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Complex Numbers

o Complex numbers z = z 4 iy and w = a + ib multiply subject the usual laws
of algebra paired with the unusual identity 2 = —1,

zw = (a+ib)(x + 1y) = ax — by + i(ay + bx).

We define complex conjugation by = + iy = = — iy. Also, the length of

x + iy is denoted |x + iy| and since 2Z = 22 + 32 we see that |z| = V2Z. It
is a simple exercise to verify that Zw = Z W and hence |zw| = |z||w|. In
words, the length of the product of complex numbers is simply the product of
their lengths.

o Let 6 € R and define the imaginary exponential denoted ¢* by:

e = cos@ + isinb.

For z # 0, if z = |2|e? then we say |z|e? is a polar form of z. Given

2 = |z]e? and w = |w|e’” their product is given by zw = |z||w|e’(*+F).
Complex multiplication can be understood in terms of rotations and dilations.
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Complex Functions and Multivalued Functions

The

The

following are single-valued assignments from C to C, that is functions
principal argument of z # 0 is Arg(z) € (—m, 7] where

z = |zlexp (iArg(z)).

principal n-th root of z # 0 is {/z = {/|z[e!Am9(=)/n,

complex exponential of z = x + iy is exp(z) = e%e™¥ = e cosy + ie® siny
principal logarithm of z # 0 is Log(z) = In|z| + iArg(z)

complex power function for z € C~, 2¢ = exp(cLog(z))

trigonometric functions cos z = 3 (¢’* + e %*) and sinz = L (e'* — e %)
hyperbolic functions cosh z = 3(e* + e %) and sinh z = (e — e?)
following are multiply-valued maps,

n-th roots of z # 0 are 21/ = /|z[e" A9/ "1, w, w2, ... w1} where
wy, = exp(2mi/n) is the principal n-th root of unity.

arguments of z # 0 are arg(z) = Arg(z) + 27Z
logarithms of z # 0 are log(z) = Log(z) + 2miZ
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Polynomials and Complex Algebra

o A polynomial of degree n over C is given by p(2) = a, 2™ + -+ a1z + ag
where a,, # 0 and a,, ..., a9 € C are coefficients of p(z) . We say C[z] is
the set of all complex polynomials. The Fundamental Theorem of Algebra
states that every non-constant polynomial over C has a zero. It follows that
every non-constant polynomial over C can be factored into a product of
linear factors, possibly repeated.

e Example: consider p(z) = 2* + 164. Notice 2% + 16i = 0 yields z* = —16i.
Observe —16i = 16exp(—in/2) gives v/—161 = 2exp(—ir/8) and as
wy = exp(2mi/4) = cosm/2 + isin(mw/2) = i we find
z € (—16i)* = 2eap(—im/8){1,i,i? i%}. Thus,

p(z) — (Z _ 26—1’77/8)(2 _ 263i7r/8)(z _ 2€7i7r/8)(z o 261””/8).

° (_1)1/5 _ {eirr/57 637\'1'/57 657ri/5’ €77Ti/5, 8971'1'/5}
(71)1/5 _ {eifr/S7 6371'1'/57 -1, 6737”'/5,67772'/5}.

@ Go to the roots of these calculations! Group the operations. Classify them
according to their complexities rather than their appearances! This, | believe,
is the mission of future mathematicians. This is the road on which | am
embarking in this work.
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Differential Calculus on C
o If lim 1) = /(%)

2=z, Z— Zy

exists then we say f is complex differentiable at z,

and we denote f'(z,) = lim M

2—20 Z— Zy

@ Rules of Calculus over C are not suprising:

d df d, . 4 d df duw
=\ r9) = derd w9 VW)=
d ny\ __ n—1 el _ i z _ .z i 1

%(z ) =nz""", 5, sinz =cosz, ——ef =¢, dZLog( z) =

@ Four viewpoints to analyze differentiability; the difference quotient,
Caratheodory criterion, Cauchy Riemann Eqns, and the Wirtinger Calculus.

» If f=wu+iv has Ou = dyv and 9,v = —Jyu (CR-eqns)

» Let 0.f = 2(0-f —i0yf) and Dz f = 3 (0o f +i0yf). Then O:f =0'is
CR-eqns and for such a function f'(z) = 9. f.
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Contrasting Holomorphic and Analytic Functions

e We say f € O(U) which is to say f is holomorphic on U if f is complex
differentiable on the domain U.

