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i

purpose and origins

Much of what I say stems from an in-depth study I made of Gamelin’s Complex Analysis [G01]
in a previous offering of Math 331 at Liberty in 2014-2015. The You Tube videos on Complex
Analysis by me in 2015 are tied to that study as are the notes I entitled Guide to Gamelin. In
those notes I cover is the basic core of undergraduate complex analysis. However, I am now trying
to diverge from Gamelin a bit and bring in ideas from other texts such as the excellent text by Saff
and Snider, or the text by Matthews and Howell, or Fischer, or Stewart and Tall. These notes will
likely reflect reading I’ve done in all those texts.

My understanding of these topics began with a study of the classic text of Churchill as I took
Math 513 at NCSU a few years ago. My advisor Dr. R.O. Fulp taught the course and added much
analysis which was not contained in Churchill. I also have learned a great amount from Reinhold
Remmert’s Complex Function Theory [R91]. The history and insight of that book will bring me to
say a few dozen things this semester, it’s a joy to read, but, it’s not a first text in complex analysis
so I have not required you obtain a copy. There are about a half-dozen other books I consult for
various issues and I will comment on those as we use them.

I’ve also taught worked through more proofs in calculus I and II which impact this course. I’ve
taken some time to transcribe certain proofs from the real to the complex domain. On the one
hand, there ought not be a need since we should have seen these proofs in the real calculus course.
But, on the other hand, there is a good chance your calculus course didn’t present or test such
proof, so the argument may well be new to much of the audience for this course.

Remark: many of the quotes given in this text are from [R91] or [N91] where the original source is
cited. I decided to simply cite those volumes rather than add the original literature to the bibliog-
raphy for several reasons. First, I hope it prompts some of you to read the literature of Remmert.
Second, the original documents are hard to find in most libraries. I also obtained a copy of Jeremy
Gray’s The Real and the Complex: A History of Analysis in the 19th Century. I hope to find time
to read some of Gray, I know it would add considerable depth to my current understanding of 19th
century math history.

For your second read through complex analysis I recommend [R91] and [RR91] or [F09] for the
student of pure mathematics. For those with an applied bent, I recommend [A03].

The later chapters of these notes are a first step towards a book I wish to write on A-Calculus.
The non-standard material is largely adapted from several papers I have written on A-Calculus
in recent years. I once tried to start Math 331 with the A-calculus, but it’s a bit much for even
overly prepared students. Therefore, I’ve decided to wait until the end of the course to just give
a glimpse into the wild world of hypercomplex analysis. To give a quick snapshot of where my
current development has reached, I’ve basically worked through Calculus I, II, III and much of
DEqns over a finite dimensional unital associative algebra. Also, more recently, I’ve worked some
on understanding when it is possible to exchange a system of PDEs for a DEqn over the algebra.
Anyway, there is much more to learn and lots of open projects for students who wish to research
something which is similar to required course work, yet far from something you can just look-up
online. Finally, in terms of complex analysis, the project of A-calculus gives much insight as it
shows what aspects of complex analysis are truly special as compared to those features which are
common to the general calculus over an associative algebra.
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format of this guide

These notes were prepared with LATEX. I tend to use green for definitions, blue for theorems, red
for remarks and black for just about everything else. This is a work in progress, my apologies for
mistakes, just email me if one is troubling. I am here to help,

James Cook, August 19, 2023 version 1.0
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Notations:

Some of the notations below are from Gamelin, however, others are from [R91] and elsewhere.

Symbol terminology Definition in Guide

C complex numbers [1.1.1]
Re(z) real part of z [1.1.1]
Im(z) imaginary part of z [1.1.1]
z complex conjugate of z [1.1.3]
|z| modulus or length of z [1.1.3]
C× nonzero complex numbers [1.1.6]
C[z] polynomials in z with coefficients in C [1.1.8]
R[z] polynomials in z with coefficients in R
Arg(z) principle argument of z [1.3.1]
arg(z) set of arguments of z [1.3.1]
eiθ imaginary exponential [1.3.4]
|z|eiθ polar form of z [1.3.4]
ω primitive root of unity [1.3.12]
C∗ extended complex plane [??]
C− slit plane C− (−∞, 0] [??]
C+ slit plane C− [0,∞) [??]
f |U restriction of f to U [2.0.1]
n
√
z n-th principal root [2.6.1]

Argα α-argument of [1.3.1]
ez complex exponential [2.2.1]
Log(z) principal logarithm [2.3.1]
log(z) set of logarithms [2.3.2]
zα set of complex powers [2.4.1]
sin(z), cos(z) complex sine and cosine [2.5.1]
sinh(z), cosh(z) complex hyperbolic functions [2.5.2]
tan(z) complex tangent [2.5.3]
tanh(z) complex hyperbolic tangent [2.5.3]
lim
n→∞

an limit as n → ∞ [3.2.1]

lim
z→zo

f(z) limit as z → zo [3.2.14]

C0(U) continuous functions on U [3.2.16]
Dε(zo) open disk radius ε centered at zo [3.1.1]
∂S boundary of S [3.1.11]
[p, q] line segment from p to q [3.1.4]
f ′(z) complex derivative [5.1.1]
JF Jacobian matrix of F [??]
ux = vy
uy = −vx

CR-equations of f = u+ iv [5.3.1]

O(C) entire functions on C [5.3.6]
O(D) holomorphic functions on D [5.3.11]

You can also use the search function within the pdf-reader.
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Chapter 1

Complex Numbers

In this chapter we examine the complex numbers. The history of complex numbers is fascinating
and I only share bits and pieces in these notes. The main goal of this chapter is to learn the
basic notation and begin to think in complex notation. We also learn some new insights into basic
algebra.

1.1 Algebra and Geometry of Complex Numbers

I set aside the question of existence for now. Rest assured there is such a thing as C which merits
all the definitions and constructions shared in this section.

Definition 1.1.1. Let a, b, c, d ∈ R. A complex number is an expressions of the form a + ib.
By assumption, if a+ ib = c+ id we have a = c and b = d. We define the real part of a+ ib by
Re(a+ib) = a and the imaginary part of a+ib by Im(a+ib) = b. The set of all complex numbers
is denoted C. Complex numbers of the form a + i(0) are called real whereas complex numbers of
the form 0+ ib are called imaginary. The set of imaginary numbers is denoted iR = {iy | y ∈ R}.

It is customary to write a + i(0) = a and 0 + ib = ib as the 0 is superfluous. Furthermore, the
notation1 C = R ⊕ iR compactly expresses the fact that each complex number is written as the
sum of a real and pure imaginary number. There is also the assumption R ∩ iR = {0}. In words,
the only complex number which is both real and pure imaginary is 0 itself.

We add and multiply complex numbers in the usual fashion:

Definition 1.1.2. Let a, b, c, d ∈ R. We define complex addition and multiplication as follows:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) & (a+ ib)(c+ id) = ac− bd+ i(ad+ bc).

Often the definition is recast in pragmatic terms as i2 = −1 and proceed as usual. Let me remind
the reader what is ”usual”. Addition and multiplication are commutative and obey the usual
distributive laws: for x, y, z ∈ C

x+ y = y + x, & xy = yx, & x(y + z) = xy + xz,

associativity of addition and multiplication can also be derived:

(x+ y) + z = x+ (y + z), & (xy)z = x(yz).

1see the discussion of ⊕ (the direct sum) in my linear algebra notes. Here I view R ≤ C and iR ≤ C as independent
R-subspaces whose direct sum forms C.

1



2 CHAPTER 1. COMPLEX NUMBERS

The additive identity is 0 whereas the multiplicative identity is 1, in particular:

z + 0 = z & 1 · z = z

for all z ∈ C. Notice, the notation 1z = 1 · z. Sometimes we like to use a · to emphasize the
multiplication, however, usually we just use juxtaposition to denote the multiplication. Finally,
using the notation of Definition 1.1.2, let us check that i2 = ii = (0 + i)(0 + i) = −1. Take
a = 0, b = 1, c = 0, d = 1:

i2 = ii = (0 + 1i)(0 + 1i) = (0 · 0− 1 · 1) + i(0 · 1 + 1 · 0) = −1.

In view of all these properties (which the reader can easily prove follow from Definition 1.1.2) we
return to the multiplication of a+ ib and c+ id:

(a+ ib)(c+ id) = a(c+ id) + ib(c+ id)

= ac+ iad+ ibc+ i2bd

= ac− bd+ i(ad+ bc).

Of course, this is precisely the rule we gave in Definition 1.1.2. It is convenient to define the
modulus and conjugate of a complex number before we work on fractions of complex numbers.

Definition 1.1.3. Let a, b ∈ R. We define complex conjugation as follows:

a+ ib = a− ib.

We also define the modulus of a+ ib which is denoted |a+ ib| where

|a+ ib| =
√
a2 + b2.

The complex number a+ib is naturally identified2 with (a, b) and so we have the following geometric
interpretations of conjugation and modulus:

( i.) conjugation reflects points over the real axis.

( ii.) modulus of a+ ib is the distance from the origin to a+ ib.

Let us pause to think about the problem of two-dimensional vectors. This gives us another view
on the origin of the modulus formula. We call the x-axis the real axis as it is formed by complex
numbers of the form z = x and the y-axis the imaginary axis as it is formed by complex numbers
of the form z = iy. In fact, we can identify 1 with the unit-vector (1, 0) and i with the unit-vector
(0, 1). Thus, 1 and i are orthogonal vectors in the plane and if we think about z = x + iy we can
view (x, y) as the coordinates3 with respect to the basis {1, i}. Let w = a+ib be another vector and
note the standard dot-product of such vectors is simply the sum of the products of their horizontal
and vertical components:

⟨z, w⟩ = xa+ yb

You can calculate that Re(zw) = xa + yb thus a formula for the dot-product of two-dimensional
vectors written in complex notation is just:

⟨z, w⟩ = Re(zw).

2Euler 1749 had this idea, see [N] page 60.
3if you’ve not had linear algebra yet then you may read on without worry
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You may also recall from calculus III that the length of a vector A⃗ is calculated from
√
A⃗ • A⃗.

Hence, in our current complex notation the length of the vector z is given by |z| =
√
⟨z, z⟩ =

√
zz.

If you are a bit lost, read on for now, we can also simply understand the |z| =
√
zz formula directly:

(a+ ib)(a+ ib) = (a+ ib)(a− ib) = a2 + b2 ⇒ |z| =
√
zz̄.

Properties of conjugation and modulus are fun to work out:

z + w = z + w & z · w = z · w & z = z & |zw| = |z||w|.

We will make use of the following throughout our study:

|z + w| ≤ |z|+ |w|, |z − w| ≥ |z| − |w| & |z| = 0 if and only if z = 0.

also, the geometrically obvious:

Re(z) ≤ |z| & Im(z) ≤ |z|.

We now are ready to work out the formula for the reciprocal of a complex number. Suppose z ̸= 0
and z = a+ ib we want to find w = c+ id such that zw = 1. In particular:

(a+ ib)(c+ id) = 1 ⇒ ac− bd = 1, & ad+ bc = 0

You can try to solve these directly, but perhaps it will be more instructive4 to discover the formula
for the reciprocal by a formal calculation:

1

z
=

1

z

z

z
=

z

|z|2
⇒ 1

a+ ib
=

a− ib

a2 + b2
.

I said formal as the calculation in some sense assumes properties which are not yet justified. In any
event, it is simple to check that the reciprocal formula is valid: notice, if z ̸= 0 then |z| ≠ 0 hence

z ·
(

z

|z|2

)
= z ·

(
z

|z|2

)
= z ·

(
1

|z|2
· z
)

=
1

|z|2
(zz) =

1

|z|2
|z|2 = 1.

The calculation above proves z−1 = z/|z|2.

Example 1.1.4.
1

i
=

−i

|i|2
=

−i

1
= −i.

Of course, this can easily be seen from the basic identity ii = −1 which gives 1/i = −i.

Example 1.1.5.

(1 + 2i)−1 =
1− 2i

|1 + 2i|2
=

1− 2i

1 + 4
=

1− 2i

5
.

A more pedantic person would insist you write the standard Cartesian form 1
5 − i25 .

The only complex number which does not have a multiplicative inverse is 0. This is part of the
reason that C forms a field. A field is a set which allows addition and multiplication such that the
only element without a multiplicative inverse is the additive identity (aka ”zero”). There is a more
precise definition given in abstract algebra texts, I’ll leave that for you to discover. That said, it is
perhaps useful to note that Z/pZ for p prime, Q,R,C are all fields. Furthermore, it is sometimes
useful to have notation for the set of complex numbers which admit a multicative inverse;

4this calculation is how to find (a+ ib)−1 for explicit examples
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Definition 1.1.6. The group of nonzero complex numbers is denoted C× where C× = C− {0}.

If we envision C as the plane, this is the plane with the origin removed. For that reason C× is
also known as the punctured plane. The term group is again from abstract algebra and it refers
to the multiplicative structure paired with C×. Notice that C× is not closed under addition since
z ∈ C× implies −z ∈ C× yet z+ (−z) = 0 /∈ C×. I merely try to make some connections with your
future course work in abstract algebra.

The complex conjugate gives us nice formulas for the real and imaginary parts of z = x + iy.
Notice that if we add z = x+ iy and z = x− iy we obtain z + z = 2x. Likewise, subtraction yields
z − z = 2iy. Thus as (by definition) x = Re(z) and y = Im(z) we find:

Re(z) =
1

2
(z + z) & Im(z) =

1

2i
(z + z)

In summary, for each z ∈ C we have z = Re(z) + iIm(z).

Example 1.1.7.

|z| = |Re(z) + iIm(z)| ≤ |Re(z)|+ |iIm(z)| = |Re(z)|+ |i||Im(z)| = |Re(z)|+ |Im(z)|.

An important basic type of function in complex function theory is a polynomial. These are sums of
power functions. Notice that zn is defined inductively just as in the real case. In particular, z0 = 1
and zn = zzn−1 for all n ∈ N. The story of n ∈ C waits for a future section.

Definition 1.1.8. A complex polynomial of degree n ≥ 0 is a function of the form:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + ao

for z ∈ C. The set of all polynomials in z is denoted C[z].

The theorem which follows makes complex numbers an indispensable tool for polynomial algebra.

Theorem 1.1.9. Fundamental Theorem of Algebra Every complex polynomial p(z) ∈ C[z] of
degree n ≥ 1 has a factorization

p(z) = c(z − z1)
m1(z − z2)

m2 · · · (z − zk)
mk ,

where z1, z2, . . . , zk are distinct and mj ≥ 1 for all j ∈ Nk. Moreover, this factorization is unique
upto a permutation of the factors.

I prefer the statement above (also given on page 4 of Gamelin) to what is sometimes given in
other books. The other common version is: every nonconstant complex polynomial has a zero.
Let us connect this to our version. Recall5 the factor theorem states that if p(z) ∈ C[z] with
deg(p(z)) = n ≥ 1 and zo satisfies p(zo) = 0 then (z − zo) is a factor of p(z). This means there
exists q(z) ∈ C[z] with deg(q(z)) = n − 1 such that p(z) = (z − zo)q(z). It follows that we may
completely factor a polynomial by repeated application of the alternate version of the Fundamental
Theorem of Algebra and the factor theorem.

5I suppose this was only presented in the case of real polynomials, but it also holds here. See Fraleigh or Dummit
and Foote or many other good abstract algebra texts for how to build polynomial algebra from scratch. That is not
our current purpose so I resist the temptation.
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Example 1.1.10. Let p(z) = (z+1)(z+2−3i) note that p(z) = z2+(3−3i)z−3i. This polynomial
has zeros of z1 = −1 and z2 = −2+3i. These are not in a conjugate pair but this is not surprising
as p(z) /∈ R[z]. The notation R[z] denotes polynomials in z with coefficients from R.

Example 1.1.11. Suppose p(z) = (z2 + 1)((z − 1)2 + 9). Notice z2 + 1 = z2 − i2 = (z + i)(z − i).
We are inspired to do likewise for the first factor which is already in completed-square format:

(z − 1)2 + 9 = (z − 1)2 − 9i2 = (z − 1− 3i)(z − 1 + 3i).

Thus, p(z) = (z + i)(z − i)(z − 1 − 3i)(z − 1 + 3i). Notice p(z) ∈ R[z] is clear from the initial
formula and we do see the complex zeros of p(z) are arranged in conjugate pairs ±i and 1± 3i.

The example above is no accident: complex algebra sheds light on real examples. Since R ⊆ C it
follows we may naturally view R[z] ⊆ C[z] thus the Fundamental Theorem of Algebra applies to
polynomials with real coefficients in this sense: to solve a real problem we enlarge the problem to
the corresponding complex problem where we have the mathematical freedom to solve the problem
in general. Then, upon finding the answer, we drop back to the reals to present our answer. I
invite the reader to derive the Fundamental Theorem of Algebra for R[z] by applying the Funda-
mental Theorem of Algebra for C[z] to the special case of real coefficients. Your derivation should
probably begin by showing a complex zero for a polynomial in R[z] must come with a conjugate zero.

The importance of taking a complex view was supported by Gauss throughout his career. From a
letter to Bessel in 1811 [R91](p.1):

At the very beginning I would ask anyone who wants to introduce a new function into
analysis to clarify whether he intends to confine it to real magnitudes [real values of its
argument] and regard the imaginary values as just vestigial - or whether he subscribes
to my fundamental proposition that in the realm of magnitudes the imaginary ones
a+b

√
−1 = a+bi have to be regarded as enjoying equal rights with the real ones. We are

not talking about practical utility here; rather analysis is, to my mind, a self-sufficient
science. It would lose immeasurably in beauty and symmetry from the rejection of any
fictive magnitudes. At each stage truths, which otherwise are quite generally valid,
would have to be encumbered with all sorts of qualifications.

Gauss used the complex numbers in his dissertation of 1799 to prove the Fundamental Theorem of
Algebra. Gauss offered four distinct proofs over the course of his life. See Chapter 4 of [N91] for a
discussion of Gauss’ proofs as well as the history of the Fundamental Theorem of Algebra. Many
original quotes and sources are contained in that chapter which is authored by Reinhold Remmert.

1.2 On the Existence of Complex Numbers

Euler’s work from the eigthteenth century involves much calculation with complex numbers. It was
Euler who in 1777 introduced the notation i =

√
−1 to replace a + b

√
−1 with a + ib (see [R91]

p. 10). As is often the case in this history of mathematics, we used complex numbers long before
we had a formal construction which proved the existence of such numbers. In this subsection I
add some background about how to construct complex numbers. In truth, my true concept of
complex numbers is already given in what was already said in this section in the discussion up to
Definition 1.1.3 (after that point I implicitly make use of Model I below). In particular, I would
claim a mature viewpoint is that a complex number is defined by it’s properties. That said, it is
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good to give a construction which shows such objects do exist. However, it’s also good to realize
the construction is not written in stone as it may well be replaced with some isomorphic copy.
There are three main models:

Model I: complex numbers as points in the plane: Gauss proposed the following construction:
CGauss = R2 paired with the multiplication ⋆ and addition rules below:

(a, b) + (c, d) = (a+ c, b+ d) (a, b) ⋆ (c, d) = (ac− bd, ad+ bc)

for all (a, b), (c, d) ∈ CGauss. What does this have to do with
√
−1? Consider,

(1, 0) ⋆ (a, b) = (a, b)

Thus, multiplication by (1, 0) is like multiplying by 1. Also,

(0, 1) ⋆ (0, 1) = (−1, 0)

It follows that (0, 1) is like i. We can define a mapping Ψ : CGauss → C by Ψ(a, b) = a+ ib. This
mapping has Ψ(z + w) = Ψ(z) + Ψ(w) as well as Ψ(z ⋆ w) = Ψ(z)Ψ(w). We observe that Ψ is a
one-one correspondence of CGauss and C which preserves multiplication and addition. Intuitively,
the existence of Ψ means that C and CGauss are the same object viewed in different notation6.

Model II: complex numbers as matrices of a special type: perhaps Cayley was the first to
7 propose the following construction:

Cmatrix =

{[
a b
−b a

] ∣∣∣∣ a, b ∈ R
}

Addition is matrix addition and we multiply in Cmatrix using the standard matrix multiplication:[
a b
−b a

] [
c d
−d c

]
=

[
ac− bd ad+ bc

−(ad+ bc) ac− bd

]
.

In matrices, the matrix

[
1 0
0 1

]
serves as the multiplicative identity (it is like 1) whereas the

matrix

[
0 1
−1 0

]
is analogus to i. Notice,

[
0 1
−1 0

] [
0 1
−1 0

]
=

[
−1 0
0 −1

]
= −

[
1 0
0 1

]
.

The mapping Φ : Cmatrix → C defined by Φ

([
a b
−b a

])
= a+ ib is a one-one correspondence for

which the algebra of matrices transfers to the algebra of complex numbers.

Model III: complex numbers as an extension field of R: The set of real polynomials in x
is denoted R[x]. If we define Cextension = R[x]/ < x2 + 1 > then the multiplication and addition
in this set is essentially that of polynomials. However, strict polynomial equality is replaced with
congruence modulo x2 + 1. Suppose we use [f(x)] to denote the equivalence class of f(x) modulo
x2 + 1 then as a point set:

[f(x)] = {f(x) + (x2 + 1)h(x) | h(x) ∈ R[x]}.
6the careful reader is here frustrated by the fact I have yet to say what C is as a point set
7I asked this at the math stackexchange site and it appears Cayley knew of these in 1858, see the link for details.

http://math.stackexchange.com/q/886872/36530


1.3. POLAR REPRESENTATIONS 7

More to the point, [x2 + 1] = [0] and [x2] = [−1]. From this it follows:

[a+ bx][c+ dx] = [(a+ bx)(c+ dx)] = [ac+ (ad+ bc)x+ bdx2] = [ac− bd+ (ad+ bc)x].

In Cextension the constant polynomial class [1] serves as the multiplicative identity whereas [x] is
like i. Furthermore, the mapping Ξ([a + bx]) = a + bi gives a one-one correspondence which pre-
serves the addition and multiplication of Cextension to that of C. The technique of field extensions
is discussed in some generality in the second course of a typical abstract algebra sequence. Cauchy
found this formulation in 1847 see [N91] p. 63.

Conclusion: as point sets CGauss,Cmatrix,Cextension are not the same. However, each one of these
objects provides the algebraic structure which (in my view) defines C. We could use any of them
as the complex numbers. For the sake of being concrete, I will by default use C = CGauss. But, I
hope you can appreciate this is merely a choice. But, it’s also a good choice since geometrically
it is natural to identify the plane with C. You might take a moment to appreciate we face the
same foundational issue when we face the question of what is R,Q,N etc. I don’t think we ever
constructed these in our course work. You have always worked formally in these systems. It sufficed
to accept truths about N,Q or R, you probably never required your professor to show you such a
system could indeed exist. Rest assured, they exist.

Remark: it will be our custom whenever we write z = x+ iy it is understood that x = Re(z) ∈ R
and y = Im(z) ∈ R. If we write z = x+ iy and intend x, y ∈ C then it will be our custom to make
this explicitly known. This will save us a few hundred unecessary utterances in our study.

1.3 Polar Representations

Polar coordinates in the plane are given by x = r cos θ and y = r sin θ where we define r =
√

x2 + y2.
Observe that z = x+ iy and r = |z| hence:

z = |z|(cos θ + i sin θ).

The standard angle is measured CCW from the positive x-axis. There is considerable freedom in
our choice of θ. For example, we identify geometrically −π/2, 3π/2, 7π/2, . . . . It is useful to have
a notation to express the totality of this ambiguity as well as to remove it by a standard choice:

Definition 1.3.1. Let z ∈ C with z ̸= 0. Principle argument of z is the θo ∈ (−π, π] for which
z = |z|(cos θo + i sin θo). We denote the principle argument by Arg(z) = θo. The argument of z
is denoted arg(z) which is the set of all θ ∈ R such that z = |z|(cos θ + i sin θ). Let α be a real
number then define

Arg+α (z) = arg(z) ∩ (α− 2π, α] & Argα(z) = arg(z) ∩ [α, 2π + α).

From basic trigonometry we find: for z ̸= 0,

arg(z) = Arg(z) + 2πZ = {Arg(z) + 2πk | k ∈ Z}.

Notice that arg(z) is not a function on C. Instead, arg(z) is a multiply-valued function. You
should recall a function is, by definition, single-valued. In contrast, the Principle argument is a
function from the punctured plane C× = C−{0} to (−π, π]. Notice, Arg+α : C× → (α− 2π, α] and
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Argα : C× → [α, α+2π). Both Arg+α and Argα provide a continuous8 assignment of standard angle
on the plane with the ray at angle α removed. The notation Arg+α was invented for these notes,
however the notation Argα is also used in Churchill’s text and Arg = Arg+π is a standard notation
across many texts. In practice, I usually choose angle θ ∈ [0, 2π) when choosing a standard angle
hence I prefer Arg−0 as a default. We should choose a branch of the argument which best fits
whatever application we face.

Example 1.3.2. Let z = 1− i then Arg(z) = −π/4 and arg(z) = {−π/4 + 2πk | k ∈ Z}.

Example 1.3.3. Let z = −2− 3i. We can calculate tan−1(−3/− 2) ≊ 0.9828. Furthermore, this
complex number is found in quadrant III hence the standard angle is approximately θ = 0.9828+π =

4.124. In our notation, Arg
(
0 − 2 − 3i) = 0.9828 + π. Notice, θ ̸= Arg(z) since 4.124 /∈ (−π, π].

We substract 2π from θ to obtain the approximate value of Arg(z) is −2.159. To be precise,
Arg(z) = tan−1(3/2)− π and

arg(z) = tan−1(3/2)− π + 2πZ.

At this point it is useful to introduce a notation which simultaneously captures sine and cosine and
their appearance in the formulas at the beginning of this section. What follows here is commonly
known as Euler’s formula. Incidentally, it is mentioned in [E91] (page 60) that this formula
appeared in Euler’s writings in 1749 and the manner in which he wrote about it implicitly indicates
that Euler already understood the geometric interpretation of C as a plane. It fell to nineteenth
century mathematicians such as Gauss to clarify and demystify C. It was Gauss who first called
C complex numbers in 1831 [E91]( page 61). This is what Gauss had to say about the term
”imaginary” in a letter from 1831 [E91]( page 62)

It could be said in all this that so long as imaginary quantities were still based on a
fiction, they were not, so to say, fully accepted in mathematics but were regarded rather
as something to be tolerated; they remained far from being given the same status as
real quantities. There is no longer any justification for such discrimination now that
the metaphysics of imaginary numbers has been put in a true light and that it has been
shown that they have just as good a real objective meaning as the negative numbers.

I only wish the authority of Gauss was properly accepted by current teachers of mathematics. It
seems to me that the education of precalculus students concerning complex numbers is far short of
where it ought to reach. Trigonometry and two dimensional geometry are both greatly simplified
by the use of complex notation.

Definition 1.3.4. Let θ ∈ R and define the imaginary exponential denoted eiθ by:

eiθ = cos θ + i sin θ.

For z ̸= 0, if z = |z|eiθ then we say |z|eiθ is a polar form of z.

The polar form is not unique unless we restrict the choice of θ.

Example 1.3.5. Let z = −1 + i then |z| =
√
2 and Arg(z) = 3π

4 . Thus, −1 + i =
√
2ei

3π
4 .

Example 1.3.6. If z = i then |z| = 1 and Arg(z) = π
2 hence i = ei

π
2 .

8whatever that means...
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Properties of the imaginary exponential follow immediately from corresponding properties for sine
and cosine. For example, since sine and cosine are never zero at the same angle we know eiθ ̸= 0.
On the other hand, as cos(0) = 1 and sin(0) = 0 hence e0 = cos(0) + i sin(0) = 1 (if this were not
the case then the notation of eiθ would be dangerous in view of what we know for exponentials on
R). The imaginary exponential also supports the law of exponents:

eiθeiβ = ei(θ+β).

This follows from the known adding angle formulas cos(θ + β) = cos(θ) cos(β) − sin(θ) sin(β) and
sin(θ + β) = sin(θ) cos(β) + cos(θ) sin(β). However, the imaginary exponential does not behave
exactly the same as the real exponentials. It is far from injective9 In particular, we have 2π-
periodicity of the imaginary exponential function: for each k ∈ Z,

ei(θ+2πk) = eiθ.

This follows immediately from the definition of the imaginary exponential and the known trigono-
metric identities: cos(θ + 2πk) = cos(θ) and sin(θ + 2πk) = cos(θ) for k ∈ Z. Given the above, we
have the following modication of the 1− 1 principle from precalculus:

eiθ = eiβ ⇒ θ − β ∈ 2πZ.

Example 1.3.7. To solve e3i = eiθ yields 3− θ = 2πk for some k ∈ Z. Therefore, the solutions of
the given equation are of the form θ = 3− 2πk for k ∈ Z.

In view of the addition rule for complex exponentials the multiplication of complex numbers in
polar form is very simple:

Example 1.3.8. Let z = reiθ and w = seiβ then

zw = reiθseiβ = rsei(θ+β).

We learn from the calculation above that the product of two complex numbers has a simple geo-
metric meaning in the polar notation. The magnitude of |zw| = |z||w| and the angle of zw is simply
the sum of the angles of the products. To be careful, we can show:

arg(zw) = arg(z) + arg(w)

where the addition of sets is made in the natural manner10:

arg(z) + arg(w) = {θ′ + β′ | θ′ ∈ arg(z), β′ ∈ arg(w)}.

