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7. APPLICATIONS OF THE INTEGRAL  
 

We begin this chapter by discussing the net change theorem. This theorem says that the 

integral can be used to add up all the infinitesimal changes to get the total change. 

Many applications of integration are based on this general principle: the integral is a 

sum. The change in position is the velocity. The integral of velocity gives the position. 

Likewise the acceleration is the change in velocity. The velocity is generated through an 

integral of the acceleration.  I try to give a general flavor of how integration is use to 

extend average concepts to instantaneous concepts. I give a few examples of how 

average concepts still hold true at the infinitesimal level. 

 

Once we are finished discussing generalities of the infinitesimal method, we focus our 

efforts in the remainder of the chapter on  the tasks of calculating areas and volumes. 

 

Recall that we began our discussion of integral calculus by asking the question: “what is 

the area of some region with curvy edges”. We found that it was actually fairly easy to 

calculate the signed area under a large number of curves. If the curve in question was 

the graph of a function which possessed an antiderivative then the FTC produced the 

area with ease. Of course, if the curve is the graph of a function with no easy 

antiderivative then we have no recourse except some numerical method such as left, 

right or midpoint rule. In later chapters we will learn a few more tools towards tackling 

ugly integrals.  

 

In this chapter we return to the problem of calculating the area of some region. In 

contrast to signed area, this will really be the area which is positive. We will find that 

infinitesimal arguments provide an efficient shorthand for writing limiting processes. 

Almost every problem is begun by drawing a graph of the region and a typical 

approximating rectangle. Then we find the net area by adding up all the infinitesimal 

areas. This “adding up” is integration, we should think of integration as a continuous 

sum. 

 

Once the area problem is settled we turn to the task of calculating the volumes of solids 

which possess a certain regularity. If a solid is such that the cross-sectional area is of the 

same type at each value of the axis perpendicular to the cross-section then we can add 

up the volume of each slice and get the total volume. For example, a sphere has a cross-

sections which are disks if we use a diameter as an axis. A tetrahedron has triangular 

cross-sections relative to the axis which extends perpendicularly from one its faces to an 

opposing vertex. A solid of revolution has cross-sections which are disks or washers 

relative to the axis of revolution. Of course, you should look at the pictures in this 

chapter before you get too worried about the meaning of this paragraph. Integration 

provides the technology needed to add together all the tiny volumes. 
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7.1. INFINITESIMAL METHODS 
 

The “Total Change Theorem” is that 

 

  

 

In other words, the integral of a rate of change of  with respect to x over an 

interval [a,b] gives the net change in  over that interval. Let us suppose that 

 then we can act as though  was a number and find . Thus, 

 

  

 

Now we are really interested in definite integrals. Notice this is a funny 

equation, we have  on the LHS and  on the RHS, so we’ll need 

upper/lower bounds with respect to  on the LHS and upper/lower bounds 

with respect to  on the RHS. Thus, 

 

 

 

We are using the U-substitution theorem here. However, it is equivalent to 

use infinitesimal arguments.  

 

Concept: average concepts still hold true at the infinitesimal level. 

Integration then extends these microscopic arguments to macroscopic rules. 

Often we can find a relation that holds true over an instant  of time or a 

little displacement .  

 

For example, the displacement for a particle moving with velocity  during a 

time  is simply the product of velocity and time; . This makes sense 

because the velocities  and  are equal. To be more precise I should 

say they are equal in the limit that . During an instant of time the 

velocity is constant so we can use the constant velocity formula.  
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Another example is current . If we wish to calculate the net charge 

that has flowed from time zero to time  then we simply integrate the current, 

 

This idea also applies to things which are not from some rate of change necessarily. For 

example, the work done by a force  over a distance  is given by the formula . 

Now this formula is only for constant forces which act in the direction of the 

displacement. What would we do if the force was a function of position? Then we could 

not just use the formula since the force is not constant. However, if we look at  and 

 then those forces are equal in the limit that . So we can conclude that 

the simple work equation holds at the infinitesimal level; the work  done by a force 

 over a displacement  will be . If the force does work from  to 

 then the net work done will be the sum of all the infinitesimal works , in other 

words, 

  

 

Another application is hydrostatic force. The force on a dam is due to water 

pressure. The definition of pressure is that it is force per unit area, this gives 

us 

  

 

Now this only makes sense so long as the same force is applied over the whole 

area. We cannot just apply this equation to the force due to the water 

pressure on a dam. The pressure at the bottom of the dam is large than that 

at the top. In fact it is known that , it is proportional to the depth . 

Different depth gives different pressures, hopefully this is a familiar fact to 

everyone. So, if we wish to calculate the net-force due to pressure (this is 

called the “hydrostatic force”) then we should consider horizontal strips of 

area . These will have the same pressure all along them so the equation 

makes sense to apply to the strip, we have 

  

The little force  is due to the pressure  acting on . Then 

  

where  is shorthand for a detailed integration based on the geometry of the 

dam. I have no intention of testing you on the physical examples here, I just 

wanted to give a flavor of how these argument go in real-world applications. 
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7.2. POSITION, VELOCITY, ACCELERATION 
 
Differentiation and integration provide the link between position, velocity and 

acceleration. Let us collect a few definitions for one-dimensional motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Differentiation allows us to find the velocity and acceleration if we are given the position. 
 