» Example: C™ is the slit-complex plane, it is the complex plane with the origin
and negative real axis deleted. It is crucial to delete these points from the
domain of Log(z) if we wish for the identity - Log(z) = L to hold true. Note
Log(z) € O(C™) however Log(z) ¢ O(C) for reasons we will soon appreciate.

e A function f(z) is analytic on Dg(z,) = {z € C | |z — z,| < R} if there
exist coefficients aj, € C such that f(z) = Y2, ar(z — 2o)" for all
z € Dr(z,). A function is said to be entire if it is analytic on C

» Example: sine, cosine, cosh, sinh, the exponential, polynomials and products
thereof are all entire functions. The power series you learn in Calculus Il
equally well apply here. For example,

. o oo (=)™ _2n+1 — o 1. n
sinz =307 marmi? & expz=> " =z

@ Suppose f(z) is analytic at z,, with power series expansion centered at z,;
f(z) =372 an(z — 2,)F. The radius of convergence of the power series is
the largest number R such that f(z) extends to be holomorphic on the disk
{z€C||z—z| <R}
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Integral Calculus on C

e Given a path v : [a,b] — C and complex function f = u + iv we define

/f dz—/f ‘hdt.

Or, as a complex combination of real line-integrals:

/f(z)dz:/udm—vdy+i/udy+vd:c.
2l gl gl

o Let v :[0,2m] — C be the unit-circle 7(t) = ¢"*. Calculate [ 22 Note, if
z = e then dz = ie'*dt hence:

d 27 - ztdt 27
/_Z:/ e :i/ dt = 2ri.
~ z 0 et 0

o Similarly, we can show [ (z — z)"dz = 27id,, _1 where C'is the
CCW-oriented circle |z — zp| = R. (see next slide)
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Sample Calculation of Complex Integral

Let z = z, + Re® for 0 < t < 27 parametrize |z — z,| = R. Note dz = iRe‘dt
hence

2m
/ (z— 2,)"dz = / (Re™)™iRe™ dt
|z—z0|=R 0
2
— 7:f{m+1/' ei(m—i—l)t dt
0
2m
= iRr™H! / (cos[(m + 1)t] + isin[(m + 1)t])dt.
0

The integral of any integer multiple of periods of trigonometric functions is trivial.
However, in the case m = —1 the calculation reduces to

N 2,) tdz = ifo%r cos(0)dt = 2mi
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Complex FTC II:

Suppose F’ = f and «: [t1,t2] — C is a path from A to B in a domain D. recall

the complex derivative can be cast as a partial derivative with respect to x or y in

the following sense: 2£ = 9L — ;oL

dz G oy’

/f dz—/—dz—/—d —|—z/ﬂdy
5 dz
/—d —|—z/—i(z—5dy
OF oF
—l(%d )

B OF dr OF dy\ dvy
—/m (Grar ) a®

= [ Gireona
= F(y(t2)) = F(v(t))
— F(B) - F(A).
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Complex Integral Theorems:

o (FTC ) Let D be star-shaped and let f(z) be holomorphic on D. Then f(z)
has a primitive on D and the primitive is unique up to an additive constant.
A primitive for f(z) is given by

F(z) = /A CH(Q)de

where A is a star-center of D and the integral is taken along some path in D
from A to z.

@ The following are equivalent:
» If f(z) is holomorphic and continuously differentiable on D and C; and C are
two coterminal paths in D then [, f(z)dz = [, f(2)dz.

> If Cis a simple closed curve whose interior is within D then [, f(z)dz = 0.

> If Cipn and Coyy are two CCW oriented loops which bound an annulus where f
is continuously differentiable and holomorphic then

fCin f(2)dz = [ f(z)dz.
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Cauchy’s Theorem:

If f(2) is holomorphic and continuously differentiable on D and extends
continuously to 9D then / f(z)dz = 0. Here 9D is the oriented boundary of

oD
D where inner boundaries are oriented CW whereas outer boundaries are oriented
ccwt

Proof: If f € O(U) then the Cauchy Riemann equations give 9, f = i0, f. Apply
Green's Theorem,

F(2)dz = /aD fdotifdy — /D(ax(if)—ayf)dA - /D(z'axf—ayf)dA — 00

oD

LCW means clockwise and CCW means counterclockwise. If you imagine yourself a tiny
person walking the boundary then if you walk in the positively oriented direction then the interior
of the space will be on your left. Or you could imagine D as being huge and yourself as a giant,
still, the interior is on the left if you walk the positively oriented boundary.
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Example illustrating Cauchy’s Theorem

d d d d
/ < Z,—}- _Z>:/ (d[log(z+i)]+ _Z>:/ _Z,:2m'
ve(@) \FF1 Z—1 veld) z— ye(i) 2 T

is a slick notation to indicate the use of an appropriate branch of log(z +4). In
particular, Log_, »(2 + ) is appropriate for e < 1.

