NAME(1PT)

MATH 121 MISSION 2: RATIONAL ALGEBRA & FUNCTIONS

Please print this assignment single-sided and write your solutions neatly in the provided white-space (if you write solutions on your own paper and do not print this there is a 30pt penalty). Box your answers for full credit and show work. Use interval notation to express solution set for inequality questions. At least 100pts to earn here. Thanks!

Problem 33: Add, subtract, multiply or divide and simplify the expression into lowest terms:

(a.)
$$\frac{x}{3} + \frac{x-1}{2} + 3$$

(b.)
$$\frac{3}{x} - \frac{x+1}{x^2}$$

(c.)
$$\frac{x}{x+3} - \frac{x+1}{x+2}$$

(d.)
$$\frac{x^2-1}{x+3} \cdot \frac{x^2-9}{x^2+2x+1}$$

(e.)
$$\frac{1+\frac{1}{x+1}}{2+\frac{1}{x+1}}$$

(f.)
$$\frac{x}{x+3} - \frac{3x}{x^2+6x+9}$$

(g.)
$$(x^2 + 3x + 2)\left(\frac{1}{x+1} - \frac{1}{x+2}\right)$$

Problem 34: Solve $\frac{x}{x-3} = 4$.

Problem 35: Solve $\frac{x+2}{x+3} = \frac{4}{x}$.

Problem 36: Solve $\frac{4}{x} - \frac{3}{x^2} = 1$.

Problem 37: Solve $\frac{x-11}{x+3} \le 2$.

Problem 38: Solve
$$\frac{(x+3)(x-4)}{(x-2)(x-6)} \ge 0.$$

Problem 39: Solve
$$\frac{(x+3)^2(x+1)}{(x^2-9)x^3} \le 0.$$

Problem 40: Solve
$$\frac{x^2 + 4x + 5}{x^2 - 13x + 42} \ge 0.$$

Problem 41: Solve $\frac{x}{x+3} \ge \frac{2}{x+2}$.

Problem 42: Given x, y > 0, find values of C, A and B for which:

(a.)
$$Cx^A y^B = \frac{\sqrt{25xy^3}}{\sqrt[3]{8x^2y^5}}$$

(**b.**)
$$Cx^A y^B = \frac{39x\sqrt{y}}{13x^2\sqrt[3]{y}}$$

(c.)
$$Cx^{A}y^{B} = \frac{1}{x} \cdot (x^{2}\sqrt{y}) \cdot \frac{y^{3/2}}{x}$$

Problem 43: Solve $x + \sqrt{x-3} = 5$

Problem 44: Solve $\sqrt{x+1} + \sqrt{x-4} = 5$

Problem 45: Solve
$$\frac{\sqrt{x+2}}{\sqrt{4x+1}} = \frac{2}{3}$$

Problem 46: Solve $x = \sqrt[3]{3x^2 - 2x}$

Problem 47: Solve $\frac{x}{\sqrt[3]{x}} = \pi$ (leave answer in terms of π)

Problem 48: Solve $\frac{1}{x} - \frac{3}{\sqrt{x}} + 2 = 0$

Problem 49: For each formula, sketch the graph of y = f(x) and find the domain and range:

(a.)
$$f(x) = \sqrt{3-x}$$

(b.)
$$f(x) = \frac{1}{x-2}$$

(c.)
$$f(x) = 1 + \frac{1}{x^2}$$

(d.)
$$f(x) = 3 + 2(x-2)^2$$

(e.)
$$f(x) = \sqrt[3]{x-1}$$

(f.)
$$f(x) = 2 - |x - 3|$$

Problem 50: Let $f(x) = \begin{cases} x^2 + 3 & \text{if } x < 1 \\ x^3 & \text{if } x \ge 1 \end{cases}$. Graph y = f(x) and evaluate f(2) and f(0). What is the range of f?

Problem 51: Rewrite the formula for $f(x) = \frac{x-1}{\sqrt{(x-1)^2}}$ as a casewise-defined function. Also, find the domain and range of the function.