 

 

 
 

 

 

 

 

 

 

What does integration do for us? Let’s consider a simple example. 

 

 

 

 

 

 

 

 

 

 

 

  

Definition 7.2.1: Let the position of some object travelling in one 

dimension be denoted by . If the position at time  is  and the 

position at time  is  the duration between these times is 

denoted  and the displacement during that duration is denoted 

. The position  is the displacement from the origin. The 

position will be a function of time . Let’s define speed and velocity: 
 

 

 

The speed is the magnitude of the velocity.  Acceleration is , 
 

 

The “dot” and “double-dot” notation are rather old-fashioned but still very 

much in vogue in certain circles. 

Example 7.2.1:  
 

Suppose that  is the position of an object travelling in one dimension. 

  

 

Example 7.2.2:   Let . What can we say about the velocity at time t in this 

case? Let’s integrate over the time interval , 

 . 

But we can also just integrate directly, . We find 
 

  
 

We need to know the initial velocity   to give an unambiguous formula. 
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Let me work out a rather famous problem, the constant acceleration problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This example can be repeated for any acceleration and set of given initial conditions. 

There are a few worked problems in the homework solutions if you need to see more of 

these. One last idea that’s a little trick, for one dimensional non-stop motion we can solve 

the position function for time and rewrite the velocity as a function of position instead of 

time. Now you can do that algebraically, its not too hard but the calculus argument is 

slicker: 

  
 

Now apply this to the case . We have  thus, 

 

  

 
 Perhaps some of you recall using the formula  in the study of 

projectile motion in highschool. This is where is comes from. Well there is a little more 

physics behind our starting point here, but we’ll save that for physics. 

 

 

 

 

 

 

 

 

Example 7.2.3: Let  where  is a constant. Suppose the initial velocity 

and position are also given. Denote the initial velocity  and the 

initial position . Let us find the position and velocity as a function of time. 

Integrate over the time interval ,  

. 
 

But we can also just integrate directly, . We find 
 
 

  
 

Next we integrate the velocity to find the position, 
 

 

 

But we can also just integrate directly, . We find 
 

  

 



 162

7.3. HOW TO FIND THE AREA 
 
Example 7.3.1: 
 

  
 
The general strategy is to draw a picture to get a handle on the problem, then find the 

formula for a typical infinitesimal rectangle and then add all the little areas together by 

integrating .  
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Example 7.3.1 (again, but clearer): 

 

 
 

Example 7.3.2: 
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Example 7.3.3: 

 

 
 

 

Some Advice: 
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Example 7.3.4: 

 
 
Remark:  The choice of rectangle is primarily one of convenience. We could use another 

shape which neatly divides the shape into pieces. For example, a disk can be seen as the 

union of washers of thickness  and circumference  so  ( this is the area 

of the shaded washer region pictured below). If the disk is of radius  then we can find 

the area by adding up all the infinitesimal areas, 
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Example 7.3.5: 

 
 

Example 7.3.6: (if on test antiderivative would be provided) 
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Example 7.3.7:( integration too hard for test, would provide antiderivative) 

 

 
 
Remark: this problem I could ask you to set-up, but the integral is too hard to execute 

this semester. We need trig. substitution which is a topic from calculus II.  I might give a 

problem like this and provide the antiderivative. That way you could still calculate the 

answer so long as you set it up correctly. 
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Example 7.3.8: (area of a triangle from calculus argument) 

 

 
 

I don’t mean to suggest this calculation is necessary to prove the area of a triangle is . 

The proof of that formula falls easily from purely geometric arguments. This example is 

just to show that calculus is consistent with known geometrical formulas. After all, if we 

claim that the integral gives area then we ought to be able to find all the area formulas 

that precede calculus logically. In fact we can find those formulas and much much more. 
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Example 7.3.9: 

 

 
 

Example 7.3.10: 
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Example 7.3.11: 

 

 
 

Example 7.3.12: 
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Example 7.3.13: 

 

 
 

 

Example 7.3.14: 
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Example 7.3.15: 

 

 
 

( Unfortunately the hole punch ate half of the . ) 
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7.4. CALCULATING VOLUME 
 
Example 7.4.1: 

 

 
 

 
Example 7.4.2: 
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Example 7.4.3: 
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Example 7.4.3b: 
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Example 7.4.4: 
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Example 7.4.5: 
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Example 7.4.6: (would provide some assistance with integration if on test) 
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Example 7.4.7: 
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Example 7.4.8: 

 

 
 

Example 7.4.9: 
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Example 7.4.10: 

 

 
 

Example 7.4.11: 
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Example 7.4.12: 
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Example 7.4.13: 
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Example 7.4.14: 
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Example 7.4.15: 

 

 
 

 

 

 

 

 

 

 

 

 


