Please print this assignment single-sided and write your solutions neatly in the provided white-space (if you write solutions on your own paper and do not print this there is a 30pt penalty). Box your answers for full credit and show work. Use interval notation to express solution set for inequality questions. At least 100pts to earn here. Thanks!

Problem 1: Solve the equations
(a.) $3(x+8)=2 x-7$,
(b.) $3 x+13-x=2(x+5)$,
(c.) $\frac{x}{3}-\frac{x+4}{2}=\frac{1}{7}$.

Problem 2: Find the equation for the line described below:
(a.) the line parallel to $2 x-y=3$ with y-intercept 7 ,
(b.) the line perpendicular to $y=-3 x+1$,
(c.) the line through $(-3,2)$ and $(6,7)$,
(d.) the line perpendicular to $y=4$ through the point $(3,7)$

Problem 3: Find the point on $y=3 x+2$ which is closest to $(4,5)$. Be sure your solution includes a picture to help explain your logic.

Problem 4: Solve $3 x+1<9-x$

Problem 5: Solve $3 x+1<4 x+7 \leq 9-x$

Problem 6: Solve $2|x-3|=20$.

Problem 7: Solve $|3 x+17|<-1$.

Problem 8: For best results, notice the interplay of the following tasks.
(a.) graph $y=|x-2|$,
(b.) solve $|x-2|=1$,
(c.) solve $|x-2|<1$,
(d.) solve $|x-2|>1$.

Problem 9: Solve $|2 x+3|>8$.

Problem 10: Solve the system and write the solution set for:
(a.) $y=3 x-2$ and $y=4-x$.
(b.) $y=3 x-2$ and $y-3 x=1$.
(c.) $x+y=3$ and $x-3=y$.

Problem 11: Graph the lines and check that your graphs are logically consistent with your answers from the previous problem.
(a.) $y=3 x-2$ and $y=4-x$.
(b.) $y=3 x-2$ and $y-3 x=1$.
(c.) $x+y=3$ and $x-3=y$.

Problem 12: Solve the system of equations $x+y=6-z, y-z+1=0$ and $3 z=9$.

Problem 13: Solve the following system of equations.

$$
\begin{gathered}
3 x+4 y+5 z=22 \\
x+2 y-z=6 \\
x-2 y+z=0
\end{gathered}
$$

Problem 14: Solve the following system of equations.

$$
\begin{array}{r}
x+2 y+z=4 \\
3 x+y-z=0 \\
2 x+3 y+z=1
\end{array}
$$

Problem 15: Complete the square and factor over \mathbb{R} if possible, if not possible then write prime
(a.) $x^{2}-10 x+20$
(b.) $x^{2}+3 x-1$
(c.) $x^{2}-16 x+64$

Problem 16: Complete the square and factor over \mathbb{C}
(a.) $x^{2}+4 x-7$
(b.) $2 x^{2}+3 x+4$
(c.) $3 x^{2}+6 x+3$

Problem 17: Factor the quadratic polynomials given below either by direct factoring or completing the square. If the polynomial does not factor over \mathbb{R} then write prime:
(a.) $-x^{2}+12 x-11$
(b.) $x^{2}-6 x+8$
(c.) $6 x^{2}-x-40$
(d.) $x^{2}-11$
(e.) $6 x^{2}-7$
(f.) $6 x^{2}-19 x-7$
(g.) $x^{2}+6 x+13$
(h.) $x^{2}-26 x+169$
(i.) $\frac{1}{2} x^{2}+x$
(j.) $(2 x-3)^{2}-(x+1)^{2}$

Problem 18: Solve the quadratic equations over \mathbb{C} :
(a.) $(2 x+3)^{2}=11$
(b.) $(x+2)^{2}+3=0$
(c.) $11 x^{2}+3 x-2=0$

Problem 19: Graph each parabola. Find the vertex, x-intercepts and sketch the graph:
(a.) $y=-2(x-3)^{2}+5$
(b.) $y=x^{2}+6 x-7$
(c.) $y=2 x^{2}-4 x+2$

Problem 20: A cat is fired from a circus cannon and is observed to follow a trajectory given by

$$
y=2+10 t-5 t^{2}
$$

where t is in seconds and y is in meters. Find the time and height which the cat reaches the top of the flight. Also, if $y=0$ denotes ground level (where there is lava) then at what time does the cat hit the lava?

