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Sign of derivative test: when does a function decreases or increases: 

 

• If   for all  then  is increasing on . 

• If   for all  then  is decreasing on . 

• If   then the function is not increasing or decreasing at  . 

 

We defined increasing and decreasing in Definition 2.3.2. In words, a function 

is increasing if as x increases the values of the function likewise increase. 

Let’s examine a few examples of this test in action: 

 

Example 5.3.7 and 5.3.8: 
 

 
 

Example 5.3.9:  

the graph above is of  and the red illustrates  when the 

sine function is increasing.  
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Discussion: What does the sign of the derivative changing suggest? 

 

If the derivative  is a continuous function then we can conclude that the 

derivative must be zero on some interval if it changes sign on that interval. 

(Recall that the Intermediate Value Theorem helped us find zeros of functions 

by examining if the function changed signs on some interval. ) Notice that 

when the derivative is zero at some point that means the function has a 

horizontal tangent line at that point. Such points are local extrema, it will be 

the point on the graph which is the highest or lowest point in an open 

neighborhood around the point. For examples: 

 

 
The derivatives are graphed in red and you can see that they are zero where 

the function is minimized or maximized. This motivates (but does not prove!) 

the First Derivative Test: 

 

 

 

 

 

 

 

 

Example 5.3.10a:  (this one illustrates case 3.) 

 

 

Theorem 5.3.3: (First Derivative Test) If we are given function f which is continuous on  

an open interval containing a critical number c  then: 

1. If   changes signs from positive to negative at c then  is a local max. 

2. If   changes signs from negative to positive at c then  is a local min. 

3. If   does not change signs at c then  is not a local extrema. 
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The example above is missing something I’d like to put on each example as a 

rule.  I think we should use a sign chart to organize information about 

signs.  Unfortunately, the homework solutions do not have this 

organizational aid for the most part. Look ahead to Example 5.3.12 for 

examples of “sign charts”. Logically we don’t really need them, but I think I’m 

going to make their use a requirement for our class. This is just so we can be 

on the same page when organizing our ideas. I will add many of these sign 

charts in lecture, so it is important to take notes on this point. 

 

Notice that Examples 5.3.7, 5.3.8 and 5.3.9 all illustrate cases 1 and 2 of the 

First Derivative Test. Let me give one more examples before we go on to the 

Second Derivative Test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question: Observe that   for  and  has critical 

number  c = 1. Moreover, the derivative changes sign from  for  

to  for . Is it in fact the case that  obtains the local maximum 

 at (1,1) ? Does this contradict the First Derivative Test ? Explain. 

 

Example 5.3.10b: 

Let . Find all critical numbers and classify the 

critical points as local maximums, minimums, or neither. Observe, 

 

. 

 

We have two critical numbers; c = 2 and c = -3. Lets draw the sign 

chart, 

 
Then we test a point somewhere in the interior of each region, 

 

Which suggests we fill in the sign chart as follows: 

 
By the First Derivative Test we conclude, 

 is a local maximum (case 1), 

 is a local minimum (case 2). 

C = -3              C = 2 
 

 
+ + + +      - - - - - - - - - - - - - - - - - - -     + + + +  

            C = -3                                     C = 2 
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Concave-up and Concave-down: 
The change in a function is captured by the first derivative; increasing 

functions have positive derivative functions while decreasing functions have 

negative derivative functions. It turns out that the concavity of a function is 

captured by the second derivative. A function is concave up on an interval J if 

the function has the shape of a bowl which is right-side up over that interval 

J. A function is concave down on an interval J if the function has the shape of 

a bowl which is up-side down over that interval J. I personally find these 

sort-of geometric definitions rather unsatisfying. I challenge you to find a 

clear definition stated in Stewart’s text. That said, I say we take the following 

as the real definition for concave up or down.  

 

 

 

 

 

 

 

 

 

 

Consider this, if a function has a the shape of a bowl right side up then the 

slopes of the tangent lines will increase as we increase x. On the other hand, 

if a function has the shape of a bowl upside down then the slopes of the 

tangent lines will decrease as x increases. In other words, the derivative is an 

increasing function where the function is concave-up and the derivative is a 

decreasing function where the function is concave-down. This proves the 

definition given above is equivalent to the geometric bowl-based definition for 

concavity. Let’s look at a few examples: 

 
 

• The line is an exceptional case, then thing between concave up and 

down. 

