5. APPLICATIONS OF DERIVATIVES

Derivatives are everywhere in engineering, physics, biology, economics, and
much more. In this chapter we seek to elucidate a number of general ideas
which cut across many disciplines.

Linearization of a function is the process of approximating a function by a
line near some point. The tangent line is the graph of the linearization.

Given some algebraic relation that connects different dynamical quantities
we can differentiate implicitly. This relates the rates of change for the
various quantities involved. Such problems are called “related rates
problems”.

The shape of a graph y = f(z) can be ciphered through analyzing how the
first and second derivatives of the function behave. Rolle’s Theorem and the
Mean Value Theorem are discussed as they provide foundational support for
later technical arguments. Fermat’s Theorem tells us that local extrema
happen at critical points.

If a function is increasing on an interval then the derivative will be positive
on that same interval. Likewise, a decreasing function will have a negative
derivative. These observation lead straight to the First Derivative Test
which allows us to classify critical points as being local minimas, maximas or
neither. Concavity is discussed and shown to be described by the second
derivative of the function. If a function is concave up on an interval then the
second derivative of the function will be positive on that interval. Likewise,
the second derivative is negative when the function is concave down.
Concavity’s connection to the second derivative gives us another test; the
Second Derivative Test. Sometimes the second derivative test helps us
determine what type of extrema reside at a particular critical point. However,
the First Derivative Test has wider application. We also discuss the Closed
Interval Method which is based on the same ideas plus the insight that when
we restrict a function to a closed interval then the extreme values might
occur at endpoints. In total, precalculus and college algebra skill is
supplemented with new calculus-based insight. Calculus helps us graph with
new found confidence.

Optimization is the application of calculus-based graphical analysis to
particular physical examples. We have to find critical points then
characterize them as minima or maxima depending on the problem. As
always word problems pose extra troubles as the interpretation of the
problem and invention of needed variables are themselves conceptually
challenging. This part of calculus allows for much creativity. Often drawing a
picture is an essential step to organize your ideas to forge ahead.
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Finally we discuss limits at infinity. Graphically these limits tell us about
horizontal asymptotes. Generally there are many different types of
asymptotic behavior, we focus on the basic types. Again this helps us graph

better.
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5.1. LINEARIZATIONS

We have already found the linearization of a function a number of times. The
idea is to replace the function by its tangent line at some point. This provides
a fairly good approximation if we are near to the point. How near is near?
Well, that depends on the example and what your idea of a “good
approximation” should be. These are questions best left to a good numerical
methods course. The linearization of a function f at a point a € dom(f)is

denoted by L$ or simply L, in this course,
L5(0) = f(a) + f (@)@ — a)
The graph of L4 is the tangent line to y = f(x) at (a, f(a)).

Example 5.1.1: (linearization can be used to calculate square roots)
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This example shows that we can calculate good approximations to square roots, even
when the computers and their robot slaves turn against us.

Example 5.1.2 and 5.1.3:
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These examples just give you a small window into the utility of linearization. You should
take our numerical methods course if you want to know more about how to perform these
sorts of calculations with care. For applications, the true error in the approximation
should be quantified.
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5.2. RELATED RATES

Perhaps shockingly related rates problems involve rates of various quantities

that are related. We consider two things which are connected through some

equation. Both of those things can vary with time so we can consider the
quantities as functions of time. Thus, we can differentiate the connecting
equation and glean from the technique of implicit differentiation how the
rates are related. Let’s look at some actual examples (then come back and
read this again)

Example 5.2.1 and 5.2.2:
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Example 5.2.3 and 5.2.4:
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I find that in almost all word problems the first thing to do is draw a picture.
Choose labels for the various quantities that are involved. Then write down
any known equations. Once all of that is done then think about how to solve
it. The mistake we often make is to try to see the end at the beginning.
Sometimes there is something tricky in the middle that we’ll not be able to
circumnavigate until we have almost all the information in front of us ready
to analyze.
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Example 5.2.5:
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I think it is fair to say that the difficult portion of these problems is how to
set them up. The calculus content is not too bad. You probably have some

homework which is not just a twist of one of these examples. That means you

need to think about how to set it up on your own. Start with a picture.
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5.3. MAXIMUM & MINIMUMS & GRAPHS

This section seeks to use calculus to better understand the shape of various graphs. We
need to develop a fair amount of vocabulary. It is important that you assimilate the terms
early on so we can understand each other in the examples.

Definition5.3.1:
e A function f has an absolute maximum at c if f(c) > f(z) for all

z € dom(f). The absolute maximum is f(c) in this case.

e A function f has an absolute minimum at d if f(d) < f(z) for all
z € dom(f). The absolute minimum is f(d) in this case.

e We call the absolute maximum and minimum values the global
extrema of f, a.k.a “extreme values”.

Definition5.3.2:
e A function f has an local maximum at c if there exists an open

subinterval J with ¢ € J and J C dom(f) such that f(c¢) > f(«) for
all x € J. The local maximum is f(c) in this case.

e A function f has an local minimum at d if there exists an open
subinterval [ with d € I and I C dom(f) such that f(d) < f(«) for
all x € J. The local minimum is f(d) in this case.

Example 5.3.1:
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Theorem 5.3.1: (Extreme Value Theorem) If f is continuous on [a, b] then f attains its
absolute maximum of f(c) onJa, b] and its absolute minimum of f(d) on[a, b] for
some ¢, d € [a, b]. There may be multiple points where the extreme values are reached.

It is easy to see why this Theorem holds true, see Example 5.3.1. It’s also
easy to see why the requirement of continuity is essential. If the function had
a vertical asymptote on [a, b] then the function gets arbitrarily large or
negative so there is no biggest or most negative value the function takes on
the closed interval. Of course, if we had a vertical asymptote then the
function is not continuous at the asymptote. I'll let you consult the text for a
proof of the Theorem.

Look at the graph and notice we find that wherever there is a local minimum
or maximum there is also a horizontal tangent line or no tangent line at all.
Points where the derivative is zero or undefined are of critical importance to
the analysis of graphs. Hence we define:

Definition 5.3.3: We say x = c is a critical number of a function f if either f'(¢) =0
or f’(c) does not exist. If ¢ is a critical number then (¢, f(c)) is a critical point.

Our observation that extrema must occur at critical points is known as
Fermat’s Theorem:

Theorem 5.3.2: (Fermat’s Theorem) If f(c) is a local extreme value for the function
/ then c is a critical number of f.

The converse of this Theorem is not true. We can have a critical number ¢
such that f(c) is not a local maximum or minimum. For example, f(z) = 2*
has critical number = = 0 yet f(0) = 0 which is neither a local max. nor min.
value of f(z) = z*. It turns out that (0,0) is actually an inflection point as we’ll

discuss soon. Another example of a critical point which yields something
funny is a constant function; if g(x) = ¢ then ¢'(z) = 0 for each and every =.

