19. TAYLOR SERIES AND TECHNIQUES

Taylor polynomials can be generated for a given function through a certain linear combination of its
derivatives. The idea is that we can approximate a function by a polynomial, at least locally. In calculus |
we discussed the tangent line approximation to a function. We found that the linearization of a function
gives a good approximation for points close to the point of tangency. If we calculate second derivatives
we can similarly find a quadratic approximation for the function. Third derivatives go to finding a cubic
approximation about some point. | should emphasize from the outset that a Taylor polynomial is a
polynomial, it will not be able to exactly represent a function which is not a polynomial. In order to
exactly represent an analytic function we’ll need to take infinitely many terms, we’ll need a power
series.

The Taylor series for a function is formed in the same way as a Taylor polynomial. The difference is that
we never stop adding terms, the Taylor series is formed from an infinite sum of a function’s derivatives
evaluated at the series’ center. There is a subtle issue here, is it possible to find a series representation
for a given function? Not always. However, when it is possible we call the function analytic. Many
functions that arise in applications are analytic. Often functions are analytic on subdomains of their
entire domain, we need to find different series representations on opposite sides of a vertical
asymptote. What we learned in the last chapter still holds, there is an interval of convergence, the series
cannot be convergent on some disconnected domain. But, for a given function we could find a Taylor
series for each piece of the domain, ignoring certain pathological math examples.

We calculate the power series representations centered about zero for most of the elementary
functions. From these so-called Maclaurin series we can build many other examples through
substitution and series multiplication.

Sections 19.4 and 19.5 are devoted to illustrating the utility of power series in mathematical calculation.
To summarize, the power series representation allows us to solve the problem as if the function were a
polynomial. Then we can by-pass otherwise intractable trouble-spots. The down-side is we get a series
as the answer typically. But, that’s not too bad since a series gives us a way to find an approximation of
arbitrarily high precision, we just keep as many terms as we need to obtain a the desired precision. We
discussed that in the last chapter, we apply it here to some real world problems.

Section 19.5 seeks to show how physicists think about power series. Often, some physical approximation
is in play so only one or two of the terms in the series are needed to describe physics. For example,

E =mdcis actually just the first term in an infinite power series for the relativistic energy. The
binomial series is particularly important to physics. Finally, | mention a little bit about how the idea of
series appears in modern physics. Much of high energy particle physics is “perturbative”, this means a
series is the only description that is known. In other words, modern physics is inherently approximate
when it comes to many cutting-edge questions.

Remark: these notes are from previous offerings of calculus Il. | have better notes on Taylor’s
Theorem which | prepared for Calculus | of Fall 2010. You should read those in when we get to
the material on Taylor series. My Section 6.5 has a careful proof of Taylor’s Theorem with
Lagrange’s form of the remainder. In addition | have detailed error analysis for several
physically interesting examples which | have inferior treatments of in this chapter.



19.1. TAYLOR POLYNOMIALS

The first two pages of this section provide a derivation of the Taylor polynomials. Once the basic
formulas are established we apply them to a few simple examples at the end of the section.

N=1. Recall the linearization to y = f(z)at (a, f(a))is | L(z) = f(a) + f'(a)(z — a) .|We
found this formula on the basis of three assumptions:

L(z)=mxz+b
f(a) = L(a)
f'(a) = L'(a)

It's easy to see that f'(a) = mand f(a) =ma+b = b= f(a) — f'(a)a hence
L(z) = f'(a)x + f(a) — f'(a)a = f(a) + f'(a)(z — a)as | claimed.

N=2. How can we generalize this to find a quadratic polynomial which approximates y = f(z)
at (a, f(a))? I submit we would like the following conditions to hold:

P(z) = Az + Bx + C

f(a) = P(a)
f'(a) = P'(a)

We can calculate,
f//(a)
(o)

fla)= Pla) = A+ Ba+ O = €= f(a) ~ 3 "(0)a’ ~ ('(a) ~ f"(a)a)a

Plla)=24 = A=_f"()
P'(a) =2Aa+B = B=f'(a) = f"(a)a

The formula for C simplifies a bit; C' = f(a) — f'(a)a + % f”(a)a® Plug back into P(x):

P(r) = 3 (@) + (7(0) = f'(a)a)s + fla) — f'(a)a+ 3 /" (a)a”

= (@) + (@)~ a) + 31" (@) (o ~ 2az +0?)