If we multiply z ̸= 0 by eiβ then we rotate z = |z|eiθ to zeiβ = |z|ei(θ+β). It follows that
multiplication by imaginary exponentials amounts to rotating points in the complex plane.
The formulae below can be derived by an inductive argument and the addition law for imaginary
exponentials.

Theorem 1.3.9. de Moivere’s formulae let n ∈ N and θ ∈ R then (eiθ)n = einθ.

9or 1-1 if you prefer that terminology, the point is multiple inputs give the same output.
10Let S, T ⊆ C and c ∈ C then we define

cS = {cs | s ∈ S} c+ S = {c+ s | s ∈ S} S + T = {s+ t | s ∈ S, t ∈ T}.
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Example 1.3.10. De Moivere gives us (eiθ)2 = e2iθ but eiθ = cos θ + i sin θ thus squaring yields:

(cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i cos θ sin θ.

However, the definition of the imaginary exponential gives e2iθ = cos(2θ) + i sin(2θ). Thus,

cos2 θ − sin2 θ + 2i cos θ sin θ = cos(2θ) + i sin(2θ).

Equating the real and imaginary parts separately yields:

cos2 θ − sin2 θ = cos(2θ), & 2 cos θ sin θ = sin(2θ).

These formulae of de Moivere were discovered between 1707 and 1738 by de Moivere then in 1748
they were recast in our present formalism by Euler [R91] see p. 150. Incidentally, page 149 of [R91]
gives a rather careful justification of the polar form of a complex number which is based on the
application of function theory11. I have relied on your previous knowledge of trigonometry which
may be very non-rigorous. In fact, I should mention, at the moment eiθ is simply a convenient
notation with nice properties, but, later it will be the inevitable extension of the real exponential
to complex values. That mature viewpoint only comes much later as we develop a large part of
the theory, so, in the interest of not depriving us of exponentials until that time I follow Gamelin
and give a transitional definition. It is important we learn how to calculate with the imaginary
exponential as it is ubiquitous in examples throughout our study.

Definition 1.3.11. Suppose n ∈ N and w, z ∈ C such that zn = w then z is an n-th root of w.
The set of all n-th roots of w is (by default) denoted w1/n.

The polar form makes quick work of the algebra here. Suppose w = ρeiϕ and z = reiθ such that
zn = w for some n ∈ N. Observe, zn = (reiθ)n = rn(eiθ)n = rneinθ hence we wish to find all
solutions of:

rneinθ = ρeiϕ ⋆ .

Take the modulus of the equation above to find rn = ρ hence r = n
√
ρ where we use the usual

notation for the (unique) n-th positive root of r > 0. Apply r = n
√
ρ to ⋆ and face what remains:

einθ = eiϕ.

We find nθ − ϕ ∈ 2πZ. Thus, θ = 2πk+ϕ
n for some k ∈ Z. At first glance, you might think there

are infinitely many solutions ! However, it happens12 as k ranges over Z notice that eiθ simply we
cycles back to the same solutions over and over. In particular, if we restrict to k ∈ {0, 1, 2, . . . , n−1}
it suffices to cover all possible n-th roots of w:

(ρeiϕ)1/n =
{

n
√
ρei

ϕ
n , n

√
ρei

2π+ϕ
n , . . . , n

√
ρei

2π(n−1)+ϕ
n

}
⋆2 .

We can clean this up a bit. Note that 2πk+ϕ
n = 2πk

n + ϕ
n hence

ei
2πk+ϕ

n = ei(
2πk
n

+ϕ
n) = ei

2πk
n ei

ϕ
n =

(
ei

2π
n

)k
ei

ϕ
n

The term raised to the k-th power is important. Notice that once we have one element in the set
of n-roots then we may generate the rest by repeated multiplication by ei

2π
n .

11in Remmert’s text the term ”function theory” means complex function theory
12it is very likely I prove this assertion in class via the slick argument found on page 150 of [R91].
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Definition 1.3.12. Suppose n ∈ N then ω = ei
2π
n is an primitive n-th root of unity. If zn = 1

then we say z is an n-th root of unity.

In terms of the language above, every n-th root of unity can be generated by raising the primitive
root to some power between 0 and n− 1. Returning once more to ⋆2 we find, using ω = ei

2π
n :

(ρeiϕ)1/n =
{

n
√
ρei

ϕ
n , n

√
ρei

ϕ
nω, n

√
ρei

ϕ
nω2, . . . , n

√
ρei

ϕ
nωn−1

}
.

We have to be careful with some real notations at this juncture. For example, it is no longer ok
to conflate n

√
x and x1/n even if x ∈ (0,∞). The quantity n

√
x is, by definition, w ∈ R such that

wn = x. However, x1/n is a set of values ! (unless we specify otherwise for a specific problem)

Example 1.3.13. The primitive fourth root of unity is ei
2π
4 = ei

π
2 = cosπ/2+ i sinπ/2 = i. Thus,

noting that 1 = 1e0 we find:

11/4 = {1, i, i2, i3} = {1, i,−1,−i}

Geometrically, these are nicely arranged in perfect symmetry about the unit-circle.

Example 1.3.14. Building from our work in the last example, it is easy to find (3 + 3i)1/4. Begin

by noting |3+3i| =
√
18 and Arg(3+3i) = π/4 hence 3+3i =

√
18eiπ/4. Thus, note

4
√√

18 = 8
√
18

(3 + 3i)1/4 = { 8
√
18eiπ/16, i

8
√
18eiπ/16,− 8

√
18eiπ/16,−i

8
√
18eiπ/16}.

which could also be expressed as:

(3 + 3i)1/4 = { 8
√
18eiπ/16,

8
√
18e5iπ/16,

8
√
18e9iπ/16,

8
√
18e13iπ/16}.

Example 1.3.15. (−1)1/5 is found by noting e2πi/5 is the primitive 5-th root of unity and −1 = eiπ

hence
(−1)1/5 = {eiπ/5, eiπ/5ω, eiπ/5ω2, eiπ/5ω3, eiπ/5ω4}.

Add a few fractions and use the 2π-periodicity of the imaginary exponential to see:

(−1)1/5 = {eiπ/5, e3πi/5, e5πi/5, e7πi/5, e9πi/5} = {eiπ/5, e3πi/5,−1, e−3πi/5, e−πi/5}.

We can use the example above to factor p(z) = z5 + 1. Notice p(z) = 0 implies z ∈ (−1)1/5. Thus,
the zeros of p are precisely the fifth roots of −1. This observation and the factor theorem yield:

p(z) = (z + 1)(z − eiπ/5)(z − e−iπ/5)(z − e3iπ/5)(z − e−3iπ/5).

If you start thinking about the pattern here (it helps to draw a picture which shows how the roots
of unity are balanced below and above the x-axis) you can see that the conjugate pair factors for
p(z) are connected to that pattern. Furthermore, if you keep digging for patterns in factoring
polynomials these appear again whenever it is possible. In particular, if n ∈ 1 + 2Z then −1 is a
root of unity and all other roots are arranged in conjugate pairs.

The words below are a translation of the words written by Galois the night before he died in a duel
at the age of 21:

Go to the roots of these calculations! Group the operations. Classify them according
to their complexities rather than their appearances! This, I believe, is the mission of
future mathematicians. This is the road on which I am embarking in this work.

Galois’ theory is still interesting. You can read about it in many places. For example, see Chapter
14 of Dummit and Foote’s Abstract Algebra.
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Chapter 2

Functions of a Complex Variable

Let S and T be sets. A function from f : S → T is a single-valued assignment of f(s) ∈ T
for each s ∈ S. This clear definition of function was not clear until the middle of the nineteenth
century. It is true that the term originates with Leibniz in 1692 to (roughly) describe magnitudes
which depended on the point in question. Then Euler saw fit to call any analytic expression built
from variables and some constants a function. In other words, Euler essentially defined a function
by its formula. However, later, Euler did discuss an idea of an arbitrary function in his study of
variational calculus. The clarity to state the modern definition apparently goes to Dirichlet. In
1837 he wrote:

It is certainly not necessary that the law of dependence of f(x) on x be the same
throughout the interval; in fact one need not even think of the dependence as given by
explicit mathematical operations.

See [R91] pages 37-38 for more detailed references.

Our goal in this chapter is to provide a catalog of basic functions of a complex variable. These
examples are the basic ingredients to build new functions in all the usual ways. New functions
from old can be obtained by sums, differences, scalar multiples, products, quotients and the far
from trivial process of composition. Thus, while our basic list only goes to about a dozen, once
we complete this chapter we have a literally infinite family of examples from which to test our
understanding.

Three Questions which Guide our Investigations in this chapter:

(1.) Often in complex analysis we like to use f to denote a function on C. To be more pedantic,
f is function on C if there exists S ⊆ C for which f : S → C is a function. Typically we write
f = u+ iv to indicate that Re(f(z)) = u(z) and Im(f(z)) = v(z) for all z ∈ S. If f = u+ iv then
we say u is the real component function of f and v is the imaginary component function
of f . Collectively, we refer to u, v as the component functions of f = u+ iv. Often we ask stu-
dents to find the component functions of a given complex function. Generally, finding component
functions requires a complete and heathly working knowledge of the identities which are related to
the function in question. This will be made clear as we study different examples.

(2.) Another important question for a given complex function f is to determine the modulus of
f . Notice |f | = |u+ iv| =

√
u2 + v2 so are easily able to find the modulus of f if we already have

13
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found its component functions. Simplifying and categorizing the behavior of |f(z)| as z varies will
play an important role in our study of integration later in this course.

(3.) Finally, we are interested in the question of invertibility. If we’re given f : S → C then how
can we find a suitable inverse function for f ? When is it possible to invert a complex function
? We’ll see this is the most challenging of the questions raised in this chapter. In order to invert
a complex function we have to understand what is the range of the function as well as how to
(possibly) shrink the domain such that function is injective on the restricted domain.

Definition 2.0.1. Let S ⊆ C and f : S → C a function. If U ⊆ S then we define the restriction
of f to U to be the function f |U : U → C where f |U (z) = f(z) for all z ∈ U .

Typically there are many choices on how to restrict a given function which means in some sense
the natural object to view as the inverse of the function is a multiply-valued “function”. Custom-
arily we work with functions so it is necessary for us to choose a branch of the multiply-valued
“function”. It’s not that complicated if we just keep the goal in mind. The goal is to restrict the
function to a domain for which the chosen branch of the multiply-valued inverse “function” takes
the restricted domain as its range. This naturally leads to the concept of a Riemann Surface, but
that is beyond this course.

To understand the range of a complex function it is usually helpful to envision the function as a
mapping from the z-plane to the w-plane according to the rule w = f(z). Usually we use u, v as
the Cartesian variables in the w-plane so w = u + iv. We can’t ( at least I can’t) visualize the
graph of a complex function directly since it would require a four dimensional space.

Remark: I would strongly recommend you not attempt to memorize all the facts presented in this
chapter1. You need to memorize the definitions and internalize them with some facts which you
can check to root out confusion. Ideally, you want to be able to rederive the things which we derive
in this chapter. Once you understand the interplay between the different elements then knowledge
from one example can often be ported to a different example. For example, sine and cosine and
sinh and cosh are really the same function. In some sense, they’re all just the complex exponential.
But, this is a lie. They’re not the same. I’m just trying to sell you something. Let us cease with
these fuzzy pleasantries and get to the examples!

2.1 Polynomial Functions

Definition 2.1.1. If an, . . . , a1, a0 ∈ C where an ̸= 0 then

f(z) = anz
n + · · ·+ a1z + a0

defines a degree n polynomial function where dom(f) = C.

Example 2.1.2. Let f(z) = 3iz2 + 2 + 5i then as z2 = (x+ iy)2 = x2 − y2 + 2ixy we find

f(z) = 3i(x2 − y2 + 2ixy) + 2 + 5i = 2− 6xy + i[3(x2 − y2) + 5]

we find f has component functions u(z) = 2− 6xy and v(z) = 3(x2 − y2) + 5.

1I also strongly recommend you not take the path of memorizing nothing in this chapter at all, there is a middle
ground of efficient understanding
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Example 2.1.3. Let f(z) = z4 then using the binomial theorem we calculate:

z4 = (x+ iy)4 = x4 + 4x3(iy) + 6x2(iy)2 + 4x(iy)3 + (iy)4

therefore, as i2 = −1, i3 = −i and i4 = 1,

f(z) = x4 − 6x2y2 + y4︸ ︷︷ ︸
u(z)

+i[4x3y − 4xy3︸ ︷︷ ︸
v(z)

]

To find the modulus of f(z) we could use |f | =
√
u2 + v2, but that would be very foolish here.

Instead, use properties of the modulus on the given formula:

|f(z)| = |z4| = |z|4 = |x+ iy|4 = (|x+ iy|2)2 = (x2 + y2)2.

We’ll return to the problem of studying the square function at the conclusion of this chapter.

2.2 The Exponential Function

In this section we extend our transitional definition for the exponential to complex values. What
follows is simply the combination of the real and imaginary exponential functions:

Definition 2.2.1. The complex exponential function is defined by z 7→ ez where for each
z ∈ C we define ez = eRe(z)eIm(z). In particular, if x, y ∈ R and z = x+ iy,

ez = ex+iy = exeiy = ex (cos(y) + i sin(y)) .

When convenient, we also use the notation ez = exp(z) to make the argument of the exponential
more readable. 2. Consider, as |eiy| =

√
eiye−iy =

√
e0 = 1 we find

|ez| = |exeiy| = |ex||eiy| = |ex| = ex.

The magnitude of the complex exponential is unbounded as x → ∞ whereas the magnitude ap-
proaches zero as x → −∞. If z = x+ iy then arg(ex+iy) = {y + 2πk | k ∈ Z}. Since ex+iy = exeiy

it is clear that ex does not change the direction of ex+iy; arg(ex+iy) = arg(eiy).

Observe domain(ez) = C however range(ez) = C× as we know eiy ̸= 0 for all y ∈ R. Furthermore,
the complex exponential is not injective precisely because the imaginary exponential is not injective.
If two complex exponentials agree then their arguments need not be equal. In fact:

ez = ew ⇔ z − w ∈ 2πiZ.

Moreover, ez = 1 iff z = 2πik for some k ∈ Z. The complex exponential function is a 2πi-periodic
function; ez+2πi = ez. We also have

ez+w = ezew & (ez)−1 = 1/ez = e−z.

The proof of the addition rule above follows from the usual laws of exponents for the real exponential
function as well as the addition rules for cosine and sine which give the addition rule for imaginary

2Notice, we have not given a careful definition of ex here for x ∈ R. We assume, for now, the reader has some
base knowledge from calculus which makes the exponential function at least partly rigorous. Later in this our study
we find a definition for the exponential which supercedes the one given here and provides a rigorous underpinning for
all these fun facts
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exponentials. Of course, eze−z = ez−z = e0 = 1 shows 1/ez = e−z but it is also fun to work it out
from our previous formula for the reciprocal 1/z = z/|z|2. We showed |ex+iy| = ex hence:

1

ez
=

exe−iy

(ex)2
= e−xe−iy = e−(x+iy) = e−z.

As is often the case, the use of x, y notation clutters the argument.

To understand the geometry of z 7→ ez we study how the exponential maps the z-plane to the
w = u+ iv-plane where w = ez. Often we look at how lines or circles transform. In this case, lines
work well. I’ll break into cases to help organize the thought:

(1.) A vertical line in the z = x + iy-plane has equation x = xo whereas y is free to range over
R. Consider, exo+iy = exoeiy. As y-varies we trace out a circle of radius exo in the w = u+ iv-
plane. In particular, it has equation u2 + v2 = (exo)2. Notice that we need only let y range
over an interval of length 2π in order to range over the entire circle of radius exo .

(2.) A horizontal line in the z = x + iy-plane has equation y = yo whereas x is free to range
over R. Consider, ex+iyo = exeiyo . As x-varies we trace out a ray at standard angle yo in the
w-plane.

You can see that if S = R × (−π, π] then eS = C×. Likewise, Sα = R × [α, α + 2π) maps to C×

under the complex exponential. In fact, the complex exponential is injective on Sα for any choice
of α. This brings us to introduce the inverse function to the complex exponential. Well, to be more
precise, a branch of the multiply-valued logarithm is an inverse function to the restriction of of the
exponential to an appropriate set such as S or Sα.

2.3 Logarithms

Definition 2.3.1. The principal logarithm is defined by Log(z) = ln |z| + iArg(z) for each
z ∈ C×. In particular, for z = |z|eiθ with −π < θ ≤ π we define:

Log(x+ iy) = ln |z|+ iθ.

We can also simplify the formula by the power property of the real logarithm to

Log(x+ iy) =
1

2
ln(x2 + y2) + iArg(x+ iy).

Notice: we use ”ln” for the real logarithm function. In contrast, we reserve the notations ”log”
and ”Log” for complex arguments. Please do not write ln(1 + i) as in our formalism that is just
nonsense. There is a multiply-valued function of which this is just one branch. In particular:

Definition 2.3.2. The logarithm is defined by log(z) = ln |z| + iarg(z) for each z ∈ C×. In
particular, for z = x+ iy ̸= 0

log(x+ iy) =
{
ln
√

x2 + y2 + i[Arg(x+ iy) + 2πk] | k ∈ Z
}
.
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Example 2.3.3. To calculate Log(1 + i) we change to polar form 1 + i =
√
2eiπ/4. Thus

Log(1 + i) = ln
√
2 + iπ/4.

Note arg(1 + i) = π/4 + 2πZ hence

log(1 + i) = ln
√
2 + iπ/4 + 2πiZ.

There are many values of the logarithm of 1+ i. For example, ln
√
2+9iπ/4 and ln

√
2− 7iπ/4 are

also a logarithms of 1 + i. These are the beginnings of the two tails3 which Gamelin illustrates on
page 22.

The concept of a split complex plane is important in that while we can define the logarithm on
the entire punctured plane, we cannot maintain continuity unless we delete a ray where the angle
jumps. This is a fundamental issue we must face and keep in mind carefully both for theory and
calculation. Let us introduce some notation4. for split complex planes:

Definition 2.3.4. Let Cα = C − {teiα | t ≥ 0} denote the split complex plane with the ray at
angle α removed. We also denote the complex plane with the positive real axis removed as C+ = C0

and the plane with the negative real axis removed as C− = Cπ.

Alternatively, we can use notation [0,∞) for the positive real axis and (−∞, 0] for the negative real
axis. This gives C+ = C− [0,∞) and C− = C− (−∞, 0].

Definition 2.3.5. The logarithm on Cα is defined by Logα(z) = ln |z|+iArgα(z) for each z ∈ C×.

Notice Log(−1) = iπ whereas Log−π(−1) = −iπ. To be clear, Logα can be defined on C×, however
it is not continuous5 unless we delete the ray at angle α.

Finally, let us examine how the logarithm does provide an inverse for the exponential. If we
restrict to a particular branch then the calculation is simple. For example, the principal branch,
let z ∈ R× (−π, π] and consider

eLog(z) = eln |z|+iArg(z) = eln |z|eiArg(z) = |z|eiArg(z) = z.

Conversely, for z = x+ iy ∈ C× since ex+iy = exeiy,

Log(ez) = ln |exeiy|+ iArg(exeiy) = ln(ex) + iy = x+ iy = z.

The discussion for the multiply valued logarithm requires a bit more care. Let z ∈ C×, by definition,

log(z) = {ln |z|+ i(Arg(z) + 2πk) | k ∈ Z}.

Let w ∈ log(z) and consider,

ew = exp (ln |z|+ i(Arg(z) + 2πk))

= exp (ln |z|+ i(Arg(z))

= exp(ln |z|)exp(i(Arg(z))
= |z|eiArg(z)

= z.

3I can’t help but wonder, is there a math with more tails
4this is partly inspired by §26 of Brown and Churchill you can borrow from me if you wish
5we’ll define this soon, but hopefully you have some intuition already



18 CHAPTER 2. FUNCTIONS OF A COMPLEX VARIABLE

It follows that elog(z) = {z}. Sometimes, you see this written as elog(z) = z. if the author is not com-
mitted to viewing log(z) as a set of values. I prefer to use set notation as it is very tempting to use
function-theoretic thinking for multiply-valued expressions. For example, a dangerous calculation:

1 = −i2 = −ii = −(−1)1/2(−1)1/2 = −((−1)(−1))1/2 = −(1)1/2 = −1.

Wait. This is troubling if we fail to appreciate that 11/2 = {1,−1}. What appears as equal-
ity for multiply-valued functions is better understood in terms of inclusion in a set. I will try to
be explicit about sets when I use them, but, beware, not all authors share my passion for pedantics.

The trouble arises when we ignore the fact there are multiple values for a complex power function
and we try to assume it ought to behave as an honest, single-valued, function.

2.4 Power Functions

Definition 2.4.1. Let z, p ∈ C with z ̸= 0. Define zp to be the set of values zp = exp(plog(z)).

In particular,

zp = {exp(p[Log(z) + 2πik]) | k ∈ Z}.

However,

exp(p[Log(z) + 2πik]) = exp(pLog(z))exp(2pπik).

We have already studied the case p = 1/n. In that case exp(2pπik) = exp(2pπi/n) are the n-
roots of unity. In the case p ∈ Z the phase factor exp(2pπik) = 1 and z 7→ zp is single-valued
with domain C. Generally, the complex power function is not single-valued unless we make some
restriction on the domain.

Example 2.4.2. Observe that log(3) = ln(3) + 2πiZ hence:

3i = ei log(3) = ei(ln(3)+2πiZ) = ei ln(3)e−2πZ.

In other words,

3i = [cos(ln(3)) + i sin(ln(3))]e−2πZ

= {[cos(ln(3)) + i sin(ln(3))]e−2πk | k ∈ Z}.

In this example, the values fall along the ray at θ = ln(3). As k → ∞ the values approach the origin
whereas as k → −∞ the go off to infinity. I suppose we could think of it as two tails, one stretched
to ∞ and the other bunched at 0.

On page 25 Gamelin shows a similar result for ii. However, as was known to Euler [R91] (p. 162),
there is a real value of ii. In a letter to Goldbach in 1746, Euler wrote:

Recently I have found that the expression (
√
−1)

√
−1 has a real value, which in decimal

fraction form = 0.2078795763; this seems remarkable to me.

On pages 160-165 of [R91] a nice discussion of the general concept of a logarithm is given. The
problem of multiple values is dealt directly with considerable rigor.
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2.5 Trigonometric and Hyperbolic Functions

If you’ve taken calculus with me then you already know that for θ ∈ R the formulas:

cos θ =
1

2

(
eiθ + e−iθ

)
& sin θ =

1

2i

(
eiθ − e−iθ

)
are of tremendous utility in the derivation of trigonometric identities. They also set the stage for
our definitions of sine and cosine on C:

Definition 2.5.1. Let z ∈ C. We define:

cos z =
1

2

(
eiz + e−iz

)
& sin z =

1

2i

(
eiz − e−iz

)
All your favorite algebraic identities from real trigonometry hold here, unless, you are a fan of
| sin(x)| ≤ 1 and | cos(x)| ≤ 1. Those are not true for the complex sine and cosine. In particular,
note:

ei(x+iy) = eixe−y & e−i(x+iy) = e−ixey

Hence,

cos(x+ iy) =
1

2

(
eixe−y + e−ixey

)
& sin(x+ iy) =

1

2i

(
eixe−y − e−ixey

)
Clearly as |y| → ∞ the moduli of sine and cosine diverge. I present explicit formulas for the moduli
of sine and cosine later in terms of the hyperbolic functions.

I usually introduce hyperbolic cosine and sine as the even and odd parts of the exponential function:

ex =
1

2

(
ex + e−x

)
︸ ︷︷ ︸

cosh(x)

+
1

2

(
ex − e−x

)
︸ ︷︷ ︸

sinh(x)

.

Once again, the complex hyperbolic functions are merely defined by replacing the real variable x
with the complex variable z:

Definition 2.5.2. Let z ∈ C. We define:

cosh z =
1

2

(
ez + e−z

)
& sinh z =

1

2

(
ez − e−z

)
.

The hyperbolic trigonometric functions and the circular trigonometric functions are linked by the
following simple identities:

cosh(iz) = cos(z) & sinh(iz) = i sin(z)

and

cos(iz) = cosh(z) & sin(iz) = i sinh(z).

Return once more to cosine and use the adding angle formula (which holds in the complex domain
as the reader is invited to verify)

cos(x+ iy) = cos(x) cos(iy)− sin(x) sin(iy) = cos(x) cosh(y)− i sin(x) sinh(y)
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and
sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy) = sin(x) cosh(y) + i cos(x) sinh(y).

In view of these identities, we calculate the modulus of sine and cosine directly,

| cos(x+ iy)|2 = cos2(x) cosh2(y) + sin2(x) sinh2(y)

| sin(x+ iy)|2 = sin2(x) cosh2(y) + cos2(x) sinh2(y).

However, cosh2 y − sinh2 y = 1 hence

cos2(x) cosh2(y) + sin2(x) sinh2(y) = cos2(x)[1 + sinh2(y)] + sin2(x) sinh2(y)

= cos2(x) + [cos2(x) + sin2(x)] sinh2(y)

= cos2(x) + sinh2(y).

A similar calculation holds for | sin(x+ iy)|2 and we obtain:

| cos(x+ iy)|2 = cos2(x) + sinh2(y) & | sin(x+ iy)|2 = sin2(x) + sinh2(y).

Notice, for y ∈ R, sinh(y) = 0 iff y = 0. Therefore, the only way the moduli of sine and cosine can
be zero is if y = 0. It follows that only zeros of sine and cosine are precisely those with which we
are already familar on R. In particular,

sin(πZ) = {0} & cos

(
2Z+ 1

2
π

)
= {0}.

There are pages and pages of interesting identities to derive for the functions introduced here.
However, I resist. In part because they make nice homework/test questions for the students. But,
also, in part because a slick result we derive later on forces identities on R of a particular type to
necessarily extend to C.

Definition 2.5.3. Tangent and hyperbolic tangent are defined in the natural manner:

tan z =
sin z

cos z
& tanh z =

sinh z

cosh z
.

The domains of tangent and hyperbolic tangent are simply C with the zeros of the denominator
function deleted. In the case of tangent, domain(tan z) = C−

(
2Z+1

2

)
π.

Inverse Trigonometric Functions: consider f(z) = sin z then as sin(z + 2πk) = sin(z) for all
k ∈ Z we see that the inverse of sine is multiply-valued. If we wish to pick one of those values we
should study how to solve w = sin z for z. Note:

2iw = eiz − e−iz

multiply by eiz to obtain:
2iweiz = (eiz)2 − 1.

Now, substitute η = eiz to obtain:

2iwη = η2 − 1 ⇒ 0 = η2 − 2iwη − 1.

Completing the square yields,

0 = (η − iw)2 + w2 − 1 ⇒ (η − iw)2 = 1− w2.
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Consequently, η− iw ∈ (1−w2)1/2 which in terms of the principal root implies η = iw±
√
1− w2.

But, η = eiz so we find:

eiz = iw ±
√
1− w2.

There are many solutions to the equation above which are by custom included in the multiply-valued
inverse sine mapping below:

z = sin−1(w) = −i log(iw ±
√
1− w2).

Usually in an application where the above expression was found the context would guide us to choose

a particular logarithm. For example, for appropriate w we could study z = −iLog
(
iw +

√
1− w2

)
and find sin z = w for z so-defined.

Once again, the problem of defining an inverse sine function requires we reduce the domain of
sine to a set which is small enough that sine is injective. The problem of ambiguity in defining an
inverse sine function was already present in the context of the real sine function. It is our custom
that range sin−1 = [−π/2, π/2], but this is just one of an infinitely many choices. Notice the sine
function is injective going from any peak to valley of the sine graph. We could just as well have
defined range sin−1 = [π/2, 3π/2] then inverse sine would be the honest inverse of sine restricted to
[π/2, 3π/2]. Why not? To quote my littlest brother when he was little: cause be why.

2.6 Root Functions

The title of this section is quite suspicious given our discussion of the n-th roots of unity. We
learned that z1/2 is not a function because it is double-valued. Therefore, to create a function
based on z1/2 we must find a method to select one of the values.

Definition 2.6.1. The principal branch of the n-th root is defined by:

n
√
w = n

√
|w|ei

Arg(w)
n

for each w ∈ C×.

Notice that ( n
√
w)n =

(
n
√

|w|ei
Arg(w)

n

)n
= |w|eiArg(w) = w. Therefore, f(z) = zn has a local inverse

function given by the principal branch. The range of the principal branch function gives the domain
on which the principal branch serves as an inverse function. Since −π < Arg(w) ≤ π for w ∈ C× it
follows that −π/n < Arg(w)/n ≤ π/n. Thus, the principal branch serves as the inverse function of
f(z) = zn for z ∈ C× with −π/n < Arg(z) ≤ π/n. In general, it will take n-branches to cover the
z-plane. We can see those arising from rotating the sector centered about zero by the primitive n-th
root. Notice the primitive root of unity in the case of n = 2 is just −1 and we obtain the second
branch by merely multiplying by −1. This is still true for non-principal branches as I introduce
below.

Definition 2.6.2. The lower α-branch of the n-th root is defined by:

Bα

(
n
√
w
)
= n
√
|w|ei

Argα(w)
n

for each w ∈ C×. Likewise the upper α-branch of the n-th root is

Bα+

(
n
√
w
)
= n
√

|w|ei
Arg+α (w)

n
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Let me run through why Bα ( n
√
w ) ∈ w1/n for w ̸= 0. If w ̸= 0 then we can write w = |w|eiArgα(w).