(by the way, the term “convex” used to be used for concave down, this term is 

still used in physics particularly in the study of optics) 

Definition 5.3.4:  Let  be a function with  and  well-defined for each 

 then we say that  

•  is concave-up on  if  for each  

•  is concave-down on  if  for each  

A function is concave up(or down) at a point if there exists a neighborhood about the 

point for which the function is concave up(or down).  We say the function changes 

concavity at a point c if the function is concave-up(down) to the left of the point and 

concave-down(up) to the right of the point ( c, f(c) ). If the function changes concavity 

at a point (c, f(c) ) then we say that ( c , f(c) ) is a point of inflection.  
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Concavity test: when is a function concave up or down: 

• If   for all  then  is concave-up on . 

• If   for all  then  is concave-down on . 

• If   then the function might have an inflection point at c. 
 

I emphasize that when the second derivative is zero we might find an 

inflection point, but it doesn’t have to be the case(see picture on last page for 

example). Also, it could be that we find an inflection point where the second 

derivative does not exist. There are many possibilities. The same is true for 

critical points. When a critical point is not at a local max or min it could be an 

inflection point, but it might be something else, there are countless other 

options. Bonus Point: find me an example of a continuous function which 

has a nonzero derivative and a critical point which is neither at a local 

maximum, minimum or inflection point. 

 

 

 

 

 

 

 

Proof: Suppose that  and  then  has a horizontal 

tangent line and the function is upside-down bowl-shaped near the point, 

hence it is geometrically clear that the point is a local maximum. Likewise if 

 and  then  has a horizontal tangent line and the 

function is rightside-up bowl-shaped near the point, hence it is geometrically 

clear that the point is a local minimum. Technically, this proof leaves 

something to be desired, but this is the heart of it. 

 

 
 

Theorem 5.3.3: (Second Derivative Test) If a function  has    continuous on 

an open  neighborhood containing  such that  then: 

1. If    then  is a local maximum. 

2. If    then  is a local minimum. 

3. If    then the Second Derivative Test is inconclusive. 
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Example 5.3.12: 
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Example 5.3.12 continued: 

 

 

 

Remark: a function which is continuous everywhere except at vertical 

asymptotes can only change sign at its zeroes and vertical asymptotes. This 

idea applies to the function, its derivative and its second derivative. This is a 

consequence of the Intermediate Value Theorem and plain-old common sense. 
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Example 5.3.12 conclusion: 
 

 
 

 

Remark on case 3 of 2nd Derivative Test:  Maybe you are wondering,  

what is an example of a function which falls into case 3 of the derivative test? 

One simple example is a line  which has . Clearly  

  is continuous everywhere. Notice  for each . There are 

two cases: 

 

1.  thus  and  is the maximum and minimum value of 

the function at all points.  

 

2.  then  and the function has no local or global 

extreme values.  If we restrict attention to a closed interval then the 

line takes its extreme values with respect to that interval on the 

endpoints. 
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Example 5.3.13: 
 

 

 

We have at our disposal all the tools we need to figure out what a function 

looks like locally. Given the formula we simply take a derivative or two and 

think. The global picture of the function requires one more piece of 

information: the asymptotic behavior of the function. Such behavior is 

captured by the limits at  . We will discuss this last topic on graphing in 

the section 5.5.  
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5.4. OPTIMIZATION 
 
This section seeks to use calculus to answer questions like: what is the biggest, smallest, 

cheapest longest, shortest, hottest, coldest, best, worst, etc … Given some word problem 

or equation which models a particular physical problem what are the possibilities, what 

are the extremes? The analysis developed and discussed in the preceding section allows 

us to tackle such questions in a way that was unavailable before the advent of calculus. 

 

Example 5.4.1: 
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Example 5.4.2: 
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Example 5.4.3: 
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Example 5.4.4: 

 
Example 5.4.5: 
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Example 5.4.6: 

 
What lengths  and  give a mass-spring system obeying Hooke’s Law  

the minimum and maximum Kinetic energy ? Recall that energy is conserved such a 

system and in particular we have that  and  with  (a 

positive constant). 

