7. APPLICATIONS OF THE INTEGRAL

We begin this chapter by discussing the net change theorem. This theorem says that the
integral can be used to add up all the infinitesimal changes to get the total change.
Many applications of integration are based on this general principle: the integral is a
sum. The change in position is the velocity. The integral of velocity gives the position.
Likewise the acceleration is the change in velocity. The velocity is generated through an
integral of the acceleration. | try to give a general flavor of how integration is use to
extend average concepts to instantaneous concepts. | give a few examples of how
average concepts still hold true at the infinitesimal level.

Once we are finished discussing generalities of the infinitesimal method, we focus our
efforts in the remainder of the chapter on the tasks of calculating areas and volumes.

Recall that we began our discussion of integral calculus by asking the question: “what is
the area of some region with curvy edges”. We found that it was actually fairly easy to
calculate the signed area under a large number of curves. If the curve in question was
the graph of a function which possessed an antiderivative then the FTC produced the
area with ease. Of course, if the curve is the graph of a function with no easy
antiderivative then we have no recourse except some numerical method such as left,
right or midpoint rule. In later chapters we will learn a few more tools towards tackling
ugly integrals.

In this chapter we return to the problem of calculating the area of some region. In
contrast to signed area, this will really be the area which is positive. We will find that
infinitesimal arguments provide an efficient shorthand for writing limiting processes.
Almost every problem is begun by drawing a graph of the region and a typical
approximating rectangle. Then we find the net area by adding up all the infinitesimal
areas. This “adding up” is integration, we should think of integration as a continuous
sum.

Once the area problem is settled we turn to the task of calculating the volumes of solids
which possess a certain regularity. If a solid is such that the cross-sectional area is of the
same type at each value of the axis perpendicular to the cross-section then we can add
up the volume of each slice and get the total volume. For example, a sphere has a cross-
sections which are disks if we use a diameter as an axis. A tetrahedron has triangular
cross-sections relative to the axis which extends perpendicularly from one its faces to an
opposing vertex. A solid of revolution has cross-sections which are disks or washers
relative to the axis of revolution. Of course, you should look at the pictures in this
chapter before you get too worried about the meaning of this paragraph. Integration
provides the technology needed to add together all the tiny volumes.
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7.1. INFINITESIMAL METHODS

The “Total Change Theorem” is that
b
d
| G de= 10 s

In other words, the integral of a rate of change of f with respect to x over an
interval [a,b] gives the net change in f over that interval. Let us suppose that
4 — 4 then we can act as though dz was a number and find df = ¢ dz. Thus,

de
[dr=[ s

Now we are really interested in definite integrals. Notice this is a funny
equation, we have df on the LHS and dx on the RHS, so we’ll need
upper/lower bounds with respect to f on the LHS and upper/lower bounds
with respect to x on the RHS. Thus,

f(b) b b
/ df = / gde = f(a)— f(b) = / g dx
f(a) a a

We are using the U-substitution theorem here. However, it is equivalent to
use infinitesimal arguments.

Concept: average concepts still hold true at the infinitesimal level.
Integration then extends these microscopic arguments to macroscopic rules.
Often we can find a relation that holds true over an instant dt of time or a
little displacement dz.

For example, the displacement for a particle moving with velocity v during a
time dt is simply the product of velocity and time; dz = vdt. This makes sense
because the velocities v(t) and v(¢ + dt) are equal. To be more precise I should
say they are equal in the limit that dt — 0. During an instant of time the
velocity is constant so we can use the constant velocity formula.

z(t) t
de =v dt = / dw:/v(u)du
To 0

= a(t) =z, + /Ot v(u)du.
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Another example is current I = dQ/dt. If we wish to calculate the net charge
that has flowed from time zero to time ¢ then we simply integrate the current,

dQ
[=—" = dQ=14dt
dt @

Q(t) t
= dQ = / I(u) du
Qo 0

= Q(t)=Q,+ /Ot[(u)du.