= () + (@) a) + 5" (a) o~ a)

| anticipated being able to write P(z) = L(z) + - - -, as you can see it worked out.

P(s) = f(a) + (@)~ a) + 3" () — )




N=3. If you think about it a little you can convince yourself that an n-th order polynomial can
be written as a sum of powers of (z — a). For example, an arbitrary cubic ought to have the
form:

Q(z) = As(z —a)® + As(z — a)* + A1(z — a) + A

Realizing this at the outset will greatly simplify the calculation of the third-order
approximation to a function. To find the third order approximation to a function we would like
for the following condtions to hold:

Q(z) = Az(x — a)® + Ay(x — a)® + Ay (2 — a) + Ay
fla) = Q(a)
f'(a) = Q'(a)
f//(a) — Q//<a)
f‘///(a) — Q///( )
The details work out easier with this set-up,

Therefore,

Qz) = fla) + f'(a)(x —a) + %f"(a) (v —a)* + %f”’(a)(ﬂf —a)’.

These approximations are known as Taylor polynomials. Generally, the n-th Taylor polynomial
centered at = = a is found by calculation n-derivatives of the function and evaluating those at
x = a and then you assemble the polynomial according to the rule:

") (g
T,(z) = Z fo)(x —a)".

k=0

You can check that we have:

Ti(x) = f(a) + f'(a)(x — a)

Ty() = f(a) + @)z = @) + 37" (@) o)

Ty(w) = fla) + £/ (@) a) + 3" (@)( = )’ + " (a) (& — a)



Example 19.1.1

Let f(x) = e”. Calculate the the first four Taylor polynomials centered at - = —1. Plot several
and see how they compare with the actual graph of the exponential.
f(r)y=e¢" = f(-1)=¢"
fa)=e = f(-1)=c"
f"($) — e — f”(—l) — 671
f”/<$) — Cx — f”/<_1) — 6_1
Thus,
1
T = -
o(z) o
1 1
Ti(z)=-4+—-(z+1
@) =~ + (o + 1)
1 1 1
To(z) ==+ ~(z+ 1)+ —(x+ 1)
b(x) . + e(T—l— )+ 26(1:+ )
3\ = e e ‘ 2e ! 6e *

The graph below shows y = f(z) as the dotted red graph, y = 71(x) is the blue line,
y = Ty(z) is the green quadratic and y = T3(x) is the purple graph of a cubic. You can see that
the cubic is the best approximation.




Example 19.1.2

Consider f(z) = 1172 4+ 1. Let’s calculate several Taylor polynomials centered at © = 1 and
r = 3. Graph and compare.

ﬂ@—xi2+1:: £(1) =0
() — —1 ! - _
)= ogm = =1
" 2 " i
['0)= g = )=
" —6 " .
f (z):m = f"(1)=-6

We can assemble the first few interesting Taylor polynomials centered at one,
Ti(x) = —(z—1)
To(z) = —(z — 1) + (2 — 1)
Ty(e) = —(@ — 1) + (@ — 1) = (z — 1)

Let’s see how these graphically compare against y = f(x):

y = f(x)is the dotted red graph, y = T}(z)is the blue line, y = T5(z) is the green quadratic
and y = T3(z) is the purple graph of a cubic. The vertical asymptote is gray.
Notice the Taylor polynomials are defined at & = 2 even though the function is not.



Remark: \We could have seen this coming, after all this function is a geometric series,

flx)=1+ ! :1+_71:1—1—(x—l)—(x—l)Q—(:U—l)3+~~

x—2 1—(z—1)

ThelOCfor r =z — 1is |z — 1| < 1. Itis clear that the approximation cannot extend to the
asymptote. We can’t approximate something that is not even defined. On the other hand
perhaps is a bit surprising that we cannot extend the approximation beyond one unit to the left
of z = 1. Remember the 10C is symmetric about the center.