 

Solution: Solve for ,  

  

Look for critical numbers: 

  

Furthermore, notice  

  

Which shows that  yields the maximum Kinetic energy of . 

How did I miss ? What am I not paying attention to about the Kinetic 

energy function? Let me give a colossal hint: what is the domain for ? We 

know that mass is positive and so is  so it stands to reason that  

hence  or simply  thus  which indicates that 

. We need to use the closed interval method for this 

problem. Perhaps that was not obvious from the start. Lets check  on the 

endpoints, 

  

Thus  where the Kinetic energy is zero. 
 

Moral of story: domains matter, its not ” just” a math thing. It can happen 

that the interesting case is at an endpoint and not at a critical point. 
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Example 5.4.7: 
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Example 5.4.8: when you take differential equations you will learn how to 

solve Newton’s equations in the case of a velocity dependent friction force. In 

the following example we analyze the solution to see how the spring vibrates. 
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5.5. LIMITS AT INFINITY 
 
The behavior a function at very very very… very big values of    is captured by the 

limit of the function at . Now infinity is not a number so such a limit has not yet been 

discussed. In Chapter 3 of these notes we learned how to calculate the limit of a function 

at some finite point. Sometimes the output of the limit turned out to be  ,  now we 

turn our attention to the case that the argument of the function tends toward a very big 

input or a very large negative input.  

 

 

 

 

 

 

 

 

 

The precise definition essentially says that if we pick a band of width  about 

the line  then for points to the right of  the graph fits inside the 

band. Stewart has nice pictures of this, go look at them in section 4.4 pg. 238.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Definition5.5.1: 

The limit at  for a function  is  if the values  get arbitrarily 

close to  as the input  gets arbitrarily large. We write 

 

in this case. To be more precise we should say that  if 

for each  there exists  such that if  then . 

Example 5.5.1: 

Let . Calculate the limit of  at . Observe that, 

 
 

 

We see that the values of the function are getting closer and closer to 

zero as x gets larger and larger. This leads us to conclude, 

 

 

 

In other words, if we divide something nonzero by a very big number 

then we get something very small. This sort of limit is not ambiguous, 

to determine the answer we either need to think about a table of 

values or perhaps a graph.  

 

Or if you want to be picky you can argue as follows: Let  choose 

 and observe that for .we have that  . 

Consequently, .  Hence by the precise definition 

. 
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We should also define limits at minus infinity. 

 

 

 

 

 

 

 

 

 

 

Let’s look at a simple example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I do not require you to be proficient in picky  type arguments, I include them 

here just in case the common sense arguments fail to convince you. Let us 

consider an example which we will rely on in later examples quite frequently.  

  

Definition5.5.2: 

The limit at  for a function  is  if the values  get 

arbitrarily close to  as the input  gets arbitrarily negative and large. 

We write 

 

in this case. To be more precise we should say that  if 

for each  there exists  such that if  then . 

Example 5.5.2: 

Let . Calculate the limit of  at . Observe that, 

 
 

 

We see that the values of the function are getting closer and closer to 

zero as x gets larger and negative. This leads us to conclude, 

 

 

 

In other words, if we divide something nonzero by a very big negative 

number then we get something very small and negative. This sort of 

limit is not ambiguous, to determine the answer we either need to 

think about a table of values or perhaps a graph.  

 

Or if you want to be picky you can argue as follows: Let  choose 

 and observe that for  we have that 

  and clearly  since  so  thus: 

 

  

   

Hence by the precise definition 

. 
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The graphical significance of all three examples thus far considered is that 

the function has a horizontal asymptote  of  at infinity or minus infinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5.5.3: 

Let  where . Calculate the limit of  at . Observe 

that, 

 
 

 

We see that the values of the function are getting closer and closer to 

zero as x gets larger and larger. This leads us to conclude, 

 

In other words, if we divide something nonzero by a very big number 

then we get something very small. This sort of limit is not ambiguous, 

to determine the answer we either need to think about a table of 

values or perhaps a graph. 
 

Let  choose . Suppose  thus   which 

implies . Consider then, for  
 

 
 

  Therefore by the precise definition for limits at infinity, 

. 

