Sign of derivative test: when does a function decreases or increases:

o If % > 0 for all # € (a,b) then f is increasing on (a, b).
o If % < O for all # € (a,b) then f is decreasing on (a, b).
e If f(z) =0 then the function is not increasing or decreasing at .

We defined increasing and decreasing in Definition 2.3.2. In words, a function
is increasing if as x increases the values of the function likewise increase.
Let’s examine a few examples of this test in action:

Example 5.3.7 and 5.3.8:

Lk f) =€ than {6 = eX > 0 Hr xeld s
lk-\c(x)-:-ex y incremmﬁ on oM of TC.

[EF Lot £x) = X°= 2x + | thoe  £71x) = 2x -2 =20x~1)
g £y 0 whm X > 1 and £x) < &6 whan x< ]

. f -0, |
(lx\\h! .,C e 'mc(co.s‘rna on (llDo) and ‘ﬁl! o(e(.(c&fl/\c&aﬂ ( / )

Example 5.3.9:

ow < /‘LL'\
(E9] Lk {(x) = 6n(x) dhen £1x) = Coslx) So we dr Q7 “P

ibx‘% M\ %

—

M, 2

4-1(}() >0 when X ir in

( 2

Q((X\ 20 owhon X i
®o€§ J({’\\S mu,lrt.& Senge F)

%

v ), (% 5%), (B, %),
’ . iy, T,
A (W/zjﬂ])j(.ﬂ%j?n/z)](%/ /2)1’"‘

the graph above is of y = sin(x) and the red illustrates cos(z) > 0 when the
sine function is increasing.
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Discussion: What does the sign of the derivative changing suggest?

If the derivative df /dz is a continuous function then we can conclude that the
derivative must be zero on some interval if it changes sign on that interval.
(Recall that the Intermediate Value Theorem helped us find zeros of functions
by examining if the function changed signs on some interval. ) Notice that
when the derivative is zero at some point that means the function has a
horizontal tangent line at that point. Such points are local extrema, it will be
the point on the graph which is the highest or lowest point in an open
neighborhood around the point. For examples:

) Vax%zx +|
/{:sm@‘f “i’(l’{YJ
£l =25-1)

The derivatives are graphed in red and you can see that they are zero where
the function 1s minimized or maximized. This motivates (but does not prove!)
the First Derivative Test:

Theorem 5.3.3: (First Derivative Test) If we are given function f which is continuous on
an open interval containing a critical number ¢ then:

1. If df/dxz changes signs from positive to negative at ¢ then f(c) is a local max.

2. If df/dx changes signs from negative to positive at ¢ then f(c) is a local min.

3. If df/dxz does not change signs at c then f(c) is not a local extrema.

Example 5.3.10a: (this one illustrates case 3.)

[El)

/
Cample £ €) Lot Fx) = X7 Hon  £70x) = 355
7‘//)“} CcC=06 /s a Cf',%l'cﬂo/ Y S £ 5#76
fllx)y =3x* = O
So £ does nef cﬁangz &/’g'ﬂf of Cc= 0, WAQ/?
Y

103



The example above is missing something I’d like to put on each example as a
rule. Ithink we should use a sign chart to organize information about
signs. Unfortunately, the homework solutions do not have this
organizational aid for the most part. Look ahead to Example 5.3.12 for
examples of “sign charts”. Logically we don’t really need them, but I think I'm
going to make their use a requirement for our class. This is just so we can be
on the same page when organizing our ideas. I will add many of these sign
charts in lecture, so it is important to take notes on this point.

Notice that Examples 5.3.7, 5.3.8 and 5.3.9 all illustrate cases 1 and 2 of the
First Derivative Test. Let me give one more examples before we go on to the
Second Derivative Test.

Example 5.3.10b:
Let f(z) = $2® + 2% — 62. Find all critical numbers and classify the

critical points as local maximums, minimums, or neither. Observe,

fl(@)=a+2—6=(x—2)(x+3).

We have two critical numbers; ¢ = 2 and ¢ = -3. Lets draw the sign
chart,
| . daf
C=-3 C=2 de

Then we test a point somewhere in the interior of each region,
fi(=4) = (-4 -2)(=243) =8 >0
F1(0) = (=2)(3) = =6 < 0
F(3)=0B-2)3+3)=6>0
Which suggests we fill in the sign chart as follows:

R R EIE3E 3E S df

C=23 Cc=2 dx

By the First Derivative Test we conclude,
f(=3)=—-27/3+9/2 —6(—3) = 27/2 is a local maximum (case 1),
f(2)=8/3+4/2—6(2) = —22/3 is a local minimum (case 2).