Technically, y = ¢ is both the minimum and maximum value of g. Constant
functions are a sort of exceptional case in this game we are playing.
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Example 5.3.2:
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Digression: Theorems which we should mention:

I am trying to tell a story about how to take apart a function using the
derivative and second derivatives. I admit these Theorems, while
interesting, diverge from our main goal in this section. It is customary to

cover them around this time in the calculus sequence. To be more careful 1

would like to spend a couple weeks really taking these apart and making

delicate ¢, 5-type proofs. However, there is not time and frankly most of you
lack the mathematical maturity for such a journey at this juncture. So I say

we state the Theorems, and if you want a proof there are arguments in
Stewart which may suffice for now.

X=0,1 are erheal#s,
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Again, sorry these appear in such a haphazard fashion in these notes. Rolle’s
Theorem goes to prove the Mean Value Theorem. Then in Stewart you’ll find

that the Mean Value Theorem is used to prove that a function increases
where its derivative is positive. I think it is geometrically clear. Now
perhaps you need to hear those arguments. If so I encourage you to read

Stewart carefully, then get another text and read that as well. We will use

the Mean Value Theorem in the proof for the Fundamental Theorem of
Calculus.

Theorem 5.3.3: (Rolle’s Theorem) Let f be a function such that
1. f is continuous on [a,b].
2. f is differentiable on (a,b).
3. f(a) = f(b)

Then there exists ¢ € (a, b) such that f’(¢) = 0.

96



See page 215 of Stewart for the proof. It primarily hinges on Fermat’s
Theorem. One interesting application worth mentioning. If the height of a
particle is y(t) and it represents a particle thrown up into the air for 3
seconds meaning y(0) = y(3) = 0. Then v = dy/dt must be zero at some point
during the flight of the particle. What goes up must come down, and before it
comes down it has to stop going up. Thus common sense is upheld by Rolle’s
Theorem.

Theorem 5.3.4: (Mean Value Theorem) Let f be a function such that

1. f is continuous on [a, b].
2. f is differentiable on (a,b).

Then there exists some ¢ € (a, b) such that the derivative at that point is equal to the
average rate of change over the whole interval. Meaning:

f(b) = f(a)

floy =1L

or if you prefer, f(b) — f(a) = f'(c)(b— a).

Proof: (essentially borrowed from Stewart pg. 216-217). The equation of the
secant line to y = f(z) on the interval [a,b] is y = s(z) where s(z) is defined via
the point slope formula

The Mean Value Theorem says that there is some point on the interval [a,b]
such that the slope of the tangent line is equal to the slope of the secant line
y = s(z). Consider a new function defined to be the difference of the secant
line and the given function, call it h:

Observe that h(a) = h(b) = 0 and h is clearly continuous on [a,b] because f is
continuous and besides that the function is constructed from a sum of a
polynomial with f. Additionally it is clear that h is differentiable on (a,b)
since polynomials are differentiable everywhere and f was assumed to be
differentiable on (a,b) to begin with. Thus Rolle’s Theorem applies to /i so
there exists a ¢ € (a,b) such that //(c) = 0 which yields

f(b) = f(a)

h'(c) = f'(c) — . =0 = |f'(c)=
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Physical Significance of the Mean Value Theorem: The term “mean”
could be changed to “average”. Apply the Theorem to the case that the
independent variable is time ¢ and the dependent variable is velocity v and

we get the simple observation that the average velocity over some time
interval is equal to the instantaneous velocity at some time during that
interval of time. For example, if you go 60 miles in one hour then your
average velocity is clearly 60mph. The Mean Value Theorem tells us that
some time during that hour your instantaneous velocity was also 60mph.

Theorems about Constants and Derivatives:

Theorem 5.3.5: If % = 0 for each = € (a,b) then f is a constant function on (a, b)

Proof: apply the Mean Value Theorem. We know we can because the
derivative exists at each point on the interval and this implies the function is
continuous on the open interval, so it is continuous on any closed subinterval
of (a,b) call it J C (a,b). We have to apply the Mean Value Theorem to
J = |a,, b,) because we do not know for certain that the function is continuous
on the endpoints. We find,

w = f(by) = f(ao)

But this is for an arbitrary closed subinterval hence the function is constant
on (a,b).

0=

Caution: we cannot say the function is constant beyond the interval (a,b). It
could do many different things beyond the interval in consideration.
Piecewise continuous functions are such examples, they can be constant on
the pieces yet at the points of discontinuity the function can jump from one
constant to another.

Theorem 5.3.6: If % = 3—393 for each = € (a,b) then f(z) = g(x) + ¢ for some

constant c.

Proof: Apply Theorem 5.3.5 to & — 9% = () to obtain f(z) — g(x) = c hence
f) =g(z) +c.

Notice that the assumption is that they are equal on an open interval. If we
had that the derivatives of two functions were equal over some set which
consisted of disconnected pieces then we could apply Theorem 5.3.6 to each
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piece separately then we would need to check that those constants from
different components matched up. (for example if % = j—g on (0,1) U (2,3) then
we could have that f(z) = g(2) + 1 on (0,1) whereas f(z) = g(z) + 2 on (2,3) ).

Physical Significance: If we have equal velocities over some time interval

then the displacement between our positions at any time will be constant.

Theorem 5.3.2: (Closed Interval Method) If we are given function f which is
continuous on a closed interval [a,b] the we can find the absolute minimum and
maximum values of the function over the interval [a,b] as follows:
1. Locate all critical numbers x = ¢ in (a,b) and calculate f(c).
2. Calculate f(a) and f(b).
3. Compare values from steps 1. and 2. the largest is the absolute maximum,
the smallest (or largest negative) value is the absolute minimum of f on
[a,b].

Examples 5.3.4, 5.3.4, 5.3.5 and 5.3.6 illustrate the Closed Interval Method.
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Example 5.3.3 and 5.3.4:
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Example 5.3.5:
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Sign of derivative test: when does a function decreases or increases:

o If % > 0 for all # € (a,b) then f is increasing on (a, b).
o If % < O for all # € (a,b) then f is decreasing on (a, b).
e If f(z) =0 then the function is not increasing or decreasing at .

We defined increasing and decreasing in Definition 2.3.2. In words, a function
is increasing if as x increases the values of the function likewise increase.
Let’s examine a few examples of this test in action:

Example 5.3.7 and 5.3.8:

Lk f) =€ than {6 = eX > 0 Hr xeld s
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the graph above is of y = sin(x) and the red illustrates cos(z) > 0 when the
sine function is increasing.
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Discussion: What does the sign of the derivative changing suggest?

If the derivative df /dz is a continuous function then we can conclude that the
derivative must be zero on some interval if it changes sign on that interval.
(Recall that the Intermediate Value Theorem helped us find zeros of functions
by examining if the function changed signs on some interval. ) Notice that
when the derivative is zero at some point that means the function has a
horizontal tangent line at that point. Such points are local extrema, it will be
the point on the graph which is the highest or lowest point in an open
neighborhood around the point. For examples:

) Vax%zx +|
/{:sm@‘f “i’(l’{YJ
£l =25-1)

The derivatives are graphed in red and you can see that they are zero where
the function 1s minimized or maximized. This motivates (but does not prove!)
the First Derivative Test:

Theorem 5.3.3: (First Derivative Test) If we are given function f which is continuous on
an open interval containing a critical number ¢ then:

1. If df/dxz changes signs from positive to negative at ¢ then f(c) is a local max.

2. If df/dx changes signs from negative to positive at ¢ then f(c) is a local min.

3. If df/dxz does not change signs at c then f(c) is not a local extrema.

Example 5.3.10a: (this one illustrates case 3.)