Definition5.5.3: 

If   if then the function is said to have a horizontal 

asymptote of . Likewise, if   if then the 

function is said to have a horizontal asymptote of .  

Example 5.5.4: 

Let . We saw back in section 2.4.5 page 17 of these 

notes that the inverse tangent has horizontal asymptotes of  

and . (Those facts follow from the graph which can be obtained 

from flipping  about the line ). We find that 
 

. 
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Vertical asymptotes of the function correspond to horizontal asymptotes for 

the inverse function. Challenge: what are the horizontal asymptotes of 

 ? We can also discuss limits which go to infinity at infinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These definitions are very natural, lets examine a number of easy cases. I 

will just state the answers in this example since they are derived from plain-

old common sense for the most part. As before we will have to show more 

work for the limits which are indeterminant, we discuss those trickier 

examples later in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition5.5.4: 

The limit at  for a function  is  if the values  get arbitrarily 

large as the input  gets arbitrarily large. We write 

 

in this case. Likewise, the limit at    for a function  is  if the 

values  get arbitrarily large as the input  gets arbitrarily large 

and negative. We write 

 

Finally, if the function takes on increasingly large negative values as the input 

becomes increasing large or negative then we write 

 

Example 5.5.5: the last three columns we dealt with earlier but I thought it might 

be instructive to include those here as well just to make sure you understand the 

difference between limits which go to infinity and those which are taken at infinity. 
 

. 

 

I have used “?” instead of d.n.e. in a few places just to make it fit. Those limits are taken at a 

limit point which is not in the domain of the function, in some cases not even on the boundary 

of the function. If we can’t take values close to the limit point then by default the limit is said to 

not exist, in which case we use d.n.e. as a shorthand (or just for this example “?”) 
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We can also have limits which fail to exist at plus or minus infinity due to 

oscillation. All of the functions in the next example fall into that category. 

  

 

 

 

 

 

 

 

 

 

 

I should probably not neglect the other common elementary functions which 

we encounter often in examples. These limits I would consider basic, I recall 

these on the basis of the graph of the function and a little common sense. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
I don’t believe we defined limits going to infinity precisely before, but it is a simple 

matter. We say that  if for each   there exists  such that if 

 then . What then does  mean precisely? It 

Example 5.5.6: the following limits all involve cyclic functions. They never settle 

down to one value for large positive or negative input values so the limits d.n.e. 
 

. 

Example 5.5.7: return to Chapter 2 if you are rusty on the graphs and basic 

properties of these functions. The interplay between a function and its inverse is 

especially enlightening for . 

 

 

 

The domain of  and  will be the range of sine and cosine respectively; that is 

 and  so clearly the limits at plus and minus 

infinity are not sensible as  are not even defined at . In contrast the range of 

the exponential function is all positive real numbers and  is the inverse function of  thus 

 

  

 

For  the   is not real, the middle limit you should have thought about in the earlier 

discussion of limits. The last one is true although an uncritical appraisal of the graph  

gives the appearance of a horizontal asymptote, but appearances can be deceiving.  
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means that for each  there exists a  such that for  we find . 

Take  for example. Let  and choose . Suppose 

 then . Hence the natural log goes to infinity at infinity. 

The fact that natural log didn’t mess up the inequality follows from the observation that 

 so  is an increasing function on .  The analysis in this 

paragraph is not a required topic. I have included it just in case you were curious 

how we can make these arguments rigorous. 

 

Indeterminant Limits at Infinity  
 

Up to this point I have attempted to catalogue the basic results. I’m sure I 

forgot something important, but I hope these examples give you enough of a 

basis to do those limits which are unambiguous at plus or minus infinity. 

There is another category of problems where the limits which are given are 

not obvious, there is some form of interminancy. All the same indeterminant 

forms (see section 3.3 page 33) arise again and most of the algebraic 

techniques we used back in section 3.5 will arise again here although perhaps 

in a slightly altered form.   