Question.: Observe that f(z) = xi‘/i:w for x # 1 and f(1) = 1 has critical
number c¢ = 1. Moreover, the derivative changes sign from df /dxz = —1 for x < 1
todf /dz = 1 for z > 1. Is it in fact the case that f obtains the local maximum
f(1)=1at (1,1) ¢ Does this contradict the First Derivative Test ¢ Explain.
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Concave-up and Concave-down:

The change in a function is captured by the first derivative; increasing
functions have positive derivative functions while decreasing functions have
negative derivative functions. It turns out that the concavity of a function is
captured by the second derivative. A function is concave up on an interval J if
the function has the shape of a bowl which is right-side up over that interval
dJ. A function is concave down on an interval J if the function has the shape of
a bowl which is up-side down over that interval J. I personally find these
sort-of geometric definitions rather unsatisfying. I challenge you to find a
clear definition stated in Stewart’s text. That said, I say we take the following
as the real definition for concave up or down.

Definition 5.3.4: Let f be a function with f’(x) and f”(z) well-defined for each
x € .J then we say that

® f(x)is concave-up on J if f”(x) > 0 foreach z € J

® f(z)is concave-down on J if f”(z) < 0 for each z € J
A function is concave up(or down) at a point if there exists a neighborhood about the
point for which the function is concave up(or down). We say the function changes
concavity at a point c if the function is concave-up(down) to the left of the point and
concave-down(up) to the right of the point ( c, f(c) ). If the function changes concavity
at a point (c, f(c) ) then we say that ( ¢, f(c) ) is a point of inflection.

Consider this, if a function has a the shape of a bowl right side up then the
slopes of the tangent lines will increase as we increase x. On the other hand,
if a function has the shape of a bowl upside down then the slopes of the
tangent lines will decrease as x increases. In other words, the derivative is an
increasing function where the function is concave-up and the derivative is a
decreasing function where the function is concave-down. This proves the
definition given above is equivalent to the geometric bowl-based definition for
concavity. Let’s look at a few examples:

v k4 v
7y=><’ Y=10-x"
/ Y=3x+5
| = = x
Y= 2x Y'i=-2x V=3
Y'=2 v'=_2 \/”:O
(*F“>o) <-F"<o) CF”: Q)
Ceoncave wp Concave clow et e

e The line is an exceptional case, then thing between concave up and
down.
(by the way, the term “convex” used to be used for concave down, this term is
still used in physics particularly in the study of optics)
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Concavity test: when is a function concave up or down:
o It f"(2) > Oforall z € (a,b)then f is concave-up on (a, b).
o It f"(2) < Oforall z € (a,b)then f is concave-down on (a, b).
e If f”’(c) =0 then the function might have an inflection point at c.

I emphasize that when the second derivative is zero we might find an
inflection point, but it doesn’t have to be the case(see picture on last page for
example). Also, it could be that we find an inflection point where the second
derivative does not exist. There are many possibilities. The same is true for
critical points. When a critical point is not at a local max or min it could be an
inflection point, but it might be something else, there are countless other
options. Bonus Point: find me an example of a continuous function which
has a nonzero derivative and a critical point which is neither at a local
maximum, minimum or inflection point.

Theorem 5.3.3: (Second Derivative Test) If a function f has % continuous on

an open neighborhood containing ¢ such that f/(¢) = 0 then:
1. If f"(c) <0 then f(c)is alocal maximum.
2. If f"(c) > 0 then f(c)is a local minimum.
3. If f”(c) =0 then the Second Derivative Test is inconclusive.

Proof: Suppose that f"(c) < 0 and f'(c) = 0 then (c, f(c)) has a horizontal
tangent line and the function is upside-down bowl-shaped near the point,
hence it is geometrically clear that the point is a local maximum. Likewise if
f"(c) > 0and f'(c) =0 then (c, f(c)) has a horizontal tangent line and the
function is rightside-up bowl-shaped near the point, hence it is geometrically
clear that the point is a local minimum. Technically, this proof leaves
something to be desired, but this is the heart of it.

@7 Consriler Llx) = X3—12x -~ §

£'tx) = 3x*-12 = 3(x*=vy)
£ (x) = € x
Critical #% are X = t2 where £(22) = 0. Thou
'F”(Z) = 6(2) = 12 - - -F(Z) = g—— 249-5 = -~2/| /ocajmfn,
£'(-2) = ¢t-2) = -1z o flz) =-8+29-5 = (1 Jocad rmax

We  can “L{J/lﬁb”% nefe X=0 ic arn jnffechon Pesnt  Sketchs

A | frorees
[V

)
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Example 5.3.12:

@ We will J"ﬁm/?, a # of g«eff/aﬂf abeT f(x/ =
2’ W//’f/ /r;ffwalutoe Sewre mgﬁﬁgncj A.Qéfi?: 7‘» j’c’ee
of / FoF ene £ IF
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Ows M S f%’cﬁﬂ? 1’%/‘ dgnz/xﬂw Beroer BXC.o. Frama pre cw(cw{q;
Fhann ‘F egaﬁ free do uge it,  Frnol #\g@\:ﬁ/féw&;g, i

| Q. ) C RITICAL Po,w ¢ _ R —
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£l = Hloots x&(0°
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= +2X+ x*— 2K 2%°
(rexy*
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a) Neke f£'l1)=0 ond £-1)) dine thu Hha
C,r‘t“"lcu,& ‘#S agp -F are ‘, Now we know