[El)

/
Cample £ €) Lot Fx) = X7 Hon  £70x) = 355
7‘//)“} CcC=06 /s a Cf',%l'cﬂo/ Y S £ 5#76
fllx)y =3x* = O
So £ does nef cﬁangz &/’g'ﬂf of Cc= 0, WAQ/?
Y
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The example above is missing something I’d like to put on each example as a
rule. Ithink we should use a sign chart to organize information about
signs. Unfortunately, the homework solutions do not have this
organizational aid for the most part. Look ahead to Example 5.3.12 for
examples of “sign charts”. Logically we don’t really need them, but I think I'm
going to make their use a requirement for our class. This is just so we can be
on the same page when organizing our ideas. I will add many of these sign
charts in lecture, so it is important to take notes on this point.

Notice that Examples 5.3.7, 5.3.8 and 5.3.9 all illustrate cases 1 and 2 of the
First Derivative Test. Let me give one more examples before we go on to the
Second Derivative Test.

Example 5.3.10b:
Let f(z) = $2® + 2% — 62. Find all critical numbers and classify the

critical points as local maximums, minimums, or neither. Observe,

fl(@)=a+2—6=(x—2)(x+3).

We have two critical numbers; ¢ = 2 and ¢ = -3. Lets draw the sign
chart,
| . daf
C=-3 C=2 de

Then we test a point somewhere in the interior of each region,
fi(=4) = (-4 -2)(=243) =8 >0
F1(0) = (=2)(3) = =6 < 0
F(3)=0B-2)3+3)=6>0
Which suggests we fill in the sign chart as follows:

R R EIE3E 3E S df

C=23 Cc=2 dx

By the First Derivative Test we conclude,
f(=3)=—-27/3+9/2 —6(—3) = 27/2 is a local maximum (case 1),
f(2)=8/3+4/2—6(2) = —22/3 is a local minimum (case 2).

Question.: Observe that f(z) = xi‘/i:w for x # 1 and f(1) = 1 has critical
number c¢ = 1. Moreover, the derivative changes sign from df /dz = —1 for x < 1
todf /dz = 1 for z > 1. Is it in fact the case that f obtains the local maximum
f(1)=1at (1,1) ¢ Does this contradict the First Derivative Test ¢ Explain.
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Concave-up and Concave-down:

The change in a function is captured by the first derivative; increasing
functions have positive derivative functions while decreasing functions have
negative derivative functions. It turns out that the concavity of a function is
captured by the second derivative. A function is concave up on an interval J if
the function has the shape of a bowl which is right-side up over that interval
dJ. A function is concave down on an interval J if the function has the shape of
a bowl which is up-side down over that interval J. I personally find these
sort-of geometric definitions rather unsatisfying. I challenge you to find a
clear definition stated in Stewart’s text. That said, I say we take the following
as the real definition for concave up or down.

Definition 5.3.4: Let f be a function with f’(x) and f”(z) well-defined for each
x € .J then we say that

® f(x)is concave-up on J if f”(x) > 0 foreach z € J

® f(z)is concave-down on J if f”(z) < 0 foreach z € J
A function is concave up(or down) at a point if there exists a neighborhood about the
point for which the function is concave up(or down). We say the function changes
concavity at a point c if the function is concave-up(down) to the left of the point and
concave-down(up) to the right of the point ( c, f(c) ). If the function changes concavity
at a point (c, f(c) ) then we say that ( c, f(c) ) is a point of inflection.

Consider this, if a function has a the shape of a bowl right side up then the
slopes of the tangent lines will increase as we increase x. On the other hand,
if a function has the shape of a bowl upside down then the slopes of the
tangent lines will decrease as x increases. In other words, the derivative is an
increasing function where the function is concave-up and the derivative is a
decreasing function where the function is concave-down. This proves the
definition given above is equivalent to the geometric bowl-based definition for
concavity. Let’s look at a few examples:

v k4 v
7y=><’ Y=10-x"
/ Y=3x+5
| = = x
Y= 2x Y'i=-2x V=3
Y'=2 v'=_2 \/”:O
(*F“>o) <-F"<o) CF”: Q)
Ceoncave wp Concave clow et e

e The line is an exceptional case, then thing between concave up and
down.
(by the way, the term “convex” used to be used for concave down, this term is
still used in physics particularly in the study of optics)
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Concavity test: when is a function concave up or down:
o If f"(x) > Oforallz € (a.b) then f is concave-up on (a, b).
o If f"(x) < Oforallz € (a,b)then f is concave-down on (a, b).
e If f”’(c) =0 then the function might have an inflection point at c.

I emphasize that when the second derivative is zero we might find an
inflection point, but it doesn’t have to be the case(see picture on last page for
example). Also, it could be that we find an inflection point where the second
derivative does not exist. There are many possibilities. The same is true for
critical points. When a critical point is not at a local max or min it could be an
inflection point, but it might be something else, there are countless other
options. Bonus Point: find me an example of a continuous function which
has a nonzero derivative and a critical point which is neither at a local
maximum, minimum or inflection point.

Theorem 5.3.3: (Second Derivative Test) If a function f has % continuous on

an open neighborhood containing ¢ such that f/(¢) = 0 then:
1. If f"(c) <0 then f(c)is alocal maximum.
2. If f"(c) > 0 then f(c)is a local minimum.
3. If f”(c¢) =0 then the Second Derivative Test is inconclusive.

Proof: Suppose that f"(c) < 0 and f'(c) = 0 then (c, f(c)) has a horizontal
tangent line and the function is upside-down bowl-shaped near the point,
hence it is geometrically clear that the point is a local maximum. Likewise if
f"(c) > 0and f'(c) =0 then (c, f(c)) has a horizontal tangent line and the
function is rightside-up bowl-shaped near the point, hence it is geometrically
clear that the point is a local minimum. Technically, this proof leaves
something to be desired, but this is the heart of it.