Problem 21: If Santa's cost of manufacturing fully-automatic BB-guns is given by

$$
C(x)=30(x-4)^{2}+100
$$

where x is the hourly wage of elves in bit-coin and $C(x)$ is in American Dollars, then what is the minimum cost to assemble the BB-guns ?

Problem 22: Use the binomial theorem to expand the polynomials below into standard form:
(a.) $(x-3)^{5}$
(b.) $(2 x+1)^{4}$

Problem 23: Multiply the polynomials to check each assertion. Circle True or False as appropriate:
(a.) TRUE false $x^{2}+4 x+5=(x+1)(x+5)$
(b.) TRUE FALSE $x^{3}+3 x^{2}+3 x+1=(x+1)^{3}$
(c.) TRUE FALSE $x^{2}(x-6)(x+6)=x^{4}-36 x^{2}$
(d.) TRUE FALSE $(a+b+c)\left(a^{2}+b^{2}\right)=a^{3}+a^{2} b+a^{2} c+b^{3}+b^{2} c$
(e.) TRUE FALSE $x^{4}+4 x^{3}-6 x^{2}-36 x-27=(x+3)^{2}\left(x^{2}-2 x-3\right)$

Problem 24: Find real values for B and C for which $x^{2}+B x+C=0$ has the solution
(a.) $x=3$ and $x=-2$
(b.) $x=2-3 i$
(c.) $x=2-\sqrt{3}$ and $x=2+\sqrt{3}$

Problem 25: Factor the following polynomial $f(x)$ completely over \mathbb{R} given that $f(c)=0$ where:
(a.) $c=-3$ and $f(x)=x^{3}-12 x^{2}-79 x-102$
(b.) $c=-2+i \sqrt{3}$ and $f(x)=x^{3}+5 x^{2}+11 x+7$
(c.) $c=1 / 2, c=1 / 3, c=1 / 5$ and $f(x)=30 x^{3}-31 x^{2}+10 x-1$

Problem 26: Solve the following polynomial equations over \mathbb{R} :
(a.) $\left(x^{2}+1\right)\left(x^{2}-9\right)(x+5)=0$
(b.) $x^{4}+3 x^{2}=-2$
(c.) $(x+2)\left(x^{2}-10 x+1\right)=0$
(d.) $x\left(x^{2}+3 x-4\right)=8\left(4-3 x-x^{2}\right)$
(e.) $16 x^{4}=81$
(f.) $x^{3}=8$

Problem 27: Factor the following polynomials completely over \mathbb{R}
(a.) $27 x^{3}+125$
(b.) $\left(x^{2}-13 x+42\right)^{2}$
(c.) $x^{7}-100 x^{3}$
(d.) $x^{4}+2 x^{2}+1$
(e.) $x^{5}-4 x^{3}-5 x$
(f.) $\left(x^{2}+4 x+5\right)\left(x^{2}+4 x-5\right)$
(g.) $\left(x^{2}+6 x+1\right)\left(x^{2}-25\right)$

Problem 28: Solve the following inequalities:
(a.) $x^{2}<2 x+3$
(b.) $(x+4)\left(x^{2}-9\right) \geq 0$
(c.) $x^{5}-81 x>0$
(d.) $(x-1)(x-2)(x-3)(x-4)<0$

Problem 29: Sketch the graph of each equation below and decide whether the curve is a circle, ellipse or a hyperbola:
(a.) $(x+2)^{2}+(y-3)^{2}=16$
(b.) $9 x^{2}+4 y^{2}=36$
(c.) $(x-3)^{2}-(y-1)^{2}=1$

Problem 30: Solve $x^{2}+y^{2}=7$ and $x^{2}-y^{2}=1$. Does your answer make sense graphically ?

Problem 31: Complete the square for both x and y and decide whether the given equation describes a circle, ellipse, hyperbola, point or nothing:
(a.) $x^{2}+2 x-y^{2}+4 y=0$
(b.) $x^{2}-2 x+y^{2}-4 y+10=0$
(c.) $x^{2}-3 x+y^{2}+8 y=0$
(d.) $2 x^{2}+4 x+9 y^{2}-18 y=0$

Problem 32: Solve $x^{2}+y^{2}=4$ and $x+y=2$. Does your answer make sense graphically ?