Thus calculate,[
Bα

(
n
√
w
)]n

=
[

n
√
|w|ei

Argα(w)
n

]n
=
(

n
√
|w|
)n (

ei
Argα(w)

n

)n
= |w|eiArgα(w) = w.

Therefore, as all the n-th roots of w ̸= 0 are given by:

w1/n = { n
√
w,ωn

n
√
w,ω2

n
n
√
w, . . . , ωn−1

n
n
√
w}

it is evident that two branches of w1/n must be related by multiplication by some power of the
principle n-th root of unity. That is, there exists 0 ≤ j ≤ n− 1 for which

Bα

(
n
√
w
)
= ωjBβ

(
n
√
w
)

where ωn = e2πi/n for any α, β ∈ R. In the case n = 2 we have ω2 = e2πi/2 = eiπ = −1 so any
two branches of the square root either agree or are opposite in sign. However, this agreement is
point-dependent as the next example exhibits:

Example 2.6.3. Consider
√
w =

√
|w|eiArg(w)/2 since −π < Arg(w) ≤ π for w ∈ C× we find

−π/2 < Arg(w)/2 ≤ π/2 thus range(
√
w) includes the right half-plane together with the positive

imaginary axis. On the other hand, if we use B0(
√
w) =

√
|w|eiArg0(w)/2 then for w ̸= 0 we have

0 ≤ Arg0(w) < 2π hence 0 ≤ Arg0(w)/2 < π and we find that range(B0(
√
w)) includes the upper

half-plane together with the positive real axis. We can compare the values of B0(
√
w) and

√
w for

any w ̸= 0. By construction, (
√
w)2 = w and (B0(

√
w))2 = w. Thus both

√
w and B0(

√
w) are

elements of w1/2 = {
√
w,−

√
w}. The principle square root is easy. The non-principal root requires

some analysis which depends on the location of w. Consider that (−π, π] ∩ [0, 2π) = [0, π] and we
note Arg(w) = Arg0(w) for w ̸= 0 with 0 ≤ Arg(w) ≤ π, that is the upper half-plane including the
real axis. On the other hand, if −π < Arg(w) < 0 ( that is points below the real axis ) then the non-
principal argument gives a different angle where π < Arg0(w) < 0. Notice Arg0(w)− 2π = Arg(w)
for each w below the real axis. Consequently,

B0(
√
w) =

√
|w|eiArg0(w)/2 =

√
|w|ei(Arg(w)+2π)/2 = −

√
|w|eiArg(w)/2 = −

√
w.

Riemann Surfaces: if we look at all the branches of the n-root then it turns out we can sew them
together along the branches to form the Riemann surface R. Imagine replacing the w-plane C with
n-copies of the appropriate slit plane attached to each other along the branch-cuts. This separates
the values of f(z) = zn hence f : C → R is invertible. The idea of replacing the codomain of
C with a Riemann surface constructed by weaving together different branches of the function is a
challenging topic in general. I suspect this article by Teleman on Riemann surfaces is a good place
to start.

https://math.berkeley.edu/~teleman/math/Riemann.pdf


Chapter 3

Topology and Limits

The topology of the complex plane is simply that which we have already studied in the multivariate
calculus course. Technically speaking, it is the topology which is naturally induced from the
Euclidean metric on the plane. Moreover, the study of sequences and limits in the complex plane is
precisely the same as the study of sequences and limits on the Euclidean plane. The essential novelty
here is the introduction of complex multiplication, however, that does not draw any especially
interesting distinction between the world of real and complex limits. In other words, the study of
continuity for functions of a complex variable is essentially the same as the study of continuity for
maps on R2. Sorry if this is boring, but, the odds are high you did not engage these topics at the
level of rigor we endeavor in this chapter. Furthermore, I hope the humdrum nature of the current
chapter makes what follows in later chapters all the more shocking.

3.1 Topology

Let me apologize at the outset for the dismal lack of pictures in this section. When I lecture this
material I will draw many pictures.

Definition 3.1.1. Let ε > 0 and zo ∈ C then Dε(zo) = {z ∈ C | |z − zo| < ε} is the open disk of
radius ε centered at zo. Let U ⊆ C then we say zo ∈ U is an interior point of U if there exists
ε > 0 for which Dε(zo) ⊆ U . If each point in U is an interior point then we say U is an open set.

Heuristically speaking, open sets are those sets whose edges are fuzzy. Alternatively, an open set
cannot have a point which is on its boundary because then it is impossible to find an open disk
about such a point which is contained within the set.

Definition 3.1.2. Suppose U is a subset of C then we denote the boundary of U by ∂U . We
define ∂U to be the set of all points for which there exists an open disk which contains points in U
and C− U = {z ∈ C | z /∈ U}. If ∂U ⊂ U then we say U is a closed set.

You can prove that U is closed if and only if C − U is an open set. Many sets are neither open
nor closed. The only subsets of C which are both open and closed are C and the emptyset . We
can prove the union of any number of open sets is once more open. Likewise, the intersection of
finitely many open sets is an open set. Conversely, the finite union and arbitrary intersection of
closed sets is once more closed. These claims can be proven by direct argumentation based on the
definition of open set given above1

1the abstract definition of topology for a set X is that τ ⊆ P(X) where X,∈ τ and τ is closed under arbitrary

23
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Example 3.1.3. Suppose U1, U2 are open subsets of C. Let zo ∈ U1∩U2 then zo ∈ U1 and zo ∈ U2.
Since U1, U2 are open we know zo is an interior point for both sets and thus there exist ε1, ε2 > 0
for which Dε1(zo) ⊆ U1 and Dε2(zo) ⊆ U2. Let ε = min(ε1, ε2) and suppose z ∈ Dε(zo). Observe,

|z − zo| < ε ≤ ε1 & |z − zo| < ε ≤ ε2

Thus Dε(zo) ⊆ Dε1(zo) ⊆ U1 and Dε(zo) ⊆ Dε2(zo) ⊆ U2. Therefore, Dε(zo) ⊆ U1 ∩ U2. Hence zo
is an interior point of U1 ∩ U2 and as zo was arbitrary we have shown U1 ∩ U2 is an open set.

Definition 3.1.4. If a, b ∈ C then we define the directed line segment from a to b by

[a, b] = {a+ t(b− a) | t ∈ [0, 1]}

This notation is pretty slick as it agrees with interval notation on R when we think about them as
line segments along the real axis of the complex plane. However, certain things I might have called
crazy in precalculus now become totally sane. For example, [4, 3] has a precise meaning. I think,
to be fair, if you teach precalculus and someone tells you that [4, 3] meant the same set of points,
but they prefer to look at them Manga-style then you have to give them credit.

Definition 3.1.5. A subset U of the complex plane is called star shaped with star center zo if
there exists zo such that each z ∈ U has [zo, z] ⊆ U .

A given set may have many star centers2. For example, C− is star shaped and the only star centers
are found on [0,∞). Likewise, C+ is star shaped with possible star centers found on (−∞, 0].

Definition 3.1.6. A polygonal path γ from a to b in C is the union of finitely many line segments
which are placed end to end; γ = [a, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−2, zn−1] ∪ [zn−1, b].

It is convenient to defined connectedness in terms of polygonal paths for our context3

Definition 3.1.7. A set S ⊆ C is connected iff there exists a polygonal path contained in S
between any two points in S. That is for all a, b ∈ S there exists a polygonal path γ from a to b
such that γ ⊆ S

Incidentally, the definitions just offered for C apply equally well to Rn if we generalize modulus to
Euclidean distance between points.

Definition 3.1.8. An open connected set is called a domain. We say R is a region if R = D∪S
where D is a domain D and S ⊆ ∂D.

The concept of a domain is most commonly found in the remainder of our study. You should take
note of its meaning as it will not be emphasized every time it is used later.

unions and finite intersections of the sets within τ . Moreover, a subset of X is said to be open if it is in the topology
τ . The special case we consider here is an example of a metric topology. Metric topologies are among the most
natural as they are based on geometric intuition. We have offered an entire course on Topology in recent years for
interested math majors. Inquire if interested.

2if a person knew something about this activity called basketball there must be team-specific jokes to make here
3See the end of this section for a bit of a digression on the topological definition of connectedness. Moreover,

notice that in the context of an open set it is fairly obvious that if we can find a polygonal path connecting any
pair of points then we can equally well find a polygonal path comprised of only horizontal and vertical line-segments.
Certain proofs are much easier if we approach the criterion of connectedness from the viewpoint of polygonal paths
with vertical and horizontal legs.
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Definition 3.1.9. A subset U ⊆ C is bounded if there exists M > 0 and zo ∈ U for which
U ⊆ DM (zo). If U ⊆ C is both closed and bounded then we say U is compact.

I should mention the definition of compact given here is not a primary definition, when you study
topology or real analysis you will learn a more fundamental characterization of compactness. We
may combine terms in reasonable ways. For example, a domain which is also star shaped is called
a star shaped domain. A region which is also compact is a compact region.

The theorem which follows is interesting because it connect a algebraic condition ∇h = 0 with a
topological trait of connectedness. Recall that h : R2 → R is continuously differentiable if each
of the partial derivatives of h is continuous. We need this condition to avoid pathological issues
which arise from merely assuming the partial derivatives exist. In the real case, the existence of
the partial derivatives does not imply their continuity. We’ll see something different for C as we
study complex differentiability.

Theorem 3.1.10. If h(x, y) is a continuously differentiable function on a domain D such that

∇h =
〈
∂h
∂x ,

∂h
∂y

〉
= 0 on D then h is constant.

Proof: Let p, q ∈ D. As D is connected there exists a polygonal path γ from p to q. Let
p1, p2, . . . , pn be the points at which the line segments comprising γ are joined. In particular, γ1 is
a path from p to p1 and we parametrize the path such that dom(γ1) = [0, 1]. By the chain rule,

d

dt
(h(γ1(t))) = ∇h(γ1(t))) •

dγ1(t))

dt

however, γ1(t) ∈ D for each t hence ∇h(γ1(t))) = 0. Consequently,

d

dt
(h(γ1(t))) = 0

It follows from calculus that h(γ1(0)) = h(γ1(1)) hence h(p) = h(p1). But, we can repeat this
argument to show h(p2) = h(p3) and so forth and we arrive at:

h(p) = h(p1) = h(p2) = · · · = h(pn) = h(q).

But, p, q were arbitrary thus h is constant on D. □

We might use these terms correctly even without a formal definition. But, in math, we should use
terms with precision in as much as is possible.

Definition 3.1.11. We say y ∈ C is a limit point of S iff every open disk centered at y contains
points in S − {y}. We say y ∈ S is an isolated point or exterior point of S if there exist
open disks about y which do not contain other points in S. The set of all interior points of S is
denoted int(S) and is called the interior of S. Likewise the set of all exterior points for S is
denoted ext(S) and is called the exterior of S. The closure of S is defined to be S = S ∪ {y ∈
C | y a limit point of S}.

Example 3.1.12. Consider S = DR(zo) = {z ∈ C | |z − zo| < R} then the boundary of S is the
circle ∂S = {z ∈ C | |z − zo| = R}. Also, int(S) = S which is to say every point in S is an
interior point. That is, an open disk is an open set. Finally, the exterior of the disk is given by
ext(S) = {z ∈ C | |z − zo| > R}. The collection of all points outside a given circle is known as an
outer annulus.

Annuli play an important role in one of the the final story arcs in this course. We will think of
outer annuli as open disks about ∞. More on that when the time is right.
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3.1.1 topological definition of connectedness

Definition 3.1.13. An open S ⊆ C is said to be (topologically) connected set if there does
not exist a pair of non-empty open subsets U, V of S for which U ∩ V = and U ∪ V = S.

Such a pair of sets is called a separation of S. If S has a separation then S is a disconnected set.
If a set is not connected then it is disconnected. We usually find it far more convenient to use judge
connectedness by checking for a strong form of path-connectedness; a space is path-connected if
any pair of points in the space can be connected by a continuous path within the space.

Theorem 3.1.14. Let S ⊆ C be open. If for any p, q ∈ S there exist a collection of n line-segments
[z0, z1], [z1, z2], . . . , [zn−1, zn] where z0 = p and zn = q and [zj−1, zj ] ⊆ S for each j = 1, 2, . . . , n
then S is topologically connected.

Proof Sketch: suppose S is open and any pair of points is connected by a finite union of
linked line segments. If U, V is a separation of S and we pick p ∈ U and q ∈ V then we have
[z0, z1], [z1, z2], . . . , [zn−1, zn] where z0 = p and zn = q and [zj−1, zj ] ⊆ S for each j = 1, 2, . . . , n.
However, this produces a contradiction since we can prove line-segments are topologically connected
sets and the finite union of topologically connected sets is topologically connected. Notice the in-
tersection of the separation of S with the union of the line segments produces a separation of the
set of line-segments. □

Alternatively, since the set of line-segments begins in U and ends in V there must be some line-
segment which travels from U to V and the fact that U and V are disjoint will force the line-segment
connecting U and V to be likewise disjoint. But, that is absurd. Line segments cannot be separated
into a pair of disjoint sets whose union forms the whole line segment.

Remark 3.1.15. My apologies if I spend much classtime on this subsection. I’m writing it here
to get it out of my system before class. This discussion belongs better to a topology course. Ask if
interested.

3.2 Sequences and Limits

Portions of this section are for breadth and my main intention is to till the soil of your mind for
the Math 431 course. It is likely I project much of this section rather than right it out in its en-
tirety. Notice I provide proofs for the limit laws at the conclusion of this section. Our main logical
takeaway from this section is simply that limits in the complex domain work just as they did in the
real case. However, beware we lose the squeeze theorem for complex-valued sequences. If we need
to use the squeeze theorem then we’re forced to make an argument which focuses on squeezing the
modulus of the complex value.

A function n 7→ an from N to C is a sequence of complex numbers. Sometimes we think of
a sequence as an ordered list; {an} = {a1, a2, . . . }. We assume the domain of sequences in this
section is N but this is not an essential constraint, we could just as well study sequences with
domain {k, k + 1, . . . } for some k ∈ Z.

Definition 3.2.1. Sequential Limit: Let an be a complex sequence and a ∈ C. We say an → a
iff for each ε > 0 there exists N ∈ N such that |an − a| < ε whenever n > N . In this case we write

lim
n→∞

an = a.



3.2. SEQUENCES AND LIMITS 27

Essentially, the idea is that the sequence clusters around L as we go far out in the list.

Definition 3.2.2. Bounded Sequence: Suppose R > 0 and |an| < R for all n ∈ N then {an} is
a bounded sequence

The condition |an| < R implies an is in the disk of radius R centered at the origin.

Theorem 3.2.3. Convergent Sequence Properties: A convergent sequence is bounded. Fur-
thermore, if sn → s and tn → t then

(a.) sn + tn → s+ t

(b.) sntn → st

(c.) sn/tn → s/t provided t ̸= 0.

The proof of the theorem above mirrors the proof you would give for real sequences.

Theorem 3.2.4. in-between theorem: If rn ≤ sn ≤ tn, and if rn → L and tn → L then sn → L.

The theorem above is for real sequences. We have no4 order relations on C. Recall, by definition,
monotonic sequences sn are either always decreasing (sn+1 ≤ sn) or always increasing (sn+1 ≥ sn).
The completeness, roughly the idea that R has no holes, is captured by the following theorem:

Theorem 3.2.5. A bounded monotone sequence of real numbers coverges.

The existence of a limit can be captured by the limit inferior and the limit superior. These are in
turn defined in terms of subsequences.

Definition 3.2.6. Let {an} be a sequence. We define a subsequence of {an} to be a sequence of
the form {anj} where j 7→ nj ∈ N is a strictly increasing function of j.

Standard examples of subsequences of {aj} are given by {a2j} or {a2j−1}.

Example 3.2.7. If aj = (−1)j then a2j = 1 whereas a2j−1 = −1. In this example, the even
subsequence and the odd sequence both converge. However, lim aj does not exist.

Apparently, considering just one subsequence is insufficient to gain much insight. On the other
hand, if we consider all possible subsequences then it is possible to say something definitive.

Definition 3.2.8. Let {an} be a sequence. We define limsup(an) to be the upper bound of all
possible subsequential limits. That is, if {anj} is a subsequence which converges to t (we allow
t = ∞) then t ≤ limsup(an). Likewise, we define liminf(an) to be the lower bound (possibly −∞)
of all possible subsequential limits of {an}.

Theorem 3.2.9. The sequence an → L ∈ R if and only iff limsup(an) = liminf(an) = L ∈ R.

The concepts above are not available directly on C as there is no clear definition of an increasing
or decreasing complex number. However, we do have many other theorems for complex sequences
which we had before for R. In the context of advanced calculus, I call the following the vector limit
theorem. It says: the limit of a vector-valued sequence is the vector of the limits of the component
sequences. Here we just have two components, the real part and the imaginary part.

4to be fair, you can order C, but the order is not consistent with the algebraic structure. See this answer

http://math.stackexchange.com/a/492897/36530
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Theorem 3.2.10. Suppose zn = xn + iyn ∈ C for all n ∈ N and z = x + iy ∈ C. The sequence
zn → z if and only iff both xn → x and yn → y.

Proof Sketch: Notice that if xn → x and yn → y then it is an immediate consequence of Theorem
3.2.3 that xn + iyn → x + iy. Conversely, suppose zn = xn + iyn → z. We wish to prove that
xn → x = Re(z) and yn → y = Im(z). The inequalities below are crucial:

|xn − x| ≤ |zn − z| & |yn − y| ≤ |zn − z|

Let ε > 0. Since zn → z we are free to select N ∈ N such that for n ≥ N we have |zn− z| < ε. But,
then it follows |xn−x| < ε and |yn−y| < ε by the crucial inequalities. Hence xn → x and yn → y. □

Definition 3.2.11. We say a sequence {an} is Cauchy if for each ε > 0 there exists N ∈ N for
which N < m < n implies |am − an| < ε.

A Cauchy sequence is one where am − an tend to zero in the tail of the sequence. At first glance,
this hardly seems like an improvement on the definition of convergence, yet, in practice, so many
proofs elegantly filter through the Cauchy criterion. In any space, if a sequence converges then it
is Cauchy. However, the converse only holds for special spaces which are called complete.

Definition 3.2.12. A space is complete if every Cauchy sequence converges.

The content of the theorem below is that C is complete.

Theorem 3.2.13. A complex sequence converges iff it is a Cauchy sequence.

Real numbers as also complete. This is an essential difference between the rational and the real
numbers. There are certainly sequences of rational numbers whose limit is irrational. For example,
the sequence of partial sums from the p = 2 series {1, 1 + 1/4, 1 + 1/4 + 1/9, . . . } has rational
elements yet limits to π2/6. This was shown by Euler in 1734 as is discussed on page 333 of [R91].
The process of adjoining all limits of Cauchy sequences to a space is known as completing a
space. In particular, the completion of Q is R. Ideally, you will obtain a deeper appreciation of
Cauchy sequences and completion when you study real analysis. That said, if you are willing to
accept the truth that R is complete it is not much more trouble to show Rn is complete. I plan to
guide you through the proof for C in your homework.

Analysis with sequences is discussed at length in our real analysis course. On the other hand, what
follows is the natural extsension of the (εδ)-definition to our current context5. In what follows we
assume f : dom(f) ⊆ C → C is a function and L ∈ C.

Definition 3.2.14. Let zo be a limit point of the domain of the function f . We say lim
z→zo

f(z) = L

if for each ε > 0 there exists δ > 0 such that z ∈ C with 0 < |z − zo| < δ implies |f(z)− L| < ε.

We also write f(z) → L as z → zo when the limit exists.

Theorem 3.2.15. Suppose lim
z→zo

f(z), lim
z→zo

g(z) ∈ C then

(a.) lim
z→zo

[f(z) + g(z)] = lim
z→zo

f(z) + lim
z→zo

g(z)

5in fact, we can also give this definition in a vector space with a norm, if such a space is complete then we call it
a Banach space
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(b.) lim
z→zo

[f(z)g(z)] = lim
z→zo

f(z) · lim
z→zo

g(z)

(c.) lim
z→zo

[cf(z)] = c lim
z→zo

f(z)

(d.) lim
z→zo

[
f(z)

g(z)

]
=

limz→zo f(z)

limz→zo g(z)

where in the last property we assume lim
z→zo

g(z) ̸= 0.

Once more, the proof of this theorem mirrors the proof which was given in the calculus of R. One
simply replaces absolute value with modulus and the same arguments go through. If you would
like to see explicit arguments you can take a look at my calculus I lecture notes (for free !). The
other way to prove these is to use Lemma 3.2.17 and apply it to Theorem 3.2.3.

Definition 3.2.16. If f : dom(f) ⊆ C → C is a function zo ∈ dom(f) such that lim
z→zo

f(z) = f(zo)

then f is continuous at zo. Iif f is continuous at each point in U ⊆ dom(f) then we say f is
continuous on U. When f is continuous on dom(f) we say f is continuous. The set of all
continuous functions on U ⊆ C is denoted C0(U).

The definition above gives continuity at a point, continuity on a set and finally continuitiy of the
function itself. In view of Theorem 3.2.15 we may immediately conclude that if f, g are continuous
then f+g, fg, cf and f/g are continuous provided g ̸= 0. The conclusion holds at a point, on a com-
mon subset of the domains of f, g and finally on the domains of the new functions f+g, fg, cf, f/g.

The lemma below connects the sequential and εδ-definitions of the limit. In words, if every sequence
zn converging to zo gives sequences of values f(zn) converging to L then f(z) → L as z → zo.

Lemma 3.2.17. lim
z→zo

f(z) = L iff whenever zn → zo it implies f(zn) → L.

Proof: this is a biconditional claim. I’ll to prove half of the lemma. You can prove the interesting
part for some bonus points.

(⇒) Suppose lim
z→zo

f(z) = L. Also, let zn be a sequence of complex numbers which converges to

zo. Let ε > 0. Notice, as f(z) → L we may choose δε > 0 for which 0 < |z − zo| < δε im-
plies |f(z) − L| < ε. Furthemore, as zn → zo we can choose Mδε ∈ N such that n > Mδε implies
|zn−zo| < δε. Finally, consider if n > Mδε then |zn−zo| < δε hence |f(zn)−L| < ε. Thus f(zn) → L.

(⇐) left to reader. See this answer to the corresponding question in the real case. □

The paragraph on page 37 repeated below is very important to the remainder of the text. He
often uses this simple principle to avoid writing a complete (and obvious) proof. His refusal to
write the full proof is typical of analysts’ practice. In fact, this textbook was recommended to
me by a research mathematician whose work is primarily analytic. Rigor should not be mistaken
for the only true path. It is merely the path we teach you before you are ready for other more
intuitive paths. You might read Terry Tao’s excellent article on the different postures we strike as
our mathematical education progresses. See There’s more to mathematics than rigour and proofs
from Tao’s blog. From page 36 of Gamelin,

”A useful strategy for showing that f(z) is continuous at zo is to obtain an estimate of
the form |f(z)−f(zo)| ≤ C|z−zo| for z near zo. This guarantees that |f(z)−f(zo)| < ε
whenever |z− zo| < ε/C, so that we can take δ = ε/C in the formal definition of limit”

http://math.stackexchange.com/a/752098/36530
http://terrytao.wordpress.com/career-advice/there%E2%80%99s-more-to-mathematics-than-rigour-and-proofs/
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It is also worth repeating Gamelin’s follow-up example here:

Example 3.2.18. The inequalities

|Re(z − zo)| ≤ |z − zo|, |Im(z − zo)| ≤ |z − zo|, & ||z| − |zo|| ≤ |z − zo|

indicate that Re, Im and modulus are continuous at zo.

It may be useful to mention a result which is nearly a Corollary to Theorem 3.2.10:

Theorem 3.2.19. If f = u + iv is a complex function with limit point zo = xo + iyo then
limz→zo f(z) = L1 + iL2 if and only if limz→zo u(z) = L1 and limz→zo v(z) = L2. We assume
u, v are real-valued and L1, L2 ∈ R.

Proof: I will prove converse direction. Assume limz→zo u(z) = L1 and limz→zo v(z) = L2. Let
ε > 0 and select δ1, δ2 for which 0 < |z − zo| < δ1 implies |u(z) − L1| < ε/2 and 0 < |z − zo| < δ2
implies |v(z)−L2| < ε/2. Set δ = min(δ1, δ2) and suppose 0 < |z − zo| < δ. Let L = L1 + iL2 and
observe

|f(z)− L| = |u(z)− L1 + i(v(z)− L2)|
≤ |u(z)− L1|+ |i(v(z)− L2)|
≤ |u(z)− L1|+ |i||v(z)− L2|
< ε/2 + ε/2 = ε.

Thus f(z) → L1 + iL2 as z → zo. I leave the forward direction for homework! □

3.3 limit laws

We assume a ∈ C and f, g are functions on C with limit point a throughout this section unless
otherwise explicitly stated. Let us begin by proving a limit has a single value.

Proposition 3.3.1. limit is unique.

If lim
z→a

f(z) = L1 and lim
z→a

f(z) = L1 then L1 = L2.

Proof: let ε > 0. Suppose lim
z→a

f(z) = L1 and lim
z→a

f(z) = L2. Choose δ1 > 0 for which 0 <

|z − a| < δ1 implies |f(z) − L1| < ε/2. Likewise, choose δ2 > 0 for which 0 < |z − a| < δ2 implies
|f(z)− L2| < ε/2. Let δ = min(δ1, δ2) and suppose 0 < |z − a| < δ ≤ δ1, δ2 hence

|L1 − L2| = |L1 − f(z) + f(z)− L2| (3.1)

≤ |L1 − f(z)|+ |f(z)− L2|
= |f(z)− L1|+ |f(z)− L2|
< ε/2 + ε/2 = ε.

Thus |L1 − L2| < ε for arbitary ε > 0 and that implies |L1 − L2| = 0 hence L1 = L2. □

It is amusing that the proof of Proposition 3.3.4 rests on nearly the same calculation as the unique-
ness result above.
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Proposition 3.3.2. limit of identity function.

lim
z→a

z = a.

Proof: Fix a ∈ R. Let f(z) = z for all z ∈ C. Let ε > 0 and choose δ = ε. If 0 < |z − a| < δ then
|f(z)− a| = |z − a| < ε thus limz→a f(z) = a which is to say limz→a z = a. □

Proposition 3.3.3. limit of constant function.

lim
z→a

c = c.

Proof: Fix a ∈ R and define f(z) = c for all z ∈ C. Suppose ε > 0 and choose δ = 42. If z ∈ C
with 0 < |z− a| < 42 then |f(z)− c| = |c− c| = 0 < ε thus limz→a f(z) = c by the definition of the
limit. Thus limz→a c = c. □

The choice of δ = 42 in the above proof is just silly. You could choose any positive number.

Proposition 3.3.4. additivity of the limit.

Suppose limz→a f(z) = Lf ∈ C and limz→a g(x) = Lg ∈ C then

lim
z→a

[f(z) + g(z)] = lim
z→a

f(z) + lim
z→a

g(z).

Proof: we are given that lim
z→a

f(z) = Lf and lim
z→a

g(z) = Lg. Let ε > 0 and choose δf > 0 such that

0 < |z− a| < δf implies |f(z)−Lf | < ε
2 . Likewise, choose δg > 0 for which 0 < |z− a| < δg implies

|g(z) − Lg| < ε
2 . Let δ = min(δf , δg) then δ ≤ δf and δ ≤ δg. Suppose z ∈ C and 0 < |z − a| < δ

then |f(z)− Lf | < ε
2 and |g(z)− Lg| < ε

2 . Consider that

|f(z) + g(z)− (Lf + Lg)| = |f(z)− Lf + g(z)− Lg| (3.2)

≤ |f(z)− Lf |+ |g(z)− Lg|
< ε/2 + ε/2 = ε.

Therefore, by the definition of the limit, lim
z→a

[f(x) + g(x)] = lim
z→a

f(z) + lim
z→a

g(z). □.

Proposition 3.3.5. homogeneity of the limit.

Suppose c ∈ C and limz→a f(z) = L ∈ C then lim
z→a

cf(z) = c lim
z→a

f(z).

Proof: Suppose c ∈ C and limz→a f(z) = L ∈ C. Let ε > 0. If c ̸= 0 then choose δ > 0 for which
0 < |z − a| < δ implies |f(z)− L| < ε

|c| . Observe

|cf(z)− cL| = |c||f(z)− L| < |c| ε
|c|

= ε (3.3)

If c = 0 then |cf(z) − cL| = 0 < ε for all z ∈ dom(f). Thus, by the definition of the limit,
lim
z→a

cf(z) = c lim
z→a

f(z). □

I often collectively refer to the previous two theorems as the linearity of the limit. In calculus we
will learn that most major constructions obey the linearity rules. We can also extend the rules to
give the limit law for a finite linear combination of convergent functions.
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Proposition 3.3.6. limit of linear combination of convergent functions.

Suppose a ∈ C and fi(z) → Li ∈ C as z → a for i = 1, 2, . . . , n. Then,

lim
z→a

(c1f1(z) + c2f2(z) + · · ·+ cnfn(z)) = c1 lim
z→a

f1(z) + c2 lim
z→a

f2(z) + · · ·+ cn lim
z→a

fn(z).