@7 Consriler Lix) = X3—12x -~ §

£itx) =3x"-12 = 3(x%>¢q)
£ x) = €x
Cr/#:'cJ #E arce X = £ 2 where f‘lfizj = 0. 77\4:4/1
_fv/l(z) = 6(2) =12 Z= -F(Z) = §-24Y-5 =_72] /OCJ””»”‘
f'(-2) = ¢(-2) =~z o flz) =-8+29-5 = [/ Jocad inope

We can ad,//'ﬁbn% nefe X=0 is an jnffechon poink Sketeh

i : >
/f /y= X3~(2x—5
/A -
[V
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Example 5.3.12:

@ We will J"ﬁm/?, a # of g«eff/aﬂf abeT f(x/ =
2’ W//’f/ /r;ffwalutoe Sewre mgﬁﬁgncj A.Qéfi?: 7‘» j’c’ee
of / FoF ene £ IF

f’g’ﬂf e e Yeoau Ao ve Veour
Ows M S f%’cﬁﬂ? 1’%/‘ dgnz/xﬂw Beroer BXC.o. Frama pre cw(cw{q;
Fhann ‘F egaﬁ free do uge it,  Frnol #\g@\:ﬁ/féw&;g, i

| Q. ) C RITICAL Po,w ¢ _ R —

i)) m*harvond cn wAic/k —F is decr/"awih?) /E‘,ig:(&um%g‘

Ct +»<)
Frack

C.) locod m,a\x}m‘\xmf/minimwm\s
O\) infecvade on  which f ic  ¢encave vp / dew n

\ Q.) inf e cion peints
‘Fe> Zecoes Q'P 'PU/\C-HM (P(e CM(CG\-KW e e )
2) C@m?h -F cma{fw usirg a— F,

Lets éegj/ya 62, Ca/f:w/méi’f?ga 75/‘”"“/ ‘/’M;
£l = Hloots x&(0°

{1ex)7
= +2X+ x*— 2K 2%°
(rexy*
= =% : 1=X"= (+x)(1-x) ‘Pkw/

(t+><

& oo = '(x)}

a) Neke f£'l1)=0 ond £-1)) dine thu Hha
C,r‘t“"lcu,& ‘#S agp -F are ‘, Now we know

. e dhug' we (w0 J‘UJ’
g £ un only  chang sign ok eriticed #ETRE U o pt Fom

----- i 4 e'o\w\ Qﬂﬁ
e _'!++*+*’*+*+! - -P m{;ldei\a describe

-\ | -F'Pas»-}ue/neg
l,) 1Crom Aha 3‘6\4- chort of £' we ean ceod ofF —H'\b;b Y

) £ is décf“&c&.&r\fa on (-0 —f) anel ([ )
£ s 'mcreas"m% on (",')
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Example 5.3.12 continued:

C.) We use +he | dediodive dect i iconchnds Hud e
'g:' ckomé‘” From C+) +o <-) Ojb X=1 Ve Ve, «F{;):-z—‘;;:-
¢ o loced mox of £ o X= (X:-—/ 5 a Ve/ﬁ'cc,/a&m/%)é
So alfhugh s« criticed point FE1) tan't be o locad mox, it din,e, )

s
Y

d) We rneed 4o Aot £ and how it behaves,
M%)y = @ ( l-x) = 2(x=2)

ax | (+x) (x+1)7
Vikia b £ can onk C-/'wng;,e 5‘/’?&1 i Beroes
and verticed as m/@:‘w er which octur o X= 2 and X=-),
We reed +o check 3 poink 7 Preces  fhe ‘,Q/Aw,@)

_.__-7--—~‘I!——- —_— —2!++++++> _F//
We  ten read off +ha Sty cboct Sor 700’/%@

7[‘ I\S Con tolve OJGWV? an (-"ﬁb, 2)
7(' is Concave wvp @n (2, Da)

Q) «C (,L'\_o,n?o Concavu’p c,:i) X=2 which s +he in?’
'\r\‘ﬂec‘h’an Pﬂ:f\‘{'.

-ﬁ) Qf’%m\? I Slmzv»iao‘ve g?uﬁ'?k’ “+hig !g"’L/ oh well any u..m,g,
\C((o) =0 and £61) dne , £ mwt chage sign
QH"W\ QO or =] Seo we o.%a:w ;,Mﬂ rand 4o check '3\-49;#):'6'

o T on
L L LT Lo L = = P s

1 tha Zeroks of
- o £ bt

Remark: a function which is continuous everywhere except at vertical
asymptotes can only change sign at its zeroes and vertical asymptotes. This
1dea applies to the function, its derivative and its second derivative. This is a
consequence of the Intermediate Value Theorem and plain-old common sense.
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Example 5.3.12 conclusion:

[E1Z corclocion ]| Vhous lotr wtsemble tha genph of £ vsing M
*’Aﬁ Fo , 2*‘ (ﬁ’ T o S /?ﬁ"

' /\Y
/‘aafmf of 12“‘*3’%31‘)
‘ 2
: g )
) l 2 — X
X
’; T

VLA,

Remark on case 3 of 24 Derivative Test: Maybe you are wondering,

what is an example of a function which falls into case 3 of the derivative test?
One simple example is a line f(x) = ma + b which has f'(z) = m. Clearly

df /dx 1s continuous everywhere. Notice f”(z) = 0 for each = € R. There are
two cases:

1. m =0thus f(z) = b and y = b is the maximum and minimum value of
the function at all points.

2. m # 0 then f(z) = mz + b and the function has no local or global

extreme values. If we restrict attention to a closed interval then the
line takes its extreme values with respect to that interval on the
endpoints.
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Example 5.3.13:

ﬂﬂﬂﬂﬂ “'f"‘i""f*?- e o I’F\!
X Ry
7C(x) = Xe — r
{:ﬂ(X)""éx(l"X) =) +%’~n.¥++++$ ______ .
'f:“(x)=enx<><-2> = .:.::"-~23++->-*f¢ﬁ*?$u

'ﬁx@r@—f;rei J
. th'é‘( ont is X=1
Z)) £ }ﬂcfe/:m on (-00,1) wnd deceses oo (¢, 20) o
C.) f has & Jocad mox of —{f(f)=—é— ot X=1 bg)f’" Der, Tes?.

d) 1(: Concoave Yp en (Z,w} and teacave dowrr on (—acl 2)!
Q.) X=2 s an /ﬁ//éaﬁ"an /)of/h{l' of .f:

= is Jhae onle BCro of -16
£) x=0 is d Y 4 1) e
3) fa/D}] s (: €. 7?
L] % _ "

4\
X

We have at our disposal all the tools we need to figure out what a function
looks like locally. Given the formula we simply take a derivative or two and
think. The global picture of the function requires one more piece of
information: the asymptotic behavior of the function. Such behavior is
captured by the limits at +o00. We will discuss this last topic on graphing in
the section 5.5.
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5.4. OPTIMIZATION

This section seeks to use calculus to answer questions like: what is the biggest, smallest,
cheapest longest, shortest, hottest, coldest, best, worst, etc ... Given some word problem
or equation which models a particular physical problem what are the possibilities, what
are the extremes? The analysis developed and discussed in the preceding section allows
us to tackle such questions in a way that was unavailable before the advent of calculus.

