18. BASICS OF POWER SERIES

The first section in this Chapter defines the basic terminology and characteristics of power
series. In short, a power series is a special kind of function. A power series is a function which is
defined point-wise by a series-formula. When we first discussed functions we asked the
question: “what is the domain of a function given the formula for a function?”. The answer to
that question was a relatively simple, we simply needed to avoid division by zero and square
roots of negative numbers. In the case of power series we can again ask what is the domain?
Well, the domain is the set of all inputs for which the series-formula converges, which is just the
same as saying it is everywhere the formula for the function makes sense. Now, we just have to
work a little harder to get to the root of what constitutes a sensible series. Fortunately a
theorem tells us the domain has to be a single interval (the “IOC”). It turns out that the ratio
test will give the bulk of the domain in most examples but then the endpoints will need
checking via the other various tests from Chapter 17. Don’t be discouraged by the first section,
it has as much to do with the series’ actual application as the domain of functions has to do
with their application. Careful understanding will help solidify other more pragmatic sections,
so stick to it even if you don’t care for the first section.

The second section focuses on examples of power series which are generated by the geometric
series. A theorem reveals that the integral and derivatives of a power series are again power
series. This allows us to twist the geometric series result to cover other functions which are
related through integration or differentiation to the basic geometric series formula. These tricks
cover a fairly wide swath of examples. Of course Taylor’s Theorem in the next Chapter is more
flexible and not nearly as sneaky, but Taylor’s Theorem requires much more work if applied to
the problems we attack in this chapter.



18.1. WHAT IS A POWER SERIES?

A power series is a function which has a rather special formulation. A power series is a function
which is defined point-wise by a series. Let us pin down some terminology:
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An easy source of examples for power series is the geometric series result.
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Comment: Notice that the geometric series convergence condition |r| < 1 tells us what the
domain of the power series is in both of the examples above. Generally power series need not
stem from the geometric series result. For example, later we’ll see that the exponential
function has the power series representation of ¢* =14 2 + %xQ + -..and the domain of the
series is in the whole real line. Many of the interesting examples of power series are generated
via Taylor’s Theorem. We'll talk about that eventually, but for now we will make the most of
the geometric series result. It turns out that these geometric series type calculations are much



easier than the Taylor’s Theorem arguments for the same series. The viewpoint put forth in E1
and E2 will not be supplanted by easier arguments later. Taylor’s Theorem is extremely general
but that generality also comes at a weighty price, you'll have to take arbitrarily many
derivatives to describe the series exactly.
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This Theorem tells us that the domain of a power series cannot be things like (0,1) U (2, 3). We
call the set where the power series converges the Interval of Convergence (I0C). The distance
from the center of the 10C to its edges is called the Radius of Convergence (ROC or R). If we
know the radius and the center of a series then we have a very good idea of what the IOC looks
like. In fact, we need only worry about the endpoints. Their inclusion or exclusion leads to the 4
cases listed in the Theorem.

Example 18.1.3a
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We can see a pattern emerging from the examples.
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Example 18.1.3b
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Example 18.1.4( sometimes we get the endpoints for free)
(3.,:' E*_!ﬂ{x + I -{-An'_r Ve A ;EMMJW;C ferias Lwrrh a=| é r=7 (X-l- f}
H‘ { e utrr.ai.a 11-'.:4' <1 = 1? [X41) |¢f "|_
[X+1 e

Bo= 14 W’—é‘l-ﬂf){"'-'% is #u 1.0 ¢C

’,/l\ Wy 11'1_‘.".

Example 18.1.5( this was a test question from a previous course)
Find the I0C and ROC for the power series defined below.
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18.2. POWER SERIES VIA GEOMETRIC SERIES

Given a function can we find a power series representation for that function? In this section we
will see how to find power series to represent f(x) = %for appropriate identifications of

a and r as functions of z. We use the geometric series result
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(I start the summation at zero because | like to work with 7" as opposed to r"~%, this is
equivalent to the formula Y.~ | ar®~! which also gives a + ar + ar® + - - )

Example 18.2.1
The equation below follows from the geometric series result with a=1 and r=x,
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| have expressed the power series in the “dot-dot-dot” notation and the “sigma” or
“summation” notation. | require you to understand both, but it may be conceptually easier to
tackle the “dot-dot-dot” notation to begin. Then once that’s settled come back and deal with

the sigma notation. | do expect you to master both.

Example 18.2.2
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Example 18.2.3
Find the power series for f(z) = ﬁ. To begin we must make it look like T We need to

factor out the 2 as follows: £ = ﬁ Now we identify that @ = 2 and r = x/2 hence the
geometric series result yields the power series expansion below:
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Or in the summation notation,
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Remark: you can gather that there are many more examples one can glean from the geometric
series result. The Theorem below will extend the reach of the geometric series to all sorts of
new examples. | classify the examples which use the geometric series and the Theorem below

as “geometric series tricks” because they’re tricksy.
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The series in the remark are known as Fourier Series, those are sums of sines and cosines.
Power series are sums of power functions. Power series have pretty nice properties in
comparison to some other types of series. We often cover Fourier series in the differential

equation course at LU.

Example 18.2.4 (geometric series plus tricks)
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Example 18.2.5 (geometric series plus tricks)
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The pattern to Example 18.2.4 and 18.2.5 is the same, differentiate, apply geometric series
result, integrate, fix integration constant, answer. The next example reverses the pattern.

Example 18.2.6 (geometric series plus tricks)
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Example 18.2.7 (geometric series plus tricks)

@ EF'-A-«’ ferier Can .ﬁ.J/fp t‘(e/o r.u.r'é'f': fomg ‘}':fm ﬂ"éﬁ aﬂfﬁ.ﬁh—w

. j Bl dx = Ab)

) = fnito _ SO AN
T et = - Ko XL ) = g o NE
x x( b N Pl T R sy
f-F?x)a’x = fjeco ey X x5
5 T o

I3 /_;n'm dx_ = _C e g
e ]

| SRR ree



Example 18.2.8 (geometric series plus tricks)
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In-Class Exercise 18.2.9 (geometric series tricks summary)

Create a flow-chart that illustrates the two basic patterns we have used for these examples.
Come up with an additional example which requires 3 differentiations before the geometric
series can be applied. Include that case in your flow chart. I'll get the chart started on the white
board.

Remark: we have said precious little about the IOC and ROC in this section. We could still ask
those questions for each and every example: what is the I0C and ROC for Ex. 18.2.1-18.2.8. The
calculus for power series Theorem leaves the ROC untouched, but typically differentiation will
delete endpoints while integration may add endpoints to the IOC. In this course we would have
to analyze the series in a case by case basis. The logic | would use is that the geometric series
result tells us the I0OC modulo the endpoints. To determine the endpoints | would check them
separately. In practice, | rarely ask about the endpoints. The ROC and center of the IOC is much
more important for actual applications.