iy
Ye(i)

g
(. )

Ye(—t)
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Cauchy’s (Generalized) Integral Formula

e Cauchy’s Integral Formula (m = 0): let D be a bounded domain with
piecewise smooth boundary D. If f(z) is holomorphic with continuous f’(2)
on D and f(z), f'(z) extend continuously to 9D then for each z € D,

[ S

21t Jop w— 2

f(z) =

@ We can formally derive the higher-order formulae by differentiation:

Py L fw) ,o 1 /8 i[f(“’)]dw—l/a S

T omidz Jopw—2z 2 Jopdz |w—z C2mi Jop (w—2)?

Differentiate once more,

F(z) = d/aDdefi/ d {M dwo 2 f(w)_

T 2ridz (w—2)? T 2mi Jop dz | (w— 2)? | 2w Jop (w— 2)

continuing, we would arrive at:

e =g [ A

27 Jop (w— 2

which is known as Cauchy’s generalized integral formula.
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Example of Cauchy’s (Generalized) Integral Formula

 £(m)
@ For reference, / f(z) dy — 2mif (Zo)
oD (Z - Za>m+1 m!

o Let the integral below be taken over the CCW-oriented curve |z| = 1:

sin(2z) 2mi d® .
B G o= a2

2m .
= m (—32 COS(ZZ))

—8mi cosh(2)
15 '
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Extended Taylor's Theorem

Suppose f(z) is holomorphic for |z — z,| < p. Then f(z) is represented by the
power series

o0
f(Z)ZZak(Z—zo)k, |Z_Zo| <p,
k=0
where for £ > 0,

F®(z0)

aj = k! ;

(standard result from Calc. Il)

and where the power series has radius of convergence R > p. For any fixed r,
0 <r < p, we have

I fw)
A

= — — = dw, k> 0.
T o oz (w— Zo)k+1 w, =

(the red part is not available outside of complex analysis)
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Proof of Extended Taylor's Theorem

Proof: assume f(z) is as stated in the theorem. Let z € C such that |z] <r < p.
Suppose |w| = r then by the geometric series

Jw) _ f(;u)l_lz/w B f(;@;)( )" Zf -

Moreover, we are given the convergence of the above series is uniform for |w| = r.
This allows us to expand Cauchy’s Integral formula into the integral of a series of
holomorphic functions which converges uniformly. It follows we are free to
exchange the order of the integration and the infinite summation in what follows:
1 w
flz)=— f(w) dw

270 )= W — 2

1 > 2k
= — f(w)) dw
ful=r <ko whH
\

2mi
= 3 n f(w) dw) 2.
kZ:o <27m' /|w —

k+1
rer
ar
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Laurent Series

The previous slide concerned a function which was defined at the point of
expansion, what is fascinating is there are expansions where despite the function
not being defined at the center, we still obtain a Laurent Series representing the
function on an annulus about such an isolated singular point.

Laurent Series Decomposition: Suppose 0 < p < 0 < 0o, and suppose f(z) is
analytic for p < |z — z,| < 0. Then f(z) can be decomposed as a Laurent series

o

f(z) = Z an(z — 20)"

n=—oo

where the coefficients a,, are given by:

L/ f(2)
In = 5 ———d
an o7 PN (Z . Zo)n+l z

for r > 0 with p < r < 0.
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Definition of Singularities
@ A function f has an isolated singularity at z, if there exists r > 0 such that
f is analytic on the punctured disk 0 < |z — z,| < 7.

@ Suppose f has an isolated singularity at z,,

')

> If f(2) = Zak(z — 2,)" then z, is a removable singularity,
k=0
» Let NeN. If f(z) = Z ar(z — 20)" with a_n # 0 then 2, is a pole of
k=—N
order N,
> If f(2) = Z ar(z — zo)" where ay # 0 for infinitely many k < 0 then z, is
k=—o0

an essential singularity.
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Behavior of Singularities

@ Riemann’s Theorem on Removable Singularities: let z, be an isolated
singularity of f(z). If f(2) is bounded near z, then f(z) has a removable
singularity.

o Let z, be an isolated singularity of f. Then z, is a pole of f of order N >1
iff | f(2)] = 0o as z = z,.

o Casorati-Weierstrauss Theorem: Let z, be an essential isolated singularity
of f(z). Then for every complex number w,, there is a sequence z,, — z,
such that f(z,) — w, as n — oo.
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Pole of Order N

@ Suppose f has a pole of order N at z,. If

F() = oy et e k(e )t

zZ— 2

then P(z) = % NS Za__lz is the principal part of f(z) about

Zo,. When N =1 then z, is called a simple pole, when N = 2 then z, is
called a double pole.