Example 5.4.1:

G“’““ H00Ft of pﬁnc[;v? whod dimensions showld NP
| 0

Wy : ¥ | ( 3 ATk ; =
Ve o rechingnlar pen af o MoXimize Hho area

T I e S T — ]

W

| 2% +2w = Yoo
A A A= Qw
Wotice Yhed L = 200 - W

¢ R e e

= A = (20‘3’ W)W = 2w -w*

Poximize A as o fanchion of w than,
ﬁ = 200-2w = Q/ﬁ: O when W = /00

dw du
: ‘fz : s
Them note d/i T -2< 0 = F}(MO) I &« PIOUNANYT .
w
Thus bg 2"1'4 ;x'ffum’; ve et W= /00 ?/m— Mex. arlca. —T/'M\f
100 £+
: 1l =200-100=100
. 0
00 £ [ 00f+
SR
|00+

'ﬂm c//?}veny/uny Sriserm: ol Hha
area of She Pen,
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Example 5.4.2:
CT] G 2 e oy ol & wd ]| :

S , . i /
| del Je/efw 4 b2 lead - | o NN

<5: = éjz-p- iR : K:rc‘wm/f \/o“’agz Bt

powee o P: 1R : Foer defivered 4o R
sy T R by current i

ZWTTTE: olue 4o il 1= n—-g——*ﬂ +han
Substihde infe - P = 32R = %i%?.
n+
Waw o ialiakar wn P -eg o Lavakve ok 2{,
P ey R
5w = % an(am)
= 52 (/L+R}=—2(/z+}?),?
X

il fon Dg
G R | 3R« B 2o - 2R

= ﬁ%[hz‘ Rz]

= a“ ] . /? 76 o O G j:i.rcafaﬂ)
- N-K)(n+H R ! >0 / ySr'e ;
(/2-#/?)2 [( )( ) {; g =N /s /jﬁ(.«/p '/,L-fé/g/f/ﬂgm
erifie peint.
‘L++++++L'f ++¥ --------- > _o_ll_:
0 JL d

ﬂug \72 \Si dechwutive test +he max power is c/@//s/e%

7L0 K w hars R=/, This is @ ff'ﬂ'l/a/-e case ©

N 7770% Rawe( 7;0\'?1‘4:;/ ﬂl e )
ﬂof’?& i }m/D/!ef Fhob +ha 7770\96 gm'ﬁfcn 62- 'Q?Lf
o simple p ower IUP/O/,Z) s 50%. & lechticed ew&\n‘eeu" )
Con  buld  pore efficiond power supplier colled ™ Swl-\»cb\ma
p ower supp‘ties, n Ahose sV'PP\\‘c; Yo Auu-i'?w‘\’, is xwhmadﬁc%,
'\—ma).crew} as +o be loest -pc( BN lood. T4 o +HC'%8 buirnes.
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Example 5.4.3:

E3] The ran e of o projectile fired of an J& méﬂtw}ﬂ: —— @
\/e,/ou'/ZL V4 can Ae J'/Luwn -/ia 6e P 3 Zﬂ%_'@i) é?ffuzm/}? ;
no  Feichon and G =9.87U2, Whid anol © wmeaximizer |

: 7 I
He range. Whet ic Bmox ? 2P e ]

Mo niia hed Vaod $ are cotfoats, R ic the dependetds (likeV)
Variable and © is Hu indepernderS urinble (/b X/ o

BOLQE = d—-;/- -9‘45//7[29))

]
onl © =T is o ﬂnv!;iw.‘ag )/i’%?ft’fﬁe‘g
i cr’:ﬁicﬂ vqluaé “
Zi e ¥ ot e = \ T ’ -
Calenlte 5/'9—2 = i;—/gm(ze) = %(’G-L{I = %.L’s‘mg )

ﬂlus we ﬂdfe g_;_’%.(e:g) — :d—gf;/_ &) herna égz
2" deriwatio Fest we have thodb R(™%) s
PR =

? — VS"”(Z%j o (-\—/——"; Rmaﬂ
e > 5
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Example 5.4.4:

1 Ll Th@ h&lg«z‘fp 91[ @ prv(},ﬁc“’) € /a,vmg/q@/ Sf(g(z,,ﬁé u’g (e / »,»',, w‘""\ @
61’0(;1‘? v s 2«'»‘@1’7 by 3
Y= wut -5t |
Whet i e mmeximam /»e.ég»if and ot whel time i llvl"fu’f:ﬁe:/ 7 ‘

Aoﬁ’c& Hed Vo ocad @ wre CTU-S‘*" AAMbers 59/

g—-: = f_?(\/f——%'t‘ ) Vo-9t (‘H\R vegac«‘??j
d%y _
d

= %(\/D .—%-t/) = -9 C-H\n. accelerotion /
W G = = v° -— ! (] 2
. e ‘kn #hed \/(fmx) Xm\x Vo(?) E%(%—) = Y% = Youn
s indeed s prex height because Y ! = -9 < 0, (20 ;er fert

Example 5.4.5:

ES Find +hao /00/47" on o liag Y= L{X'{-? N_—}_WL:;;(W'M ;/‘
closest +o +he arigpn (0,0). ]

We want to msnimiZe f;u olisfonce 5 = —\/xz_,\/z
Where V= YUx + 7 So - umrs dlen

L () = il ds

2%+ (Ux+7)* dX

So  Hhom j‘;—‘ = 0 & ZX+8Yx+7) =0 &> X = -56
Thus X = “28%7 is fla onlg C//'fi'cajpa/ﬂ%

- —— = — |4+ +r+++ 1t dS
TN 74
-28 ax
g

Thay  sCW®a=x) is th min, dictana # YV =Yx+7
mem Ha a)r/a/wv 443 /‘» derivtive dest. The V-coordinats is

(1'7—) = \_;:t

So Hhe c/o;e_r—f po/hf e n foact

/ \ (net S'Coio.)

l"7 9 17)
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Example 5.4.6:

What lengths x,,;, and x,,,, give a mass-spring system obeying Hooke’s Law [' = —kz
the minimum and maximum Kinetic energy K ? Recall that energy is conserved such a
system and in particular we have that K = $mv? and U = 1ka? with K + U = E, (a
positive constant).

Solution: Solve for K,
1
K=FE,— —ka*
2

Look for critical numbers:

dK 1
e 0— ik(Zx) = —kr == =0 only critical number
x
Furthermore, notice
d’K . .
Tz = —k < 0 the spring constant &£ > 0 by convention

Which shows that z,,,, = 0 yields the maximum Kinetic energy of K = F..
How did I miss z,,;,? What am I not paying attention to about the Kinetic
energy function? Let me give a colossal hint: what is the domain for K? We
know that mass is positive and so is v? so it stands to reason that K > 0
hence E, — 1ka? > 0 or simply E, > $kz? thus 22 < 2E,/k which indicates that
—/2E,/k <1z < +/2F,/k. We need to use the closed interval method for this
problem. Perhaps that was not obvious from the start. Lets check K on the
endpoints,

K(x=—\2E,Jk) = E, - %k(— 2E,/k)* =0
K(x = 2E,Jk) = E, - %k( 2E,/k)* =0

Thus z,,;, = £+/2F,/k where the Kinetic energy is zero.

Moral of story: domains matter, its not ”just” a math thing. It can happen
that the interesting case is at an endpoint and not at a critical point.
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Example 5.4.7:

Find Two Pu:H'\J! pwenbecs  whote f(oc{v&df it 100 ond where |

E7 ‘
Swwn € G AN P en B

e
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! J ‘hg dOF 20807 ;
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F Ao Bl B | At 4 ___&;
e ! &
0 10 dim

Thus S ir minemi EGJ e melb, ﬂm} % itwm{:mr
are tﬂ’)‘-'-"/O and nzfa.
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Example 5.4.8: when you take differential equations you will learn how to

solve Newton’s equations in the case of a velocity dependent friction force. In

the following example we analyze the solution to see how the spring vibrates.