Given the remark we probably can see the Taylor polynomials centered about & = 3 from the
following geometric series,
1

=14+——=1+1+(3— 3—a) 4
5 +1—(3—x) +1+B—2z)+(B—2)" +

We can calculate (relative to a = 3):
Ti(z) =2+ (3—x)
To(z) =2+ (3 —2)+ (3 —1)?
Ty(z)=2+B-2)+(B—-2)>+ (3 —2)°

Let’s graph these and see how they compare to the actual graph. | used the same color-code as
last time,

Again we only get agreement close to the center point. As we go further away the
approximation fails. Any agreement for z outside 2 < x < 4 is coincidental.



Example 19.1.3
Let f(x) = sin(x). Find several Taylor polynomials centered about zero.

f'(z) =cos(z) = [f'(0)=1
f'(@) = —sin(z) = f(0)=0
f"(@) = —cos(z) = ["(0)=-1
f(4)(:£) =sin(zr) = f(4)(0) =0
[Ox) = cos(x) = fO(0) =1
It is clear this pattern continues. Given the above we find:
Ti(z) ==z blue graph
Ts(x) = o — éf green graph
Ts(x) =x — %:1;3 + Elox‘r) purple graph

F

Let’s see how these polynomials mimic the sine function near zero,
31 ¥

The grey-blue graph is y = T:(z). The yellow graph is of y = Ty(x). As we add more terms we
will pick up further cycles of the sine function. We have covered three zeros of the sine function
fairly well via the ninth Taylor polynomial. I’'m curious, how many more terms do we need to
add to get within 0.1 of the zeros for since at +27 ? From basic algebra we know we need at
least a 5-th order polynomial to get 5 zeros. Of course, we can see from what we’ve done so far
that it takes more than that. | have made a homework problem that let’s you explore this
guestion via Mathematica.



19.2. TAYLOR’S THEOREM

Geometric series tricks allowed us to find power series expansions for a few of the known
functions but there are still many elementary functions which we have no series representation
for as of now. Taylor’s Theorem will allow us to generate the power series representation for
many functions through a relatively simple rule. Before we get to that we need to do a few
motivating comments.

Suppose a function f has the following power series representation
fla) =Y ealw = a)"
n=0

We call the constants ¢, the coefficients of the series. We call + = a the center of the series. In
other words, the series above is centered at «.

In-class Exercise 19.2.1: find the eqn. relating the derivatives of the function evaluated at z =«
and the coefficients of the series. [ the answer is ¢, = L (") (a) forall n.> 0]

Definition of Taylor Series
We say that 7T'(z) is the Taylor series for f(z) centered at = = a,

T() = f(a) + £ (@)~ a) + 5 f0) (& — a)’ + 5 (@) — a) + -+

) .(n)a

n!

You should recognize that 7'(z) = lim,,_,», T,,(z) where T}, (z) is the n-th order Taylor
polynomial we defined in the last section.

Comment: Exercise 19.2.1 shows that if a given function has a power series representation then
it has to be the Taylor series for the function.

Remark: One might question, do all functions have a power series representation? It turns out
that in general that need not be the case. It is possible to calculate the Taylor Series at some
point and find that it does not match the actual function near the point. The good news is that
such examples are fairly hard to come by. If a function has a power series expansion on an
interval I C R then the function is said to be analytic on /.| should remind you that if we can
take arbitrarily many continuous derivatives on I C R then the function is said to be smooth or
infinitely differentiable. It is always the case that an analytic function is smooth, however the
converse is not true. There are smooth functions which fail to be analytic at a point. The
following is probably the most famous example of a smooth yet non-analytic function:



Example 19.2.1( example of smooth function which is not analytic )

f<x>={exp(;_2)’ 20 =0 =0

0, x <0

Notice this yields a vanishing Taylor seriesat . = 0; T'(z) = f(0) + f'(0)z +--- = 0.
However, you can easily see that the function is nonzero in any open interval about zero. This
example shows there are functions for which the Taylor series fails to match the function. In
other words, the Taylor series does not converge to the function.