. e dhug' we (w0 J‘UJ’
g £ un only  chang sign ok eriticed #ETRE U o pt Fom

----- i 4 e'o\w\ Qﬂﬁ
e _'!++*+*’*+*+! - -P m{;ldei\a describe

-\ | -F'Pas»-}ue/neg
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Example 5.3.12 continued:

C.) We use +he | dediodive dect i iconchnds Hud e
'g:' ckomé‘” From C+) +o <-) Ojb X=1 Ve Ve, «F{;):-z—‘;;:-
¢ o loced mox of £ o X= (X:-—/ 5 a Ve/ﬁ'cc,/a&m/%)é
So alfhugh s« criticed point FE1) tan't be o locad mox, it din,e, )

s
Y

d) We rneed 4o Aot £ and how it behaves,
M%)y = @ ( l-x) = 2(x=2)

ax | (+x) (x+1)7
Vikia b £ can onk C-/'wng;,e 5‘/’?&1 i Beroes
and verticed as m/@:‘w er which octur o X= 2 and X=-),
We reed +o check 3 poink 7 Preces  fhe ‘,Q/Aw,@)

_.__-7--—~‘I!——- —_— —2!++++++> _F//
We  ten read off +ha Sty cboct Sor 700’/%@

7[‘ I\S Con tolve OJGWV? an (-"ﬁb, 2)
7(' is Concave wvp @n (2, Da)

Q) «C (,L'\_o,n?o Concavu’p c,:i) X=2 which s +he in?’
'\r\‘ﬂec‘h’an Pﬂ:f\‘{'.

-ﬁ) Qf’%m\? I Slmzv»iao‘ve g?uﬁ'?k’ “+hig !g"’L/ oh well any u..m,g,
\C((o) =0 and £61) dne , £ mwt chage sign
QH"W\ QO or =] Seo we o.%a:w ;,Mﬂ rand 4o check '3\-49;#):'6'

o T on
L L LT Lo L = = P s

1 tha Zeroks of
- o £ bt

Remark: a function which is continuous everywhere except at vertical
asymptotes can only change sign at its zeroes and vertical asymptotes. This
1dea applies to the function, its derivative and its second derivative. This is a
consequence of the Intermediate Value Theorem and plain-old common sense.
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Example 5.3.12 conclusion:

[E1Z corclocion ]| Vhous lotr wtsemble tha genph of £ vsing M
*’Aﬁ Fo , 2*‘ (ﬁ’ T o S /?ﬁ"

' /\Y
/‘aafmf of 12“‘*3’%31‘)
‘ 2
: g )
) l 2 — X
X
’; T

VLA,

Remark on case 3 of 24 Derivative Test: Maybe you are wondering,

what is an example of a function which falls into case 3 of the derivative test?
One simple example is a line f(x) = ma + b which has f'(z) = m. Clearly

df /dx 1s continuous everywhere. Notice f”(z) = 0 for each = € R. There are
two cases:

1. m =0thus f(z) = b and y = b is the maximum and minimum value of
the function at all points.

2. m # 0 then f(z) = mz + b and the function has no local or global

extreme values. If we restrict attention to a closed interval then the
line takes its extreme values with respect to that interval on the
endpoints.
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Example 5.3.13:

ﬂﬂﬂﬂﬂ “'f"‘i""f*?- e o I’F\!
X Ry
7C(x) = Xe — r
{:ﬂ(X)""éx(l"X) =) +%’~n.¥++++$ ______ .
'f:“(x)=enx<><-2> = .:.::"-~23++->-*f¢ﬁ*?$u

'ﬁx@r@—f;rei J
. th'é‘( ont is X=1
Z)) £ }ﬂcfe/:m on (-00,1) wnd deceses oo (¢, 20) o
C.) f has & Jocad mox of —{f(f)=—é— ot X=1 bg)f’" Der, Tes?.

d) 1(: Concoave Yp en (Z,w} and teacave dowrr on (—acl 2)!
Q.) X=2 s an /ﬁ//éaﬁ"an /)of/h{l' of .f:

= is Jhae onle BCro of -16
£) x=0 is d Y 4 1) e
3) fa/D}] s (: €. 7?
L] % _ "

4\
X

We have at our disposal all the tools we need to figure out what a function
looks like locally. Given the formula we simply take a derivative or two and
think. The global picture of the function requires one more piece of
information: the asymptotic behavior of the function. Such behavior is
captured by the limits at +o00. We will discuss this last topic on graphing in
the section 5.5.
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5.4. OPTIMIZATION

This section seeks to use calculus to answer questions like: what is the biggest, smallest,
cheapest longest, shortest, hottest, coldest, best, worst, etc ... Given some word problem
or equation which models a particular physical problem what are the possibilities, what
are the extremes? The analysis developed and discussed in the preceding section allows
us to tackle such questions in a way that was unavailable before the advent of calculus.

