8. L’HOPITAL’S RULE

In Chapter 3 we were able to resolve many indeterminant limits with purely algebraic
arguments. You might have noticed we have not really tried to use calculus to help us
solve limits better. In our viewpoint, limits were just something we needed to do in
order to carefully define the derivative and integral. However, we were certainly happy
enough once those limits vanished and were replaced by a few essentially algebraic
rules. Linearity, product, quotient and chain rules all involve a limiting argument if we
consider the technical details. The fact that we can do calculus without dwelling on
those details is in my view why calculus is so beautifully simple.

In this chapter we will learn about L’'Hopital’s Rule which allows us to use calculus to
resolve limits which are indeterminant. We need to have limits of type 0/0 or co/oc in
order to apply the rule. Often we will need to rewrite the given expression in order to
change it to either type 0/0 or co/oco. We will see that co — 0o, 1%, oc?, 0° can all be
resolved with the help of L’Hopital’s Rule.

L’Hopital’s Rule says that the limit of an indeterminant quotient of functions should be
the same as the limit of of the quotient of the derivatives of those functions. Essentially
the idea is to compare how the numerator changes verses the how the denominator
changes. This can be done at a finite limit point or with limits at +cc.

| will give a proof of the Theorem, but my proof is only for a relative special case.
L’Hopital’s Rule holds in a context more general than the assumptions for my proof. You
should consult a more serious calculus text if you wish to see the details. Ask me if you
are interested. (Thomas’ Calculus is one good source)
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8.1. ’HOPITAL’S RULE

Just a reminder, (look at Section 3.3 for more)
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Example 8.1.1:
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We gave a geometric argument to prove this limit in the discussion leading up to the
derivatives of sine and cosine. Given that the derivatives of sine and cosine require
knowledge of this limit it is not surprising that this limit is trivially reproduced with the
help of the derivative of sine and cosine. I used to think this proved this limit, but it is
circular since we cannot know the derivative of sine is cosine unless we have already
derived this limit. Chicken, Egg, I say the Chicken is the limit.

Example 8.1.2:
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Remark: please notice that the rule says to differentiate the numerator and denominator
separately. There is no such rule as lim f(z) = lim f’(z). Let’s see why the rule holds
true. The following is a proof of a weak form of L’Hopital’s rule. The rule holds even
when [’(a), ¢'(a) do not exist ( they might be holes in the graph of the derivatives). You
can find the complete technically correct proof in a good calculus text (ask me if
interested)
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Example 8.1.3 and Example 8.1.4:

E3

Limm (fa0)) Qi (:i_‘_ ex?l_0 /6
X—-)eo\r_j ‘Z;%) k=00 | 3X* xgi—’:ae( .xﬁ’;oé&‘“-):@

These ideas oo maks serse ’4f coe-sited fimite. hr exam)p&/

L % A d
Xlrm (Xe") = /?lrm ? et ik e
X=sg? X=0t | %

4 rewrite Ha
introd exlpm';mn
+o ol (4 hove

e Airm (&),

il
)
e\
5

x;h
\_/

il
o

&
]
8]

188



Pattern worth noticing:
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Example 8.1.5:( exponential growth verses polynomial growth)
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Example 8.1.6: (logarithmic growth verses polynomial growth)
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Example 8.1.7: ( why is the application of L’Hoptial’s Rule not applicable here?)

I 2

x|

) _— /le /Ti‘ - .Z (%5‘//

X = x—s i\ 1/

WHAT Dip T Do WRoNG 7

Q*i As you ean g2t
\1 L : o From groph
; : ! o
‘ ‘( \ 9'"‘ ("—") d!ﬁ;e.

W=y | \Kl
{

Example 8.1.8: (see Chapter 2 for graphs)
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Example 8.1.9:
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8.2. LIMITS OF INDETERMINANT POWERS
TIrvereaminansr Ruwers
1) lw £ :

=0 ad Im@=0 then Piw &)° s 7Lt7pe <)

2.) bimf =00 and k9= 0 Hun Lm@P is Fype (20)°

3)dimf =1 ond md =2pg e Adom(r)? i Fgpe (1%)
‘E resolve +hese indeterminancier we'll need o employ, o e frick

k ()}%ix) _ <[€(x)]%)} s 96x) (f(x))}

éiddﬁonh—ma,\?c%éc T :A;‘ﬁone/vv"laj 'Fundﬁn is Lon‘hno“f CVe/*th\-W\J

im [ [ %) B} n (F (x im n
XQ_M< (6] / X_M( 3() (¢ )7 " egw(%)ﬂ (f(x)))

We wvse Ahis idea Thiowghod tha next o examples we teplow Ha

Ur\oova problam ﬂIM(Y‘pO‘)]%&)) with e p rob lowm "Nif’\fzr
Q\m (%(x)ﬁn(ao(x))) e whed  hoppens i s

1) 3_';’2 (960 tnlFa)) = be @ = xjfm (o)< falohF), ¢

2.) ?I'm (50@ ﬁn{é{x}))-.—. o0 = bm GC 9697 ﬂw@l«;[}:ew

X—-so, e =0
3) f:m (5(&)}:’»(14{&))) = ~gg dim (91%-}') .
> o A oht)_ go
=, =0
® New oL wark  Yhew e exum / /

1 .
and  gee | it Mutzs Marle fWBM wnd rtead Hhis
w A

( the discussion above and the example below include some commentary by Hannah
circa 2007)

Example 8.2.1:

(Tyre 0°)

i (x*) =

X=q*

&) fim (x@% '
X-0* i

ﬁ ere -/;/e usen 9

191



Example 8.2.2:( this is a homework problem)
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The example above connects the definition of the exponential given in these notes to the
other definition which is given in terms of continued multiplications, the formulas in this
example appear naturally in certain applications about loans or population growth.
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