Definition of analytic: A function f is analyticon I C dom(f)iff f(x) = T(x)forall zinan
open interval I. In particular, a function is analytic on [ if

flz)= lEn T, (x)-

Question: “How do we test if f(z) = T'(x)?"

Definition of n-th remainder of Taylor series: The n-th partial sum in the Taylor series is
denoted 7, (this is the n-th order Taylor polynomial for f). We define R,, as follows:

Ro(x) = T,(x) = f(z)

Taylor’s Theorem:

If fisasmooth function with Taylor polynomials 7),(z) such that f(z) = T,,(z) + R.(x)
where the remainders R,(z) have lim,,_,, R, (z) = 0forall xsuchthat |z — a| < R then the
function fisanalyticon I = {z | |z — a| < R }. To reiterate, if the remainder goes to zero on
I then the Taylor Series converges to fforall = € I,

Fla) = £(0) + @) =) + 2 @) = af o= 3 LD gy

n=0

We are still faced with a difficult task, how do we show that the remainder R, (z) goes to zero
for particular examples? Fortunately, the foIIowmg mequahty helps

— - S —

r"'-—-—--—":.a« s
Tﬁm/ﬁ?‘ﬂﬂﬂ ¢ Iveauacry ), If /f””’(&i/"’- m. -ﬁr ix-&j <R
%{m I’tﬂ”mﬂc{&q (?,, (){j cr/ -76{1 Tﬂw.a;? fg,'-',q;g; ir éamﬂafaﬁ ::f'p

/P {w’! n-u)f' %~ Q*;n+l #r [x-a/< R /
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This inequality is easy to apply in the case of sine or cosine.



Example 19.2.3
]E3 ,' B‘f(e ‘)(‘(){)=j‘.f:d () fhf fep.' 533 wyf ’ﬁﬁﬂ/ukh‘n Series Vx}

£'(x) = tosx)

£Y0¢) = -gin G0

00 = -caslo)

-F"Nl?} = sinx
Thas £ =28intx) op teasty 2 || s 1= M
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)

F
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]

Sin(o) + <5 (o) X ~ SgEI X7 Gl Ty oo
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In-class Exercise 19.2.2
Do E3 in the case f(z) = cos(z).

Example 19.2.4 (assuming that the exponential has a power series representation)

Bl f0)=e” thn §i= e f%) =X
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Remark: We would like to show that the power the exponential function is analytic. To do that
we should discuss the other version of Taylor’s Theorem (which is a generalization of the mean
value theorem). Once that is settled, a half-page of inequalities and the squeeze theorem will
show that the remainder for the exponential function goes to zero independent of the
argument. You can earn 3 bonus points if you work out these things in reasonable detail. Ask

me if you are interested, I’ll get you started.

Examples 19.2.5 and 19.2.6
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Example 19.2.7 (multiplying series verses direct-Taylor expanding)

FO) = 0709, Oma way i sin®0) = £ (1= cos 2x)
U.Slmﬁ Ef] with 2ZX in ;Au of X we f:ue;
Cos (2X) = | -.-—'_i-(Zsc}u -q‘:_(zxf‘-— éi]- (zx)‘
Thas subst, this infe ‘\Jliuw*'«l\b shove %ue;
S 0] (e T o 6N AY et
__ 22( [1=2x*s Lex'- B4 x4 )
= 2 M 2 e
X X * q.gx
A swnd methed ibdo midbipl, B ede £ ginon

Sinhy = (X = fx%e gt ) (x- bt dyt )

= X*- & x"% 13 * 4l 'EI‘E"XH"ZE'!FXS“"‘ g
= x*- 2 x" f('é%*(il?) S
= WP -.:%QX" + —";:x‘ o
A Hhicd mebhed i b simply -h;gﬁaf expand,
f (%) = sin?(x) fl) = o