Example 5.4.1:

G“’““ H00Ft of pﬁnc[;v? whod dimensions showld NP
| 0

Wy : ¥ | ( 3 ATk ; =
Ve o rechingnlar pen af o MoXimize Hho area

T I e S T — ]

W

| 2% +2w = Yoo
A A A= Qw
Wotice Yhed L = 200 - W

¢ R e e

= A = (20‘3’ W)W = 2w -w*

Poximize A as o fanchion of w than,
ﬁ = 200-2w = Q/ﬁ: O when W = /00

dw du
: ‘fz : s
Them note d/i T -2< 0 = F}(MO) I &« PIOUNANYT .
w
Thus bg 2"1'4 ;x'ffum’; ve et W= /00 ?/m— Mex. arlca. —T/'M\f
100 £+
: 1l =200-100=100
. 0
00 £ [ 00f+
SR
|00+

'ﬂm c//?}veny/uny Sriserm: ol Hha
area of She Pen,
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Example 5.4.2:
CT] G 2 e oy ol & wd ]| :

S , . i /
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0 JL d
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Example 5.4.3:
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Example 5.4.4:

1 Ll Th@ h&lg«z‘fp 91[ @ prv(},ﬁc“’) € /a,vmg/q@/ Sf(g(z,,ﬁé u’g (e / »,»',, w‘""\ @
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Example 5.4.5:

ES Find +hao /00/47" on o liag Y= L{X'{-? N_—}_WL:;;(W'M ;/‘
closest +o +he arigpn (0,0). ]

We want to msnimiZe f;u olisfonce 5 = —\/xz_,\/z
Where V= YUx + 7 So - umrs dlen

L () = il ds

2%+ (Ux+7)* dX
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g
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Example 5.4.6:

What lengths x,,;, and x,,,, give a mass-spring system obeying Hooke’s Law [' = —kz
the minimum and maximum Kinetic energy K ? Recall that energy is conserved such a
system and in particular we have that K = $mv? and U = 1ka? with K + U = E, (a
positive constant).

Solution: Solve for K,
1
K=FE,— —ka*
2

Look for critical numbers:

dK 1
e 0— ik(Zx) = —kr == =0 only critical number
x
Furthermore, notice
d’K . .
Tz = —k < 0 the spring constant &£ > 0 by convention

Which shows that z,,,, = 0 yields the maximum Kinetic energy of K = F..
How did I miss z,,;,? What am I not paying attention to about the Kinetic
energy function? Let me give a colossal hint: what is the domain for K? We
know that mass is positive and so is v? so it stands to reason that K > 0
hence E, — 1ka? > 0 or simply E, > $kz? thus 22 < 2E,/k which indicates that
—/2E,/k <1z < +/2F,/k. We need to use the closed interval method for this
problem. Perhaps that was not obvious from the start. Lets check K on the
endpoints,

K(x=—\2E,Jk) = E, - %k(— 2E,/k)* =0
K(x = 2E,Jk) = E, - %k( 2E,/k)* =0

Thus z,,;, = £+/2F,/k where the Kinetic energy is zero.

Moral of story: domains matter, its not ”just” a math thing. It can happen
that the interesting case is at an endpoint and not at a critical point.
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Example 5.4.7:
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Example 5.4.8: when you take differential equations you will learn how to

solve Newton’s equations in the case of a velocity dependent friction force. In

the following example we analyze the solution to see how the spring vibrates.

)
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T
r’(}“'eq)
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5.5. LIMITS AT INFINITY

The behavior a function at very very very... very big values of Z is captured by the
limit of the function at co. Now infinity is not a number so such a limit has not yet been
discussed. In Chapter 3 of these notes we learned how to calculate the limit of a function
at some finite point. Sometimes the output of the limit turned out to be +o0, now we
turn our attention to the case that the argument of the function tends toward a very big
input or a very large negative input.

Definition5.5.1:
The limit at oo for a function f is L € R if the values f(z) get arbitrarily

close to L as the input = gets arbitrarily large. We write

lim f(z)=1L
T—r00
in this case. To be more precise we should say that lim, .., f(z) = L if

for each ¢ > 0 there exists N > 0 such thatif x > N then |f(z) — L] <e.

The precise definition essentially says that if we pick a band of width 2¢ about
the line y = L then for points to the right of + = N the graph fits inside the
band. Stewart has nice pictures of this, go look at them in section 4.4 pg. 238.

