Lg o f o Lp)(a)(k) = (0, k) JrgosoLs(9)°

and
(07 k)JLEOfOLP(q)t = (O’ k)(EJf(p)P)t = (O’ k)[OlIm]t =k.

It follows that Da(Lgo foLp)(g) = idr~ and since (Lgo foLp)(q) =0
the hypothesis of the implicit function theorem holds for the function
‘Lo foLp from the open sét Lp(U) € R*™™ x R™ into R™.It follows
that there exists open sets U about aeR™™™, V about beR™ and a
mapping g : U — V such that U x V C Ly (U), g is of class C™ and

(Lgo foLp)(u,v)=0<>v=g(u).

Define z : U x R™ — U x R™ by z(u,v) = (u,v — g(u)).Observe
that & has an inverse with domain U x R™ and for (u, 2)ell x R™
z~Y(u, 2) = (u, 2 + g(u)).Since z and z~" are both continuous and it
follows that z(U x V) is open in U x R™ C R™.It is easy to see that
both z and z~! are of class C" and thus (U x R™,z) is an admissible
chart of R™. If we define S to be Lp'(S) ,then z((U x VIng)) =

{z(u,v) : (u,v)e(T X V)NS} =

{(u,v — g(u)) : (u, v)s(q xV)NS} =

{0 — 9(u)) : (ur)e(0 x V), (Lg o f o Lp)(u,v) = 0} =

{(z,0) : (u,v)e(U xV}Nna(U xV) =

(U x V)) n(R*™ x {0}).
It follows that the mapping

(IIOL}_::IILP((}XV)—%IB([]XV)

is an admissible chart of R® and that (z o Lp')(Lp(U x V) N S) =
(U x VINS) = '
(U x V)N (R™ x {0}) =
(xo L,‘;l)(Lp(@' x V))nR*™ x {0}).
Thus the chart (Lp(J x V),z o Lp')) is admissible and has the sub-
manifold property with respect to S. The theorem follows.