£x) = Zsintees (o £%) = O

£x) = 2feos™tx) - sin’(x)) £0) = 2

00 =Msinpase) - Ysir besto ;) = o

00 = - @ (et - sin7)) ") = -8

: = 7 ) 2
T F0 =TI L B B o Ly

Wh;&"n method 0/9 Y8 0 think ir éeﬁ‘ 4
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Example 19.2.8 and 19.2.9

@ 85"“"" fe) =X around a =Yy : f L f(v) .'= @
£'e) = < ., _;_T% ’ T = _‘;_
. o= )% s '@)‘a*_), 0= S5
£ = GE)(F) %7 = 26 g e = 2

- U < -2 5(3) gy £ 25
Thus we #d
‘fo) "Y —_(_ (x ‘-1')

12 4+ (x) = gk () (e _E_ls S () :,{;K

e

E [FnJﬁérexp.ofF(x x+3x+3x+1 Qf,w;é)(a

and X =-1. Notia Fle)=1 and £(4) 20 and
p £/(x) = 3x*+€x+3 fllo)= 3 £-1) =
') =¢x +6 £f%) = ¢ £ =0
I (x) = ¢ ") = ¢ £'%1) = ¢
N =0 |

rap’,wf. ,_,.,% ‘Z‘ .{'M.{o) X" = ]+ ax* X s _é_xs = X+ %% 3k +/
_Zcfo !

i

o 0 (xst)+ oot f o F )

e

o
={(>(+|).3-;= X2+ x4 3x +| = { )
g

Polynomials provide Taylor series which truncate. There is still something to learn from E9, we
can use derivatives to center the polynomial about any point we wish. Notice the Taylor series
revealed f(z) = (x + 1)°. Algebraically that is clear anyway, but it’s always nice to find a new
angle on algebra.



Example 19.2.10
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Example 19.2.11( note this calculation uses what we already calculated)

7 x 3
= R (F 55 )

IL -Hu'n non-%t.ra\

_Retrns. _fJ
Once we have a few of the basic Maclaurin series established the examples built from them via
substitution are much easier than direct application of Taylor’s Theorem.



19.3 BINOMIAL SERIES
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Examples 19.3.1 through 19.3.3 and the 10C for various k:
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19.4 NUMERICAL APPLICATIONS OF TAYLOR SERIES
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Example 19.4.2
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19.5 CALCULUS APPLICATIONS OF TAYLOR SERIES.
Example 19.5.1( using power series to integrate)
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Example 19.5.2( power series solution to integral)
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Example 19.5.3( what’s not right here?)
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Example 19.5.5(power serles solution to integral)
Approximately calculate fo 175 dx to at least 6 correct decimal places. Notice this integral is

not elementary, however we can fmd a power series solution:
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( the alternating series error estimation Theorem is quite useful for questions like this one, sadly
not all series alternate.)



19.6 PHYSICAL APPLICATIONS OF TAYLOR SERIES

| sometimes cover E1 in calculus | but it needs repeating here. E2 is a discussion of the electric
dipole.
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Example 19.6.3 ( Special Relativity: Einstein’s famous equation)
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Is called the “non-relativistic” case. Much of special relativity amounts to adding a ~-factor to

the classical equations. For example,

= ymuv Relativistic 3-momentum

Force for circular motion of radius R

Generally, the proper stage to discuss special relativity is Minkowski space. In Minkowski space,
time is treated as the fourth dimension. Anyhow, there is much more to say about special
relativity, lot’s of interesting and relatively easy mathematics. You can peruse my ma430 course
notes or ask me for things to read. | hope we will be able to offer a course which covers special

relativity in the physics minor sometime soon.



On the use of series in pertubative modern physics:
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The type of physics | am sketching above generally falls under what it known as field theory.
There are many open problems in field theory, yet we know that the most precise equations
follow from field theoretic models. It’s not crazy to start thinking about field theory as an
undergraduate. | have some good books if you would like to do an independent study. I’d wager
you could teach me a few things.