)

V' = Qeost)e™ + @sint) (~e)

YY) =0 =

mo. = Evfh}* F-\:n‘chon (V"’[“J‘W) has SOIB '\?c’.\aw‘)

g

Y= Asalt)e

= Pe* (s £ —sint)
wst-snk =0 = fam@=1

t = Tr/%/ S%, q%, ‘W/I,

B4 siat ¥
e Fo O\

= Sint — w ) £
fam(+) op Tl el mmighe ST,
v” = ~Aék(®st "5‘;(\*) . 3 ‘q‘fpk (‘gi"\x = COSt)

= Re‘k( ik —cost ~5}a{~®gt>

= PNt (-2 c::si)

| = - Aﬁ—t e k -
Y <O for A=A (Mg )
\/u H,) > 0 ‘Hr ‘I: - SW/q 1 I3TT/,4(” (V\ntf\ffv\wms‘ )

Sc Y(Tr/q] -‘S /n'\l Ox‘bSu[w{'e O (MU @V\CO Y(§"/4)D &6_6 L’V\;I\;MLAIVI
all fwae*j(w-\/j) ?O"\JK céy/t smoller £ crelin 'fi\w\kx + €_te

\/dl /4
(e -
L Y= Asnt)e

pe—— \S“NM—* e

W \ i) Sl '———~‘—-—’-t
T
r’(}“'eq)
CHg
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5.5. LIMITS AT INFINITY

The behavior a function at very very very... very big values of Z is captured by the
limit of the function at co. Now infinity is not a number so such a limit has not yet been
discussed. In Chapter 3 of these notes we learned how to calculate the limit of a function
at some finite point. Sometimes the output of the limit turned out to be +oo0, now we
turn our attention to the case that the argument of the function tends toward a very big
input or a very large negative input.

Definition5.5.1:
The limit at oo for a function f is L € R if the values f(z) get arbitrarily

close to L as the input = gets arbitrarily large. We write

lim f(z)=1L
T—r00
in this case. To be more precise we should say that lim, .., f(z) = L if

for each ¢ > 0 there exists N > 0 such thatif x > N then |f(z) — L] <e.

The precise definition essentially says that if we pick a band of width 2¢ about
the line y = L then for points to the right of + = N the graph fits inside the
band. Stewart has nice pictures of this, go look at them in section 4.4 pg. 238.

Example 5.5.1:
Let f(z) = % Calculate the limit of f(x) at co. Observe that,

F(10)=0.1,  f(100) =0.01,  f(1000) = 0.001.

We see that the values of the function are getting closer and closer to
zero as x gets larger and larger. This leads us to conclude,

|
lim — =0
T—00 T

In other words, if we divide something nonzero by a very big number
then we get something very small. This sort of limit is not ambiguous,
to determine the answer we either need to think about a table of
values or perhaps a graph.

Or if you want to be picky you can argue as follows: Let ¢ > 0 choose
N = 1/e and observe that for » > N = 1/e we have that1/z < e.

Consequently, | f(z) — 0] = |1/z] = 1/2 < e. Hence by the precise definition

lim — =0,
T—00 T
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We should also define limits at minus infinity.

Definition5.5.2:

The limit at —0O0 for a function f is L € R if the values f(x) get
arbitrarily close to L as the input = gets arbitrarily negative and large.
We write

lim f(z)=1L
Tr—r— 00
in this case. To be more precise we should say that lim,_, ., f(z) = L if

for each ¢ > 0 there exists M < 0 such thatif z < M then |f(z) — L] <e.

Let’s look at a simple example:

Example 5.5.2:
Let f(x) = <. Calculate the limit of f(2) at —oo. Observe that,

f(=10) = —0.1,  f(—100) = —0.01,  f(—1000) = —0.001.

We see that the values of the function are getting closer and closer to
zero as x gets larger and negative. This leads us to conclude,

) 1
im — =0
T——00 I

In other words, if we divide something nonzero by a very big negative
number then we get something very small and negative. This sort of
limit is not ambiguous, to determine the answer we either need to
think about a table of values or perhaps a graph.

Or if you want to be picky you can argue as follows: Let ¢ > 0 choose
M = —1/¢ and observe that for x < M = —1/¢ we have that
—1/x < e and clearly x < 0 since » < —1/e < 0 so |z| = —z thus:

|f(x) = 0] =|1/2|=-1/x <e

Hence by the precise definition
1
lim — =0.
T——00 I

I do not require you to be proficient in picky € type arguments, I include them
here just in case the common sense arguments fail to convince you. Let us
consider an example which we will rely on in later examples quite frequently.

119



Example 5.5.3:
Let f(z) = 1/2™ where n > 0. Calculate the limit of f(z) at co. Observe
that,

F(10) =1/10",  f£(100) = 1/100",  f£(1000) = 1/1000".

We see that the values of the function are getting closer and closer to
zero as x gets larger and larger. This leads us to conclude,

lim — =0

r—o0 TN
In other words, if we divide something nonzero by a very big number
then we get something very small. This sort of limit is not ambiguous,
to determine the answer we either need to think about a table of
values or perhaps a graph.

Let ¢ > 0 choose N = 1/cw. Suppose 2 > N = 1/ew thus 1/z < v which
implies 1/2" < (¢+)" = e. Consider then, for 2 > N

|f(z)—=0]=|1/2"| =1/2" < ¢

Therefore by the precise definition for limits at infinity,
1
lim — = 0.
r—o0 TN

The graphical significance of all three examples thus far considered is that
the function has a horizontal asymptote of y = 0 at infinity or minus infinity.

Definitionb.5.3:

If lim, . f(z) = L € R if then the function is said to have a horizontal
asymptote of y = L. Likewise, if lim, , ., f(z) = L € R if then the
function is said to have a horizontal asymptote of y = L.

Example 5.5.4:

Let f(z) = tan™!(x). We saw back in section 2.4.5 page 17 of these
notes that the inverse tangent has horizontal asymptotes of y = 7/2
and y = —n /2. (Those facts follow from the graph which can be obtained
from flipping y = tan(z) about the line y = x). We find that

lim (tan~'(z) ) = i lim (tan~'(z) ) = -7

T—00 2 T——00 2
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Vertical asymptotes of the function correspond to horizontal asymptotes for
the inverse function. Challenge: what are the horizontal asymptotes of

y = tan™!

(3xz) ? We can also discuss limits which go to infinity at infinity.

Definition5.5.4:

The limit at 00 for a function f is 00 if the values f(x) get arbitrarily
large as the input x gets arbitrarily large. We write

lim f(z) =

T—00

in this case. Likewise, the limit at —0OO for a function f is 00 if the
values f(z) get arbitrarily large as the input x gets arbitrarily large
and negative. We write

lim f(z)=

TrT—r—00

Finally, if the function takes on increasingly large negative values as the input
becomes increasing large or negative then we write

lim f(z)=

T——00

lim f(z) =00  or

T——00

—o0

These definitions are very natural, lets examine a number of easy cases. |
will just state the answers in this example since they are derived from plain-
old common sense for the most part. As before we will have to show more
work for the limits which are indeterminant, we discuss those trickier
examples later in this section.