This idea also applies to things which are not from some rate of change necessarily. For
example, the work done by a force F' over a distance x is given by the formula W = Fz.
Now this formula is only for constant forces which act in the direction of the
displacement. What would we do if the force was a function of position? Then we could
not just use the formula since the force is not constant. However, if we look at F'(z) and
F(x + dz) then those forces are equal in the limit that dz — 0. So we can conclude that
the simple work equation holds at the infinitesimal level; the work dW/ done by a force
F(x) over a displacement dx will be dW = F(xz)dx. If the force does work from = = a to
2 = b then the net work done will be the sum of all the infinitesimal works dW, in other

words,
b
W:/dW:/ F(z)dx

Another application is hydrostatic force. The force on a dam is due to water
pressure. The definition of pressure is that it is force per unit area, this gives

us

F
P==
A

Now this only makes sense so long as the same force is applied over the whole
area. We cannot just apply this equation to the force due to the water
pressure on a dam. The pressure at the bottom of the dam is large than that
at the top. In fact it is known that P = pgd, it is proportional to the depth d.
Different depth gives different pressures, hopefully this is a familiar fact to
everyone. So, if we wish to calculate the net-force due to pressure (this is
called the “hydrostatic force”) then we should consider horizontal strips of
area dA. These will have the same pressure all along them so the equation

makes sense to apply to the strip, we have
P — ood — dF

The little force dF' is due to the pressure P acting on dA. Then
dF = pgd dA — F:/pgddA
R

where | » 1s shorthand for a detailed integration based on the geometry of the

dam. I have no intention of testing you on the physical examples here, I just
wanted to give a flavor of how these argument go in real-world applications.
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7.2. POSITION, VELOCITY, ACCELERATION

Differentiation and integration provide the link between position, velocity and
acceleration. Let us collect a few definitions for one-dimensional motion.

Definition 7.2.1: 1et the position of some object travelling in one
dimension be denoted by . If the position at time ¢ = ¢; is x = x; and the
position at time ¢ = 5 iS & = x5 the duration between these times is
denoted At = ¢, — ¢; and the displacement during that duration is denoted
Ax = x5 — x1. The position . is the displacement from the origin. The
position will be a function of time ¢. Let’s define speed and velocity:

d
vzd—fzf speed = |v].
The speed is the magnitude of the velocity. Acceleration is «,
dv  d*x
aqQ = — = —_— =
dt  dt?

The “dot” and “double-dot” notation are rather old-fashioned but still very
much in vogue in certain circles.

Differentiation allows us to find the velocity and acceleration if we are given the position.

Example 7.2.1:
Suppose that ; = 1 — ¢ — ¢? is the position of an object travelling in one dimension.

. . d 2
velocity at time t: v(t) = —|1—t—t" | = —1— 2¢.

dt
speed at time ¢: |v(t)| = | —1—2t] = 2t + 1.

d
— | —-1-2t) = -2.
(1)

What does integration do for us? Let’s consider a simple example.

acceleration at time ¢: a(t)

Example 7.2.2: Let a(t) = 2. What can we say about the velocity at time t in this
case? Let’s integrate over the time interval [0, ¢],
= ov(t) — v(0).

t tdv
audu:/—du:vu
| otwau= [ Gan = |

But we can also just integrate directly, fot 2du = 2t. We find

t

v(t) —v(0) =2t = |v(t) =v(0)+ 2t

We need to know the initial velocity v(0) to give an unambiguous formula.
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Let me work out a rather famous problem, the constant acceleration problem.

Example 7.2.3: Let a = i = g where ¢ is a constant. Suppose the initial velocity
and position are also given. Denote the initial velocity v(0) = 4(0) = v, and the

initial position =(0) = x,. Let us find the position and velocity as a function of time.
Integrate over the time interval [0, ¢,
=ov(t) —v(0) = v(t) — v,.

t b dv
/0 a(u)du = /0 @du = v(u) i

But we can also just integrate directly, fot gdu = gt. We find

t

v(t) —v, =gt = |v(t) =0, + gt.

Next we integrate the velocity to find the position,

! " dx !
/0 v(u)du—/o %du = z(u)

=uz(t) — z(0) = z(t) — z,
But we can also just integrate directly, fot(vo + gu)du = v,t + gt*>. We find

0

1 1
2(l) = o = vl + 598" = |a(t) = o+ vl + 597,

This example can be repeated for any acceleration and set of given initial conditions.
There are a few worked problems in the homework solutions if you need to see more of
these. One last idea that’s a little trick, for one dimensional non-stop motion we can solve
the position function for time and rewrite the velocity as a function of position instead of
time. Now you can do that algebraically, its not too hard but the calculus argument is

slicker:

__dzdv _ dv o od
“Tat T dtde dr aar = vav

Now apply this to the case a = g. We have gdz = vdv thus,
xfd—— de = g(zs— )———12——12
x ’ T T v v
. g o v I\Es 2 f 97

Perhaps some of you recall using the formula vfc = v3 + 2¢(zs — x,) in the study of

projectile motion in highschool. This is where is comes from. Well there is a little more
physics behind our starting point here, but we’ll save that for physics.
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7.3. HOW TO FIND THE AREA

Example 7.3.1:

El Consider o %M\eric eXamp e, 4o be,ca):«'\ / find
Yhe oren  Dounded \3\3 X=a, X= b and £(x) and 9 (x)
whece  £x) > aAx) fe ol X on [A, b]., A pichnre }\egpg

)’ we Coan ’p\'f\c’ the acea

b divicliy\% the ocew vp
‘u:iu wl‘% rmany infimtesimad
te ehan . We've drawn

Y “\/?Hd b ox you can

W ohes arew AR, = [£lx)-a0x)]ax,

A= Aren = [im i(ﬁ(x;‘)—ﬁ(x*))Ax

h—=po 1=

But Hhis ¢ recise\% “the :n'*ecf\rc«.Q of £(x)- 9 (x) p

A = S:((&)— %(x))di/

» Technic we should besan of) problems with acmunmendd
aboud ”‘i{(&/aha’ A, a:j&\;o on, dhese ace -ﬁni?e . Then
once Yhe ohéecfr ol taterest s suihb&a app(uximﬁt‘d b\(g,
N~ techngbo we pass to tha limit n—c0  and £ad
Yo z be comes  an g omd AX becmes a dx. For

all  calunlotionad paspesesr the Fiest steps whth 875 are
unecessary . We can ol 7%616’ ﬁfgmmwﬂff ”‘r’:?“
inﬁm'fﬂ”mb& ﬁ,m %2 éeéx‘hﬂfr?g an/ I w;/// ﬁom

Now  on. T menpn this  So Yeou can  undecsfond

the Cnnnea‘})ém between, +ha maf%vc/ ja Fhese notes

and the mace wumber some Argwmenﬁ n Yonr ext

The general strategy is to draw a picture to get a handle on the problem, then find the
formula for a typical infinitesimal rectangle and then add all the little areas together by

integrating dA.

5 See ' hei:&h-} is 4‘(><)-‘a(x),
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Example 7.3.1 (again, but clearer):

@ Fevisted us//)} i 1 fe ;z?rm./ araummqﬁg'

\/ JX
\/:‘4 x) ‘i;‘ ] (F(X)-» %(,x))—”“d)(
Y=90x) _‘}T’L’F&) 3(x) ’\'\3,«{) Caj areo, 04\'
b

‘Pm&e\s mm.l e c:‘ur\%iz

N
77; 057‘0«4;" aréeq f/m/ag Q/a/ ul,a Néf ‘%e ﬂ?/ﬂn‘fe.{/fna/a/ea:
fo/A - f(f&v) 36 ) alx

Example 7.3.2:

’E‘Z; A(e“ 56\0\1‘!6/66/ 52 y X an&/ y X s Wﬂwé ?

intecsecton oo
/(]\:?f F‘u-; _RCI:‘V\ ffemf)!% eqf/\«m*}y/
X = Xx°
xX*-Xx = X(x-1)= ©
X=0 or X =|
’n'\e m-i's o ntersechion
are (o 6) oand (1,1),

L

163



Example 7.3.3:

/E?/ find acea boundod é» Y=x2 und y._._;/-m;(:']
Lets Find whew thece carves /‘ﬂf‘e/.rec/; set Y=y gield

fH%}
X% = ~ %
\-'
X =
XTax = 0o

%X(x*-1) =0

= X= 0O er X = |
Thus Fhe  points

of inter co chisn are (0,0) and (1,1)
Y vex® |
| Typiead rechumle o x

I 5 } X = x* = heiglb

(o)  x X i

de = wiekih
The oarea of Hhis Hiny "'QM s, ,d_ﬂ\f"h(&- xz) ,dx

Thus A = ll(-fx"- Xz)dx

= /2 5Ah _ 1\ 7
(3>< 37X
= 2 .
3

|
0

4
3
- '/3

Some Advice:

Sheakequ,

@) Grach cenon aaehl faghion,
wp egion 9 Use ol (N
Lind Pe(ng of in%ersec:h'an. 8@6

@ Draw o '\'\/Picoj —Hma, rea{un%}& cmcﬁ ‘\Q:\J s o\rea\@n),

@ Add the oceas of ¥ ”H‘na Mv{’mg@ﬂ b'g ""*‘*fk“*’“‘“&'
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Example 7.3.4:

[EY] Find aren bosnded by Y*= X and 27 =x%-3 |

Toba tht of infecsechin X=x = Y= zyss3

]

-

(YPr3y -4V
(9+9 - @7 )-

= poink of atecsechon ace
(°|,3) and (ll"f)

eits beter 4o use
hociBonted stiips becunse
we dont need 4 brealr
up nte Cosres. T we
used vertieod S“(‘rrps i+
Would be +ri’ok3 be cande
0sxs | is differach +hon
\exes9q L0 \ler*h’c,w[ S{'\ITP:

1
-3+3)

1+ =324 =10.67

Remark: The choice of rectangle is primarily one of convenience. We could use another
shape which neatly divides the shape into pieces. For example, a disk can be seen as the
union of washers of thickness dr and circumference 27 so dA = 2nrdr ( this is the area
of the shaded washer region pictured below). If the disk is of radius R then we can find
the area by adding up all the infinitesimal areas,

R
A:/dA:/ 27T7‘d7’:
0
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Example 7.3.5:

(ES:/ End acea bounded ,;49, Y= 8Sih(x) and ¥ = -- and X= 0 wne X“J.

@: (+ —sin(x))@ f\y= sin ()

Notiw Yhet sin (30°) = sin () =% and by 4ha
S%W\me'\'r% of Sin(x) ohouh x=Ts s clear sn(ST6) =z,
Thic reveals e m‘rer'Ce‘:y-hon points are (‘T/e,'/z) ond (‘5_61:, f/z)

Cleark) we rued +o divide wp inte  coses @,@QNJ@/

/e A 1) '
A= & (3-sinta)dx + g (sinbo-3)dx + S(%—smzx))o\x
[} A STT]‘
-_— T e Y % T
= L 4 ocospo) " - 4T _ T & e ,I
2 L 3 @S(x)l“_/‘ e s (% -
= L ., 5 9T . &
-2’

i
l
+
N
)
|
N

= 2(f3-1)- Ty
= |0.9405 = R

Example 7.3.6: (if on test antiderivative would be provided)

”Le‘t‘:s‘ ﬁﬂc[ -/’Ae area of o C/ff& (’Qém_mi

7N

The ey 4 of Ao cieele i /Oaram&/fac Ar e are,
X = Qcos @ onwed Y = asin @

Wheee X*+7* =a® B yo x [giiiw o
df = 2 ar =xBolx

o
A= XZW&X

= SZ Saz__q @Sz&(-'ﬁﬁngdg)
™

m
'Zazg si2S dO

o

( gj (1~ wze) dl%)
( Ly

T _ st r\‘_@@
2
[i2S! :

I
@,%

i

°

il
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Example 7.3.7:( integration too hard for test, would provide antiderivative)

~ TR >< a Qx@
‘ V= Erim @v}
= N j : g = 7 ‘—“3:7 h&t%}nt mabmé = zbm‘rﬁj;m)‘g
df = 26 TR dx
w
g AT_ 325{\-(%‘_)2& Sl TR )
/2 X= &Sin® ){w@\;«)@.ﬂﬁ/{
= Zb S"\"\-‘ 310‘@ a&f@d@ dx -;,«,116%9&9 P ] 9:"”/2';
=Ty e ——
= 2ab STVZ cos*©d®
T/'P
~ZQ‘D &;—(\ + Cog Z@)d} @
= (.\b [9 + S E‘@i | .
B o L sin\-T)
| = ab [(W/z.ws“%i‘g)—( s + 3 50GT >_J
o -im " | | :
77/, how 0= b = we éf-*‘f? A = T ° whidh /s goecl .
0 ‘a s ¢
2 V 3 il Misge  in pm{w coordinates ?
@\ (esgx\of,.' Wt'\mi [} % E/ﬁi, oz M“( e P J
Xy g =y Yl rrlins . o
o’ Lz AG;‘ 1) :
fw—;mil; .....

UVe Can  agann NAia when a=b we 391 r=a A vEng.

§eng;$(g @ﬁ/b 'ﬁﬂ‘ @ Cl’f(.[ﬁ J W Gf;ac'n_

Remark: this problem I could ask you to set-up, but the integral is too hard to execute
this semester. We need trig. substitution which is a topic from calculus II. I might give a
problem like this and provide the antiderivative. That way you could still calculate the

answer so long as you set it up correctly.
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Example 7.3.8: (area of a triangle from calculus argument)

‘\?f)f" ‘@“ﬂcﬁ'\’& wid”“%*?‘\ e‘? 6 slic " ‘\“r(qw%wﬂw—
((«,%.M)n o{* wtd’w\ W and \(\u%kb W as o fmckion oF

Aodwm Wi elear ¥had Roe Hhis shope Yhat L vories
Wnear l? with Y, se A=mY +b . MJH%AQU%,

we  Wnuw o
V=0 %i=w=m(°)+b tob=w]
Y=h = f=0=mh+w «[m="%g"

Thus we £od )Q 'Www}.