Proof: Suppose fi(z) → Li ∈ C as z → a for i = 1, 2, . . . , n. We claim

lim
z→a

(c1f1(z) + c2f2(z) + · · ·+ cnfn(z)) = c1 lim
z→a

f1(z) + c2 lim
z→a

f2(z) + · · ·+ cn lim
z→a

fn(z)

for all n ∈ N. We will prove this claim by induction on n. Notice the claim is true for n = 1 since
Proposition 3.3.5 provides that lim

z→a
(c1f1(z)) = c1 lim

z→a
f1(z). Inductively suppose the claim is true

for some n ∈ N. Consider the linear combination of n+ 1 functions,

lim
z→a

(
c1f1(z) + c2f2(z) + · · ·+ cnfn(z) + cn+1fn+1(z)

)
=

= lim
z→a

(
c1f1(z) + c2f2(z) + · · ·+ cnfn(z)

)
+ lim

z→a

(
cn+1fn+1(z)

)
(3.4)

= c1 lim
z→a

f1(z) + c2 lim
z→a

f2(z) + · · ·+ cn lim
z→a

fn(z) + cn+1 lim
z→a

fn+1(z) (3.5)

We used Proposition 3.3.4 for Equation 3.4 and we applied the induction hypothesis and Proposition
3.3.5 for Equation 3.5. Thus we have shown the claim holds for n + 1 and it follows the result is
true for all n ∈ N by induction on n. □

Proposition 3.3.7. limit of product is product of limits.

If limz→a f(z) = Lf ∈ C and limz→a g(z) = Lg ∈ C then

lim
z→a

[f(z)g(z)] =
(
lim
z→a

f(z)
)(

lim
z→a

g(z)
)
.

Preparing for Proof: Consider that we wish to find δ > 0 that forces z ∈ Bδ(a)o to satisfy

|f(z)g(z)− LfLg| < ε (3.6)

we have control over |f(z)−Lf | and |g(z)−Lg|. If we can somehow factor these out then we have
something to work with. Add and subtract Lfg(z) towards that goal:

|f(z)g(z)− LfLg| = |f(z)g(z)− Lfg(z) + Lfg(z)− LfLg| (3.7)

≤ |f(z)− Lf ||g(z)|+ |Lf ||g(z)− Lg|

Proof: let ε > 0 and suppose f(z) → Lf and g(z) → Lg as z → a. Observe we may select positive
constants δ1, δ2 and δ3 for which:

(i.) 0 < |z − a| < δ1 implies |f(z)− Lf | <
ε

2(1 + |Lg|)
,

(ii.) 0 < |z − a| < δ2 implies |g(z)− Lg| <
ε

2(1 + |Lf |)
,

(iii.) 0 < |z − a| < δ3 implies |g(z)− Lg| < 1.
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Observe, from (iii.) we also have the bound below:

|g(z)| = |g(z)− Lg + Lg| ≤ |g(z)− Lg|+ |Lg| < 1 + |Lg| (3.8)

Let δ = min(δ1, δ2, δ3) and suppose 0 < |z − a| < δ thus (i.), (ii.) and (iii.) hold true and
|g(z)| < 1 + |Lg|. Thus calculate:

|f(z)g(z)− LfLg| = |f(z)g(z)− Lfg(z) + Lfg(z)− LfLg| (3.9)

≤ |f(z)− Lf ||g(z)|+ |Lf ||g(z)− Lg|

≤ ε

2(1 + |Lg|)
(1 + |Lg|) + |Lf |

ε

2(1 + |Lf |)
< ε

where the last inequality stems from the observation that |Lf |/(1 + |Lf |) < 1. Therefore, we have
shown f(z)g(z) → LfLg as z → a and this completes the proof. □

The proof given above is fairly standard. I found the argument in this Wikibook.

Proposition 3.3.8. power function limit ( for powers n ∈ N).

Let a ∈ R and n ∈ N ∪ {0}, limz→a z
n = an.

Proof: is by induction on n. Observe n = 0 is true by Proposition 3.3.3. Inductively suppose
lim
z→a

zn = an for some n ∈ N. Consider the (n+ 1) case,

lim
x→a

zn+1 = lim
z→a

znz =

(
lim
z→a

zn
)(

lim
z→a

z

)
= ana = an+1

where I used the Proposition 3.3.7 based on the induction hypothesis and Proposition 3.3.2. We
find the statement true for n implies it is likewise true for n + 1 hence the theorem is true for all
n ∈ N by proof by mathematical induction. □

Proposition 3.3.9. polynomial function limit.

Suppose cn, . . . , c1, c0 ∈ R and p(z) = cnz
n + · · ·+ c1z + c0 then lim

z→a
p(z) = p(a).

Proof: by Proposition 3.3.8 we note fi(z) = zi has lim
z→a

fi(z) = ai for i = 0, 1, 2, . . . , n. Changing

numbering slightly on Proposition 3.3.6 with fi(z) = zi for i = 0, 1, . . . , n we obtain:

lim
z→a

(cnz
n + · · ·+ c1z + c0) = cna

n + · · ·+ c1a+ c0 = p(a). □

https://en.wikibooks.org/wiki/Calculus/Proofs_of_Some_Basic_Limit_Rules
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Proposition 3.3.10. limit of composite. Suppose f has limit point a and g has limit point L1,

If lim
z→a

f(z) = L1 and lim
y→L1

g(y) = L2 then limz→a g(f(z)) = L2.

Proof: let ε > 0. Since limy→L1 g(y) = L2 we may choose δg > 0 such that 0 < |y−L1| < δg implies
|g(y)−L2| < ε. Likewise, since lim

z→a
f(z) = L1 we may select δf > 0 for which 0 < |z−a| < δf implies

|f(z)−L1| < δg. Suppose 0 < |z − a| < δf and let y = f(z) then |y −L1| = |f(z)−L1| < δg hence
|g(y)−L2| < ε. Thus |g(f(z))−L2| < ε. Therefore, by definition of limit, limz→a g(f(z)) = L2. □

This proposition can be written without use of L1 and L2 but the statement is a bit clunky:

lim
z→a

[g(f(z))] = lim
y→limz→a f(z)

[g(y)] . (3.10)

Notice the proof and application of the composite limit rule both rest on the substitution y = f(z).
When we make the subsitution of y = f(z) we have to swap f(z) for y as we trade g(f(z)) for g(y).
Likewise, we exchange z → a for the corresponding limit in y of y → limz→a f(z).

Proposition 3.3.11. reciprocal function limit.

If a ̸= 0 then limz→a
1
z = 1

a .

Proof: since the proof I have for the real case seems to rely on the ordering of real numbers, I
decided to go a rather different path for this proof. Consider,

f(z) =
1

z
=

x− iy

x2 + y2

thus identify f = u + iv where u(z) =
x

x2 + y2
and v(z) =

−y

x2 + y2
. If zo = xo + iyo ̸= 0 then

x2o + y2o ̸= 0 thus it is clear from multivariate calculus that

lim
z→zo

u(z) =
xo

x2o + y2o
& lim

z→zo
v(z) =

−yo
x2o + y2o

Therefore, by Theorem 3.2.19,

lim
z→zo

1

z
=

xo
x2o + y2o

− i
yo

x2o + y2o
=

xo − iyo
x2o + y2o

=
1

xo + iyo
=

1

zo
. □

□

Proposition 3.3.12. limit of quotient is quotient of limits.

Suppose limz→a f(z) = Lf ∈ C and limz→a g(z) = Lg ∈ C with Lg ̸= 0 then

lim
z→a

f(z)

g(z)
=

limz→a f(z)

limz→a g(z)
.

Proof: Let h(y) = 1
y and note Proposition 3.3.11 provides limy→Lg h(y) = 1

Lg
since Lg ̸= 0.

Furthermore, by Proposition 3.3.10 we find the limit of the composite function h(g(z)) = 1
g(z) is

given by limy→Lg h(y) =
1
Lg

. Proposition 3.3.7 completes the proof since:

lim
z→a

f(z)

g(z)
= lim

z→a

[
f(z) · 1

g(z)

]
=
(
lim
z→a

f(z)
)(

lim
z→a

1

g(z)

)
= Lf · 1

Lg
=

limz→a f(z)

limz→a g(z)
. □



Chapter 4

Real Differential Calculus

This chapter contains a condensed introduction to the theory of real differentiation. I think the
treatment I give in Advanced Calculus1 is better since it embraces and uses normed linear spaces
and some abstract linear algebra. That said, about half the audience of this course has no such
background so I will focus our attention here on functions from Rn to Rm. The linear algebra
needed is simply basic facts about linear transformations, matrix multiplication and the use of
the standard basis for calculation. In short, the same corner of matrix theory which are already
encountered in the previous chapter.

In particular, for F : Rn → Rm we define the differential at p for F to be the linear transformation
dFp : Rn → Rm which best approximates the change in F near p. We quantify best by insisting dFp

satisfy the Frechet quotient. In contrast to first semester calculus, this definition only implicitly
defines the differential. Since dFp is a linear transformation its action can be expressed in terms
of matrix multiplication by the standard matrix; dFp(h) = JF (p)h where JF (p) is the Jacobian
matrix of F . The Jacobian matrix is the standard matrix of the differential; [dFp] = JF (p). The
partial derivative with respect to the j-th Cartesian coordinate is given by dFp(ej) = ∂jF (p) thus
JF = [∂1F | · · · |∂nF ].

It turns out p 7→ dFp is continuous2 provided all the partial derivatives of F are continuous near
p3. Furthermore, we will show that continuous differentiability of partial derivative functions at p
implies differentiability of a function at p. The theorem that continuously differentiable implies dif-
ferentiable is one of the cornerstone theorems of Advanced Calculus. I will go over a two-dimensional
version of it in class, but I include the n-dimensional proof here for the sake of completeness.

Finally, I share a few basic theorems of general calculus on Rn. Linearity, chain and a rather general
product rule justify much of the differential calculus you ever saw in previous coursework.

4.1 Partial Derivatives

This is an easy section. Partial differentiation is simply the process of studying the change in a map
where all but one of the variables is held fixed. I’ll give a slightly more general definition than we
need here. Let me use the notation e1 = (1, 0, . . . , 0) and e2 = (0, 1, 0, . . . , 0) and en = (0, . . . , 0, 1)

1I hope we can offer this course regularly sometime soon, ask if interested.
2in a sense which we’d rather not explain here
3which is easy enough to understand in terms of limits we’ve already discussed
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for the standard basis of unit-vectors in Rn.

Definition 4.1.1. Suppose that U ⊆ Rn is open and F : U ⊆ Rn → Rm is a function. Define

∂F

∂xj
(a) = lim

t→0

F (a+ tej)− F (a)

t

to be the partial derivative of F with respect to xj if the limit above exists for j = 1, 2, . . . , n.

You encountered such partial derivatives in Calculus III when you calculated the partial derivative
vectors of the parametrization map of a surface.

Example 4.1.2. If F (s, t) = (s2 + t3, 2st, s+ 3t) then ∂F
∂s = (2s, 2t, 1) and ∂F

∂t = (3t2, 2s, 3).

The partial derivative of a vector-valued function is once more a vector-valued function. Let
F = (F1, F2, . . . , Fm) denote a function from U ⊆ Rn to Rm. We call Fj : U → R the j-th
component function of F for j = 1, 2, . . . ,m. There is a simple relation between the partial
derivatives of the component functions of a vector-valued function and the partial derivative of the
map as a whole:

Theorem 4.1.3. If F = (F1, . . . , Fm) then

∂F

∂xj
=

(
∂F1

∂xj
,
∂F2

∂xj
, . . . ,

∂Fm

∂xj

)
and the partial derivative of F exists iff the partial derivative of Fj exists for all j = 1, 2, . . . ,m.

Proof: I will omit this proof, it’s not especially interesting to this course. □

Finally, let us appreciate the definition of partial derivatives for f : U ⊆ C → C as that is our main
application. In our usual complex notation, (x, y) = x + iy and F = (F1, F2) = F1 + iF2, but we
typically use f = u+ iv to denote the fact that the complex map f has real component functions
u and v. Observe:

∂f

∂x
=

∂

∂x
(u+ iv) =

∂u

∂x
+ i

∂v

∂x
&

∂f

∂y
=

∂

∂y
(u+ iv) =

∂u

∂y
+ i

∂v

∂y
.

Example 4.1.4. Recall f(z) = ez = ex cos y + iex sin y. Thus

∂f

∂x
=

∂

∂x
(ex cos y) + i

∂

∂x
(ex sin y) = ex cos y + iex sin y = ez,

∂f

∂y
=

∂

∂y
(ex cos y) + i

∂

∂y
(ex sin y) = −ex sin y + iex cos y = iez.

Example 4.1.5. Let f(z) = z2 = (x+ iy)(x+ iy) = x2 − y2 + 2ixy. Thus

∂f

∂x
=

∂

∂x
(x2 − y2) + i

∂

∂x
(2xy) = 2x+ i(2y) = 2z,

∂f

∂y
=

∂

∂y
(x2 − y2) + i

∂

∂y
(2xy) = −2y + i(2x) = 2iz.
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There would seem to be a pattern in the examples above. We find the tools to understand why this
is happening when we study differentiation with respect to a complex variable in the next chapter.
Calculus for partial derivatives of complex-valued functions is rather natural:

Theorem 4.1.6. Suppose f, g : C → C have partial derivatives which exist then

(1.) ∂x(f ± g) = ∂xf ± ∂xg and ∂y(f ± g) = ∂yf ± ∂yg,

(2.) ∂x(fg) = (∂xf)g + f(∂xg) and ∂y(fg) = (∂yf)g + f(∂yg)

Proof: the proof of the product rule (2.) is most interesting here. Suppose f = u+iv and g = a+ib
have partial derivatives which exist. Observe,

fg = (u+ iv)(a+ ib) = ua− vb+ i[ub+ va]

Partial differentiate the RHS of the equation above with respect to x and make a four-fold appli-
cation of the product rule:

∂x(fg) = (∂xu)a+ u∂xa− (∂xv)b− v∂xb+ i[(∂xu)b+ u∂xb+ (∂xv)a+ v∂xa]

= (∂xu+ i∂xv)(a+ ib) + (u+ iv)(∂xa+ i∂xb) ( noting i2 = −1)

= (∂xf)g + f(∂xg)

The proof for the partial derivative with respect to y follows the same pattern. □

What about the composition of complex functions ? Let’s play a bit with another one of our basic
complex functions.

Example 4.1.7. Consider f(z) = sin(z). Use the adding angles formula for sine and the definitions
of hyperbolic sine and cosine to derive the component functions for sine,

sin(z) = sin(x+ iy) = sinx cos(iy) + cosx sin(iy) = sinx cosh y + i cosx sinh y.

On the other hand,

cos(z) = cos(x+ iy) = cosx cos(iy)− sinx sin(iy) = cosx cosh y − i sinx sinh y.

Observe that ∂x sin z = cosx cosh y − i sinx sinh y = cos z and ∂x cos z = − sin z ( check it out).
Now, let’s experiment with a composition of sine with z2 = x2 − y2 + 2ixy. Observe

sin(z2) = sin(x2 − y2) cosh(2xy) + i cos(x2 − y2) sinh(2xy).

Calculate the partial derivative with respect to x,

∂x sin(z
2) = 2x cos(x2 − y2) cosh(2xy) + 2y sin(x2 − y2) sinh(2xy)

+ i
[
−2x sin(x2 − y2) sinh(2xy) + 2y cos(x2 − y2) cosh(2xy)

]
= 2x

[
−i sin(x2 − y2) sinh(2xy) + cos(x2 − y2) cosh(2xy)

]
+ 2y

[
sin(x2 − y2) sinh(2xy) + i cos(x2 − y2) cosh(2xy)

]
= 2(x+ iy)

[
cos(x2 − y2) cosh(2xy)− i sin(x2 − y2) sinh(2xy)

]
= 2z cos(z2).

It would seem there is hope for a chain rule. However, not every compostion goes so nicely. There
is a particularly nice pattern to the functions we’ve studied in this section.
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We’ve seen the apparent chain-rule of ∂x(f(g(z))) = (∂xf)(g(z))∂xg work out if you study the
pattern of the preceding examples in this section. It’s actually a fortunate accident of the formulas
we’ve thus far studied. The chain-rule of advanced calculus for F : R2 → R2 and G : R2 → R2

composed yields
∂(F ◦G)

∂x
(p) =

∂F

∂x
(G(p))

∂G1

∂x
(p) +

∂F

∂y
(G(p))

∂G2

∂x
(p)

Example 4.1.8. Consider f(z) = |z|2 = x2 + y2 and g(z) = z2 = x2 − y2 + 2ixy. Then f(g(z)) =
(x2 − y2)2 + 4x2y2 yields ∂x(f(g(z))) = 4x(x2 − y2) + 8xy2. On the other hand, ∂xf = 2x thus

∂f

∂x
(g(z))

∂g

∂x
= 2(x2 − y2)(2x+ 2iy) ̸= ∂(f ◦ g)

∂x
(z).

In contrast, the chain rule of advanced calculus can be verified here. In our current notation,
g1(z) = x2 − y2 whereas g2(z) = 2xy. Calculate, ∂yf = 2y thus

∂f

∂x
(g(z))

∂g1
∂x

+
∂f

∂y
(g(z))

∂g2
∂x

= 2(x2 − y2)(2x) + 2(2xy)(2y) = 4x(x2 − y2) + 8xy2 =
∂(f ◦ g)

∂x
(z).

Once we have completed the study of complex differentiability in the next chapter the results of
this section will be completely unsurprising.

4.2 Frechet Derivative

The definition below says that △F = F (a+ h)− F (a) ∼= dFa(h) when h is close to zero. I should
mention, going forward in this course, when I say a function is real differentiable I mean that it is
real differentiable in the Frechet sense defined below:

Definition 4.2.1. Suppose that U ⊆ Rn is open and F : U ⊆ Rn → Rm is a function the we say
that F is differentiable at a ∈ U iff there exists a linear mapping dFa : Rn → Rm such that

lim
h→0

[
F (a+ h)− F (a)− dFa(h)

∥h∥

]
= 0.

In such a case we call the linear mapping dFa the differential at a.

Partial derivatives are defined in the usual fashion. If F : dom(F ) ⊆ Rn → Rm we define, for such
points a ∈ dom(F ) as the limit exists,

∂F

∂xi
(a) = lim

h→0

F (a+ hei)− F (a)

h
.

Here ei ∈ Rn has all components 0 except for the i-th component which is 1. The connection of
the differential to partial derivatives is a bit subtle. On the one hand, if the differential exists then
partial derivatives exist and allow a nice formula for the differential.

Theorem 4.2.2. If F : dom(F ) ⊆ Rn → Rm is differentiable at p then the partial derivatives ∂F
∂xi

for i = 1, 2, . . . , n all exist at p and dFp(h) = JF (p)h where, suppressing p, JF =
[
∂F
∂x1

∣∣ ∂F
∂x2

∣∣ · · · ∣∣ ∂F∂xn

]
.

In contrast, it is possible for JF to exist at p and yet dFp fails to exist! We explore some of the
nefarious ways this may occur and then offer a remedy in the following subsection. But first let me
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share some explicit examples of the Jacobian matrix.

You may recall the notation from calculus III at this point, omitting the a-dependence,

∇Fj = grad(Fj) =
[
∂1Fj , ∂2Fj , · · · , ∂nFj

]T
So if the derivative exists we can write it in terms of a stack of gradient vectors of the component
functions: (I used a transpose to write the stack side-ways),

F ′ =
[
∇F1|∇F2| · · · |∇Fm

]T
Finally, just to collect everything together,

F ′ =


∂1F1 ∂2F1 · · · ∂nF1

∂1F2 ∂2F2 · · · ∂nF2
...

...
...

...
∂1Fm ∂2Fm · · · ∂nFm

 =
[
∂1F | ∂2F | · · · | ∂nF

]
=


(∇F1)

T

(∇F2)
T

...

(∇Fm)T



4.2.1 Examples of Jacobian Matrices

Example 4.2.3. Suppose f(z) = z2 defines a mapping on R2 = C. If z = x + iy then z2 =
x2 − y2 + 2xyi. Real notation for f reads f(x, y) = (x2 − y2, 2xy) thus

Jf = [∂xf |∂yf ] =
[
2x −2y
2y 2x

]
Example 4.2.4. If f(x, y) = (x2 + y2, 2xy) then

Jf = [∂xf |∂yf ] =
[
2x 2y
2y 2x

]
.

Example 4.2.5. Let f(z) = ez where z = x + iy ∈ C. Recall ez = ex(cos y + i sin y) hence
f(x, y) = (ex cos y, ex sin y) and

Jf = [∂xf |∂yf ] =
[
ex cos y −ex sin y
ex sin y ex cos y

]
Example 4.2.6. Let f(z) = 3z + z̄ where z = x + iy and z̄ = x − iy in C. In real notation,

f(x, y) = (4x, 2y) thus Jf =

[
4 0
0 2

]
.

The examples which follow may help you understand the Jacobian matrix in better depth. Often
we understand math more completely when we study more than our mere area of concentration.
This is why school math teachers should study math far beyond highschool algebra. Abstraction
leads to mastery when properly appreciated.

Example 4.2.7. Let f(t) = (t, t2, t3) then f ′(t) = (1, 2t, 3t2). In this case we have

f ′(t) = [dft] =

 1
2t
3t2


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Example 4.2.8. Let f(x⃗, y⃗) = x⃗ · y⃗ be a mapping from R3 × R3 → R. I’ll denote the coordinates
in the domain by (x1, x2, x3, y1, y2, y3) thus f(x⃗, y⃗) = x1y1 + x2y2 + x3y3. Calculate,

[df(x⃗,y⃗)] = ∇f(x⃗, y⃗)T = [y1, y2, y3, x1, x2, x3]

Example 4.2.9. Suppose F (x, y) = (x2 + y2, xy, x+ y) we find the Jacobian is a 3× 2 matrix:

JF =

[
∂F

∂x

∣∣∣∣∂F∂y
]
=

 2x 2y
y x
1 1

 .

Example 4.2.10. When other variables are used we still follow the same pattern. Suppose that
F (r, θ) = (r cos θ, r sin θ). We calculate,

JF = [∂rF |∂θF ] =

[
cos θ −r sin θ
sin θ r cos θ

]
Example 4.2.11. Let f(x, y, z) = (x+ y, y + z, x+ z, xyz). You can calculate,

[df(x,y,z)] =


1 1 0
0 1 1
1 0 1
yz xz xy


Example 4.2.12. Let f(x, y, z) = xyz. You can calculate,

[df(x,y,z)] =
[
yz xz xy

]
Example 4.2.13. Let f(x, y, z) = (xyz, 1− x− y). You can calculate,

[df(x,y,z)] =

[
yz xz xy
−1 −1 0

]

4.2.2 Frechet derivative’s relation to the usual derivative of a function

The discussion below connects the difference quotient definition for the derivative with the Frechet
quotient introduced above. This subsection can be skipped in a first reading.

Example 4.2.14. Suppose f : dom(f) ⊆ R → R is differentiable at x. It follows that there exists

a linear function dfx : R → R such that limh→0
f(x+h)−f(x)−dfx(h)

|h| = 0. Note that

lim
h→0

f(x+ h)− f(x)− dfx(h)

|h|
= 0 ⇔ lim

h→0±

f(x+ h)− f(x)− dfx(h)

|h|
= 0.

In the left limit h → 0− we have h < 0 hence |h| = −h. On the other hand, in the right limit h → 0+

we have h > 0 hence |h| = h. Thus, differentiability suggests that limh→0±
f(x+h)−f(x)−dfx(h)

±h = 0.

But we can pull the minus out of the left limit to obtain limh→0−
f(x+h)−f(x)−dfx(h)

h = 0. Therefore,
after an algebra step, we find:

lim
h→0

[
f(x+ h)− f(x)

h
− dfx(h)

h

]
= 0.
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Linearity of dfx : R → R implies there exists m ∈ R1×1 = R such that dfx(h) = mh. Observe that

lim
h→0

dfx(h)

h
= lim

h→0

mh

h
= m.

It is a simple exercise to show that if lim(A − B) = 0 and lim(B) exists then lim(A) exists and

lim(A) = lim(B). Identify A = f(x+h)−f(x)
h and B = dfx(h)

h . Therefore,

m = lim
h→0

f(x+ h)− f(x)

h
.

Consequently, we find the 1 × 1 matrix m of the differential is precisely f ′(x) as we defined it via

a difference quotient in first semester calculus. In summary, we find dfx(h) = f ′(x)h .

4.3 Continuous Differentiability

We have noted that differentiablility on some set U implies all sorts of nice formulas in terms of
the partial derivatives. Curiously the converse is not quite so simple. It is possible for the partial
derivatives to exist on some set and yet the mapping may fail to be differentiable. We need an extra
topological condition on the partial derivatives if we are to avoid certain pathological4 examples.

Example 4.3.1. I found this example in Hubbard’s advanced calculus text(see Ex. 1.9.4, pg. 123).
It is a source of endless odd examples, notation and bizarre quotes. Let f(x) = 0 and

f(x) =
x

2
+ x2 sin

1

x

for all x ̸= 0. I can be shown that the derivative f ′(0) = 1/2. Moreover, we can show that f ′(x)
exists for all x ̸= 0, we can calculate:

f ′(x) =
1

2
+ 2x sin

1

x
− cos

1

x

Notice that dom(f ′) = R. Note then that the tangent line at (0, 0) is y = x/2.

You might be tempted to say then that this function is increasing at a rate of 1/2 for x near zero.
But this claim would be false since you can see that f ′(x) oscillates wildly without end near zero.
We have a tangent line at (0, 0) with positive slope for a function which is not increasing at (0, 0)
(recall that increasing is a concept we must define in a open interval to be careful). This sort of
thing cannot happen if the derivative is continuous near the point in question.

4”pathological” as in, ”your clothes are so pathological, where’d you get them?”
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The one-dimensional case is really quite special, even though we had discontinuity of the derivative
we still had a well-defined tangent line to the point. However, many interesting theorems in calculus
of one-variable require the function to be continuously differentiable near the point of interest. For
example, to apply the 2nd-derivative test we need to find a point where the first derivative is zero
and the second derivative exists. We cannot hope to compute f ′′(xo) unless f

′ is continuous at xo.
The next example is sick.

Example 4.3.2. Let us define f(0, 0) = 0 and

f(x, y) =
x2y

x2 + y2

for all (x, y) ̸= (0, 0) in R2. It can be shown that f is continuous at (0, 0). Moreover, since
f(x, 0) = f(0, y) = 0 for all x and all y it follows that f vanishes identically along the coordinate
axis. Thus the rate of change in the e1 or e2 directions is zero. We can calculate that

∂f

∂x
=

2xy3

(x2 + y2)2
and

∂f

∂y
=

x4 − x2y2

(x2 + y2)2

If you examine the plot of z = f(x, y) you can see why the tangent plane does not exist at (0, 0, 0).

Notice the sides of the box in the picture are parallel to the x and y axes so the path considered
below would fall on a diagonal slice of these boxes5. Consider the path to the origin t 7→ (t, t) gives
fx(t, t) = 2t4/(t2+ t2)2 = 1/2 hence fx(x, y) → 1/2 along the path t 7→ (t, t), but fx(0, 0) = 0 hence
the partial derivative fx is not continuous at (0, 0). In this example, the discontinuity of the partial
derivatives makes the tangent plane fail to exist.

One might be tempted to suppose that if a function is continuous at a given point and if all
the possible directional derivatives exist then differentiability should follow. It turns out this is
not sufficient since continuity of the function does not imply some continuity along the partial
derivatives. For example:

Example 4.3.3. Let us define f : R2 → R by f(x, y) = 0 for y ̸= x2 and f(x, x2) = x. I invite the
reader to verify that this function is continuous at the origin. Moreover, consider the directional
derivatives at (0, 0). We calculate, if v = ⟨a, b⟩

Dvf(0, 0) = lim
h→0

f(0 + hv)− f(0)

h
= lim

h→0

f(ah, bh)

h
= lim

h→0

0

h
= 0.

5the argument to follow stands alone, you don’t need to understand the picture to understand the math here, but
it’s nice if you do
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To see why f(ah, bh) = 0, consider the intersection of r⃗(h) = (ha, hb) and y = x2 the intersection
is found at hb = (ha)2 hence, noting h = 0 is not of interest in the limit, b = ha2. If a = 0
then clearly (ah, bh) only falls on y = x2 at (0, 0). If a ̸= 0 then the solution h = b/a2 gives
f(ha, hb) = ha a nontrivial value. However, as h → 0 we eventually reach values close enough
to (0, 0) that f(ah, bh) = 0. Hence we find all directional derivatives exist and are zero at (0, 0).
Let’s examine the graph of this example to see how this happened. The pictures below graph the
xy-plane as red and the nontrivial values of f as a blue curve. The union of these forms the graph
z = f(x, y).

Clearly, f is continuous at (0, 0) as I invited you to prove. Moreover, clearly z = f(x, y) cannot be
well-approximated by a tangent plane at (0, 0, 0). If we capture the xy-plane then we lose the blue
curve of the graph. On the other hand, if we use a tilted plane then we lose the xy-plane part of
the graph.

The moral of the story in the last two examples is simply that derivatives at a point, or even all
directional derivatives at a point do not necessarily tell you much about the function near the point.
This much is clear: something else is required if the differential is to have meaning which extends
beyond one point in a nice way. Therefore, we consider the following:

It would seem the trouble has something to do with discontinuity in the derivative6.

Definition 4.3.4.