Example 5.5.1:
Let f(z) = % Calculate the limit of f(x) at co. Observe that,

F(10)=0.1,  f(100) =0.01,  f(1000) = 0.001.

We see that the values of the function are getting closer and closer to
zero as x gets larger and larger. This leads us to conclude,

|
lim — =0
T—00 T

In other words, if we divide something nonzero by a very big number
then we get something very small. This sort of limit is not ambiguous,
to determine the answer we either need to think about a table of
values or perhaps a graph.

Or if you want to be picky you can argue as follows: Let ¢ > 0 choose
N = 1/e and observe that for » > N = 1/e we have that1/z < e.

Consequently, | f(z) — 0] = |1/z] = 1/2 < e. Hence by the precise definition

lim — =0,
T—00 T
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We should also define limits at minus infinity.

Definition5.5.2:

The limit at —0O0 for a function f is L € R if the values f(x) get
arbitrarily close to L as the input = gets arbitrarily negative and large.
We write

lim f(z)=1L
Tr—r— 00
in this case. To be more precise we should say that lim,_, ., f(z) = L if

for each ¢ > 0 there exists M < 0 such thatif z < M then |f(z) — L] <e.

Let’s look at a simple example:

Example 5.5.2:
Let f(x) = <. Calculate the limit of f(2) at —oo. Observe that,

f(=10) = —0.1,  f(—100) = —0.01,  f(—1000) = —0.001.

We see that the values of the function are getting closer and closer to
zero as x gets larger and negative. This leads us to conclude,

) 1
im — =0
T——00 I

In other words, if we divide something nonzero by a very big negative
number then we get something very small and negative. This sort of
limit is not ambiguous, to determine the answer we either need to
think about a table of values or perhaps a graph.

Or if you want to be picky you can argue as follows: Let ¢ > 0 choose
M = —1/¢ and observe that for x < M = —1/¢ we have that
—1/x < e and clearly x < 0 since » < —1/e < 0 so |z| = —z thus:

|f(x) = 0] =|1/2|=-1/x <e

Hence by the precise definition
1
lim — =0.
T——00 I

I do not require you to be proficient in picky € type arguments, I include them
here just in case the common sense arguments fail to convince you. Let us
consider an example which we will rely on in later examples quite frequently.
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Example 5.5.3:
Let f(z) = 1/2™ where n > 0. Calculate the limit of f(z) at co. Observe
that,

F(10) =1/10",  f£(100) = 1/100",  f£(1000) = 1/1000".

We see that the values of the function are getting closer and closer to
zero as x gets larger and larger. This leads us to conclude,

lim — =0

r—o0 TN
In other words, if we divide something nonzero by a very big number
then we get something very small. This sort of limit is not ambiguous,
to determine the answer we either need to think about a table of
values or perhaps a graph.

Let ¢ > 0 choose N = 1/cw. Suppose 2 > N = 1/ew thus 1/z < v which
implies 1/2" < (¢+)" = e. Consider then, for 2 > N

|f(z)—=0]=|1/2"| =1/2" < ¢

Therefore by the precise definition for limits at infinity,
1
lim — = 0.
r—o0 TN

The graphical significance of all three examples thus far considered is that
the function has a horizontal asymptote of y = 0 at infinity or minus infinity.

Definitionb.5.3:

If lim, . f(z) = L € R if then the function is said to have a horizontal
asymptote of y = L. Likewise, if lim, , ., f(z) = L € R if then the
function is said to have a horizontal asymptote of y = L.

Example 5.5.4:

Let f(z) = tan™!(x). We saw back in section 2.4.5 page 17 of these
notes that the inverse tangent has horizontal asymptotes of y = 7/2
and y = —n /2. (Those facts follow from the graph which can be obtained
from flipping y = tan(z) about the line y = x). We find that

lim (tan~'(z) ) = i lim (tan~'(z) ) = -7

T—00 2 T——00 2
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Vertical asymptotes of the function correspond to horizontal asymptotes for
the inverse function. Challenge: what are the horizontal asymptotes of

y = tan™!

(3xz) ? We can also discuss limits which go to infinity at infinity.

Definition5.5.4:

The limit at 00 for a function f is 00 if the values f(x) get arbitrarily
large as the input x gets arbitrarily large. We write

lim f(z) =

T—00

in this case. Likewise, the limit at —0OO for a function f is 00 if the
values f(z) get arbitrarily large as the input x gets arbitrarily large
and negative. We write

lim f(z)=

TrT—r—00

Finally, if the function takes on increasingly large negative values as the input
becomes increasing large or negative then we write

lim f(z)=

T——00

lim f(z) =00  or

T——00

—o0

These definitions are very natural, lets examine a number of easy cases. |
will just state the answers in this example since they are derived from plain-
old common sense for the most part. As before we will have to show more
work for the limits which are indeterminant, we discuss those trickier
examples later in this section.