We see Hab dA=Qdv = (HYrw)dy thw

A = Sh(’“’\/+w)d>’

h
- (W\/+wv

0o

= ~swh + wh
F’”“ = L (b (Reu&t\ﬁj

I don’t mean to suggest this calculation is necessary to prove the area of a triangle is %bh.
The proof of that formula falls easily from purely geometric arguments. This example is
just to show that calculus is consistent with known geometrical formulas. After all, if we
claim that the integral gives area then we ought to be able to find all the area formulas
that precede calculus logically. In fact we can find those formulas and much much more.

il
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Example 7.3.9:

E9, Ya
A= - Ol
N dh= (9. - el
Thee % a Ve.r‘km& Slica
t ad.\.wx&amo—l-aZ.TLw
\\/= ! Pt

A = SEW—.RL—;)C{X =E§“(X+Z)3/’-Q"'X+"/:
=(3(0%- () )~ (5 &% In( ),

qpT)

Example 7.3.10:

=t —
% . da = (X, -%.)dy
G X=2Y-y* =[(2Y‘_yz) el (YZ-qy)]cﬁ‘/
= (6Y-2v*)dY
(0'0) hece an/ alfo @

%ofifﬂ- At easier & do 1t /lon"aan% O/[} /6%’9 ,’,l,/gﬁ/w/?/g

infegation ﬂ'mg,o/z%’ef F you simplihy
A= f(éy—zyz)dy ~fay*- gv*,
: =[3(a)- 2B3)’] = [o- ]
= (27 - 2(z9))
(29

=19

i
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Example 7.3.11:

Y1

dA= (% -9, dx
= (€ -sin x) ) dx
“n\erc«ﬁore/

e
S (ex— sin (x) )0\)(

¢ Lz ( ]
.
[ex + (o§ (x)j = - Z2 =281
[¢]

3]

ll

Example 7.3.12:

4\'\‘&
v

df = (9r - Qe )dx

= (144X - 1 - £)dx
(0,1\ 3+X e |+.>$
i R, = (dx - $x)dx
1
9
Therele, A = ) (- 4x)dx
u':it? oxx.bra/ © q
w 3
ez?‘“‘“-}%%“‘hl = [—z_g-x - é'xz IQ
3 2
= [5@)%- 3]
B
Poir\’ts of intersechon followed Fram ‘36 = ‘31. bﬁcum.!l./
l+4% = |+ &
- X
& -3
3)x = x
A% = %= Cannet é‘us-(— divida by X
> \éom lose ;A.Lotmuﬁfbn b‘a der.
X" =-9X = 0 that. (x mfgh‘f be 2eo)
X(x-9)= 0

7o X= 0 or X=9
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Example 7.3.13:

X= 2-Y%  Tus swith 4 '

X =-Y roleg of X $Y fosee
wkam roph Shawdd Ge
~~ a “lire and sidewans pasbel .

X 2 yz Po.m*'.( c.,[. '\N‘ef:eUt\'M "g”ow -)({QM Xl..:XR/
R EY o 2~ ‘QZ = ~-Y%

¥-4-2=0 o)
©-2)(9+1)=0 = Y=2%Y=-]

dh = (Xa - % )d%

= (2-94°-(-9) d% g . d
SRR (R TR

-
€Va..\w>J\TM @‘JAS

2
I

I}

Example 7.3.14:

N | ) vem dh = (x=02))dx ez
= (Z —X-Xz)dx

K Y=X~-2 ok dh, = (X"' (XZ'Z))dX (X>O)
= (2 +x~x%)dx

L

n

Po'm‘\s of 'm\-erseu’(\‘ on

X = X322 D x-x-z = (x-g)(x+) =0

Xzo

s X=2 o il
X<0  —X =X-2 = xZix-z = (x+2)(x-1) = ©
roxm-2 o @A TN
o 2
A = &(z-x -x?)dx + %('z+>< - x*)dx

-2 o

2
o gl 1o ,jo _
(- [ (o o = o <[]
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Example 7.3.15:

—— N bonncdad g=x% and +he @
[ess] f Y ?xz B (L0, and Ha x-axis
: j?’:‘j can write As ’/&AQM f V=Ft) of /a/fﬁt)/
/«fe 1 gome ol (provided 7a) exit/s)

V= f) + £ (X-a) ,
Thow we hove a=| and 'F/GYJ=ZX = ”F/’):Z +hen

D ye s ex-l) = 2x=1 =Y (Pt liae )

Po: I\.‘\’Z o«‘: (l I\Lef:w{')"on:

2

ZX=| = ¥ 5
X2—2x+|=~(><—l)=0
JoX=1 = Y= of nresedin

Yhob iy Hha ph of inkerection i (1,1)
ﬂ\UQ,I'\”Q/ f‘dk'\‘a 0<% <= Lor area,

A= (29 4-1%)dy

( Unfortunately the hole punch ate half of the 2, = /y.)

o g l
Py L 2y2f_ ¢ d_Z=z
2(:.{‘31'29—?9 /“7*2 3
(]
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7.4. CALCULATING VOLUME

Example 7.4.1:

A = b
dV = A d¥y = b d %

 This s e s*mp\es% cuse, Fhe cross- seetion
s CO?\SJG';W\JC o\ W\% \r&eqhm)t\nn xS,

A=TC? Tr(‘zi;a:)2 (sea arpumantd below )

N otia Haot 7\" .Shawlol oleper\A
\inemrl\a, onw & thus r =m’é_+b,

\r(%:o) = O g Cle.arkpn,m
r(%=h) — f\):d\\ue
Ths 0=t w b=mh » m= % -

The Veluma of each -hma slice tis Liand Yo be o\V-— Til’- 2 d’y
Se Yo dohd velame i fund b\a Midmaa these up

ks XO—F%&% \f‘;.%i‘.. -—-\/;m/

3#\‘
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Example 7.4.3:

[ES] Find the volume of o sphece of rodiss R]

< ie Wm

y 4 X hs\‘u as .‘+ :
( 1 R \ \ntecseets (xy) -plane.
\\ .
"

rPes y2= R?
Y‘z-_- Rz_\/z
m\\m A o —nﬂri - ’[T(R"‘_ \/2)

dV = AdY = T (REy*)dy
We  then find +ha ﬁﬁupvw/um,e b Summing ' 4 ol
R /
V': fﬁ(ﬁz-yz}d)’ P
=R
‘ R
T (R*Y - -3'-y3’.R
TTRR?_%RE)__ (_ R? *%RE)]

Yop3 _
?WR o -\/S?kere

i
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Example 7.4.3b:

Fomark : foc many shepes +he /eng)/w of a side (o
the KM/[M) varies /t'near/9 as we 9o up Ha schuge.
Se i we hnow the fagh of #e cie (or radi) He
twe slices we can fiad the /0*12:/7; of 4 gide (4r radias)
for any slie., An exampl to clear gp whed ],MM/

E3): #nd veloms of pyvamid of height b wibh trianges bese with sida @

what’s Hha ocea

AN of s teiangla ?
A laok ok Yo

“éﬁ;—)‘ ?,‘dwe,s Yo Sex
A-‘-‘\"R ﬁx ::&‘z
~EX& 7 M3 ) 7k
2
¥,

N

Tha volume from Yhe slice wowld be oAV = AdY =."E|—?“«Q~2dY.
Tlotia ot X is o fonction of Y. Wore fﬂ?}’drﬁnf/g #
is o linear fnchon of Y,

Y=0 = =a (& thabose)

Y=h = =0 (o ¥utp)
Bk we Wnow W) =my+b. Plug in Yhe dota,

Mhy=0 =mh+b = m="h

oY =0 =ml)+b = a=bt = m="%h

Thos AW =(2)y + o = (h-Y)
h h :
V- &O‘J’q—%h H%W-W”*)‘”

"F— * \{2 lygh th
- o1 v.hY += - ‘
T o4ne (kY 3 |0 NEN
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Example 7.4.4:

EY] Find velame of solid obhined by ra”/'aﬁrzg 7he Cegron N~
bamndc(/ b? Y = X% and "Y3 = X" about The x-axis.

interse ghion Poi‘r&r hewe \/2._. y® :
W\e,wn?ma X = (X’}!:X”

. ;
D Xox=x(x:1)zo D x=g.. X= |

<« Hi i . ‘hypicwe wes he

in the veluma ?ic-{-m(ed
C = )(2

o

b =X
C the area of the onawlus is
given by A= ™ (he-67) = T(x=x)
Fhws tha Volumae of a%azpfcu' washer s
d'\/: W(X“Xq)dx
W\/\l:d/\ \a..tlaw: us 4w Lond Ha Aoted Uelama V/

Vo= S.W(X—XV)O\X

il

i
7]
-
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Example 7.4.5:

/—E—Sj bound rew'«on \)% y‘-‘—‘/& . Y=0 =, k=3 snd \‘M ooy Y=-)
.F_ih& e Va“my dx

