
18. BASICS OF POWER SERIES 
 

The first section in this Chapter defines the basic terminology and characteristics of power 

series. In short, a power series is a special kind of function. A power series is a function which is 

defined point-wise by a series-formula. When we first discussed functions we asked the 

question: “what is the domain of a function given the formula for a function?”. The answer to 

that question was a relatively simple, we simply needed to avoid division by zero and square 

roots of negative numbers. In the case of power series we can again ask what is the domain? 

Well, the domain is the set of all inputs for which the series-formula converges, which is just the 

same as saying it is everywhere the formula for the function makes sense. Now, we just have to 

work a little harder to get to the root of what constitutes a sensible series. Fortunately a 

theorem tells us the domain has to be a single interval (the “IOC”). It turns out that the ratio 

test will give the bulk of the domain in most examples but then the endpoints will need 

checking via the other various tests from Chapter 17. Don’t be discouraged by the first section, 

it has as much to do with the series’ actual application as the domain of functions has to do 

with their application. Careful understanding will help solidify other more pragmatic sections, 

so stick to it even if you don’t care for the first section. 

 

The second section focuses on examples of power series which are generated by the geometric 

series. A theorem reveals that the integral and derivatives of a power series are again power 

series. This allows us to twist the geometric series result to cover other functions which are 

related through integration or differentiation to the basic geometric series formula. These tricks 

cover a fairly wide swath of examples. Of course Taylor’s Theorem in the next Chapter is more 

flexible and not nearly as sneaky, but Taylor’s Theorem requires much more work if applied to 

the problems we attack in this chapter. 

 

  



18.1. WHAT IS A POWER SERIES? 
 

A power series is a function which has a rather special formulation.  A power series is a function 

which is defined point-wise by a series. Let us pin down some terminology: 
 

 
 

An easy source of examples for power series is the geometric series result.  

 

Example 18.1.1 
 

 
 

Example 18.1.2 
 

 
 

 

Comment: Notice that the geometric series convergence condition  tells us what the 

domain of the power series is in both of the examples above. Generally power series need not 

stem from the geometric series result. For example, later we’ll see that the exponential 

function has the power series representation of  and the domain of the 

series is in the whole real line. Many of the interesting examples of power series are generated 

via Taylor’s Theorem. We’ll talk about that eventually, but for now we will make the most of 

the geometric series result. It turns out that these geometric series type calculations are much 



easier than the Taylor’s Theorem arguments for the same series. The viewpoint put forth in E1 

and E2 will not be supplanted by easier arguments later. Taylor’s Theorem is extremely general 

but that generality also comes at a weighty price, you’ll have to take arbitrarily many 

derivatives to describe the series exactly. 

 

 
 

This Theorem tells us that the domain of a power series cannot be things like . We 

call the set where the power series converges the Interval of Convergence (IOC). The distance 

from the center of the IOC to its edges is called the Radius of Convergence (ROC or R). If we 

know the radius and the center of a series then we have a very good idea of what the IOC looks 

like. In fact, we need only worry about the endpoints. Their inclusion or exclusion leads to the 4 

cases listed in the Theorem. 
 

Example 18.1.3a 

Let . We begin with the ratio test, 
 

 
We can see a pattern emerging from the examples. 



 
Example 18.1.3b 

 
 

 

 

 

 

 

 



Example 18.1.4( sometimes we get the endpoints for free) 

 
Example 18.1.5( this was a test question from a previous course) 

Find the IOC and ROC for the power series defined below. 

 
 

 

 



18.2. POWER SERIES VIA GEOMETRIC SERIES 
 

Given a function can we find a power series representation for that function? In this section we 

will see how to find power series to represent for appropriate identifications of 

 as functions of . We use the geometric series result 
 

  

 

(I start the summation at zero because I like to work with  as opposed to , this is 

equivalent to the formula  which also gives ) 
 

Example 18.2.1 

The equation below follows from the geometric series result with a=1 and r=x, 

  

I have expressed the power series in the “dot-dot-dot” notation and the “sigma” or 

“summation” notation. I require you to understand both, but it may be conceptually easier to 

tackle the “dot-dot-dot” notation to begin. Then once that’s settled come back and deal with 

the sigma notation. I do expect you to master both. 
 

Example 18.2.2 

Find the power series representation of . Identify that  

 

 
 

This calculation could also be seen as  times the power series for  which is simply

. 

 

Example 18.2.3 

Find the power series for . To begin we must make it look like . We need to 

factor out the 2 as follows: . Now we identify that  and  hence the 

geometric series result yields the power series expansion below: 
 

  

 

Or in the summation notation, 

  



Remark: you can gather that there are many more examples one can glean from the geometric 

series result. The Theorem below will extend the reach of the geometric series to all sorts of 

new examples. I classify the examples which use the geometric series and the Theorem below 

as “geometric series tricks” because they’re tricksy. 

  

 
 

The series in the remark are known as Fourier Series, those are sums of sines and cosines. 

Power series are sums of power functions. Power series have pretty nice properties in 

comparison to some other types of series. We often cover Fourier series in the differential 

equation course at LU. 

 

Example 18.2.4 (geometric series plus tricks) 

 

 
 

 

 
 



Example 18.2.5 (geometric series plus tricks) 

 
 

The pattern to Example 18.2.4 and 18.2.5 is the same, differentiate, apply geometric series 

result, integrate, fix integration constant, answer. The next example reverses the pattern. 
 

Example 18.2.6 (geometric series plus tricks) 
 

 
 

Example 18.2.7 (geometric series plus tricks) 

 
 



Example 18.2.8 (geometric series plus tricks) 
 

 
 
In-Class Exercise 18.2.9 (geometric series tricks summary) 

Create a flow-chart that illustrates the two basic patterns we have used for these examples. 

Come up with an additional example which requires 3 differentiations before the geometric 

series can be applied. Include that case in your flow chart. I’ll get the chart started on the white 

board. 

 
Remark: we have said precious little about the IOC and ROC in this section. We could still ask 

those questions for each and every example: what is the IOC and ROC for Ex. 18.2.1-18.2.8. The 

calculus for power series Theorem leaves the ROC untouched, but typically differentiation will 

delete endpoints while integration may add endpoints to the IOC. In this course we would have 

to analyze the series in a case by case basis. The logic I would use is that the geometric series 

result tells us the IOC modulo the endpoints. To determine the endpoints I would check them 

separately. In practice, I rarely ask about the endpoints. The ROC and center of the IOC is much 

more important for actual applications. 

 

 

 

 

 

 