Example 5.5.5: the last three columns we dealt with earlier but I thought it might

be instructive to include those here as well just to make sure you understand the

difference between limits which go to infinity and those which are taken at infinity.

o1
lim — =0
r—00 U
1
lim - =0
z—00 T2
. 1
lim — =0
T—00 xr
lim vz = oo

) o1

lim — =0 lim — = o0
r——00 I r—=0t T

1 1

lim —220 11n1—2:oo
rT——00 I =0Tt l’

lim — =7 lim — =0
T—=—00 /T =0t \/7

lim vz =? lim vz =0
T——00 x—0t

lim 2% = oo lim 22 =0
Tr——00 r—0+t

lim 2° = —o00 lim 2° =0
T——00 =07t

o1 1
lim — = -0 lim — = dne
r—0— T z—0
1 1
lim — =X lim — = o0
r—0~ J,‘ :1:—)0,];

lim — = dne

x—0 \/_
lim /= = dne
z—0

lim — =7

=0~ \/_
lim vz =?

r—0~

lim 22 =0 limz? =0
r—0— r—0

lim z° =0 limz® =0
x—0~ =0

I have used “?” instead of d.n.e. in a few places just to make it fit. Those limits are taken at a
limit point which is not in the domain of the function, in some cases not even on the boundary

of the function. If we can’t take values close to the limit point then by default the limit is said to

not exist, in which case we use d.n.e. as a shorthand (or just for this example “?”)
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We can also have limits which fail to exist at plus or minus infinity due to
oscillation. All of the functions in the next example fall into that category.

Example 5.5.6: the following limits all involve cyclic functions. They never settle
down to one value for large positive or negative input values so the limits d.n.e.

lim sin(z) = d.n.e. lim cos(z) = d.n.e. lim tan(z) = d.n.e.

T—00 T—00 T—00

lim sin(z) =d.n.e. lim cos(z) =dn.e.  lim tan(z) = d.n.e.

lim csc(x) = d.n.e. lim sec(z) = d.n.e. lim sec(z) = d.n.e.

lim csc(z) =dne.  lim sec(z) = d.n.e. lim sec(z) =d.n.e.
Tr——00 T——00 T—r—00

I should probably not neglect the other common elementary functions which
we encounter often in examples. These limits I would consider basic, I recall
these on the basis of the graph of the function and a little common sense.

Example 5.5.7: return to Chapter 2 if you are rusty on the graphs and basic
properties of these functions. The interplay between a function and its inverse is
especially enlightening for In(x), sin™!(z), cos™!(z).

. < =1 _ . -1 o 1
xh_)r(r)lo sin” " (x) = d.n.e. mh_)rgo cos” (z) = d.n.e. mh_)rgo tan™" (z) = 7/2
lim sin"'(z) =dn.e.  lim cos™'(x) = d.n.e. lim tan™'(z) = —7/2

T——00 T——00 T——00
lim e = o0 lime™ =0 lim (1/2)* =
r—00 r—00 r—00
lim e" =0 lim e =00 lim (1/2)* =
T——00 T——00 T——00

The domain of sin~*(z) and cos™! () will be the range of sine and cosine respectively; that is
dom(sin~*(x)) = [—1,1] and dom(cos‘l(q;)) = [—1, 1] so clearly the limits at plus and minus
infinity are not sensible as sin~* and cos ! are not even defined at £=2. In contrast the range of
the exponential function is all positive real numbers and In(z) is the inverse function of e thus

xBEHOO In(x) = d.n.e. Ilirgi In(z) = —o0 xh_}rgo In(z) = o0

For z < 0 the [n(z)is not real, the middle limit you should have thought about in the earlier
discussion of limits. The last one is true although an uncritical appraisal of the graph y = In(x)
gives the appearance of a horizontal asymptote, but appearances can be deceiving.

I don’t believe we defined limits going to infinity precisely before, but it is a simple
matter. We say that lim,_,, f(z) = oo if for each M > 0 there exists § > 0 such that if
0 < |x —a| < ¢ then f(x) > M. What then does lim,_,., f(z) = oo mean precisely? It
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means that for each M > 0 there exists a NV > 0 such that for z > N we find f(z) > M.
Take f(x) = In(x) for example. Let M > 0 and choose N = ¢* > 0. Suppose

x> N = eMthen In(z) > In(eM) = M. Hence the natural log goes to infinity at infinity.
The fact that natural log didn’t mess up the inequality follows from the observation that
L In(z) = 1 > 0o In(z) is an increasing function on (0, co). The analysis in this
paragraph is not a required topic. I have included it just in case you were curious
how we can make these arguments rigorous.