Example 5.5.5: the last three columns we dealt with earlier but I thought it might

be instructive to include those here as well just to make sure you understand the

difference between limits which go to infinity and those which are taken at infinity.

o1
lim — =0
r—00 U
1
lim - =0
z—00 T2
. 1
lim — =0
T—00 xr
lim vz = oo

) o1

lim — =0 lim — = o0
r——00 I r—=0t T

1 1

lim —220 11n1—2:oo
rT——00 I =0Tt l’

lim — =7 lim — =0
T—=—00 /T =0t \/7

lim vz =? lim vz =0
T——00 x—0t

lim 2% = oo lim 22 =0
Tr——00 r—0+t

lim 2° = —o00 lim 2° =0
T——00 =07t

o1 1
lim — = -0 lim — = dne
r—0— T z—0
1 1
lim — =X lim — = o0
r—0~ J,‘ :1:—)0,];

lim — = dne

x—0 \/_
lim /= = dne
z—0

lim — =7

=0~ \/_
lim vz =?

r—0~

lim 22 =0 limz? =0
r—0— r—0

lim z° =0 limz® =0
x—0~ =0

I have used “?” instead of d.n.e. in a few places just to make it fit. Those limits are taken at a
limit point which is not in the domain of the function, in some cases not even on the boundary

of the function. If we can’t take values close to the limit point then by default the limit is said to

not exist, in which case we use d.n.e. as a shorthand (or just for this example “?”)
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We can also have limits which fail to exist at plus or minus infinity due to
oscillation. All of the functions in the next example fall into that category.

Example 5.5.6: the following limits all involve cyclic functions. They never settle
down to one value for large positive or negative input values so the limits d.n.e.

lim sin(z) = d.n.e. lim cos(z) = d.n.e. lim tan(z) = d.n.e.

lim sin(z) =d.n.e. lim cos(z) =dn.e.  lim tan(z) = d.n.e.

lim csc(x) = d.n.e. lim sec(z) = d.n.e. lim sec(z) = d.n.e.

lim csc(z) =dne.  lim sec(z) = d.n.e. lim sec(z) =d.n.e.
T——00 T——00 r——00

I should probably not neglect the other common elementary functions which
we encounter often in examples. These limits I would consider basic, I recall
these on the basis of the graph of the function and a little common sense.

Example 5.5.7: return to Chapter 2 if you are rusty on the graphs and basic
properties of these functions. The interplay between a function and its inverse is
especially enlightening for In(x), sin™!(z), cos™!(z).

. < =1 _ . -1 o 1
xh_)r(r)lo sin” " (x) = d.n.e. mh_)rgo cos” (z) = d.n.e. mh_)rgo tan™" (z) = 7/2
lim sin"'(z) =dn.e.  lim cos™'(x) = d.n.e. lim tan™'(z) = —7/2

T——00 T——00 T——00
lim e = o0 lime™ =0 lim (1/2)* =
r—00 r—00 r—00
lim e" =0 lim e =00 lim (1/2)* =
T——00 T——00 T——00

The domain of sin~*(z) and cos™! () will be the range of sine and cosine respectively; that is
dom(sin~*(x)) = [—1,1] and dom(cos‘l(q;)) = [—1, 1] so clearly the limits at plus and minus
infinity are not sensible as sin~* and cos ! are not even defined at £=2. In contrast the range of
the exponential function is all positive real numbers and In(z) is the inverse function of e thus

xBEHOO In(x) = d.n.e. Ilirgi In(z) = —o0 xh_}rgo In(z) = o0

For z < 0 the [n(z)is not real, the middle limit you should have thought about in the earlier
discussion of limits. The last one is true although an uncritical appraisal of the graph y = In(x)
gives the appearance of a horizontal asymptote, but appearances can be deceiving.

I don’t believe we defined limits going to infinity precisely before, but it is a simple
matter. We say that lim,_,, f(z) = oo if for each M > 0 there exists § > 0 such that if
0 < |x —a| < ¢ then f(x) > M. What then does lim,_,., f(z) = oo mean precisely? It
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means that for each M > 0 there exists a NV > 0 such that for z > N we find f(z) > M.
Take f(x) = In(x) for example. Let M > 0 and choose N = ¢* > 0. Suppose

x> N = eMthen In(z) > In(eM) = M. Hence the natural log goes to infinity at infinity.
The fact that natural log didn’t mess up the inequality follows from the observation that
L In(z) = 1 > 0o In(z) is an increasing function on (0, co). The analysis in this
paragraph is not a required topic. I have included it just in case you were curious
how we can make these arguments rigorous.

Indeterminant Limits at Infinity

Up to this point I have attempted to catalogue the basic results. I'm sure I
forgot something important, but I hope these examples give you enough of a
basis to do those limits which are unambiguous at plus or minus infinity.
There is another category of problems where the limits which are given are
not obvious, there is some form of interminancy. All the same indeterminant
forms (see section 3.3 page 33) arise again and most of the algebraic
techniques we used back in section 3.5 will arise again here although perhaps
in a slightly altered form.

The good news is that limits at infinity enjoy all the same properties as limits
which are taken at a finite limit point, at least in as much as the properties
make sense. Of course we can only apply the limit properties when the values
of the limit are finite. For example,

lim, oo (2 — 22) = lim, o0 (@) + lim, oo (—22) = 00 — 00

is not valid because you might be tempted to cancel and find

lim, o (x — 22) = 0 yet lim, , . (z — 22) = lim,_,.(—x) = —occ 1s the correct
result. So we should only split limits by the limit laws when the subsequent
limits are finite. That said, I do admit there are certain cases it doesn’t hurt
to apply the limit laws even though the limits are infinite. In particular if
lim f = oo then limef = clim f = coo and if we agree to understand that

coo = oo for ¢ > 0 whereas coo = —oco if ¢ < 0. Such statements are dangerous
because the reader may be tempted to apply laws of arithmetic to expressions
involving co and its just not that simple.

Example 5.5.8: this one is of type co/oco to begin.

3 z 4 3
lim ( T > = lim ( — ) divided top and bottom by x
z—=oo\ T — 2 £—00 é - =
1+0
— fim [ 0 c/r —0asz — o0
T—00 1—0
=1.
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Here is another example of the same type.

Example 5.5.9: this one is of type co/oco to begin.

343, -9 14,3 2
lim ( 1‘4—'——1‘ ) = lim < % ) divided top and bottom by z*
rz—oo\ 4 — 22+ 1 T—00 1_F+F

0+0-0
:}Eri(im) forn=1,2,4, ¢/z" - 0 as x — o0

= 0.

Please sir may I have another? Yes.

Example 5.5.10: this one is of type oco/oco to begin.

2

. 343z —2 . r+32—-3
lim S ——— = lim —
T——00 22—+ 7 T——00 1—=4 5

2

88w

) divided top and bottom by z*

r—r—00

= lim(%) forn=1,2,¢/z" - 0asz — —o0
= —00.

Another way of thinking about this one is to put in very big negative values of x.
For example, when © = —1000 we find
2%+ 3z —2 1000+ 3000 — 2 _ 1000°
22—z +7 10002 — 1000 — 2 ~ 10002
This sort of reasoning is a good method to try if you are lost as to what algebraic
step to apply. There are problems which no amount of algebra will fix, sometimes
considering numerical evidence is the best wav to figure out a limit.