A mapping F : U ⊆ Rn → Rm is continuously differentiable at a ∈ U iff the partial
derivative mappings DjF exist on an open set containing a and are continuous at a.

The import of the theorem below is that we can build the tangent plane from the Jacobian matrix
provided the partial derivatives exist near the point of tangency and are continuous at the point
of tangency. This is a very nice result because the concept of the linear mapping is quite abstract
but partial differentiation of a given mapping is often easy. The proof that follows here is found in
many texts, in particular see C.H. Edwards Advanced Calculus of Several Variables on pages 72-73.
I will probably give a simplified two-dimensional version of this proof in lecture.

6see commentary near Equations 2.18 and 2.19 in my Advanced Calculus notes for why the term continuously
differentiable is quite natural

http://www.supermath.info/AdvancedCalculus2017.pdf
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Theorem 4.3.5.

If F : Rn → Rm is continuously differentiable at a then F is differentiable at a

Proof: We give a proof form = 1 since the result then extends tom > 1 by the vector limit theorem.
Consider a+h sufficiently close to a that all the partial derivatives of F exist. Furthermore, consider
going from a to a+ h by traversing a hyper-parallel-piped travelling n-perpendicular paths:

a︸︷︷︸
po

→ a+ h1e1︸ ︷︷ ︸
p1

→ a+ h1e1 + h2e2︸ ︷︷ ︸
p2

→ · · · a+ h1e1 + · · ·+ hnen︸ ︷︷ ︸
pn

= a+ h.

Let us denote pj = a+ bj where clearly bj ranges from bo = 0 to bn = h and bj =
∑j

i=1 hiei. Notice
that the difference between pj and pj−1 is given by:

pj − pj−1 = a+

j∑
i=1

hiei − a−
j−1∑
i=1

hiei = hjej

Consider then the following identity,

F (a+ h)− F (a) = F (pn)− F (pn−1) + F (pn−1)− F (pn−2) + · · ·+ F (p1)− F (po)

This is to say the change in F from po = a to pn = a+ h can be expressed as a sum of the changes
along the n-steps. Furthermore, if we consider the difference F (pj)−F (pj−1) you can see that only
the j-th component of the argument of F changes. Since the j-th partial derivative exists on the
interval for hj considered by construction we can apply the mean value theorem to locate cj such
that:

hj∂jF (pj−1 + cjej) = F (pj)− F (pj−1)

Therefore, using the mean value theorem for each interval, we select c1, . . . cn with:

F (a+ h)− F (a) =
n∑

j=1

hj∂jF (pj−1 + cjej)

It follows we should propose L to satisfy the definition of Frechet differentation as follows:

L(h) =
n∑

j=1

hj∂jF (a)

It is clear that L is linear (in fact, perhaps you recognize this as L(h) = (∇F )(a) •h). Let us
prepare to study the Frechet quotient,

F (a+ h)− F (a)− L(h) =

n∑
j=1

hj∂jF (pj−1 + cjej)−
n∑

j=1

hj∂jF (a)

=

n∑
j=1

hj
[
∂jF (pj−1 + cjej)− ∂jF (a)︸ ︷︷ ︸

gj(h)

]
Observe that pj−1+cjej → a as h → 0. Thus, gj(h) → 0 by the continuity of the partial derivatives
at x = a. Finally, consider the Frechet quotient:

lim
h→0

F (a+ h)− F (a)− L(h)

||h||
= lim

h→0

∑
j hjgj(h)

||h||
= lim

h→0

∑
j

hj
||h||

gj(h)
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Notice |hj | ≤ ||h|| hence
∣∣∣∣ hj

||h||

∣∣∣∣ ≤ 1 and

0 ≤
∣∣∣∣ hj||h||

gj(h)

∣∣∣∣ ≤ |gj(h)|

Apply the squeeze theorem to deduce each term in the sum ⋆ limits to zero. Consquently, L(h)
satisfies the Frechet quotient and we have shown that F is differentiable at x = a and the differen-
tial is expressed in terms of partial derivatives as expected; dFx(h) =

∑n
j=1 hj∂jF (a) □.

4.4 Linear Algebra of the Plane

Let us discuss linear algebra for the plane. I’ll begin with the matrix-column product:[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]

In my notation,

[
x
y

]
= (x, y) for ease of typesetting. Define e1 = (1, 0) and e2 = (0, 1) these form

the standard basis for R2. Notice:[
a b
c d

] [
1
0

]
=

[
a
c

]
= Col1(A) &

[
a b
c d

] [
0
1

]
=

[
b
d

]
= Col2(A)

where I have introduced the matrix variable A =

[
a b
c d

]
and the column notation. To summarize,

to find the j-th column of a matrix we simply multiply by the j-th standard basis vector:

Col1(A) = Ae1 & Col2(A) = Ae2.

We should also appreciate the matrix column product is really a linear combination of the
columns in the following sense:[

a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
= x

[
a
c

]
+ y

[
b
d

]
.

Concisely, A(x, y) = xCol1(A) + yCol2(A). Next, let us define a linear transformation on R2, if
T : R2 → R2 is a function for which T (v + w) = T (v) + T (w) and T (cv) = cT (v) for all c ∈ R and
v, w ∈ R2 then T is a linear transformation. Matrices and linear transformations are essentially
interchangeable. Consider the following calculation:

T (x, y) = T (x(1, 0) + y(0, 1))

= T (xe1 + ye2)

= xT (e1) + yT (e2)

= [T (e1)|T (e2)]
[
x
y

]
where [T (e1)|T (e2)] is the 2 × 2 matrix formed by concatenating the column vectors T (e1) and
T (e2). Let us make a formal definition on this point:
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Definition 4.4.1.

If T : R2 → R2 is a linear transformation then it has standard matrix denoted [T ] which
is the 2× 2 matrix given by [T (e1)|T (e2)].

Let me give a couple examples to clear up any mystery.

Example 4.4.2. If T (x, y) = (3x− y, 2x+ 7y) then T (1, 0) = (3, 2) and T (0, 1) = (−1, 7) thus

[T ] =

[
3 −1
2 7

]

Remember, my notation is a bit sneaky, I use (1, 0) =

[
1
0

]
etc.

Example 4.4.3. If S(x, y) = (4x+ 5y, 6y) then S(1, 0) = (4, 0) and S(0, 1) = (5, 6) thus

[S] =

[
4 5
0 6

.

]
We can compose linear transformations and the result is a new linear transformation. Let us
compose the linear transformations in the previous pair of examples and see how that works.

Example 4.4.4. Once more define S(x, y) = (4x+ 5y, 6y) and T (x, y) = (3x− y, 2x+ 7y),

(S ◦T )(x, y) = S(T (x, y)) = S(3x− y, 2x+ 7y)

= (4(3x− y) + 5(2x+ 7y), 6(2x+ 7y))

= (22x+ 31y, 12x+ 42y).

likewise,

(T ◦S)(x, y) = T (S(x, y)) = T (4x+ 5y, 6y)

= (3(4x+ 5y)− (6y), 2(4x+ 5y) + 7(6y))

= (12x+ 9y, 8x+ 52y).

Notice that [S ◦T ] =

[
22 31
12 42

]
whereas [T ◦S] =

[
12 9
8 52

]
. Apparently composition of linear

maps need not commute.

Definition 4.4.5.

If A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
then we define the matrix AB by

(AB)ij =

2∑
k=1

AikBkj = Rowi(A) •Colj(B) for 1 ≤ i, j ≤ 2.

Equivalently, if A is a 2×2 matrix and B = [B1|B2] where B1, B2 are columns of the 2×2 matrix B
then AB = A[B1|B2] = [AB1|AB2]. I usually give this identity as a homework when I teach linear
algebra. It’s very important to understand how matrices apply to systems of differential equations.
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Example 4.4.6. Let A =

[
3 −1
2 7

]
and B =

[
4 5
0 6

.

]
. Calculate,

AB =

[
3 −1
2 7

] [
4 5
0 6

.

]
=

[
(3,−1) • (4, 0) (3,−1) • (5, 6)
(2, 7) • (4, 0) (2, 7) • (5, 6)

]
=

[
12 9
8 52

]
On the other hand,

BA =

[
4 5
0 6

.

] [
3 −1
2 7

]
=

[
(4, 5) • (3, 2) (4, 5) • (−1, 7)
(0, 6) • (3, 2) (0, 6) • (−1, 7)

]
=

[
22 31
12 42

]
These are the matrices from Example 4.4.4 and we see [S ◦T ] = [S][T ] and [T ◦S] = [T ][S].

In fact, we defined matrix multiplication as we did in order that the matrix of a composite be the
product of the standard matrices of the composed maps. If we define the sum, difference and scalar
multiple of linear transformations S, T by the usual point-wise rules then S + T and S − T and cT
are linear maps where let c ∈ R. In summary:

Theorem 4.4.7.

If S : R2 → R2 and T : R2 → R2 are linear transformations and c ∈ R then S ± T , cS and
S ◦T are linear transformations with

[S + T ] = [S] + [T ] & [S − T ] = [S]− [T ] & [cS] = c[S] & [S ◦T ] = [S][T ].

Proof: I’ll only prove the most interesting one:

[S ◦T ] = [(S ◦T )(e1)|(S ◦T )(e2)]

= [S(T (e1))|S(T (e2))]
= [[S]T (e1)|[S]T (e2)]
= [S][T (e1)|T (e2)]
= [S][T ].

The proofs for S ± T and cT are similar, but easier. □

4.4.1 What about complex numbers ?

We can show that multiplication by a complex number α = a + ib naturally induces a linear
transformation on R2. Recall once more our usual notation (x, y) = x + iy which means we are
identifying 1 = (1, 0) and i = (0, 1). Define

Lα(v) = αv

If c ∈ R and v ∈ R2 then Lα(cv) = α(cv) = cαv = cLα(v). Likewise, for v, w ∈ R2 notice
Lα(v + w) = α(v + w) = αv + αw = Lα(v) + Lα(w). Therefore, Lα : R2 → R2 defines a linear
transformation for any α ∈ C. We should record this notation for future reference:
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Definition 4.4.8.

Let α ∈ C then we define Lα : R2 → R2 by complex multiplication by α; Lα(v) = αv for
all v ∈ R2. Let T be a linear transformation on R2, if there exists α ∈ C for which T = Lα

then we say T is complex linear.

Are all linear transformations on R2 complex linear ? What is special about complex linear maps?
The following theorem encapsulates the essential data about complex linear maps on the plane:

Theorem 4.4.9.

If T : R2 → R2 is a linear transformation then the following are equivalent:

(1.) T is complex linear,

(2.) T (cv) = cT (v) for all c ∈ C and v ∈ R2,

(3.) the standard matrix of T has the form [T ] =

[
a −b
b a

]
where T (1) = a+ib.

(4.) the standard matrix of [T ] = [z|iz] where z = T (1).

Proof: notice the equivalence of (3.) and (4.) is immediate once we make the necessary notational

identifications of

[
a
b

]
= a+ ib since i(a+ ib) = ia− b =

[
−b
a

]
. Hence (3.) is equivalent to (4.)

as we know 1 = e1 and T (e1) gives the first column of the standard matrix.

Suppose (1.) is true; suppose T = Lα for some α ∈ C. Let c ∈ C and v ∈ R2 and calculate:

T (cv) = Lα(cv) = α(cv) = cαv = cLα(v) = cT (v). (4.1)

Conversely, suppose (2.) is true. Let v ∈ R2 = C and notice v = v(1) and calculate,

T (v) = T (v(1)) = vT (1) = LT (1)(v).

Thus T = LT (1) which means T = Lα where α = T (1). Thus T is complex linear and we’ve shown
(1.) and (2.) are equivalent.

Next, suppose (2.) is true and let a, b ∈ R such that T (1) = a+ ib. Recall the standard matrix of
T is given by [T (e1)|T (e2)]. Since e1 = 1 and e2 = i in our context, by assumption of (2.), we find
T (i) = T (i(1)) = iT (1) hence

[T ] = [T (1)|iT (1)] = [a+ ib|i(a+ ib)] =

[
a −b
b a

]

Conversely, if [T ] =

[
a −b
b a

]
then we calculate

T (x, y) =

[
a −b
b a

] [
x
y

]
=

[
ax− by
bx+ ay

]
= (ax− by) + i(bx+ ay) = (a+ ib)(x+ iy)

thus T = La+ib and it follows from Equation 4.1 that T (cv) = cT (v) for all c ∈ C and v ∈ R2. □

The proof above is not intended to be logically minimal. I’m trying to show how we can go from
any one of the calculational perspectives to another. It turns out this simple linear algebra is key
to understanding the structure of the complex derivative in the next chapter.
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Finally, let me complete this brief tour of linear algebra with the explicit isomorphism which links
complex numbers and their real 2× 2 matrices representation.

Theorem 4.4.10. The regular representation of C

Let M(x+ iy) =

[
x −y
y x

]
then M(1) =

[
1 0
0 1

]
and

M(zw) = M(z)M(w) & M(z + w) = M(z) +M(w).

Furthermore, det(M(z)) = |z|2 and (M(z))T = M(z) and for z ̸= 0, M(z−1) = (M(z))−1.

Proof: these seem like good homework exercises. I will focus on the statement about inverses since
perhaps there exists a student who does not yet know the well-known formula for the 2× 2 inverse,[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
Applying this to M(x+ iy) we find

(M(x+ iy))−1 =
1

x2 + y2

[
x y
−y x

]
= M

(
x− iy

x2 + y2

)
= M(z−1).

I leave the other assertions to the interested reader. □

So, in summary, a linear map on R2 is a complex linear map if and only if it has a standard matrix
which is in the regular representation of the complex number system.
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Chapter 5

Complex Differentiability

In this chapter we explore four seemingly different definitions of the complex derivative1. I would
wager the difference quotient definition is most popular, however each of the remaining definitions
serves to add insight and clarify certain proofs and discussions. Ironically, the difference quotient
definition is the one definition which does not nicely generalize to the calculus of a unital associative
algebra. To summarize what we learn here briefly: the rules of complex calculus closely mirror that
of the usual real calculus in terms of rules like the product, quotient and chain rule. However,
not all functions on the plane are complex differentiable. In fact, most real differentiable maps on
the plane do not have a complex derivative which exists. Complex differentiability of a map on
the plane is a very strong condition. Understanding the difference between real differentiability
and complex differentiability is one of the central goals of this course. The structure of a complex
differentiable maps, or holomorphic map on a domain has many facets. In this chapter we only seek
to answer the basic question of when a map on the plane is complex differentiable. The beautiful
features of such maps are investigated in future chapters.

5.1 difference quotient definition

If you recall the definition of derivative from Calculus I then this definition is totally unsurprising.
I decided to go ahead and share the terminology holomorphic and entire from the outset. Both
of those terms are just ways of expressing a function is complex differentiable on a subset of the
complex plane.

Definition 5.1.1. If lim
z→zo

f(z)− f(zo)

z − zo
exists then we say f is complex differentiable at zo

and we denote f ′ (zo) = lim
z→zo

f(z)− f(zo)

z − zo
. Furthermore, the mapping z 7→ f ′(z) is the complex

derivative of f with domain formed by all such z as f ′(z) exists.

1If you’re interested, I can show how one of these approaches readily allows generalization of complex analysis to
other algebras beyond C. For example, without much more work, we can begin to calculate derivatives with respect
to the hyperbolic variables built over the hyperbolic numbers R⊕ jR where j2 = 1. That is not part of the required
content of this course, but, it seems to be an open area where a student might take a stab at some math research. In
2012-2013, W. Spencer Leslie, Minh L. Nguyen, and Bailu Zhang worked with me to produce Laplace Equations for
Real Semisimple Associative Algebras of Dimension 2, 3 or 4 published in the 2013 report Topics from the 8th
Annual UNCG Regional Mathematics and Statistics Conference. Later still I worked out much of Calculus
II with Daniel Freese and Differential Equations with Nathan BeDell. Khang Nguyen improved our basic estimates
for norms systematically accross an interesting collection of algebras. In short, I have been blessed to work with some
very creative students in the past and I’m usually interested in exploring new generalizations to the A-calculus.
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Given the complete parallel of limit laws over C as compared to limit laws over R we can replicate
all the standard proofs for the linearity, product, quotient and chain rules. I’ll forego all but a
token example or two since I have proofs given for those properties in a formalism you probably
have not before encountered. Arguably a better formalism, the formalism of Caratheodory.

Example 5.1.2. Let f(z) = z for all z ∈ C. Consider zo ∈ C and calculate:

f ′(zo) = lim
z→zo

f(z)− f(zo)

z − zo
= lim

z→zo

z − zo
z − zo

= lim
z→zo

1 = 1 ⇒ d

dz
(z) = 1.

Example 5.1.3. Let f(z) = 1
z and let zo ̸= 0. Consider,

f ′(zo) = lim
z→zo

1
z − 1

zo

z − zo
= lim

z→zo

zo − z

zzo(z − zo)
= lim

z→zo

−1

zzo
=

−1

z2o
⇒ d

dz

(
1

z

)
=

−1

z2
.

Example 5.1.4. Let f(z) = z then the difference quotient is
z − a

z − a
. If we consider the path z = a+t

where t ∈ R then
z − a

z − a
=

a+ t− a

a+ t− a
= 1

hence as t → 0 we find the difference quotient tends to 1 along this horizontal path through a. On
the other hand, if we consider the path z = a+ it then

z − a

z − a
=

a− it− a

a+ it− a
= −1

hence as t → 0 we find the difference quotient tends to −1 along this vertical path through a. But,
this shows the limit z → a of the difference quotient does not exist. Moreover, as a was an arbitrary
point in C we have shown that f(z) = z is nowhere complex differentiable on C.

Example 5.1.5. Let f(z) = zz̄ and consider zo ̸= 0,

f ′(zo) = lim
z→zo

zz̄ − zoz̄o
z − zo

Let zo = xo + iyo and consider the path limit given by z(t) = xo + i(t+ yo) as t → 0,

zz̄ − zoz̄o
z − zo

=
x2o + (t+ yo)

2 − (x2o + y2o)

xo + i(t+ yo)− (xo + iyo)
=

t2 + 2tyo
it

= −i(t+ 2yo) → −2iyo.

Yet, if we consider the horizontal path limit approaching xo + iyo given by z(t) = xo + t + iyo as
t → 0,

zz̄ − zoz̄o
z − zo

=
(xo + t)2 + y2o − (x2o + y2o)

xo + t+ iyo − (xo + iyo)
=

t2 + 2txo
t

= (t+ 2xo) → 2xo.

Since xo + iyo ̸= 0 it is impossible for −2iyo = 2xo for this would mean a purely real quantity was
nontrivially imaginary. Therefore, f ′(zo) does not exist. This rather nice function f(x + iy) =
x2 + y2 can only hope to be complex differentiable at zo = 0. I’ll postpone examining zo = 0 until
we have better tools.

Enough suffering. Let us go on to greener pastures.
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5.2 Caratheodory definition

The idea we pursue here is that we can prove most things about differentiation through the use
of linearizations. To be careful, we’ll use the theorem of Caratheodory2 to make our linearization
arguments a bit more rigorous.

The central point is Caratheodory’s Theorem which gives us an exact method to implement the
linearization. Consider a function f defined near z = a, we can write for z ̸= a

f(z)− f(a) =

[
f(z)− f(a)

z − a

]
(z − a).

If f is differentiable at a then as z → a the difference quotient f(z)−f(a)
z−a tends to f ′(a) and we

arrive at the approximation f(z)− f(a) ≈ f ′(a)(z − a).

Theorem 5.2.1. Caratheodory’s Theorem: Let f : D ⊆ C → C be a function with a ∈ D a
limit point. Then f is complex differentiable at a iff there exists a function ϕ : D → C with the
following two properties:

(1.) ϕ is continuous at a, (2.) f(z)− f(a) = ϕ(z)(z − a) for all z ∈ D.

We say a function ϕ with properties as above is the difference quotient function of f at z = a.

Proof:( ⇒) Suppose f is differentiable at a. Define ϕ(a) = f ′(a) and set ϕ(z) = f(z)−f(a)
z−a for z ̸= a.

Differentiability of f at a yields:

lim
z→a

f(z)− f(a)

z − a
= f ′(a) ⇒ lim

z→a
ϕ(z) = ϕ(a).

thus (1.) is true. Finally, note if z = a then f(z) − f(a) = ϕ(z)(z − a) as 0 = 0. If z ̸= a then

ϕ(z) = f(z)−f(a)
z−a multiplied by (z − a) gives f(z)− f(a) = ϕ(z)(z − a). Hence (2.) is true.

( ⇐) Conversely, suppose there exists ϕ : I → C with properties (1.) and (2.). Note (2.) implies

ϕ(z) = f(z)−f(a)
z−a for z ̸= a hence limz→a

f(z)−f(a)
z−a = limz→a ϕ(z). However, ϕ is continuous at a

thus limz→a ϕ(z) = ϕ(a). We find f is differentiable at a and f ′(a) = ϕ(a). □

Here’s how we use the theorem: If f is differentiable at a the there exists ϕ such that f(z) =
f(a) + ϕ(z)(z − a) and ϕ(a) = f ′(a). Conversely, if we can supply a function fitting the properties
of ϕ then it suffices to prove complex differentiability of the given function at the point about which
ϕ is based. Let us derive the product rule using this technology.

Suppose f and g are complex differentiable at a and ϕf , ϕg are the difference quotient functions of
f and g respective. Then,

f(z) = f(a) + ϕf (z)(z − a) & g(z) = g(a) + ϕg(z)(z − a)

To derive the linearization of (fg)(z) = f(z)g(z) we need only multiply:

f(z)g(z) = [f(a) + ϕf (z)(z − a)] [g(a) + ϕg(z)(z − a)]

= f(a)g(a) +
[
ϕf (z)g(a) + f(a)ϕg(z) + ϕf (z)ϕg(z)(z − a)︸ ︷︷ ︸

ϕfg(z)

]
(z − a)

2This section was inspired in large part from Bartle and Sherbert’s third edition of Introduction to Real Analysis
and is an adaptation of the corresponding real theorem in my calculus I notes.
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Observe that ϕfg defined above is manifestly continuous as it is the sum and product of continuous
functions and by construction (fg)(z)−(fg)(a) = ϕfg(z)(z−a). The product rule is then determined
from considering z → a for the difference quotient function of fg:

lim
z→a

ϕfg(z) = lim
z→a

[
ϕf (z)g(a) + f(a)ϕg(z) + ϕf (z)ϕg(z)(z − a)

]
= f ′(a)g(a) + f(a)g′(a).

It is a simple exercise to show d
dz (c) = 0 where c ∈ C hence as an immediate offshoot of the product

rule we find (cf)′(a) = cf ′(a).

The quotient rule can also be derived by nearly direct algebraic manipulation of Caratheodory’s
criteria: suppose f, g are complex differentiable at z = a and g(a) ̸= 0. Define h = f/g and note
hg = f and consider,

h(z)
[
g(a) + ϕg(z)(z − a)

]
= f(a) + ϕf (z)(z − a).

Adding zero,

[h(z)− h(a) + h(a)]
[
g(a) + ϕg(z)(z − a)

]
= f(a) + ϕf (z)(z − a).

We find,

[h(z)− h(a)]
[
g(a) + ϕg(z)(z − a)

]
= f(a) + ϕf (z)(z − a)− h(a)

[
g(a) + ϕg(z)(z − a)

]
We may divide by g(a) + ϕg(z)(z − a) = g(z) as g(a) ̸= 0 and continuity of g implies g(z) ̸= 0 for
z near a.

h(z)− h(a) =
f(a) + ϕf (z)(z − a)− h(a)

[
g(a) + ϕg(z)(z − a)

]
g(a) + ϕg(z)(z − a)

Notice f(a) = h(a)g(a) so we obtain the following simplification by multiplying by g(a)/g(a) and
factoring out the z − a in the numerator:

h(z)− h(a) =

[
ϕf (z)g(a)− f(a)ϕg(z)

g2(a) + g(a)ϕg(z)(z − a)

]
(z − a)

By inspection of the expression above it is simple to see we should define:

ϕh(z) =
ϕf (z)g(a)− f(a)ϕg(z)

g2(a) + g(a)ϕg(z)(z − a)

which is clearly continuous near z = a and we find:

h′(a) = lim
z→a

ϕh(z) = lim
z→a

ϕf (z)g(a)− f(a)ϕg(z)

g2(a) + g(a)ϕg(z)(z − a)
=

f ′(a)g(a)− f(a)g′(a)

g2(a)
.

I leave the chain rule as a homework exercise. That said, have no fear, it’s not so bad as I have the
proof given for R in my posted calculus I lecture notes. See Section 4.9 of Calculus !. At this point
I think it is worthwhile to compile our work thus far (including the work you will do in homework)

Theorem 5.2.2. Given functions f, g, w which are complex differentiable (and nonzero for g in
the quotient) we have:

d

dz

(
f + g

)
=

df

dz
+

dg

dz
,

d

dz

(
cf
)
= c

df

dz
,

d

dz

(
f(w)

)
=

df

dw

dw

dz

where the notation df
dw indicates we take the derivative function of f and evaluate it at the value of

the inside function w; that is, df
dw (z) = f ′(w(z)).

http://www.supermath.info/OldschoolCalculusI2013.pdf
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Now I turn to specific functions. We should like to know how to differentiate the functions we
introduced in the previous chapter. I will continue to showcase the criteria of Caratheodory.
Sometimes it is easier to use Definition 5.1.1 directly and you can compare with a standard real
calculus text to see which argument is easier.

Example 5.2.3. Let f(z) = c where c is a constant. Note f(z) = c+ 0(z − a) hence as ϕ(z) = 0
is continuous and limz→a ϕ(z) = 0 it follows by Caratheodory’s criteria that d

dz (c) = 0.

Example 5.2.4. Let f(z) = z. Note f(z) = a + 1(z − a) hence as ϕ(z) = 1 is continuous and
limz→a ϕ(z) = 1 it follows by Caratheodory’s criteria that d

dz (z) = 1.

Example 5.2.5. Let f(z) = z2. Note f(z) = a2+z2−a2 = a2+(z+a)(z−a) hence as ϕ(z) = z+a
is continuous and limz→a ϕ(z) = 2a it follows by Caratheodory’s criteria that d

dz (z
2) = 2z.

If you are wondering where the a went. The complete thought of the last example is that f(z) = z2

has f ′(a) = 2a hence df/dz is the mapping a 7→ 2a which we usually denote by z 7→ 2z hence the
claim.

Example 5.2.6. Let f(z) = z4. Note f(z) = a4+ z4−a4 = a4+(z3+a2z+az2+a3)(z−a) hence
as ϕ(z) = z3 + 3a2z + 3az2 + a3 is continuous and limz→a ϕ(z) = 4a3 it follows by Caratheodory’s
criteria that d

dz (z
4) = 4z3.

The factoring in the example above is perhaps mystifying. One way you could find it is to simply
divide z4 − a4 by z− a using polynomial long division. Yes, it still works for complex polynomials.
The reader will show d

dz (z
3) = 3z2 in the homework.

Example 5.2.7. Let f(z) = 1/z. Thus zf(z) = 1 and we find:

(z − a+ a)f(z) = 1 ⇒ af(z) = 1− f(z)(z − a).

If a ̸= 0 then we find by dividing the above by a and noting f(a) = 1/a hence

f(z) = f(a)− f(z)

a
(z − a).

Therefore ϕ(z) = −f(z)
a = −1

az is the difference quotient function of f which is clearly continuous

for a ̸= 0 and as ϕ(z) → −1/a2 as z → a we derive d
dz

[
1
z

]
= −1

z2
.

The algebra I show in the example above is merely what first came to mind as I write these notes.
You could just as well attack it directly:

f(z)− f(a) =
1

z
− 1

a
=

a− z

az
=

−1

az
(z − a).

Perhaps the algebra above is more natural, it also leads to ϕ(z) = −1
az .

Example 5.2.8. We can find many additional derivatives from the product or quotient rules. For
example,

d

dz

[
1

z2

]
= − 1

z2
1

z
− 1

z2
1

z
=

−2

z3
.

Or, for n ∈ N supposing it is known that d
dz (z

n) = nzn−1,

d

dz

[
1

zn

]
=

(0)zn − 1 · nzn−1

(zn)2
=

−n

z2n−(n−1)
=

−n

zn+1
.
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If we prove3 for n ∈ N that d/dz(zn) = nzn−1 then in view of the example above we have shown:

Theorem 5.2.9. Power law for integer powers: let n ∈ Z then d
dz

(
zn
)
= nzn−1.

Non-integer power functions have phase functions which bring the need for branch cuts. It follows
that we ought to discuss derivatives of exponential and log functions before we attempt to extend
the power law to other than integer powers. That said, nothing terribly surprising happens. It is
in fact the case d

dz z
n = nzn−1 for n ∈ C however we must focus our attention on just one branch

of the function.

Let us attempt to find d
dz e

z. We’ll begin by showing f(z) = ez has f ′(0) = 1. Consider, f(z)−f(0) =
ez − 1. Moreover, for z ̸= 0 we have:

f(z)− f(0) =

[
ez − 1

z

]
z ⇒ ϕ(z) =

ez − 1

z
.

To show f ′(0) = 1 it suffices to demonstrate ϕ(z) → 1 as z → 0. If we knew L’Hopital’s rule for
complex variables then it would be easy, however, we are not in possession of such technology. I
will award bonus points to anyone who can prove ϕ(z) → 1 as z → 0. I have tried several things to
no avail. This example will have to wait for the Cauchy Riemann equation approach.