Indeterminant Limits at Infinity

Up to this point I have attempted to catalogue the basic results. I'm sure I
forgot something important, but I hope these examples give you enough of a
basis to do those limits which are unambiguous at plus or minus infinity.
There is another category of problems where the limits which are given are
not obvious, there is some form of interminancy. All the same indeterminant
forms (see section 3.3 page 33) arise again and most of the algebraic
techniques we used back in section 3.5 will arise again here although perhaps
in a slightly altered form.

The good news is that limits at infinity enjoy all the same properties as limits
which are taken at a finite limit point, at least in as much as the properties
make sense. Of course we can only apply the limit properties when the values
of the limit are finite. For example,

lim, oo (2 — 22) = lim, o0 (@) + lim, oo (—22) = 00 — 00

is not valid because you might be tempted to cancel and find

lim, o (x — 22) = 0 yet lim, , . (z — 22) = lim,_,.(—x) = —occ 1s the correct
result. So we should only split limits by the limit laws when the subsequent
limits are finite. That said, I do admit there are certain cases it doesn’t hurt
to apply the limit laws even though the limits are infinite. In particular if
lim f = oo then limef = clim f = coo and if we agree to understand that

coo = oo for ¢ > 0 whereas coo = —oco if ¢ < 0. Such statements are dangerous
because the reader may be tempted to apply laws of arithmetic to expressions
involving co and its just not that simple.

Example 5.5.8: this one is of type co/oco to begin.

3 z 4 3
lim ( T > = lim ( — ) divided top and bottom by x
z—=oo\ T — 2 £—00 é - =
1+0
— fim [ 0 c/r —0asz — o0
T—00 1—0
=1.
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Here is another example of the same type.

Example 5.5.9: this one is of type co/oco to begin.

343, -9 14,3 2
lim ( 1‘4—'——1‘ ) = lim < % ) divided top and bottom by z*
rz—oo\ 4 — 22+ 1 T—00 1_F+F

0+0-0
:}Eri(im) forn=1,2,4, ¢/z" - 0 as x — o0

= 0.

Please sir may I have another? Yes.

Example 5.5.10: this one is of type oco/oco to begin.

2

. 343z —2 . r+32—-3
lim S ——— = lim —
T——00 22—+ 7 T——00 1—=4 5

2

88w

) divided top and bottom by z*

r—r—00

= lim(%) forn=1,2,¢/z" - 0asz — —o0
= —00.

Another way of thinking about this one is to put in very big negative values of x.
For example, when © = —1000 we find
2%+ 3z —2 1000+ 3000 — 2 _ 1000°
22—z +7 10002 — 1000 — 2 ~ 10002
This sort of reasoning is a good method to try if you are lost as to what algebraic
step to apply. There are problems which no amount of algebra will fix, sometimes
considering numerical evidence is the best wav to figure out a limit.

= 1000 =z

Example 5.5.11: this one is of type oco/oco to begin.

, V2t + 3z —2 , LV2st + 32 — 2
lim = lim|( =&
204 43r—2
_ 1 .'174
2452
= lim ( T — >
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Example 5.5.12: this one is of type 0 - co to begin.

: —zor \ _ 1: In(2%) —=z
th—I>T01<> ( e "2 ) = rh—>Holo (e e ) sneaky step

= lim (ex 111(2)6_35)
T—r00

— lim (er(ln(Q)—l))

Tr—>00

= 0.

In the last step I noticed In(2) — 1 = 0.692 — 1 < 0 thus the limit amounts to the

exponential function evaluated at ever increasing large negative values, this
gives zero. This example really belongs in the section with L’Hopital’s Rule, 1

We see that limits of type co/co can result in many different final answers

depending on how the indeterminancy is resolved. The next example is more
general, I think it is healthy to think about something a little more abstract
from time to time. The strategy used is essentially identical other examples’.

125



Example 5.5.13: let P be a polynomial of degree p and let () be a polynomial
of degree ¢q. This means there exist real coefficients a,, a,_1, ..., a1,y and
by, bg—1.-...b1,by such that a, # 0 and b, # 0 where

P(r)=aya’ +---+axz+ay  Qx) =bgx? 4 -+ bz + by

Consider f(x) = P(x)/Q(z). There are three cases. Let’s begin with p > ¢ so

p—q>0
, P(x) , ap? + -+ a1 + ag
lim = lim
T—00 Q(J,') T—00 bq,xq + .-+ blgj -+ bO
= lim < apr” 4 4 T )

by+- i+

x4

= lim(%x”q+~~+i+ do >

—1
r—00 q bqéﬁq bq.I'q
= +o0.