 

The good news is that limits at infinity enjoy all the same properties as limits 

which are taken at a finite limit point, at least in as much as the properties 

make sense. Of course we can only apply the limit properties when the values 

of the limit are finite. For example,  

 
 

 

is not valid because you might be tempted to cancel and find 

 yet   is the correct 

result. So we should only split limits by the limit laws when the subsequent 

limits are finite. That said, I do admit there are certain cases it doesn’t hurt 

to apply the limit laws even though the limits are infinite. In particular if 

 then  and if we agree to understand that 

 for  whereas  if . Such statements are dangerous 

because the reader may be tempted to apply laws of arithmetic to expressions 

involving  and its just not that simple. 

 

 

 

 

 

 

 

 

 

Example 5.5.8: this one is of type  to begin. 

  

  

Example 5.5.8: this one is of type  to begin. 
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Here is another example of the same type. 

 

 

  

 

 

 

 

 
 

Please sir may I have another? Yes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5.5.9: this one is of type  to begin. 

  

  

Example 5.5.10: this one is of type  to begin. 

 

  

 

Another way of thinking about this one is to put in very big negative values of x. 

For example, when  we find  

  

This sort of reasoning is a good method to try if you are lost as to what algebraic 

step to apply. There are problems which no amount of algebra will fix, sometimes 

considering numerical evidence is the best way to figure out a limit. 

Example 5.5.11: this one is of type  to begin. 
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We see that limits of type  can result in many different final answers 

depending on how the indeterminancy is resolved. The next example is more 

general, I think it is healthy to think about something a little more abstract 

from time to time. The strategy used is essentially identical other examples’. 

 

Example 5.5.12: this one is of type  to begin. 
 

  

 

In the last step I noticed  thus the limit amounts to the 

exponential function evaluated at ever increasing large negative values, this 

gives zero. This example really belongs in the section with L’Hopital’s Rule, I 
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Example 5.5.13: let  be a polynomial of degree  and let  be a polynomial 

of degree . This means there exist real coefficients  and 

 such that  and  where 
 

  
 

Consider . There are three cases. Let’s begin with  so 

 
  

 

 

If   then we get  whereas if  we obtain . The next case is that 

the denominator has a larger degree, that is to say  thus  
 

 

 

Finally it could be that the numerator and denominator have equal degree;  
 

 

 

In each case my goal was to simplify the denominator so I could focus on the behavior of 

the numerator. Very similar arguments will work for . 
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Example 5.5.14:  we can throw away a bounded function in a sum when the other 

function in the sum is unbounded, here are two examples of this idea in action: 

  

  

Example 5.5.15:  if we take a function with a known limit of  or   as 

 then the limit of  is the same for . For example, 

 

  

Example 5.5.16:  in a contest between power functions the largest degree wins. 

  

On the other hand the exponential function will win against a polynomial because 

eventually the exponential function’s values will totally dwarf the power function’s 

values. 

  

You might ask why? Well, I challenge you to prove these claims for a bonus point. 

Example 5.5.17:  that “rationalization” idea comes up again here: 
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Example 5.5.18:  that “rationalization” idea comes up again here: to begin the 

limit is of type  but as you can see below the  wins in the end. 

  

That need not be the case, consider a similar problem that looks about the same 

on the surface but works out quite differently:  

 

Example 5.5.19:  when dealing with square roots it is important that you 

remember that the laws of exponents indicate  . We assume 

that  in this problem. Consider,  
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Trading limits at infinity for limits at zero: 
Notice that if  then  it stands to reason that if  then 

. We can make the following substitution with that exchange in mind : 

 

  

 

Homework problems 29 and 30 of section 4.4 of Stewart’s 6th-Ed. are based on 

this exchange of limits. It is rather neat that the infinitesimal and the 

infinite are linked together in this way. I spent about an hour trying to get 

the following example to be pretty to no avail. I can do it with the technique 

of L’Hopital’s Rule. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Example 5.5.20:  The Squeeze Theorem applies to limits at . Suppose we 

are given a function  such that 
 

 

 

for all . We can calculate the limit at  via the Squeeze 

Theorem. Observe that 

 

 

Therefore, by the Squeeze Theorem, 
 

 

 

Example 5.5.21:  the infinite limit view of e. Consider the following limit: 

  

If you can show that this definition is compatible with our previous 

implicit definition 

 

for  I will award 3 bonus points if you can do it without using L’Hopital’s 

Rule. I know its true but at the moment I can’t twist one into the other.  