(=

)

dV = T(r: - 0 )dx
’W(Q+~;’(~)2- | ) dx
(1 %k e -1)dx
m( i—*;‘;)dx

| ST’W(% ¥ Xiz)&x :(ﬂTJZm(x)-.gr'g =

i

1

Vv

d

=<2rr!ln0<)~1'3
x
= zrrﬁn(a)—gmr

Qowc@:\gg his So\icﬁ loahg \‘Wu[
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Example 7.4.6: (would provide some assistance with integration if on test)

\EG) Find velume of o donut. Ok, we call these “’uST‘g objects a
\\“'0(‘USU ET Majdn, Let J\'\I\Q 4orng \f\a\iQ b\% ro\d\mg R and H@H&
N Cadias Q. le*._,ﬂw,,_w_w 2R SSS—

We con see Yok +his S\P\mpa con be obfeined b r&w+xn%,
[s c\(de 0‘(: cadlias OO cew’mre.ci ok X = R ‘M"awncﬁ
Sde view of

- OIS, ‘E
\/ » washer ] o thamorenn Hh®
g Pty

Y
1=

G, = R-1= R-Jo&v?
Ca = Rel= R+ V2

F‘if\& Pre volume of o typicd wus\her/
dV = Trdy - R dy
- 1] (R+2)*= (R=4)"]aY
'T[@Amm,t )= (R-2r8+ X') )] dy
YTRADY

4 R+ Y2-0* dY
A % YT RITTE dY

il

]

Q/W. on see o woachee ok each Y From Y=-a )
W ¥re way vpte Y=o

"

Y\c‘h j le(«&'ln%
- Y= asin® Y=a — ©=T/
< = X “ﬂTR(‘lmse}aus@&e d‘l—ac;s®d@ V=0 = &= T;z
T Vet = acos @
Wa
. 2 L(\+ cos 20)d© J——
1T Ro. S_'{TA Z( 27 / Remark ; e ituitively nica |
= 2TRa’ (Qﬂ- ,L‘si\g(ze)l = |2m%R =V 1 V (3“R>(mz)
& ,'ﬂ'/ e B T
s o] o
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Example 7.4.7:

E‘% Find Vowume g_F‘ Secip FeAmes 8y RemATING Rfém:\/ Rerurep
LARGUND Y = AXig

= g
L AT e Yot ~Fiy
T T{Y-Y¥d b
=3 ey dv=TH(Y=Y)dY
ISP ZB. S |

must
W;A ?‘“-‘6 s —Cuachw,/

@ ‘
]

I E-Z- Wv‘“‘é \\C.@thlr{c.hﬂ Chells ”
(1)

Bop o |ags?

h

P } ) dx \)o\v\w of \Wﬁm%e.nmd
S ZW}(CX‘ X ) X C‘%‘ \ﬁ.d.ﬂ\"‘" ?lc‘%\l\(eﬂl
D)

% 4.

~N

i t
LN
=3
L st
~Z
{ay
§
-
£
{isd

§
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Example 7.4.8:

e e
Rk XTEY gbedd dhe - "‘ij
X=0
- Hoth X =4-4"= 9 (1-4)
7 ) Whtfmg X=0 when 9Y=0 or G =|
\ (0,1 Hhee My %m«?'\ Rememeber +he V‘Z‘J
ey & A ook is 3-0 bub, T us
{ Tk ) *h Shercechton of the
L} yask  draws ¢
LN e a/va\mmﬂ o «YN_ (‘)(ta} ?w\.ﬂ. Thet
*4%’\': ok Pldwe \ 6“‘*“‘%‘“* + F%NC o how
Gy = X= %-%2 Cob de;iwmia? on X é‘é
ho< d\/= m(4-92) d%
\olurme

=T(%w-24°+4")d%
¥ 0 glﬁ'(*ﬁz—wg +49")d%

1]
=
/\
|-
e
]
<]y
o<
i
4
ml_—
of
]

Example 7.4.9:

NQ@ : Sac(x)= E ’% retate thic ¢

=| §X a\nwmo x-»mXU Q"GMQ !QQV”N

R >% dv = TT(C@ )(ﬁx 1
’W,;;»:*%T :T(Sec (@‘\)&X '

j
! \
! y Fe camas of St@mmex\"r con colewhsty

holf 4ha Volmw&( ‘X<|) and M‘WH'PQE% 2.
NV = 2& T (sec®k) - 1) dx

—

= Zm ('f"am (x) —

TT[(-FM\(\)— l) = ((D’hm(o)-—c)]
Eﬁ(ﬁn(w—l) = ’3.502}

1"

i
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Example 7.4.10:

Bouad rega"«:w é«g,\

y=x%, X=0,%
— abod the Y-oxis
X< =,

P

’ ! 1=Ga
f A(Q(l o«f’ {M’WLV“;\M
‘ .IA:W@; —\Qn )

d’\/' = Ad\é

Example 7.4.11:

=(

dy dv
)

%:XZ/S
= X= (g%

= '[T(i“(ké%)z)d%
=m(1- v )dy
, \‘
= [mi-9)d%
Vo
=T (-39
=Tt = 2L = 2.95¢
@ xX%= x
= X(x=1) =0
Dxzo § X=|

lok = Z=XK, =
‘F\A = Z’XR = 2-'%

AV = T(nh-6r)dY

1

t

5

= PP z L3
> Vo= [ T(ahseteun)dy = (595

T {(2-9)" (-] d%
AW CEU ARG E TR U LT
T - 5% +u4]dy

(inferrection pis. 1

2y a2y’ ): = T(s-5+2)
=] ()3___ 5__"'__..9)

- 2
15

:‘ﬂ:, {
- = 16755
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Example 7.4.12:

3 %

. Shepe (s

EE] bt

& d@?@hﬁﬁ “’\Ci;\fﬁr\,\dh (&

S=my +b

S(e)=ml)+b =b = R
S(h): mh+R =

= mh= r-R nme TR

A SE (r";ﬁ) 3+R
4dvo= sty . )
= T[ (=) ~e+9] dy

= [ (R0t 2r(5R)y + Ry

<
1
oi?
=y
H
3¢
N
oS
[\
+
N
=
T
-3
[
30
o
[\
+
BN
~
—
Q.
Y

:\

= Th [5‘— (r~R)Z + Rr—ﬁ({#ﬁé]
= —é-ﬂh[(f*ﬁ)2+ BRI‘]

= -§’-7Th[r2~— 2Rr + R%+ 3;?,~]

) R Y
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Example 7.4.13:

S lepends linewrly.

an A
S=mb+ &
Fram plc%u/e
sle) = b
S(h)=

S(o)=m(e)+8 = B=b

Cov\""';ﬂv‘;f\
I (M =mm+b = ;Z @L (G‘ b)tgf +7
m = S a-b

'7719 Aren 679 Fha crar:—:eoﬁan /s JAA:% 4= 82 (,}‘MWE/) Fhoe
dv = s%Y = [mcgﬂté];/%»[m 95 +2mby + %[y
ﬂerc#m
V= J” [m*4%+ by +8°]d%-
9 + Zmﬁfg& b
( 3" 5 }/ T could &vr'{w weide
™ - _S_m% + mb h*+ 6%h M instead
i a® » 2 2
= (AT (SE)bhT + 8
= h( $-b) +@=bff +5)
Lh( (o) + Bab)
= é‘h(az*Zaé +6z*3a5j)

= |3h (a"+ab+4%)]

I’p\he WA%

' o-b
(# 9] l’g‘e _b:- Wﬂey)

]

183



Example 7.4.14:

S o!.vfwmﬁ«f Hr\ewta on %

(Base) 3= m()+b = b =¢, _
(Veriex) S(h) =mh +a =0 } S

M = "%

The Velame d“\,( oF - itha ,r/zcz s /}0/9— ﬂw

OIV r(m%f-a) a/?f T/m 9% r2ma y +a/0/gl/
. - /A\Lagnv'& to fined Aot Ve lume,

V= j “[\[7%‘9 %qu%+a/a/y/
~ =£( +m*3*+ may® +agt/
= E‘{:( Lm*h® mm/fM%)

ij.(é %z R - ah2 +o\2)\)
%(?0 ‘/9;?,.@’?[)%

- ’%‘—azh =»W

6D

Aceq of ederad A
A = é(‘S)(gS) :4;"32
S/
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Example 7.4.15:

dv =m(hg-Kidy . WasT=RD
= (S*-r?)dy- sTER-Y
= (A-%-r*)dy Neba 1ot
=T ( R=r*-y%)dy ~ AT s pe JFere

we add volume ~ of
Wogheq in Fhir fam}c

/ S Sy immetrn .
e 9 %9 con
WT Aty gt inteqrls Fom
Vo=2| RS9 )dy 2er0 — JFETF
\ ) , ard double it.
= 27“((32— NEEE AN )W -~

4]
- 2W((Rir7ﬁ€§,—;-(m)3)
= 27;"( (7% r?)°s - é(;;a,,,z/%)

[F (7% V]

WO/R@ wham =0 we Cgﬂiﬁ “V’*”Siﬁ'/?aj
which i€ a gcacﬁ 7"/7//704,

Ui
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