@ Let z, be an isolated singularity of f. Then z, is a pole of f of order IV iff
f(z) = g(2)/(z — z,)N where g is analytic at z, with g(z,) # 0.
eZ
(z—1)%
function f has a pole of order N =5 at 2z, = 1.

o Example: Consider f(z) = Notice e* is analytic on C thus the

@ Let z, be an isolated singularity of f. Then z, is a pole of f of order NV iff
1/f is analytic at z, with a zero of order N.
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Residue Definition and Calculation

@ Suppose f(z) has an isolated singularity z, and Laurent series

oo

f(z) = Z an(z = 2,)"

n=-—oo

for 0 < |z — 25| < p then we define the residue of f at z, by

Res[f(2),20] = a—1.

o Example Calculation:

142 1 1 1 2

f(z):z4—323+3z2—z:_;+2—1_(2_1)2+(Z_1)3

By inspection of the above partial fractal decomposition we find:

Res[f(z),0] = —1 & Res[f(z),1] = 1.
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Cauchy’s Residue Theorem

Let D be a bounded domain in the complex plane with a piecewise smooth

boundary 0D. Suppose that f is analytic on D U 9D, except for a finite number
of isolated singularities z1,..., 2, in D. Then

(2)dz = 27riz Res [f(2), ;] .

aD =

Proof: We simply partition D into m simply connected regions such that each
one contains just one singular point. The net-integration only gives the boundary
as the cross-cuts cancel. The picture below easily generalizes for m > 3.
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Rules for Residues

@ Rule 1:

@ Rule 2:

@ Rule 3:

@ Rule 4:

if f(2) has a simple pole at z,, then

Res[f(2),20] = lim (2 — 2,) f(2).

Z— 20

if f(z) has a double pole at z,, then

Res[f(z), 2] = lim 4 [(z = 20)%f(2)] -

z—2zo dZ
If f,9 € O(z,), and if g has a simple zero at z,, then

LC Y (£5
9(2)""° '

Res [

if g(z) has a simple pole at z,, then

Res [
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Contour Integral Example
Consider f(z) = 24—::_1 has singularities {e'™/4,ie?™/* —ei™/% —jei™/4} Only two
of these fall in the upper-half plane. Thus,

L 4 im /4
lim ) = 27iRes "™/ + 27iRes Liel ™4
R—o0 _RT + 1 Z4 +
_ 211 21
423 ein/4 423 jein/4
271 2711

= Jein/i T 43 sin/a

—T -7

S S PR e S I D Y P 2y B
= Qpidn/a {z—i— z‘3] = Qpidn/a [-i= 9gidn/4 V2e R

*6”‘-/4 *2‘6”'-/[4
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Trigonometric Integral Example
If z=¢€" = cos@ +isinf then z = e~ = cosf — i sin f hence
1

cosf =1 (e +e7) and sinf = - (e — e7"). Of course, we've known these
from earlier in the course. But, we also can see these as:

0059:1(z+1> & sin9:1,<z—1)
2 z 21 z

moreover, dz = ie¢?df hence df = dz/iz for the unit-circle.
Notice 222 + 5iz — 2 = (22 +14)(2 + 2i) = 2(2 +4/2) (2 + 2i) is zero for z, = —i/2
or z1 = —2i. Only 2, falls inside |z| = 1 therefore, by Cauchy’s Residue Theorem,

/2“ do _/ dz
o S+4sing  J ;222 +5iz -2

1

— /2

222 4 biz — 2 Z/}
1

4z + 5t ami)2
2 2w

—2i+5 3

= 27i Res [

= (2mi)
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Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 26 /36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 27/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 28/36



Story Time

James S. Cook (Liberty Universi Intensive in Complex Analysis February 10, 2025 29/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 30/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 31/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 32/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 33/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 35/36



Story Time

James S. Cook (Liberty University) Intensive in Complex Analysis February 10, 2025 36 /36