If a function is complex differentiable over a domain of points it turns out that the complex deriva-
tive function must be continuous. There is a distinction between complex differentiability at a
point and holomorphicity at a point.

Definition 5.2.10. We say f is holomorphic on domain D if f is complex differentiable at
each point in D. We say f is holomorphic at zo if there exists an open disk D centered at zo on
which f |D is holomorphic.

Given our calculations thus far we can already see that polynomial functions are holomorphic on C.
Furthermore, if p(z), q(z) ∈ C[z] then p/q is holomorphic on C − {z ∈ C | q(z) = 0}. We discover
many more holomorphic functions via the Cauchy Riemann equations of the next section. It is also
good to have some examples which show not all functions on C are holomorphic.

The following example is taken from [R91] on page 57. I provide proof of the claims made below
in the next section as the Cauchy Riemann equations are far easier to calculate that limits.

Example 5.2.11. Let f(z) = x3y2 + ix2y3 where z = x + iy. We can show that f is complex
differentiable where x = 0 or y = 0. In other words, f is complex differentiable on the coordinate
axes. It follows this function is nowhere holomorphic on C since we cannot find any point about
which f is complex differentiable on an whole open disk.

5.3 complex linearity and the Cauchy Riemann equations

Let me begin by explaining the terminology.

Definition 5.3.1. Let f = u + iv then ux = vy and uy = −vx are the Cauchy Riemann or
(CR)-equations for f .

3I invite the reader to prove this by induction
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We explain the significance of these equations in this section.

I first learned the approach in this section from [R91]. Here we use the full force of the theory of
the real differential calculus and linear algebra on the plane we investigated in the previous chapter.
In particular, recall the langauge used in Theorems 4.4.9 and 4.4.10.

Theorem 5.3.2. If f = u + iv is complex differentiable at zo then f is real differentiable at zo
in the Frechet sense and Jf (zo) = M(f ′(zo)) hence ∂yf = i∂xf at zo. In particular, the partial
derivatives of the component functions must satisfy the equations ux = vy and uy = −vx at zo.
Equivalently, the differential of f at zo is complex linear.

Proof: suppose f = u+ iv is complex differentiable at zo ∈ C. By Caratheodory’s criteria we have
a continuous complex function ϕ for which ϕ(a) = f ′(zo) and

f(z) = f(zo) + ϕ(z)(z − zo) ⇒ f(z + h)− f(zo) = ϕ(zo + h)h

I claim dfzo(h) = f ′(zo)h. Observe, for h ̸= 0 we have:

f(z + h)− f(zo)− f ′(zo)h

|h|
=

ϕ(zo + h)h− f ′(zo)h

|h|
= (ϕ(zo + h)− f ′(zo))

h

|h|
.

we wish to show the Frechet quotient above tends to 0 as h → 0. Notice we may use a theorem on
trivial limits; |g(z)| → 0 as z → a iff g(z) → 0 as z → a. Therefore, we take the modulus of the
Frechet quotient and find

|f(z + h)− f(zo)− f ′(zo)h|
|h|

= |ϕ(zo + h)− f ′(zo)|
|h|
|h|

= |ϕ(zo + h)− f ′(zo)|.

Finally, by continuity of ϕ we have ϕ(zo+h) → ϕ(zo) = f ′(zo) as h → 0 hence the Frechet quotient
limits to zero as needed and we have shown that dfzo(h) = f ′(zo)h. Thus dfzo = Lf ′(zo) in the
notation discussed near Theorem 4.4.9. In other words, dfzo is a complex linear map on R2. Thus
Jf (zo) = [dfzo ] = [f ′(zo)|if ′(zo)] by Theorem 4.4.9. On the other hand, recall the form of the
Jacobian matrix:

Jf =

[
ux uy
vx vy

]
=

[
∂f

∂x

∣∣∣∣∂f∂y
]

Therefore, since Jf (zo) = [dfzo ] = [f ′(zo)|if ′(zo)] we find

∂f

∂x
= f ′(zo) &

∂f

∂y
= if ′(zo)

From which we find formulas to calculate the complex derivative via partial derivatives in the case
the complex derivative exists:

f ′(zo) =
∂f

∂x
= −i

∂f

∂y

Indeed, the equation ∂f
∂x = −i∂f∂y is simply the vector form of the Cauchy Riemann equations since

f = u+ iv has ∂xf = ux + ivx and ∂yf = uy + ivy hence

ux + ivx = −i(uy + ivy) = vy − iuy ⇒ ux = vy & vx = −uy □.

I boxed the equations above since they are computationally central for the remainder of this course.
These inform us on how the partial derivatives relate to the complex derivative when it exists. In
fact, we learn next the boxed equations suffice to imply complex differentiablity for a continuously
differentiable function on the plane. But first, an example of non-complex-differentiability as seen
through the CR-equations:
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Example 5.3.3. . At this point we can return to my claim in Example 5.2.11. Let f(z) =
x3y2 + ix2y3 where z = x+ iy hence u = x3y2 and v = x2y3 and we calculate:

ux = 3x2y2, uy = 2x3y, vx = 2xy3, vy = 3x2y2.

If f is holomorphic on some open set disk D then it is complex differentiable at each point in D.
Hence, by our discussion preceding this example it follows ux = vy and vx = −uy. The only points
in C at which the CR-equations hold are where x = 0 or y = 0. Therefore, it is impossible for f to
be complex differentiable on any open disk. Thus our claim made in Example 5.2.11 is true; f is
nowhere holomorphic.

Now, let us investigate the converse direction4. Let us see that if the CR-equations hold for continu-
ously real differentiable function on a domain then the function is holomorphic on that domain. We
assume continuously differentiable on a domain for our expositional convenience. See pages 58-59
of [R91] where he mentions a number of weaker conditions which still are sufficient to guarantee
complex differentiability at a given point.

Theorem 5.3.4. Suppose f = u + iv is continuously differentiable on a domain D. Then f
is holomorphic on D if and only if the component functions u, v satisfy the Cauchy Riemann
equations ux = vy and vx = −uy throughout D. Furthermore, when f is holomorphic on D
the complex derivative may be formulated by f ′(z) = ∂xf = −i∂yf or in component notation,
f ′(z) = ux + ivx = vy − iuy on D.

Proof: Assume f = u+ iv is continuously differentiable on the domain D. Then then by Theorem
4.4.9 we have f is real differentiable on D. Suppose the partial derivatives satisfy ux = vy and vx =

−uy on D . Notice, the conditions ux = vy and vx = −uy imply Jf =

[
ux uy
vx vy

]
=

[
ux −vx
vx ux

]
thus Jf = [∂xf |i∂yf ] and we find the differential of f is complex linear (using Theorem 4.4.9) for
each zo ∈ D;

dfzo(h) = dfzo(1)h = ∂xf(zo)h.

Let zo ∈ D and define ux(zo) = a and vx(zo) = b. We propose f ′(zo) = a + ib. We can derive the
needed difference quotient by analyzing the Frechet quotient with care. We are given5:

lim
h→0

f(zo + h)− f(zo)− (a+ ib)h

h
= 0.

Notice, lim
h→0

(a+ ib)h

h
= a+ ib thus6

lim
h→0

f(zo + h)− f(zo)

h
− lim

h→0

(a+ ib)h

h
= 0.

Therefore,

a+ ib = lim
h→0

f(zo + h)− f(zo)

h

4I’ll state the result as a biconditional for our future convenience, of course Theorem 5.3.2 proves the necessity of
the CR-equations for a holomorphic function.

5I’m cheating, it’s a small exercise to show limh→0 g(h)/|h| = 0 implies limh→0 g(h)/h = 0.
6I encourage the reader to verify the little theorem: if lim(f − g) = 0 and lim g exists then lim f = lim g.
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which verifies our claim f ′(zo) = a + ib. But, zo ∈ D was arbitrary hence we have shown f is
holomorphic on the domain D.

Conversely, apply Theorem 5.3.2 to see that holomorpicity implies the Cauchy Riemann Equations
hold throughout D. Let me reiterate the proof once more with a demphasis of the picky details
establishing the complex-linearity of the differential. If f is holomorphic on D then f is complex
differentiable on D which implies dfzo is complex linear at each zo ∈ D and thus Jf (zo) is in
the regular representation of C which means we have the conditions ux = vy and vx = −uy since

Ju+iv =

[
ux uy
vx vy

]
must be of the formM(a+ib) =

[
a −b
b a

]
. ( by Theorems 4.4.9 and 4.4.10 ) □

We should reiterate when f is complex differentiable we have the following identities:

f ′(z) = ux + ivx = vy − iuy ⇒ df

dz
=

∂f

∂x
&

df

dz
= −i

∂f

∂y

where the differential identities hold only for holomorphic functions. The corresponding identities
for arbitrary functions on C are discussed on pages 124-126 of Gamelin and in the final section of
this chapter on the Wirtinger Derivatives.

As promised, we can show the other elementary functions are holomorphic in the appropriate
domain. Let us begin with the complex exponential.

Example 5.3.5. Let f(z) = ez then f(x + iy) = ex(cos y + i sin y) hence u = ex cos y and v =
ex sin y. Observe u, v clearly have continuous partial derivatives on C and

ux = ex cos y, vx = ex sin y, uy = −ex sin y, vy = ex cos y.

Thus ux = vy and vx = −uy for each point in C and we find f(z) = ez is holomorphic on C by

Theorem 5.3.4. Moreover, as f ′(z) = ux + ivx = ex cos y + iex sin y we find
d

dz
ez = ez.

Definition 5.3.6. If f : C → C is holomorphic on all of C then f is an entire function. The set
of entire functions on C is denoted O(C)

The complex exponential function is entire. Functions constructed from the complex exponential
are also entire. In particular, it is a simple exercise to verify sin z, cos z, sinh z, cosh z are all entire
functions. We can either use Theorem 5.3.4 and explicitly calculate real and imaginary parts of
these functions, or, we could just use Example 5.3.5 paired with the chain rule. For example:

Example 5.3.7.

d

dz
sin z =

d

dz

[
1

2i

(
eiz − e−iz

)]
=

1

2i

d

dz

[
eiz
]
− 1

2i

d

dz

[
e−iz

]
=

1

2i
eiz

d

dz
[iz]− 1

2i
e−iz d

dz
[−iz]

=
1

2i
eizi− 1

2i
e−iz(−i)

=
1

2

(
eiz + e−iz

)
= cos(z).
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Very similar arguments show the hopefully unsurprising results below:

d

dz
sin z = cos z,

d

dz
cos z = − sin z,

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z.

You might notice that Theorem 3.1.10 applies to real-valued functions on the plane. The theorem
below deals with a complex-valued function.

Theorem 5.3.8. If f is holomorphic on a domain D and f ′(z) = 0 for all z ∈ D then f is constant.

Proof: observe f ′(z) = ux + ivx = 0 thus ux = 0 and vx = 0 thus vy = 0 and uy = 0 by the
CR-equations. Thus ∇u = 0 and ∇v = 0 on a connected open set so we may apply Theorem 3.1.10
to see u(z) = a and v(z) = b for all z ∈ D hence f(z) = a+ ib for all z ∈ D. □

There are some striking, but trivial, statements which follow from the Theorem above. For instance:

Theorem 5.3.9. If f is holomorphic and real-valued on a domain D then f is constant.

Proof: Suppose f = u + iv is holomorphic on a domain D then ux = vy and vx = −uy hence
f ′(z) = ux + ivx = vy + ivx. Yet, v = 0 since f is real-valued hence f ′(z) = 0 and we find f is
constant by Theorem 5.3.9. □

You can see the same is true of f which is imaginary and holomorphic. Moreover, these theorems
are helpful in proving complex identities. For example:

Example 5.3.10. Let f(z) = sin2(z) + cos2(z) for z ∈ C. Observe f is holomorphic on C and
f ′(z) = 2 sin z cos z − 2 cos z sin z = 0. Furthermore, f(0) = 1 since sin(0) = 0 and cos(0) = 1. By
Theorem 5.3.9 we find f is constant on C thus establish the identity sin2(z) + cos2(z) = 1 for all
z ∈ C.

We could use the idea above to work on proving other identities. That sounds like good homework.
We could continue this section to see how to differentiate the reciprocal trigonometric or hyperbolic
functions such as sec z, csc z, cschz, sechz, tan z, tanh z however, I will refrain as the arguments are
the same as you saw in first semester calculus. It seems likely I ask some homework about these.
You may also recall, we needed implicit differentiation to find the derivatives of the inverse
functions in calculus I. The same is true here and that is the topic of a future section.

The set of holomorphic functions over a domain is an object worthy of study. Notice, ifD is a domain
in C then polynomials, rational functions with nonzero denominators in D are all holomorphic. Of
course, the functions built from the complex exponential are also holomorphic. A bit later, we’ll
see any power series is holomorphic in some domain about its center. Each holomorphic function
on D is continuous, but, not all continous functions on D are holomorphic. The antiholomorphic
functions are also continuous. The quintessential antiholomorphic example is f(z) = z.

Definition 5.3.11. The set of all holomorphic functions on a domain D ⊆ C is denoted O(D).

On pages 59-60 of [R91] there is a good discussion of the algebraic properties of O(D). Also, on
61-62 Remmert discusses the notation O(D) and the origin of the term holomorphic which was
given in 1875 by Briot and Bouquet. We will eventually uncover the equivalence of the terms
holomorphic, analytic , conformal. These terms are in part tied to the approaches of Cauchy,
Weierstrauss and Riemann. I’ll try to explain this trichotomy in better detail once we know more.
It is the theme of Remmert’s text [R91].
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5.3.1 CR equations in polar coordinates

If we use polar coordinates to rewrite f as follows:

f(x(r, θ), y(r, θ)) = u(x(r, θ), y(r, θ)) + iv(x(r, θ), y(r, θ))

we use shorthands F (r, θ) = f(x(r, θ), y(r, θ)) and U(r, θ) = u(x(r, θ), y(r, θ)) and V (r, θ) =
v(x(r, θ), y(r, θ)). We derive the CR-equations in polar coordinates via the chain rule from multi-
variate calculus,

Ur = xrux + yruy = cos(θ)ux + sin(θ)uy and Uθ = xθux + yθuy = −r sin(θ)ux + r cos(θ)uy

Likewise,

Vr = xrvx + yrvy = cos(θ)vx + sin(θ)vy and Vθ = xθvx + yθvy = −r sin(θ)vx + r cos(θ)vy

We can write these in matrix notation as follows:[
Ur

Uθ

]
=

[
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

] [
ux
uy

]
and

[
Vr

Vθ

]
=

[
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

] [
vx
vy

]

Multiply these by the inverse matrix:

[
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

]−1

= 1
r

[
r cos(θ) − sin(θ)
r sin(θ) cos(θ)

]
to find

[
ux
uy

]
=

1

r

[
r cos(θ) − sin(θ)
r sin(θ) cos(θ)

] [
Ur

Uθ

]
=

[
cos(θ)Ur − 1

r sin(θ)Uθ

sin(θ)Ur +
1
r cos(θ)Uθ

]
A similar calculation holds for V . To summarize:

ux = cos(θ)Ur − 1
r sin(θ)Uθ vx = cos(θ)Vr − 1

r sin(θ)Vθ

uy = sin(θ)Ur +
1
r cos(θ)Uθ vy = sin(θ)Vr +

1
r cos(θ)Vθ

Another way to derive these would be to just apply the chain-rule directly to ux,

ux =
∂u

∂x
=

∂r

∂x

∂u

∂r
+

∂θ

∂x

∂u

∂θ

where r =
√
x2 + y2 and θ = tan−1(y/x). I leave it to the reader to show you get the same formulas

from that approach. The CR-equation ux = vy yields:

(A.) cos(θ)Ur − 1
r sin(θ)Uθ = sin(θ)Vr +

1
r cos(θ)Vθ

Likewise the CR-equation uy = −vx yields:

(B.) sin(θ)Ur +
1
r cos(θ)Uθ = − cos(θ)Vr +

1
r sin(θ)Vθ

Multiply (A.) by r sin(θ) and (B.) by r cos(θ) and subtract (A.) from (B.):

Uθ = −rVr

Likewise multiply (A.) by r cos(θ) and (B.) by r sin(θ) and add (A.) and (B.):

rUr = Vθ



62 CHAPTER 5. COMPLEX DIFFERENTIABILITY

Finally, recall that z = reiθ = r(cos(θ) + i sin(θ)) hence

f ′(z) = ux + ivx

= (cos(θ)Ur − 1
r sin(θ)Uθ) + i(cos(θ)Vr − 1

r sin(θ)Vθ)

= (cos(θ)Ur + sin(θ)Vr) + i(cos(θ)Vr − sin(θ)Ur)

= (cos(θ)− i sin(θ))Ur + i(cos(θ)− i sin(θ))Vr

= e−iθ(Ur + iVr)

Theorem 5.3.12. Cauchy Riemann Equations in Polar Form: If f(reiθ) = U(r, θ)+ iV (r, θ)
is a complex function written in polar coordinates r, θ then the Cauchy Riemann equations are
written Uθ = −rVr and rUr = Vθ. If f ′(zo) exists then the CR-equations in polar coordinates hold.
Likewise, if the CR-equations hold in polar coordinates and all the polar component functions and
their partial derivatives with respect to r, θ are continuous on an open disk about zo then f ′(zo)

exists and f ′(z) = e−iθ(Ur + iVr) which can be written simply as
df

dz
= e−iθ ∂f

∂r
.

Example 5.3.13. Let f(z) = z2 hence f ′(z) = 2z as we have previously derived. That said, lets
see how the theorem above works: f(reiθ) = r2e2iθ hence

f ′(z) = e−iθ ∂f

∂r
= e−iθ2re2iθ = 2reiθ = 2z.

Example 5.3.14. Let f(z) = Log(z) then for z ∈ C− we find f(reiθ) = ln(r) + iθ for θ = Arg(z)
hence

f ′(z) = e−iθ ∂f

∂r
= e−iθ 1

r
=

1

reiθ
=

1

z
.

I mentioned the polar form of Cauchy Riemann equations in these notes since they can be very
useful when we work problems on disks. We may not have much occasion to use these, but it’s nice
to know they exist. I certainly don’t expect students to memorize these and I probably will not
lecture on this subsection.

5.4 Wirtinger derivative formulation

In physics and engineering you might come across calculations which portray z and z̄ as indepen-
dent variables. This bothered me in that z = x + iy uniquely fixes z̄ = x − iy. How can z and z̄
be independent ? Well, I think the truth of the matter is that when folks talk about z and z̄ as
independent variables this is actually just a clever way of introducing real variables in the complex
setting which can replace x and y and produce formulas which nicely capture the concept of a
function being holomorphic on a domain.7

Let me share some calculations which elucidate why the definition below is made. Recall z = x+ iy
and z̄ = x− iy thus:

∂z

∂x
= 1,

∂z

∂y
= i,

∂z̄

∂x
= 1,

∂z̄

∂y
= −i.

7I’ve thought a lot about this and I’ve yet to come to a satisfactory geometric understanding of the conjugate
variable scheme, but, perhaps one is already know to those whose life work is several complex variables.
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Consider then, by a chain-rule thinking of f(x, y) = f(z, z̄)8, (this is formal nonsense )

∂f

∂x
=

∂f

∂z

∂z

∂x
+

∂f

∂z̄

∂z̄

∂x
=

∂f

∂z
+

∂f

∂z̄
& i

∂f

∂y
= i

∂f

∂z

∂z

∂y
+ i

∂f

∂z̄

∂z̄

∂y
= −∂f

∂z
+

∂f

∂z̄

Then add and subtract the equation above to obtain:

∂f

∂z
=

1

2

[
∂f

∂x
− i

∂f

∂y

]
&

∂f

∂z̄
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
Definition 5.4.1. The Wirtinger Derivatives or partial complex derivatives of a smooth
function f : C → C are defined as the following:

∂f

∂z
=

1

2

[
∂f

∂x
− i

∂f

∂y

]
&

∂f

∂z̄
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
Or, more compactly, ∂zf = 1

2(∂xf − i∂yf) and ∂z̄f = 1
2(∂xf + i∂yf)

Sometimes I add a bar to make it easier to see; ∂̄z̄f = 1
2(∂xf − i∂yf). The Theorem below helps

bring the slogan that z and z̄ are independent variables to life:

Theorem 5.4.2. Observe
∂z̄

∂z
= 0 and

∂z

∂z̄
= 0. Moreover,

∂z

∂z
= 1 and

∂z̄

∂z̄
= 1.

Proof:
∂z̄

∂z
=

1

2

[
∂

∂x
(x− iy)− i

∂

∂y
(x− iy)

]
=

1

2

[
1 + i2

]
= 0. The proofs of the remaining identi-

ties are similar and might appear in your homework. □

Because the Wirtinger Derivatives are simple linear combinations of real partial derivatives of a
complex-valued function we find all the usual rules of calculus apply to the derivatives with respect
to z and z̄. In abstract algebraic terms, both ∂z and ∂z̄ are derivations9

Theorem 5.4.3. If f and g are smooth functions and c ∈ C then

∂

∂z
(fg) =

∂f

∂z
g + f

∂g

∂z
&

∂

∂z
(f + g) =

∂f

∂z
+

∂g

∂z
&

∂

∂z
(cf) = c

∂f

∂z

and
∂

∂z̄
(fg) =

∂f

∂z̄
g + f

∂g

∂z̄
&

∂

∂z̄
(f + g) =

∂f

∂z̄
+

∂g

∂z̄
&

∂

∂z̄
(cf) = c

∂f

∂z̄
.

Proof: the proofs are straightforward, I will just do one to illustrate what is involved,

∂

∂z̄
(cf) =

1

2

[
∂

∂x
(cf) + i

∂

∂y
(cf)

]
= c

1

2

[
∂f

∂x
+ i

∂f

∂y

]
= c

∂f

∂z̄
.

Here we use Theorem 4.1.6 which states the rules of calculus for the real partial derivatives of
complex-valued functions of x+ iy. The proofs of the other rules are similar. □

Notice the Wirtinger Calculus extend to chain rules and other natural calculations. Forgive me if
I skip the justification, but we could prove such calculations as: ∂

∂z e
3z = 3e3z or

∂

∂z̄
cosh2(z + 3z̄) = 2 cosh(z + 3z̄) sinh(z + 3z̄)

∂

∂z̄
(z + 3z̄) = 6 cosh(z + 3z̄) sinh(z + 3z̄).

8this is an abuse typical in calculus, we use the same symbol for the map written in different sets of variables.
9a derivation on a vector space is a linear transformation which also satifies the product rule, here we consider the

vector space of smooth functions on C.
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Theorem 5.4.4. Given functions f = u+ iv which is continuously differentiable on a domain D,
we find f is holomorphic on D if and only if ∂f

∂z̄ = 0 on D. If f is holomorphic then f ′(z) = ∂f
∂z .

Proof: Recall Theorem 5.3.4 stated a continuously differentiable function on C is holomorphic

if and only if ∂f
∂x = −i∂f∂y . Since ∂f

∂z̄ = 1
2

[
∂f
∂x + i∂f∂y

]
= 0 if and only if ∂f

∂x = −i∂f∂y we find f is

holomorphic if and only if ∂z̄f = 0. Recall, if f is holomorphic then f ′(z) = ∂xf and ∂xf = −i∂yf
hence

f ′(z) =
∂f

∂x
=

1

2

[
∂f

∂x
+

∂f

∂x

]
=

1

2

[
∂f

∂x
− i

∂f

∂y

]
=

∂f

∂z
. □.

The take-away from the proof above is that ∂f
∂z̄ = 0 is simply another notation for the Cauchy

Riemann equations.

Example 5.4.5. Let f(z) = z̄ then ∂f
∂z = 0 and ∂f

∂z̄ = 1. Thus f is not holomorphic on any domain
since f does not satisfy the CR-equations on the entire complex plane.

Example 5.4.6. Let f(z) = zz̄ then ∂f
∂z = z̄ and ∂f

∂z̄ = z. Thus f is not holomorphic on any
domain since the only place where f satisfies the CR-equations is just z = 0.

Example 5.4.7. Let f(z) = tan(z + z2 + z3) then

∂z̄f = sec2(z + z2 + z3)∂z̄(z + z2 + z3) = 0.

Notice, calculating the component functions of tan(z+z2+z3) is a somewhat cumbersome calcula-
tion. In contrast, from the perspective of the Wirtinger Calculus, we easily see f is holomorphic at
such points as cos(z+ z2+ z3) ̸= 0. Ok, I’m starting to feel guilty about not proving the chain-rule
for the Wirtinger Calculus. Perhaps that is a good homework problem.

Example 5.4.8. Let f(x+ iy) = exp(x2 + y2) then f(z) = exp(zz̄) hence

∂z̄f = exp(zz̄)∂z̄ [zz̄] = z exp(zz̄).

Thus f only satisfies the CR-equations at z = 0 which means f is nowhere holomorphic.

5.4.1 chain rule for composite of complex function and path

Notice, we can solve the Wirtinger Derivative equations for the real partial derivatives by adding
and subtracting equations:

∂f

∂x
=

∂f

∂z
+

∂f

∂z̄
& i

∂f

∂y
=

∂f

∂z̄
− ∂f

∂z
⇒ ∂f

∂y
= i

[
∂f

∂z
− ∂f

∂z̄

]
.

Notice, the equations above are not formal nonsense, they’re just an algebraic consequence of the
notations ∂zf and ∂z̄f . We can write a general chain-rule for a complex function composed with
a path in C. From Calculus III, or perhaps Advanced Calculus if you wish, if γ = (x, y) : R → C
and f = u+ iv : C → C then

d

dt
(u(γ(t)) = (∇u)(γ(t)) •

dγ

dt
= ux

dx

dt
+ uy

dy

dt
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d

dt
(v(γ(t)) = (∇v)(γ(t)) •

dγ

dt
= vx

dx

dt
+ vy

dy

dt

since fx = ux + ivx and fy = uy + ivy by definitions given in the previous chapter, we may add the
real chain-rules above and obtain:

d

dt
(f(γ(t)) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

But, we found ∂f
∂x = ∂f

∂z + ∂f
∂z̄ and ∂f

∂y = i
[
∂f
∂z − ∂f

∂z̄

]
hence

d

dt
(f(γ(t)) =

[
∂f

∂z
+

∂f

∂z̄

]
dx

dt
+ i

[
∂f

∂z
− ∂f

∂z̄

]
dy

dt

where we should understand all the partial derivatives are evaluated along the path γ(t). Usually
we use the notation γ(t) = z(t) so we have dz

dt = dx
dt + idydt and naturally dz̄

dt = dx
dt − idydt . Returning

to the chain rule once more we regroup terms to derive:

d

dt
(f(z(t)) =

∂f

∂z

dz

dt
+

∂f

∂z̄

dz̄

dt
.

Theorem 5.4.9. Given a function f = u + iv which is differentiable near the path t 7→ z(t) we
have

d

dt
(f(z(t)) =

∂f

∂z

dz

dt
+

∂f

∂z̄

dz̄

dt
.

If ∂z̄f = 0 near and on the path then d
dt(f(z(t)) =

∂f
∂z

dz
dt . On the other hand, if If ∂zf = 0 near and

on the path then d
dt(f(z(t)) =

∂f
∂z̄

dz̄
dt .

As we explain in a future chapter, if f is holomorphic on at a point with nonzero derivative then
f is conformal. The proof of that claim rests on the chain-rule given in the above theorem. I
have much less to say about maps with ∂zf = 0, these are known as anti-holomorphic maps.
Essentially an anti-holomorphic map is a function of z̄ alone whereas a holomorphic map is a
function of z alone. Again, I feel the tension of the last sentence with the observation z̄ is obtained
from z. But, there is no danger of confusion provided we follow the rules of the Wirtinger Calculus
as defined in this section.
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Chapter 6

Holomorphic Functions

In this chapter we examine three major topics involving holomorphic functions.

We begin by examining a somewhat technical result. We see how the inverse function theorem
adapts to the context of holomorphic functions. It turns out that the existence of the complex
derivative of the local inverse of a function is automatic for a holomorphic function with a nonzero
derivatives. That is a nice result which means we are justified in seeking derivatives of inverse
functions in the complex domain.

Next we discuss explain why each holomorphic function f = u + iv has a pair of real harmonic
functions in the sense that: uxx + uyy = 0 and vxx + vyy = 0. In other words, each complex
differentiable function has component functions which solve Laplace’s equation in the plane. Inter-
estingly, given relatively benign topological restrictions on the domain, if we are given a function
u for which uxx + uyy = 0 then there exists a harmonic conjugate v for which f = u + iv is a
complex differentiable map. Essentially to find the harmonic congugate we simply integrate the
Cauchy Riemann equations.

Last, we begin to contemplate the geometric implications of complex differentiability. We show
that any holomorphic map with nonzero derivative will preserve the angle between paths in its do-
main and their image in its range. This angle-preserving property is called the conformal property.

There are other properties of complex differentiable maps which serve to characterize holomorphic
maps in a different manner. For the sake of this part of the course I wanted to narrow the focus
a bit and just go with what is in this chapter as well as one more huge characterization in the
next chapter. In particular, we learn in the next chapter that holomorphic maps are necessarily
analytic. To say a function is analytic is to say it has a power series representation at the point.
Anyway, more on that in the next chapter.

I left some comments about Gamelin in this Chapter, my apologies since I do not expect you to
read Gamelin’s text. However, if you are curious, I have a copy in my office if you want to see what
I refer to in this chapter.