= 1000 =z

Example 5.5.11: this one is of type oco/oco to begin.

, V2t + 3z —2 , LV2st + 32 — 2
lim = lim|( =&
204 43r—2
_ 1 .'174
2452
= lim ( T — >
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Example 5.5.12: this one is of type 0 - co to begin.

: —zor \ _ 1: In(2%) —=z
th—I>T01<> ( e "2 ) = rh—>Holo (e e ) sneaky step

= lim (ex 111(2)6_35)
T—r00

— lim (er(ln(Q)—l))

Tr—>00

= 0.

In the last step I noticed In(2) — 1 = 0.692 — 1 < 0 thus the limit amounts to the

exponential function evaluated at ever increasing large negative values, this
gives zero. This example really belongs in the section with L’Hopital’s Rule, 1

We see that limits of type co/co can result in many different final answers

depending on how the indeterminancy is resolved. The next example is more
general, I think it is healthy to think about something a little more abstract
from time to time. The strategy used is essentially identical other examples’.
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Example 5.5.13: let P be a polynomial of degree p and let () be a polynomial
of degree ¢q. This means there exist real coefficients a,, a,_1, ..., a1,y and
by, bg—1.-...b1,by such that a, # 0 and b, # 0 where

P(r)=aya’ +---+axz+ay  Qx) =bgx? 4 -+ bz + by

Consider f(x) = P(x)/Q(z). There are three cases. Let’s begin with p > ¢ so

p—q>0
, P(x) , ap? + -+ a1 + ag
lim = lim
T—00 Q(J,') T—00 bq,xq + .-+ blgj -+ bO
= lim < apr” 4 4 T )

by+- i+

x4

= lim(%x”q+~~+i+ do >

—1
r—00 q bqéﬁq bq.I'q
= +o0.

If a,/b, > 0 then we get +00 whereas if a,/b, < 0 we obtain —oco. The next case is that
the denominator has a larger degree, that is to say p < g thus g —p > 0

1im<P<x)>:lim<%fﬂp+“'+alx+ao>
e—oo\ Q(x) byr? 4 -+ + bix + by

ap$p—q+...+$gil+z_2
< by+- i+ )

x4

1
:lim(% + ...+ “ + %0 >

b, xa—p byri=t b4

Finally it could be that the numerator and denominator have equal degree; p = ¢

. P(x) . apx? 4+ -+ a1z + ag
lim = lim
T—00 Q(q‘) 2—00 bqq:q + -+ bz + by
. (prpiq + “ e + gil _|._ a_g
= lim bx - z
by + -+ o+ b

x4

:li111<ai+--~+ il + o )

. —1
r—00 bq bq.flj‘q bqZUq

r—r 00

ap
bq

In each case my goal was to simplify the denominator so I could focus on the behavior of
the numerator. Very similar arguments will work for z — —oo0.
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Example 5.5.14: we can throw away a bounded function in a sum when the other

function in the sum is unbounded, here are two examples of this idea in action:
lim (sin(z) + €”) = lim (e*) = o0
Tr—r0o0 T—r00

lim (z+2)= lim () =—0c0
r——00

Tr—>—00

Example 5.5.15: if we take a function f(z)with a known limit of L € R or +c0 as
1 — Foo then the limit of f(x + a) is the same for » — +00. For example,

lim (") =c0 = lim (¢""?) = 0

T—r 00 T—r00

: 1 : 1
() =0 = ()

. -1 _ T . —1/, _r
xlggo(tan () = 5 = xlgr;@(tan (x+2) = 5

Example 5.5.16: in a contest between power functions the largest degree wins.

: 302y _ 1 3y _

Jyfe”—o) = g () = co.
lim (z° — 2*) = lim (—2*) = —oc0.
T—r00 T—r00

On the other hand the exponential function will win against a polynomial because
eventually the exponential function’s values will totally dwarf the power function’s
values.
lim (z° — €*) = lim (") = oc.
T—r00 Tr—r0o0
lim (27 4+2) = lim (27°) = oo.
Tr—r—00 rT—r—00

You might ask why? Well, I challenge you to prove these claims for a bonus point.

Example 5.5.17: that “rationalization” idea comes up again here:

lim (z — v/Z) = lim (x VL \/§)>

127




Example 5.5.18: that “rationalization” idea comes up again here: to begin the
limit is of type —oco + oo but as you can see below the —oo wins in the end.

— Va2 +4x
lim (z + Va?+4z) = lim (w(l +Va? + 41?)>

Tr——00 T—>—00 T — \/m
i < x? — 2 — Az >

= lim | ——MmMm—

z—=—oco \ 1 — /2?2 + 4
(k)

= lim

r——oco\ 20 — /a2 + 4a

i (= 7)

= lim | ———

v5—oo\1— /1 + 4z

= —0OQ.
That need not be the case, consider a similar problem that looks about the same
on the surface but works out quite differently:

T+ V22 + 4
lim (x — V222 +4z) = lim < —v2x2+4$>
i (= )= lim xwm( )

= lim

(1} — 22 )
z——00 $+\/2x2—|—41
( —x? — 4z >

= lim
=0\ x + /22?2 + 4z

= lim

-y )
S\ T 247

Example 5.5.19: when dealing with square roots it is important that you
remember that the laws of exponents indicate £v/a + b = /5 (a + b) . We assume

that a, ¢ > 0 in this problem. Consider,

. vaxr?+bxr + ¢ . LVax? + bz + ¢
lim = lim [ £
z—=oo\ \/cx?2 +dx +e T—00 %\/ cx?+dr+e

ax?+br+c

. \/ 22
= hIn —_—
cx?4dxte

1.2

- (VT

r—00

a
C
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Example 5.5.20: The Squeeze Theorem applies to limits at +o00. Suppose we
are given a function f such that

2 42+ 1
Ztan'(z) < fz) < ————
— tan (x) < f(z) < 3

for all z > 1,000, 000. We can calculate the limit at co via the Squeeze
Theorem. Observe that

g}glolc<%fan (.«L—)>: g
< it > Hoo<\/m>:\/1/2:1.

22 — 3 23/

=1

:HL\J

lim

Therefore, by the Squeeze Theorem,
lim f(z) =

xr—00

Trading limits at infinity for limits at zero:
Notice that if # = 1/t then ¢ = 1/z it stands to reason that if + — oo then

t — 07. We can make the following substitution with that exchange in mind :

T () = lim f(1/1)

t—0+

Homework problems 29 and 30 of section 4.4 of Stewart’s 6th-Ed. are based on
this exchange of limits. It is rather neat that the infinitesimal and the
infinite are linked together in this way. I spent about an hour trying to get
the following example to be pretty to no avail. I can do it with the technique
of L’Hopital’s Rule.

Example 5.5.21: the infinite limit view of e. Consider the following limit:

: 1\*
lim < 1+ - > =e
T—>00 €T
If you can show that this definition is compatible with our previous

1mplicit definition
lim =1
h—0 h

for e I will award 3 bonus points if you can do it without using I’Hopital’s
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