If a,/b, > 0 then we get +00 whereas if a,/b, < 0 we obtain —oco. The next case is that
the denominator has a larger degree, that is to say p < g thus g —p > 0

1im<P<x)>:lim<%fﬂp+“'+alx+ao>
e—oo\ Q(x) byr? 4 -+ + bix + by

ap$p—q+...+$gil+z_2
< by+- i+ )

x4

1
:lim(% + ...+ “ + %0 >

b, xa—p byri=t b4

Finally it could be that the numerator and denominator have equal degree; p = ¢

. P(x) . apx? 4+ -+ a1z + ag
lim = lim
T—00 Q(q‘) 2—00 bqq:q + -+ bz + by
. (prpiq + “ e + gil _|._ a_g
= lim bx - z
by + -+ o+ b

x4

:li111<ai+--~+ il + o )

. —1
r—00 bq bq.flj‘q bqZUq

r—r 00

ap
bq

In each case my goal was to simplify the denominator so I could focus on the behavior of
the numerator. Very similar arguments will work for z — —oo0.
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Example 5.5.14: we can throw away a bounded function in a sum when the other

function in the sum is unbounded, here are two examples of this idea in action:
lim (sin(z) + €”) = lim (e*) = o0
Tr—r0o0 T—r00

lim (z+2)= lim () =—0c0
r——00

Tr—>—00

Example 5.5.15: if we take a function f(z)with a known limit of L € R or +c0 as
1 — Foo then the limit of f(x + a) is the same for » — +00. For example,

lim (") =c0 = lim (¢""?) = 0

T—r 00 T—r00

: 1 : 1
() =0 = ()

. -1 _ T . —1/, _r
xlggo(tan () = 5 = xlgr;@(tan (x+2) = 5

Example 5.5.16: in a contest between power functions the largest degree wins.

: 302y _ 1 3y _

Jyfe”—o) = g () = co.
lim (z° — 2*) = lim (—2*) = —oc0.
T—r00 T—r00

On the other hand the exponential function will win against a polynomial because
eventually the exponential function’s values will totally dwarf the power function’s
values.
lim (z° — €*) = lim (") = oc.
T—r00 Tr—r0o0
lim (27 4+2) = lim (27°) = oo.
Tr—r—00 rT—r—00

You might ask why? Well, I challenge you to prove these claims for a bonus point.

Example 5.5.17: that “rationalization” idea comes up again here:

lim (z — v/Z) = lim (x VL \/§)>
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Example 5.5.18: that “rationalization” idea comes up again here: to begin the
limit is of type —oco + oo but as you can see below the —oo wins in the end.

— Va2 +4x
lim (z + Va?+4z) = lim (w(l +Va? + 41?)>

Tr——00 T—>—00 T — \/m
i < x? — 2 — Az >

= lim | ——MmMm—

z—=—oco \ 1 — /2?2 + 4
(k)

= lim

r——oco\ 20 — /a2 + 4a

i (= 7)

= lim | ———

v5—oo\1— /1 + 4z

= —0OQ.
That need not be the case, consider a similar problem that looks about the same
on the surface but works out quite differently:

T+ V22 + 4
lim (x — V222 +4z) = lim < —v2x2+4$>
i (= )= lim xwm( )

= lim

(1} — 22 )
z——00 $+\/2x2—|—41
( —x? — 4z >

= lim
=0\ x + /22?2 + 4z

= lim

-y )
S\ T 247

Example 5.5.19: when dealing with square roots it is important that you
remember that the laws of exponents indicate £v/a + b = /5 (a + b) . We assume

that a, ¢ > 0 in this problem. Consider,

. vaxr?+bxr + ¢ . LVax? + bz + ¢
lim = lim [ £
z—=oo\ \/cx?2 +dx +e T—00 %\/ cx?+dr+e

ax?+br+c

. \/ 22
= hIn —_—
cx?4dxte

1.2

- (VT

r—00

a
C
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Example 5.5.20: The Squeeze Theorem applies to limits at +o00. Suppose we
are given a function f such that

2 42+ 1
Ztan'(z) < fz) < ————
— tan (x) < f(z) < 3

for all z > 1,000, 000. We can calculate the limit at co via the Squeeze
Theorem. Observe that

g}glolc<%fan (.«L—)>: g
< it > Hoo<\/m>:\/1/2:1.

22 — 3 23/

=1

:HL\J

lim

Therefore, by the Squeeze Theorem,
lim f(z) =

xr—00

Trading limits at infinity for limits at zero:
Notice that if # = 1/t then ¢ = 1/z it stands to reason that if + — oo then

t — 07. We can make the following substitution with that exchange in mind :

T () = lim f(1/1)

t—0+

Homework problems 29 and 30 of section 4.4 of Stewart’s 6th-Ed. are based on
this exchange of limits. It is rather neat that the infinitesimal and the
infinite are linked together in this way. I spent about an hour trying to get
the following example to be pretty to no avail. I can do it with the technique
of L’Hopital’s Rule.

Example 5.5.21: the infinite limit view of e. Consider the following limit:

: 1\*
lim < 1+ - > =e
T—>00 €T
If you can show that this definition is compatible with our previous

1mplicit definition
lim =1
h—0 h

for e I will award 3 bonus points if you can do it without using I’Hopital’s
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