67
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6.1 Inverse Mappings and the Jacobian

In advanced calculus there are two central theorems of the classical study: the inverse function
theorem and the implicit function theorem. In short, the inverse function theorem simply says that
if F : U ⊆ Rn → Rn is continuously differentiable at p and has det(F ′(p)) ̸= 0 then there exists
some neighborhood V of p on which F |V has a continuously differentiable inverse function. The
simplest case of this is calculus I where f : U ⊆ R → R is locally invertible at p ∈ U if f ′(p) ̸= 0.
Note, geometrically this is clear, if the slope were zero then the function will not be 1− 1 near the
point so the inverse need not exist. On the other hand, if the derivative is nonzero at a point and
continuous then the derivative must stay nonzero near the point (by continuity of the derivative
function) hence the function is either increasing or decreasing near the point and we can find a
local inverse. I remind the reader of these things as they may not have thought through them
carefully in their previous course work. That said, I will not attempt a geometric visualization of
the complex case. We simply need to calculate the determinant of the derivative matrix and that
will allow us to apply the advanced calculus theorem here:

Theorem 6.1.1. If f is complex differentiable at p then det Jf (p) = |f ′(p)|2.

Proof: suppose f = u+ iv is complex differentiable then the CR equations hold thus:

det Jf (p) = det

[
ux −vx
vx ux

]
= (ux)

2 + (vx)
2 = |ux + ivx|2 = |f ′(z)|2. □

If f = u+ iv is holomorphic on a domain D with (ux)
2+(vx)

2 ̸= 0 on D then f is locally invertible
throughout D. The interesting thing about the theorem which follows is we also learn that the
inverse function is holomorphic about some small open disk about the point where f ′(p) ̸= 0.

Theorem 6.1.2. If f(z) is holomorphic on a domain D, zo ∈ D, and f ′(zo) ̸= 0. Then there is a
(small) disk U ⊆ D containing zo such that f |U is 1 − 1, the image V = f(U) of U is open, and
the inverse function f−1 : V → U is holomorphic and satisfies

(f−1)′(f(z)) = 1/f ′(z) for z ∈ U .

Proof: I will give a proof which springs naturally from advanced calculus. First note that f ′(zo) ̸= 0
implies |f ′(zo)|2 ̸= 0 hence by Theorem 6.1.1 and the inverse function theorem of advanced calculus
the exists an open disk U centered about zo and a function g : f(U) → U which is the inverse
of f restricted to U . Furthermore, we know g is continuously real differentiable. In particular,
g ◦ f = IdU and the chain rule in advanced calculus provides Jg(f(p))Jf (p) = I for each p ∈ U .

Here I =

[
1 0
0 1

]
. We already learned that the holomorphicity of f implies we can write Jf (p) =[

a −b
b a

]
where ux(p) = a and vx(p) = b. The inverse of such a matrix is given by:

[
a −b
b a

]−1

=
1

a2 + b2

[
a b
−b a

]
.

But, the equation Jg(f(p))Jf (p) = I already tells us (Jf (p))
−1 = Jg(f(p)) hence we find the

Jacobian matrix of g(f(p)) is given by:

Jg(f(p)) =

[
a/(a2 + b2) b/(a2 + b2)
−b/(a2 + b2) a/(a2 + b2)

]
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This matrix shows that if g = m + in then mx(f(p)) = a/(a2 + b2) and nx = −b/(a2 + b2). Thus
we have g′ = mx + inx where

g′(f(p)) =
1

a2 + b2
(a− ib) =

a− ib

(a+ ib)(a− ib)
=

1

a+ ib
=

1

f ′(p)
. □

Discussion: I realize some of you have not had advanced calculus so the proof above it not optimal.
Thankfully, Gamelin gives an argument on page 52 which is free of matrix arguments. That said, if
we understand the form of the Jacobian matrix as it relates the real Jordan form of a matrix then
the main result of the conformal mapping section is immediately obvious. In particular, provided
a2 + b2 ̸= 0 we can factor as follows

Jf =

[
a −b
b a

]
=
√
a2 + b2

[
a/

√
a2 + b2 −b/

√
a2 + b2

b/
√
a2 + b2 a/

√
a2 + b2

]
.

It follows there exists θ for which

Jf = ±
√

a2 + b2
[
cos θ − sin θ
sin θ cos θ

]
.

This shows the Jacobian matrix of a complex differentiable mapping has a very special form. Ge-
ometrically, we have a scale factor of

√
a2 + b2 which either elongates or shrinks vectors. Then the

matrix with θ is precisely a rotation by θ. If the ± = + then in total the Jacobian is just a dilation
and rotation. If the ± = − then the Jacobian is a reflection about the origin followed by a
dilation and rotation. In general, the possible geometric behaviour of 2 × 2 matrices is much
more varied. This decomposition is special to our structure. We discuss the further implications of
these observations in Section 6.3.

The application of the inverse function theorem requries less verbosity.

Example 6.1.3. Note f(z) = ez has f ′(z) = ez ̸= 0 for all z ∈ C. It follows that there exist local
inverses for f about any point in the complex plane. Let w = Log(z) for z ∈ C−. Since the inverse
function theorem shows us dw

dz exists we may calculate as we did in calculus I. To begin, w = Log(z)

hence ew = z then differentiate to obtain ew dw
dz = 1. But ew = z thus d

dzLog(z) =
1
z for all z ∈ C−.

We should remember, it is not possible to to find a global inverse as we know ez = ez+2πim for
m ∈ Z. However, given any choice of logarithm Logα(z) we have d

dzLogα(z) =
1
z for all z in the slit

plane which omits the discontinutiy of Logα(z). In particular, Logα(z) ∈ O(D) for

D = C− {reiα | r ≥ 0}.

Example 6.1.4. Suppose f(z) =
√
z denotes the principal branch of the square-root function. In

particular, we defined f(z) = e
1
2
Log(z) thus for1 z ∈ C−

d

dz

√
z =

d

dz
e

1
2
Log(z) = e

1
2
Log(z) d

dz

1

2
Log(z) =

√
z · 1

2z
=

1

2
√
z
.

1we defined
√
z for all z ∈ C×, however, we cannot find a derivative on all of the punctured plane since if we did

that would imply the
√
z function is continuous on the punctured plane (which is false). In short, the calculation

breaks down at the discontinuity of the square root function
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Let L(z) be some branch of the logarithm and define zc = ecL(z) we calculate:

d

dz
zc =

d

dz
ecL(z) = ecL(z)

d

dz
cL(z) = ecL(z)

c

z
= czc−1.

To verify the last step, we note:

1

z
= z−1 = e−L(z) ⇒ 1

z
ecL(z) = e−L(z)+cL(z) = e(c−1)L(z) = zc−1.

Here I used the adding angles property of the complex exponential which we know2 arises from the
corresponding laws for the real exponential and the sine and cosine functions.

6.2 Harmonic Functions

If a function F has second partial derivatives is continuously differentiable then the order of partial
derivatives in x and y may be exchanged. In particular,

∂

∂x

∂

∂y

(
F (x, y)

)
=

∂

∂y

∂

∂x

(
F (x, y)

)
We will learn as we study the finer points of complex function theory that if a function is complex
differentiable at each point in some domain3 then the complex derivative is continuous. In other
words, there are no merely complex differentiable functions on a domain, there are only continu-
ously complex differentiable functions on a domain. The word ”domain” is crucial to that claim as
Example 5.3.3 shows that the complex derivaitve may only exist along stranger sets and yet not
exist elsewhere (such a complex derivative function is hardly continuous on C).

In addition to the automatic continuity of the complex derivative on domains4 we will also learn
that the complex derivative function on a domain is itself complex differentiable. In other words,
on a domain, if z 7→ f ′(z) exists then z 7→ f ′′(z) exists. But, then by the same argument f (3)(z)
exists etc. We don’t have the theory to develop this claim yet, but, I hope you don’t mind me
sharing it here. It explains why if f = u+ iv is holomorphic on a domain then the second partial
derivatives of u, v must exist and be continuous. I suppose it might be better pedagogy to just
say we know the second partial derivatives of the component functions of an analytic function are
continuous. But, the results I discuss here are a bit subtle and its not bad for us to discuss them
multiple times as the course unfolds. We now continue to the proper content of this section.

Laplace’s equation is one of the fundamental equations of mathematical physics. The study of the
solutions to Laplace’s equation is known as harmonic analysis. For Rn the Laplacian is defined:

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

which gives Laplace’s equation the form △u = 0. Again, this is studied on curved spaces and in
generality far beyond our scope.

Definition 6.2.1. Let x, y be Cartesian coordinates on C then uxx + uyy = 0 is Laplace’s Equa-
tion. The solutions of Laplace’s Equation are called harmonic functions.

2perhaps we can give a more fundamental reason based on self-contained arithmetic later in this course!
3as we have discussed, a domain is an open and connected set
4Gamelin assumes this point as he defines analytic to include this result on page 45
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The theorem below gives a very simple way to create new examples of harmonic functions. It also
indicates holomorphic functions have very special the component functions.

Theorem 6.2.2. If f = u+ iv is holomorphic on a domain D then u, v are harmonic on D.

Proof: as discussed at the beginning of this section, we may assume on the basis of later work
that u, v have continuous second partial derivatives. Moreover, as f is holomorphic we know u, v
solve the CR-equations ∂xu = ∂yv and ∂xv = −∂yu. Observe

∂xu = ∂yv ⇒ ∂x∂xu = ∂x∂yv ⇒ ∂x∂xu = ∂y∂xv = ∂y[−∂yu]

Therefore, ∂x∂xu+ ∂y∂yu = 0 which shows u is harmonic. The proof for v is similar. □

A fun way to prove the harmonicity of v is to notice that f = u+ iv harmonic implies −if = v− iu
is harmonic thus Re(−if) = v and we already showed the real component of f is harmonic thus
we may as well apply the result to −if .

Example 6.2.3. Let f(z) = ez then ex+iy = ex cos y + iex sin y hence u = ex cos y and v = ex sin y
are solutions of ϕxx+ ϕyy = 0.

The functions u = ex cos y and v = ex sin y have a special relationship. In general:

Definition 6.2.4. If u is a harmonic function on a domain D and u + iv is holomorphic on D
then we say v is a harmonic conjugate of u on D.

I chose the word ”a” in the definition above rather than the word ”the” as the harmonic conjugate
is not unique. Observe:

d

dz

(
u+ i(v + vo)

)
=

d

dz

(
u+ iv

)
.

If v is a harmonic conjugate of u then v + vo is also a harmonic conjugate of u for any vo ∈ R.

A popular introductory exercise is the following:

Given a harmonic function u find a harmonic conjugate v on a given domain.

Gamelin gives a general method to calculate the harmonic conjugate on page 56. This is essen-
tially the same problem we faced in calculus III when we derived potential functions for a given
conservative vector field.

Example 6.2.5. Let u(x, y) = x2− y2 then clearly uxx+uyy = 2− 2 = 0. Hence u is harmonic on
C. We wish to find v for which u+ iv is holomorphic on C. This means we need to solve ux = vy
and vx = −uy which yield vy = 2x and vx = 2y. Integrating yields:

∂v

∂y
= 2x ⇒ v = 2xy + h1(x)

and
∂v

∂x
= 2y ⇒ v = 2xy + h2(y)

from h1(x), h2(y) are constant functions and a harmonic conjugate has the form v(x, y) = 2xy+vo.
In particular, if we select vo = 0 then

u+ iv = (x2 − y2) + 2ixy = (x+ iy)2

The holomorphic function here is just our old friend f(z) = z2.
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The shape of the domain was not an issue in the example above, but, in general we need to be
careful as certain results have a topological dependence. In Gamelin he proves the theorem below
for a rectangle. As he cautions, it is not true for regions with holes like the punctured plane C× or
annuli. Perhaps I have assigned problem 7 from page 58 which gives explicit evidence of the failure
of the theorem for domains with holes.

Theorem 6.2.6. Let D be an open disk, or an open rectangle with sides parallel to the axes, and
let u(x, y) be a harmonic function on D. Then there is a harmonic function v(x, y) on D such that
u+ iv is holomorphic on D. The harmonic conjugate v is unique, up to adding a constant.

6.3 Conformal Mappings

A few nice historical remarks on the importance of the concept discussed in this section is given on
page 78 of [R91]. Gauss realized the importance in 1825 and it served as a cornerstone of Riemann’s
later work. Apparently, Cauchy and Weierstrauss did not make much use of conformality.

Following the proof of the inverse function theorem I argued the 2× 2 Jacobian matrix of a holo-
morphic function was quite special. In particular, we observed it was the product of a reflection,
dilation and rotation. That said, at the level of complex notation the same observation is cleanly
given in terms of the chain rule and the polar form of complex numbers.

Suppose f : D → C is holomorphic on the domain D. Let zo be a point in D and, for some ε > 0,
γ : (−ε, ε) → D a path with γ(0) = zo. The tangent vector at zo for γ is simply γ′(0). Consider
f as the mapping z 7→ w = f(z); we transport points in the z = x + iy-plane to points in the
w = u + iv-plane. Thus, the curve f ◦ γ : (−ε, ε) → C is naturally a path in the w-plane and we
are free to study how the tangent vector of the transformed curve relates to the initial curve in
the z-plane. In particular, differentiate and make use of the chain rule for complex differentiable
functions5:

d

dt

(
f(γ(t))

)
=

df

dz
(γ(t))

dγ

dt
.

Let df
dz (γ(0)) = reiθ and γ′(0) = v we find the vector γ′(0) = v transforms to (f ◦ γ)′(0) = reiθv.

Therefore, the tangent vector to the transported curve is stretched by a factor of r = |(f ◦ γ)′(0)|
and rotated by angle θ = Arg((f ◦ γ)′(0)).

Now, suppose we have c such that γ1(0) = γ2(0) = zo then f ◦ γ1 and f ◦ γ2 are curves through
f(zo) = wo and we can compare the angle between the curves f ◦ γ1 at zo and the angle between
the image curves f ◦ γ1 and f ◦ γ2 at wo. Recall the angle between to curves is measured by the
angle between their tangent vectors at the point of intersection. In particular, if γ′1(0) = v1 and
γ′2(0) = v2 then note df

dz (γ1(0)) =
df
dz (γ1(0)) = reiθ hence both v1 and v2 are rotated and stretched

in the same fashion. Let us denote w1 = reiθv1 and w1 = reiθv1. Recall the dot-product defines

the angle betwen nonzero vectors by θ =
A⃗ • B⃗

||A⃗||||B⃗||
. Furthermore, we saw shortly after Definition

1.1.3 that the Euclidean dot-product is simply captured by the formula ⟨v, w⟩ = Re(zw). Hence,

5we found this at the end of the last chapter in our discussion of the Wirtinger Calculus
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consider:

⟨w1, w2⟩ = ⟨reiθv1, reiθv2⟩

= Re
(
reiθv1reiθv2

)
= r2Re

(
eiθv1v2e

−iθ
)

= r2Re (v1v2)

= r2⟨v1, v2⟩.

Note we have already shown |w1| = r|v1| and |w2| = r|v2| hence:

⟨v1, v2⟩
|v1||v2|

=
r2⟨v1, v2⟩
r|v1|r|v2|

=
⟨w1, w2⟩
|w1||w2|

.

Therefore, the angle between curves is preserved under holomorphic maps.

Definition 6.3.1. A smooth complex-valued function g(z) is conformal at zo if whenever γo, γ1
are curves terminating at zo with nonzero tangents, then the curves g ◦ γo and g ◦ γ1 have nonzero
tangents at g(zo) and the angle between g ◦ γo and g ◦ γ1 at g(zo) is the same as the angle between
γo and γ1 at zo.

Therefore, we have the following result from the calculation of the previous page:

Theorem 6.3.2. If f(z) is holomorphic at zo and f ′(zo) ̸= 0 then f(z) is conformal at zo.

This theorem gives beautiful geometric significance to holomorphic functions. The converse of
the theorem requires we impose an additional condition. The function f(z) = z = x − iy has

Jf =

(
1 0
0 −1

)
and det(Jf ) = −1 < 0. This means that the function does not maintain the ori-

entation of vectors. On page 74 of [R91] the equivalence of real differentiable, angle-preserving,
orientation-preserving maps and nonzero f ′ holomorphic maps is asserted. The proof is already
contained in the calculations we have considered.

We all should recognize x = xo and y = yo as the equations of vertical and horizontal lines
respective. At the point (xo, yo) these lines intersect at right angles. It follows that the image of
the coordinate grid in the z = x+ iy plane gives a family of orthogonal curves in the w-plane. In
particular, the lines which intersect at (xo, yo) give orthogonal curves which intersect at f(xo+ iyo).
In particular x 7→ w = f(x+ iyo) and y 7→ w = f(xo + iy) are paths in the w-plane which intersect
orthogonally at wo = f(xo + iyo).

Example 6.3.3. Consider f(z) = z2. We have f(x + iy) = (x + iy)(x + iy) = x2 − y2 + 2ixy.
Thus,

t 7→ t2 − y2o + 2iyot & t 7→ x2o − t2 + 2ixot

Let u, v be coordinates on the w-plane. The image of y = yo has

u = t2 − y2o & v = 2yot

If yo ̸= 0 then t = v/2yo which gives u = 1
4y2o

v2 − y2o . This is a parabola which opens horizontally

to the right in the w-plane. The image of x = xo has

u = x2o − t2 & v = 2xot
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If xo ̸= 0 then t = v/2xo which gives u = x2o − 1
4x2

o
v2. This is a parabola which opens horizontally

to the left in the w-plane. As level-curves in the w-plane the right-opening parabola is F (u, v) =
u− 1

4y2o
v2+ y2o = 0 whereas the left-opening parabola is given by G(u, v) = u−x2o+

1
4x2

o
v2. We know

the gradients of F and G are normals to the curves. Calculate,

∇F = ⟨1,− v

2y2o
⟩ & ∇G = ⟨1, v

2x2o
⟩ ⇒ ∇F •∇G = 1− v2

4x2oy
2
o

At a point of intersection we have x2o− 1
4x2

o
v2 = 1

4y2o
v2−y2o from which we find x2o+y2o = v2( 1

4x2
o
+ 1

4y2o
).

Multiply by x2oy
2
o to obtain x2oy

2
o(x

2
o+y2o) =

v2

4 (y
2
o +x2o). But, this gives 1 = v2

4x2
oy

2
o
. Therefore, at the

point of intersection we find ∇F •∇G = 0. It follows the sideways parabolas intersect orthogonally.

If xo = 0 then t 7→ −t2 is a parametrization of the image of the y-axis which is the negative real
axis in the w-plane. If yo = 0 then t 7→ t2 is a parametrization of the image of the x-axis which is
the positive real axis in the w-plane. The point at which these exceptional curves intersect is w = 0
which is the image of z = 0. That point, is the only point at which f ′(0) ̸= 0.

I plot several of the curves in the w-plane. You can see how the intersections make right angles at
each point except the origin.

The plot above was produced using www.desmos.com which I whole-heartedly endorse for simple
graphing tasks.

We can also study the inverse image of the cartesian coordinate lines u = uo and v = vo in the
z-plane. In particular,

u(x, y) = uo & v(x, y) = vo

give curves in z = x+ iy-plane which intersect at zo orthogonally provided f ′(zo) ̸= 0.

Example 6.3.4. We return to Example 6.3.3 and as the reverse question: what is the inverse
image of u = uo or v = vo for f(z) = z2 where z = x+ iy and u = x2− y2 and v = 2xy. The curve
x2 − y2 = uo is a hyperbola with asymptotes y = ±x whereas 2xy = vo is also a hyperbola, but, it’s
asymptotes are the x, y axes. Note that uo = 0 gives y = ±x whereas vo = 0 gives the x, y-axes.
These meet at the origin which is the one point where f ′(z) ̸= 0.

www.desmos.com
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Example 6.3.5. Consider f(z) = ez then f(x+ iy) = ex cos y+ iex sin y. We observe u = ex cos y
and v = ex sin y. The curves uo = ex cos y and vo = ex sin y map to the vertical and horizontal lines
in the w-plane. I doubt these are familar curves in the xy-plane. Here is a plot of the z-plane with
the inverse images of a few select u, v-coordinate lines:

On the other hand, we can study how z 7→ w = ez distorts the x, y-coordinate grid. The horizontal
line through xo + iyo is parametrized by x = xo + t and y = yo has image

t 7→ f(xo + t+ iyo) = exo+teiyo

as t varies we trace out the ray from the origin to ∞ in the w-plane at angle yo. The vertical line
through xo + iyo is parametrized by x = xo and y = yo + t has image

t 7→ f(xo + t+ iyo) = exoei(yo+t)

as t varies we trace out a circle of radius exo centered at the origin of the w-plane. Therefore, the
image of the x, y-coordinate lines in the w-plane is a family of circles and rays eminating from the
origin. Notice, the origin itself is not covered as ez ̸= 0.
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There is another simple calculation to see the orthogonality of constant u or v curves. Calculate
∇u = ⟨ux, uy⟩ and ∇v = ⟨vx, vy⟩. But, if f = u + iv is holomorphic then ux = vy and vx = −uy.
By CR-equations,

∇u = ⟨ux, uy⟩ = ⟨vy,−vx⟩

but, ∇v = ⟨vx, vy⟩ hence ∇u •∇v = 0. Of course, this is just a special case of our general result on
conformality of holomorphic maps.



Chapter 7

Integration

In this chapter we discover many surprising theorems which connect a holomorphic function and
its integrals and derivatives. In part, the results here are merely a continuation of the complex-
valued multivariate analysis studied in the previous chapter. However, the Theorem of Goursat
and Cauchy’s integral formula lead to striking results which are not analogus to the real theory.
In particular, if a function is complex differentiable on a domain then Goursat’s Theorem provides
that z 7→ f ′(z) is automatically a continuous mapping. There is no distinction between complex
differentiable and continuously complex differentiable in the function theory on a complex domain.
Moreover, if a function is once complex differentiable then it is twice complex differentiable. Con-
tinuing this thought, there is no distinction between the complex smooth functions and the complex
once-differentiable functions on a complex domain. These distinctions are made in the real case
and the distinctions are certainly aspects of the more subtle side of real analysis. These truths and
more we discover in this chapter.

Before going into the future, let us pause to enjoy a quote by Gauss from 1811 to a letter to Bessel:

What should we make of
∫
ϕx · dx for x = a+ bi? Obviously, if we’re to proceed from

clear concepts, we have to assume that x passes, via infinitely small increments (each of
the form α+ iβ), from that value at which the integral is supposed to be 0, to x = a+bi
and that then all the ϕx · dx are summed up. In this way the meaning is made precise.
But the progression of x values can take place in infinitely many ways: Just as we think
of the realm of all real magnitudes as an infinite straight line, so we can envision the
realm of all magnitudes, real and imaginary, as an infinite plane wherein every point
which is determined by an abscissa a and ordinate b represents as well the magnitude
a+ bi. The continuous passage from one value of x to another a+ bi accordingly occurs
along a curve and is consequently possible in infinitely many ways. But I maintain that
the integral

∫
ϕx · dx computed via two different such passages always gets the same

value as long as ϕx = ∞ never occurs in the region of the plane enclosed by the curves
describing these two passages. This is a very beautiful theorem, whose not-so-difficult
proof I will give when an appropriate occassion comes up. It is closedly related to other
beautiful truths having to do with developing functions in series. The passage from point
to point can always be carried out without touching one where ϕx = ∞. However, I
demand that those points be avoided lest the original basic conception

∫
ϕx · dx lose its

clarity and lead to contradictions. Moreover, it is also clear how a function generated
by
∫
ϕx · dx could have several values for the same values of x depending on whether a

77
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point where ϕx = ∞ is gone around not at all, once, or several times. If, for example,
we define log x having gone around x = 0 one of more times or not at all, every circuit
adds the constant 2πi or −2πi; thus the fact that every number has multiple logarithms
becomes quite clear” (Werke 8, 90-92 according to [R91] page 167-168)

This quote shows Gauss knew complex function theory before Cauchy published the original mon-
umental works on the subject in 1814 and 1825. Apparently, Poisson also published an early work
on complex integration in 1813. See [R91] page 175.

7.1 Contour Integral

The definition of the complex integral is naturally analogus to the usual Riemann sum in R. In the
real integral one considers a partition of xo, x1, . . . , xn which divides [a, b] into n-subintervals. In
the complex integral, to integrate along a path γ we consider points zo, z1, . . . , zn along the path.
In both cases, as n → ∞ we obtain the integral.

Definition 7.1.1. Let γ : [a, b] → C be a smooth path and f(z) a complex-valued function which
is continuous on and near γ. Let zo, z1, . . . , zn ∈ trace(γ) where a ≤ to < t1 < · · · < tn ≤ b and
γ(tj) = zj for j = 0, 1, . . . , n. We define:∫

γ
f(z) dz = lim

n→∞

n∑
j=1

f(zj)(zj − zj−1).

Equivalently, as a complex-valued integral over the real parameter of the path:∫
γ
f(z) dz =

∫ b

a
f(γ(t))

dγ

dt
dt.

Or, as a complex combination of real line-integrals:∫
γ
f(z) dz =

∫
γ
udx− vdy + i

∫
γ
udy + vdx.

The initial definition above is not our typical method of calculation! In fact, the boxed formulas
we find in the next page or so are equivalent to the initial, Riemann sum definition given above. I
thought I should start with this so you better appreciate the boxed-definitions which we uncover
below. Consider,

zj − zj−1 = γ(tj)− γ(tj−1) =
γ(tj)− γ(tj−1)

tj − tj−1
(tj − tj−1)

Applying the mean value theorem1 we select t∗j ∈ [tj−1, tj ] for which γ′(t∗j ) =
γ(tj)−γ(tj−1)

tj−tj−1
. Returning

to the integral, and using △tj = tj − tj−1 we obtain∫
γ
f(z) dz = lim

n→∞

n∑
j=1

f(γ(tj))
dγ

dt
(t∗j )△tj =

∫ b

a
f(γ(t))

dγ

dt
dt.

I sometimes use the boxed formula above as the definition of the complex integral. Moreover, in
practice, we set z = γ(t) as to symbolically replace dz with dz

dt dt. See Example 7.1.3 for an example

1this will be justified in homework
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of this notational convenience. That said, the expression above can be expressed as a complex-
linear combination of two real integrals. If we denote γ = x+ iy and f = u+ iv then (I omit some
t-dependence to make it fit in second line)∫

γ
f(z) dz = lim

n→∞

n∑
j=1

(u(γ(tj)) + iv(γ(tj)))

(
dx

dt
(t∗j ) + i

dy

dt
(t∗j )

)
△tj

= lim
n→∞

n∑
j=1

(
u ◦ γ

dx

dt
− v ◦ γ)

dy

dt

)
△tj + i lim

n→∞

n∑
j=1

(
u ◦ γ

dy

dt
+ v ◦ γ

dx

dt

)
△tj

=

∫ b

a

(
u(γ(t))

dx

dt
− v(γ(t))

dy

dt

)
dt+ i

∫ b

a

(
u(γ(t))

dy

dt
+ v(γ(t))

dx

dt

)
dt

=

∫
γ
udx− vdy + i

∫
γ
udy + vdx.

Definition 7.1.2. Introduce notation for integration of vector fields with complex components:∫
γ
(P1 + iP2)dx+ (Q1 + iQ2)dy =

∫
γ
P1dx+Q1dy + i

∫
γ
P2dx+Q2dy.

Then the contour integral of f = u+ iv can be rewritten as follows:∫
γ
f(z) dz =

∫
γ
udx− vdy + i

∫
γ
udy + vdx

=

∫
γ
(u+ iv)dx+ (−v + iu)dy.

If we let dz = dx+ idy then the formula above can be factored since (−v + iu)dy = (u+ iv)idy,∫
γ
f(z) dz =

∫
γ
(u+ iv)dx+ (−v + iu)dy =

∫
γ
(u+ iv)(dx+ idy).

If we could imagine ourselves in the place of a 19-th century mathematician where dx and dy we
intuitively little increments of real variables then supposing dz = dx+ idy is just the thought that
a little increment of complex values decomposes into a complex combination of real increments dx
and dy. In any event, the differential notation is surprisingly consistent so we have many ways
to approach the contour integral. If the reader knows how to calculate line-integrals in the plane
then he is well prepared to calculate contour integrals. That said, a reasonable method to calculate∫
C f(z)dz is as follows:

(i.) find a parametrization for C, say z = g(t) for t1 ≤ t ≤ t2

(ii.) calculate f(g(t) by setting z = g(t) in the formula for f(z) and calculate dz = dg
dt dt

(iii.) integrate f(z)dz = f(g(t))dgdt dt over [t1, t2] ( simplify before integrating ! )

Calculational Comment: For your convenience, let us pause to note some basic properties of
an integral of a complex-valued function of a real variable. In particular, suppose f(t), g(t) are
continuous complex-valued functions of t ∈ R and c ∈ C and a, b ∈ R then∫

(f(t) + g(t)) dt =

∫
f(t)dt+

∫
g(t)dt &

∫
cf(t)dt = c

∫
f(t)dt
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More importantly, the FTC naturally extends; if dF
dt = f then∫ b

a
f(t) dt = F (b)− F (a).

Notice, this is not quite the same as first semester calculus. Theorem 5.4.9 is immensely useful
in what follows from here on out. Often, as we calculate dz by dγ

dt dt we have γ(t) written as the
composition of a holomorphic function of z and some simple function of t. I already used this in
Examples 7.1.3 and 7.1.4. Did you notice?