Problem 52: Determine if the equations below define y as a single function of x by solving the equations below for y:

(a.) $x^2 + (y-1)^2 = 4$

(b.)
$$y^3 + 2x^2 - 1 = 0$$

(c.)
$$\frac{3x-y}{2y-x} = 1$$

Problem 53: Equations are generally much more exotic than we can reasonably test in-class in Math 121. Let's use computer graphing system to explore a bit. For each formula below, sketch the graph you see in Desmos and determine if the equation defines a function in view of the vertical line test:

(a.)
$$2x^2 + xy + 2y^2 = 7$$

(b.)
$$(x^2 + y^2 - 9)(x^8 - y^4) = 0$$

Problem 54: Determine the domain of the functions given below:

(a.)
$$f(x) = \frac{1}{\sqrt{x^2 + 6x + 20}}$$

(b.)
$$f(x) = \sqrt{9 - x^2}$$

Problem 55: Suppose f and g are functions for which f(1) = 13 and g(1) = 3 whereas f(-2) = 7 and g(13) = 8. Given this data, calculate the following:

(a.) (gf)(1)
(b.) (f + g)(1)
(c.) (3f)(-2)
(d.) (g ∘ f)(1)

Problem 56: Suppose f(x) = 3x + 1 and $g(x) = 1 + \frac{1}{x^2}$. Find the (unsimplified) formulas for:

(a.) (fg)(x)

(b.)
$$(f-g)(x)$$

(c.) $(f \circ g)(x)$

(d.) $(g \circ f)(x)$

Problem 57: Solve $K = \frac{1}{2}mv^2$ for v.

Problem 58: Suppose $U = \frac{-Gm_1m_2}{R+h}$. Solve for h.

Problem 59: Let $f(x) = 5x^5 + 4x^4 + 3x^3 + 2x^2 + 1$ and $g(x) = x^3 + 2x - 3$. Use polynomial long division to find p(x) and r(x) for which $\frac{f(x)}{g(x)} = p(x) + \frac{r(x)}{g(x)}$ where $\deg(r(x)) < \deg(g(x))$:

Problem 60: Let $f(x) = x^4 - 10x^3 + 35x^2 - 50x + 24$. Factor f(x) completely over \mathbb{R} . Thou shall begin by dividing f(x) by $x^2 - 3x + 2$ via polynomial long division.

Problem 61: Let $f(x) = x^5 - 4x^4 + 5x^3 - 8x^2 + 32x - 40$. Factor f(x) completely over \mathbb{R} . Hint: f(2+i) = 0 so you know a particular quadratic polynomial factors f(x).

Problem 62: Let $f(x) = x^4 - 6x^3 + 14x^2 - 21x + 35$.

- (a) Use long-division to divide f(x) by $g(x) = x^2 6x + 10$, is g(x) a factor of f(x)?
- (b) Calculate the value of f(3+i)

Problem 63: Find the formula for the real polynomial f(x) of least degree which has f(2i) = 0, f(-3) = 0 and f(1) = 40.

Problem 64: Find the formula for the real polynomial f(x) of least degree which has a factor (x + 2) with multiplicity 3 and f(-1) = 0 given that f(3) = 200.

Problem 65: Given f(0) = 32, find the polynomial f(x) of least degree with the graph below:

Problem 66: Consider $f(x) = x^4 + x^3 - 13x^2 - x + 12$. Evaluate f(1) and f(-1) and factor f(x) completely over \mathbb{R} .

Problem 67: Sketch the graph of $y = (2x - 20)(2x - 1)(x + 4)^2(x - 5)^2$.

Problem 68: Consider $f(x) = \frac{x-2}{x+3}$. Sketch the graph y = f(x) and label any x-intercepts, vertical asymptotes, horizontal asymptotes, and any holes in the graph.

Problem 69: Consider $f(x) = \frac{x}{x^2 - 9}$. Sketch the graph y = f(x) and label any x-intercepts, vertical asymptotes, horizontal asymptotes, and any holes in the graph.

Problem 70: Consider $f(x) = \frac{x+4}{x^2-16}$. Sketch the graph y = f(x) and label any x-intercepts, vertical asymptotes, horizontal asymptotes, and any holes in the graph.

Problem 71: Consider $f(x) = \frac{x^2 - 6x + 9}{2x^2 - 3x - 9}$. Sketch the graph y = f(x) and label any *x*-intercepts, vertical asymptotes, horizontal asymptotes, and any holes in the graph.

Problem 72: Consider $f(x) = \frac{12}{x+4} - \frac{3}{x-3} - 2$. Sketch the graph y = f(x) and label any x-intercepts, vertical asymptotes, horizontal asymptotes, and any holes in the graph.