Example 7.1.3. Let γ : [0, 2π] → C be the unit-circle γ(t) = eit. Calculate
∫
γ

dz
z . Note, if z = eit

then dz = ieitdt hence: ∫
γ

dz

z
=

∫ 2π

0

ieitdt

eit
= i

∫ 2π

0
dt = 2πi.

Example 7.1.4. Let C be the line-segment from p to q parametrized by t ∈ [0, 1]; z = p+ t(q − p)
hence dz = (q − p)dt. We calculate, for n ∈ Z with n ̸= −1,∫

C
zndz =

∫ 1

0
(p+ t(q − p))n(q − p)dt =

(p+ t(q − p))n+1

n+ 1

∣∣∣∣1
0

=
qn+1

n+ 1
− pn+1

n+ 1
.

Example 7.1.5. Let γ = [p, q] and let c ∈ C with c ̸= −1. Recall f(z) = zc is generally a multiply-
valued function whose set of values is given by zc = exp(c log(z)). Suppose p, q fall in a subset of
C on which a single-value of zc is defined and let zc denote that function of z. Let γ(t) = p+ tv
where v = q − p for 0 ≤ t ≤ 1 thus dz = vdt and:∫

γ
zcdz =

∫ 1

0
(p+ tv)cvdt

notice
d

dt

[
(p+ tv)c+1

c+ 1

]
= (p+tv)cv as we know f(z) = zc+1 has f ′(z) = (c+1)zc and d

dt(p+tv) = v.

The chain rule (Theorem 5.4.9) completes the thought. Consequently, by FTC for complex-valued
integrals of a real variable, ∫

γ
zcdz =

(p+ tv)c+1

c+ 1

∣∣∣∣1
0

=
pc+1

c+ 1
− qc+1

c+ 1
.

Notice, the n = 0 case of this example yields:∫
[p,q]

dz = q − p.

An arc is a curve which is formed from joining finitely many smooth paths. We should extend our
definition of integration to an arc:

Definition 7.1.6. In particular, if γ is a curve formed by joining the smooth paths γ1, γ2, . . . , γn.
In terms of the trace denoted trace(γ) = [γ] we have [γ] = [γ1]∪ [γ2]∪· · ·∪ [γn]. Let f(z) be complex
valued and continuous near the trace of γ. Define:∫

γ
f(z) dz =

n∑
j=1

∫
γj

f(z) dz.
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Example 7.1.7. Let γ = [z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−1, zn]. Calculate, using the n = 0 case from
Example 7.1.5 on each line-segment:∫

γ
dz =

n∑
i=1

∫
[zi−1,zi]

dz

=
n∑

i=1

(zi − zi−1)

= z1 − z0 + z2 − z1 + · · ·+ zn−1 − zn−2 + zn−1 − zn

= zn − z0.

So, if z0 = zn then the integral reduces to zero.

Example 7.1.8. Let f(z) = z2 and let C = C+
R ∪ [−R,R] be the CCW-oriented boundary of the

upper half-disk of the closed R-disk centered at the origin. Calculate
∫
C z2dz. Notice,∫

C
z2dz =

∫
C+

R

z2dz +

∫
[−R,R]

z2dz

For z ∈ C+
R we write z = Reit with dz = iReitdt for 0 ≤ t ≤ π and for z ∈ [−R,R] we write z = x

with dz = dx for −R ≤ x ≤ R. Hence calculate:∫
C
z2dz =

∫ π

0

(
Reit

)2
iReitdt+

∫ R

−R
x2dx

=

∫ π

0
iR3e3itdt+

∫ R

−R
x2dx

=
iR3e3it

3i

∣∣∣∣π
0

+
x3

3

∣∣∣∣R
−R

=
R3e3iπ

3
− R3

3
+

R3

3
− (−R)3

3
= 0. (7.1)

Notice, in C×, any loop not containing the origin can be smoothly deformed to a point in and thus
it is true that

∫
γ

dz
z = 0 if 0 is not within the interior of the loop.

Example 7.1.9. Let R > 0 and zo a fixed point in the complex plane. Assume the integration is
taken over a positively oriented parametrization of the pointset indicated: for m ∈ Z,∫

|z−zo|=R
(z − zo)

m dz =

{
2πi for m = −1

0 for m ̸= −1.

Let z = zo +Reit for 0 ≤ t ≤ 2π parametrize |z − zo| = R. Note dz = iReitdt hence∫
|z−zo|=R

(z − zo)
m dz =

∫ 2π

0
(Reit)miReitdt

= iRm+1

∫ 2π

0
ei(m+1)t dt

= iRm+1

∫ 2π

0

(
cos[(m+ 1)t] + i sin[(m+ 1)t]

)
dt.
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The integral of any integer multiple of periods of trigonometric functions is trivial. However, in the
case m = −1 the calculation reduces to

∫
|z−zo|=R(z − zo)

−1 dz = i
∫ 2π
0 cos(0)dt = 2πi. I encourage

the reader to extend this calculation to arbitrary loops which encircle zo by applying Corollary 7.2.10
part (iii.).

Let γ be a loop containing zo in its interior. An interesting aspect of the example above is the
contrast of

∫
γ

dz
z−zo

= 2πi and
∫
γ

dz
(z−zo)2

= 0. One might be tempted to think that divergence at a

point necessitates a non-trivial loop integral after seeing the m = −1 result. However, it is not the
case. At least, not at this naive level of investigation. Later we will see the quadratic divergence
generates nontrivial integrals for f ′(z). Cauchy’s Integral formula studied later in this chapter will
make this clear. Next, we consider less exact methods. Often, what follows it the only way to
calculate something. In contrast to the usual presentation of real-valued calculus, the inequality
theorem below is a weapon we will wield to conquer formiddable enemies later in this course. So,
sharpen your blade now as to prepare for war.

Following Gamelin, denote the infinitesimal arclength ds = |dz| and define the integral with respect
to arclength of a complex-valued function by:

Definition 7.1.10. Let γ : [a, b] → C be a smooth path and f(z) a complex-valued function which
is continuous on and near γ. Let zo, z1, . . . , zn ∈ trace(γ) where a ≤ to < t1 < · · · < tn ≤ b and
γ(tj) = zj for j = 0, 1, . . . , n. We define:

∫
γ
f(z) |dz| = lim

n→∞

n∑
j=1

f(zj)|zj − zj−1|.

Equivalently, as a complex-valued integral over the real parameter of the path:∫
γ
f(z) |dz| =

∫ b

a
f(γ(t))

∣∣∣∣dγdt
∣∣∣∣ dt.

We could express this as a complex-linear combination of the standard real-arclength integrals of
multivariate calculus, but, I will abstain. It is customary in Gamelin to denote the length of the
path γ by L. We may calculate L by integration of |dz| along γ = x+ iy : [a, b] → C:

L =

∫
γ
|dz| =

∫ b

a

√
dx

dt

2

+
dy

dt

2

dt.

Of course, this is just the usual formula for arclength of a parametrized curve in the plane. The
Theorem below is often called the ML-estimate or ML-theorem throughout the remainder of
this course.

Theorem 7.1.11. Let h(z) be a continuous near a smooth path γ with length L. Then

1.

∣∣∣∣∫
γ
h(z) dz

∣∣∣∣ ≤ ∫
γ
|h(z)| |dz|.

2. If |h(z)| ≤ M for all z ∈ [γ] then

∣∣∣∣∫
γ
h(z) dz

∣∣∣∣ ≤ ML.
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Proof: in terms of the Riemann sum formulation of the complex integral and arclength integral
the identities above are merely consequences of the triangle inequality applied to a particular
approximating sum. Note:∣∣∣∣∣∣

n∑
j=1

h(zj)(zj − zj−1)

∣∣∣∣∣∣ ≤
n∑

j=1

|h(zj)(zj − zj−1)| =
n∑

j=1

|h(zj)||zj − zj−1|

where we used multiplicativity of the norm2 in the last equality and the triangle inequality in
the first inequality. Now, as n → ∞ we obtain (1.). The proof of (2.) is one more step:∣∣∣∣∣∣

n∑
j=1

h(zj)(zj − zj−1)

∣∣∣∣∣∣ ≤=

n∑
j=1

|h(zj)||zj − zj−1| ≤
n∑

j=1

M |zj − zj−1| = M

n∑
j=1

|zj − zj−1| = ML. □

I should mention, last time I taught this course I tried to prove this on the fly directly from the
definition written as

∫
γ f(z) dz =

∫ b
a f(γ(t))dγdt dt. It went badly. There are proofs which are not

at the level of the Riemann sum and it’s probably worthwhile to share a second proof. I saw this
proof in my complex analysis course given by my advisor Dr. R.O. Fulp in 2005 at NCSU.

Alternate Proof: we begin by developing a theorem for complex-valued functions of a real-

variable. We claim Lemma:
∣∣∣∫ b

a w(t)dt
∣∣∣ ≤ ∫ b

a |w(t)| dt. Notice that w(t) denotes the modulus of the

complex value w(t). If w(t) = 0 on [a, b] then the claim is true. Hence, suppose w(t) is continuous

and hence the integral of w(t) exists and we set R > 0 and θ ∈ R such that
∫ b
a w(t)dt = Reiθ. Let’s

get real: in particular R = e−iθ
∫ b
a w(t)dt =

∫ b
a e−iθw(t)dt hence:

R =

∫ b

a
e−iθw(t)dt

= Re

(∫ b

a
e−iθw(t)dt

)
=

∫ b

a
Re(e−iθw(t)) dt

≤
∫ b

a

∣∣∣e−iθw(t)
∣∣∣ dt due to a property of modulus; Re(z) ≤ |z|

=

∫ b

a
|w(t)| dt

Thus, the Lemma follows as: |
∫ b
a w(t) dt| = |Reiθ| ≤

∫ b
a |w(t)| dt. Now, suppose h(z) is complex-

valued and continuous near γ : [a, b] → C. We calculate, using the Lemma, then multiplicative
property of the modulus:∣∣∣∣∫

γ
h(z) dz

∣∣∣∣ = ∣∣∣∣∫ b

a
h(γ(t))

dγ

dt
dt

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣h(γ(t))dγdt
∣∣∣∣ dt = ∫ b

a
|h(γ(t))|

∣∣∣∣dγdt
∣∣∣∣ dt = ∫

γ
|h(z)| |dz|.

This proves (1.) and the proof of (2.) is essentially the same as we discussed in the first proof. □

2in A-Calculus we get a modified ML-theorem accordinng to the size of the structure constants. Note, the
alternate proof would not go well in A since we do not have a polar representation of an arbtrary A-number.
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Example 7.1.12. Consider h(z) = 1/z on the unit-circle γ. Clearly, |z| = 1 for z ∈ [γ] hence
|h(z)| = 1 which means this estimate is sharp, it cannot be improved. Furthermore, L = 2π and

the ML-estimate shows
∣∣∣∫γ dz

z

∣∣∣ ≤ 2π. Indeed, in Example 7.1.3
∫
γ

dz
z = 2πi so the estimate is not

too shabby.

Typically, the slightly cumbersome part of applying the ML-estimate is fiinding M . Helpful tech-
niques include: using the polar form of a number, Re(z) ≤ |z| and Im(z) ≤ |z| and naturally
|z + w| ≤ |z|+ |w| as well as |z − w| ≥ ||z| − |w|| which is useful for manipulating denomiinators.

Example 7.1.13. Let γR be the half-circle of radius R going from R to −R on the real-axis. Find
an bound on the modulus of

∫
γR

dz
z2+6

. Notice, on the circle we have |z| = R. Furthermore,

1

|z2 + 6|
≤ 1

||z2| − |6||
=

1

||z|2 − 6|
=

1

|R2 − 6|

If R >
√
6 then we have bound M = 1

R2−6
for which |h(z)| ≤ M for all z ∈ C with |z| = R. Note,

L = πR for the half-circle and the ML-estimate gives:

∣∣∣∣∫
γR

dz

z2 + 6

∣∣∣∣ ≤ πR

R2 − 6
.

Notice, if we consider R → ∞ then we find from the estimate above and the squeeze theorem that∣∣∣∫γR dz
z2+6

∣∣∣→ 0. It follows that the integral of dz
z2+6

over an infinite half-circle is zero.

A similar calculation shows any rational function f(z) = p(z)/q(z) with deg(p(z)) + 2 ≤ deg(q(z))
has an integral which vanishes over sections of a cricle which has an infinite radius. There is a
general proof of this assertion which I owe you for homework.

7.2 FTC for Complex Integral and Cauchy’s Theorem

The term primitive means antiderivative. In particular:

Definition 7.2.1. We say F (z) is a primitive of f(z) on D iff F ′(z) = f(z) for each z ∈ D.

The fundamental theorem of calculus part II has a natural analog in our context.

Theorem 7.2.2. Complex FTC II: Let f(z) be continuous with primitive F (z) on domain D

then if γ is a path from A to B in D then

∫
γ
f(z) dz = F (b)− F (a).

Proof: Suppose γ : [t1, t2] → C is a path from A to B in a domain D. recall the complex derivative
can be cast as a partial derivative with respect to x or y in the following sense: dF

dz = ∂F
∂x = −i∂F∂y .
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Thus: ∫
γ
f(z) dz =

∫
γ

dF

dz
dz =

∫
γ

dF

dz
dx+ i

∫
γ

dF

dz
dy

=

∫
γ

∂F

∂x
dx+ i

∫
γ
−i

∂F

∂y
dy

=

∫
γ

(
∂F

∂x
dx+

∂F

∂y
dy

)
=

∫ t2

t1

(
∂F

∂x

dx

dt
+

∂F

∂y

dy

dt

)
dγ

dt
dt

=

∫ t2

t1

d

dt
[F (γ(t))] dt

= F (γ(t2))− F (γ(t1))

= F (B)− F (A).

where we used Theorem 5.4.9 to rewrite the integrand as a total derivative. Not surprisingly, the
usual FTC II from basic calculus is crucial to the proof above. □

In the context of the above theorem we sometimes use the notation
∫
γ f(z) dz =

∫ B
A f(z) dz. This

notation should be used with care.

Example 7.2.3. ∫ 1+3i

0
z3 dz =

1

4
z4
∣∣∣∣1+3i

0

=
(1 + 3i)4

4
.

Corollary 7.2.4. Suppose C is a closed curve and the complex function f has antiderivative F at
all points of C then

∫
C f(z)dz = 0.

Proof: pick a point A in C and note that C is a path from A to A. Apply Theorem 7.2.2 to find∫
C f(z)dz = F (A)− F (A) = 0. □

The example below was inspired from page 108 of Gamelin.

Example 7.2.5. The function f(z) = 1/z has primitive Log(z) = ln |z|+ iArg(z) on C−. We can
capture the integral around the unit-circle by a limitiing process. Consider the unit-circle, positively
oriented, with an ±ε-sector deleted about negative x-axis; γε : [−π + ϵ, π − ε] → C with γ(t) = eit.
The path has starting point γ(−π+ε) = ei(−π+ε) and ending point γ(π−ϵ) = ei(π−ε). Note [γε] ⊂ C−

hence for each ϵ > 0 we are free to apply the complex FTC:∫
γε

dz

z
= Log(ei(π−ε))− Log(ei(−π+ε)) = i(π − ε)− i(−π + ε) = 2πi− 2iε.

Thus, as ε → 0 we find 2πi − 2iε → 2πi and γε → γ0 where γ0 denotes the positively oriented
unit-circle. Therefore, we find:

∫
γ0

dz
z = 2πi.

The example above gives us another manner to understand Example 7.1.3. It all goes back to the
2πZ degeneracy of the standard angle. Notice the other examples in the previous section can also
be calculated directly by application of FTC II since the primitives of the functions we considered in
the last section were all easily antidifferentiated. Next we consider the analog of FTC I for complex
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integration. Remember, the existential import of FTC I in basic calculus is that an antiderivative
for a continuous function exists in that the area function of the given continuous function serves as
its antiderivative. In the complex context, a holomorphic function on a star-shaped domain3 has
an antiderivative given by a path integral from the star-center.

Theorem 7.2.6. Complex FTC I: let D be star-shaped and let f(z) be holomorphic on D. Then
f(z) has a primitive on D and the primitive is unique up to an additive constant. A primitive for
f(z) is given by4

F (z) =

∫ z

A
f(ζ) dζ

where A is a star-center of D and the integral is taken along some path in D from A to z.

Proof: assume D is a star-shaped domain with star-center A and suppose f ∈ O(D). If f = u+ iv
then we have ux = vy and uy = −vx on D. Define h(z) =

∫
[A,z](u + iv)(dx + idy) =

∫
[A,z] f(ζ)dζ.

Expanding dζ = dx+ idy we expand fdζ = f(dx+ idy) = fdx+ ifdy.

Fix a point zo in D and note [A, zo] is in D. Furthermore, γ1 is given by x = t for xo ≤ t ≤ x and
y = yo. Likewise, γ2 is the line-segment [zo, xo + iy] where x = xo and y = t for yo ≤ t ≤ y. Note
[A, xo + iy] and [A, x + iyo] are in D. Apply Green’s Theorem5 on the triangle T2 with vertices
A, zo, xo + iy:∫

∂T2

f(ζ)dζ =

∫
∂T2

fdx+ ifdy =

∫∫
T2

(
i
∂f

∂x
− ∂f

∂y

)
dA =

∫∫
T2

(0)dA = 0.

Thus, notice the reversal of [xo+ iy, A] is [A, xo+ iy] and so we place a minus on the third integral:∫
[A,zo]

f(ζ)dζ +

∫
[zo,xo+iy]

f(ζ)dζ −
∫
[A,xo+iy]

f(ζ)dζ = 0

but, we defined h(z) =
∫
[A,z] f(ζ)dζ thus:

h(xo, y)− h(xo, yo) = i

∫ y

yo

f(xo, t)dt ⇒ ∂h

∂y
(xo, yo) = if(xo, yo).

3this is for convenience of exposition, we could replace star-shaped with simply connected and let the base point
of the integration be any point in the region of holomorphicity.

4the symbol ζ is used here since z has another set meaning, this is the Greek letter ”zeta”
5we require a modest generalization of the usual Green’s Theorem. I’ll let you work it out in a homework. Basically,

we just apply Green’s Theorem to the real and imaginary parts separately and thus derive the theorem used here
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Examine triangle T1 formed by A, zo, xo + iy and apply Green’s Theorem:∫
∂T1

f(ζ)dζ =

∫
∂T1

fdx+ ifdy =

∫∫
T1

(
i
∂f

∂x
− ∂f

∂y

)
dA =

∫∫
T1

(0)dA = 0.

Thus, notice the reversal of [xo+ iy, A] is [A, xo+ iy] and so we place a minus on the third integral:∫
[A,zo]

f(ζ)dζ +

∫
[zo,x+iyo]

f(ζ)dζ −
∫
[A,x+iyo]

f(ζ)dζ = 0

Therefore,

h(x, yo)− h(xo, yo) =

∫ x

xo

f(t, yo)dt ⇒ ∂h

∂x
(xo, yo) = f(xo, yo).

We’ve shown f(xo, yo) =
∂h
∂x(xo, yo) =

1
i
∂h
∂y (xo, yo) hence ∂h

∂y (xo, yo) = i∂h∂x(xo, yo) which shows h is
complex differentiable at zo = xo + iyo. However, the point zo was arbitrary hence we’ve shown
dh
dz = hx = f on the given star-shaped domain. Finally, set F = h. □

Example 7.2.7. Since f(z) = 1
z is holomorphic on star-shaped C− we have path-indendence of the

integral of f(z) on C− and I claim we could define Log by the integral below:

Log(z) =

∫ z

1

dζ

ζ

Notice by FTC I we have d
dzLog(z) =

1
z for z ∈ C− in this approach. However, proving Log serves

as an inverse of the exponential suitably restricted would require some calculation. It is interesting
to actually carry out the integration. Let C denote the path which goes from 1 to zo ∈ C−. In
particular, form C by the union of the path C1 = [1, |zo|] followed by the arc C2 from |zo| to zo. For
specificity, assume zo = xo + iyo where yo > 0 and xo > 1 then zo = |zo|eiθo for θo ∈ (0, π). We
calculate, for C1, y = 0 hence dz = dx for 1 ≤ x ≤ |zo| whereas for C2, z = |zo|eit for 0 ≤ t ≤ θo
hence dz = i|zo|eitdt ∫

C

dz

z
=

∫
C1

dz

z
+

∫
C2

dz

z

=

∫ |zo|

1

dx

x
+

∫ θo

0

i|zo|eitdt
|zo|eit

=

∫ |zo|

1

dx

x
+ i

∫ θo

0
dt

= ln |zo|+ iθo.

Similar calculations show Log(zo) = ln |zo|+ iθo in the case 0 < |z| < 1 and also in the case yo < 0
where −π < θo < 0. In summary, the integral definition of the principle logarithm agrees with our
previous definition.

Example 7.2.8. If Cα denotes the slit-plane where teiα for t ≥ 0 is deleted then we may define
the branch of the log with domain Cα via:

Logα(z) = i(α+ π) +

∫ z

−eiα

dζ

ζ

Notice the previous example examines α = −π so −eiα = −eiπ = 1 and the shift of i(α + π) = 0
is absent. I invite the reader to affirm the formula given here is in agreement with our previous
definition of Logα(z) = ln |z|+ iArgα(z) where α < Argα(z) < α+ 2π for z ∈ Cα.
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Theorem 7.2.9. Cauchy’s Theorem: If f(z) is holomorphic and continuously differentiable on

D and extends continuously to ∂D then

∫
∂D

f(z) dz = 0. Here ∂D is the oriented boundary of D

where inner boundaries are oriented CW whereas outer boundaries are oriented CCW6

Proof: If f ∈ O(U) then the Cauchy Riemann equations give ∂yf = i∂xf . Apply Green’s Theorem,∫
∂D

f(z)dz =

∫
∂D

fdx+ ifdy =

∫
D
(∂x(if)− ∂yf)dA =

∫
D
(i∂xf − ∂yf)dA = 0.□

Technically, the assumption in both proofs above of the continuity of f ′(z) throughout D is needed
in order that Green’s Theorem apply. That said, we shall soon study Goursat’s Theorem and gain
an appreciation for why this detail is superfluous.

The complex integral of a holomorphic function is path independent. In addition, if the function
is holomorphic within a given loop then the integral around the loop is zero. I leave the proof of
the Corollary to Cauchy’s Theorem to the reader, possibly in homework.

Corollary 7.2.10. (Path Independence, Trivial holonomy, Deformation Theorem)

(i.) If f(z) is holomorphic and continuously differentiable on D and C1 and C2 are two coterminal
paths in D then

∫
C1

f(z)dz =
∫
C2

f(z)dz.

(ii.) If C is a simple closed curve whose interior is within D then
∫
C f(z)dz = 0.

(iii.) If Cin and Cout are two CCW oriented loops which bound an annulus where f is continuously
differentiable and holomorphic then

∫
Cin

f(z)dz =
∫
Cout

f(z)dz.

I refer to part (iii.) of the Corollary above as the deformation theorem. It allows us to trade simple
calculation as in Example 7.1.3 in place of a potentially very challenging integral we would face if
we tried to perform the integration directly for deformed loop with lots of wiggles.

Example 7.2.11. Let γ be a, postively oriented, simple, closed, curve containg the unit circle in
its interior. Notice f(z) = 1

z is holomorphic between γ and the unit circle. Hence, by Example
7.1.3 and the deformation theorem we find∫

γ

dz

z
= 2πi.

Definition 7.2.12. A complex one-form has the form ω = Pdx + Qdy where P,Q are complex-
valued smooth functions. If Qx = Py on a domain D then we say ω = Pdx + Qdy is closed on
D. On the other hand, if there exists h such that dh = Pdx+Qdy then we say ω = Pdx+Qdy is
exact on D.

We can prove that every exact form is closed. However, depending on the shape of the domain,
there may exist closed forms which are not exact. In particular, the assumption of star-shaped (or
simply connected to be a bit more general) is needed since there are closed forms on domains with
holes which are not exact. The standard example is C× where dz

z is closed, but
∫
|z|=1

dz
z = 2πi

6CW means clockwise and CCW means counterclockwise. If you imagine yourself a tiny person walking the
boundary then if you walk in the positively oriented direction then the interior of the space will be on your left. Or
you could imagine D as being huge and yourself as a giant, still, the interior is on the left if you walk the positively
oriented boundary.
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shows we cannot hope for a primitive to exist on all of C×. If such a primitive did exist then
the integral around |z| = 1 would necessarily be zero which contradicts the always important
Example 7.1.3. This discussion is the beginning of the study of DeRahm Cohomology. In DeRahm
Cohomology we use the calculus of differential forms on manifolds to capture and characterize holes
in manifolds. It’s part of a larger discussion about algebraic topology in which abstract algebra is
used to calculate topological invariants. We learn a little more about this in the complex context
when we study winding number later in this course.

Example 7.2.13. The function f(z) = 2
1+z2

has natural domain of C−{i,−i}. Moreover, partial
fractions decomposition provides the following identity:

f(x) =
1

z + i
+

1

z − i

If ϵ < 1 and γϵ(p) denotes the circle centered at p with positive orientation and radius ϵ then I
invite the student to verify that:∫

γϵ(−i)

dz

z + i
= 2πi &

∫
γϵ(−i)

dz

z − i
= 0

whereas ∫
γϵ(i)

dz

z + i
= 0 &

∫
γϵ(i)

dz

z − i
= 2πi.

Suppose D is a domain which includes ±i. Let S = D− interior(γϵ(±i)). That is, S is the domain
D with the points inside the circles γϵ(−i) and γϵ(i) deleted. Furthermore, we suppose ϵ is small
enough so that the circles are interior to D. This is possible as we assumed D is an open connected

set when we said D is a domain. All of this said: note d
dz

[
2

z2+1

]
= −4z

(z2+1)2
hence f(z) is holmorphic

on D and we may apply Cauchy’s Theorem on S:

0 =

∫
∂S

2dz

z2 + 1
=

∫
∂D

2dz

z2 + 1
−
∫
γϵ(−i)

(
dz

z + i
+

dz

z − i

)
−
∫
γϵ(i)

(
dz

z + i
+

dz

z − i

)
But, we know the integrals around the circles and it follows:∫

∂D

2dz

z2 + 1
= 4πi.

Notice the nontriviality of the integral above is due to the singular points ±i in the domain.

Look back at Example 7.1.9 if you are rusty on how to calculate the integrals around the circles. It
is fun to think about the calculation above in terms of what we can and can’t do with logarithms:∫

γϵ(−i)

(
dz

z + i
+

dz

z − i

)
=

∫
γϵ(−i)

(
dz

z + i
+ d[log(z − i)]

)
=

∫
γϵ(−i)

dz

z + i
= 2πi.

where the log(z − i) is taken to be a branch of the logarithm which is holomorphic on the given
circle; for example, log(z − i) = Logπ/2(z − i) would be a reasonable choice since the circle is
centered at z = −i which falls on θ = −π/2. The jump in the Logπ/2(z − i) occurs away from
where the integration is taken and so long as ϵ < 1 we have that dz/(z − i) is exact with potential
Logπ/2(z − i). That said, we prefer the notation log(z − i) when the details are not important to
the overall calculation. Notice, see for dz/(z+ i) as the differential of a logarithm because the circle
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of integration necessarily contains the singularity which forbids the existence of the logarithm on
the whole punctured plane C− {−i}. Similarly,∫

γϵ(i)

(
dz

z + i
+

dz

z − i

)
=

∫
γϵ(i)

(
d[log(z + i)] +

dz

z − i

)
=

∫
γϵ(i)

dz

z − i
= 2πi

is a slick notation to indicate the use of an appropriate branch of log(z + i). In particular,
Log−π/2(z + i) is appropriate for ϵ < 1.

7.3 The Cauchy Integral Formula

Once again, when we assume holomorphic on a domain we also add the assumption of continuity
of f ′(z) on the domain. Gamelin assumes continuity of f ′(z) when he says f(z) is analytic on D.
As I have mentioned a few times now, we show in Section 7.5 that f(z) holomorphic on a domain
automatically implies that f ′(z) is continuous. This means we can safely delete the assumption of
continuity of f ′(z) once we understand Goursat’s Theorem.

The theorem below is rather surprising in my opinion.

Theorem 7.3.1. Cauchy’s Integral Formula (m = 0): let D be a bounded domain with piecewise
smooth boundary ∂D. If f(z) is holomorphic with continuous f ′(z) on D and f(z), f ′(z) extend
continuously to ∂D then for each z ∈ D,

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw

Proof: Assume the preconditions of the theorem. Fix a point z ∈ D. Note D is open hence z is
interior thus we are free to choose ϵ > 0 for which {w ∈ C | |w − z| < ϵ} ⊆ D. Define:

Dϵ = D − {w ∈ C | |w − z| ≤ ϵ}

Observe the boundary of Dϵ consists of the outer boundary ∂D and the circle γ−ϵ which is |w−z| = ϵ

given CW-orientation; ∂Dϵ = ∂D ∪ γ−ϵ . Further, observe g(w) = f(w)
w−z is holomorphic as

g′(w) =
f ′(w)

w − z
− f(w)

(w − z)2

and g′(w) continuous on Dϵ and g(w), g′(w) both extend continuously to ∂Dϵ as we have assumed
from the outset that f(w), f ′(w) extend likewise. We obtain from Cauchy’s Theorem 7.2.9 that:∫

∂Dϵ

f(w)

w − z
dw = 0 ⇒

∫
∂D

f(w)

w − z
dw +

∫
γ−
ϵ

f(w)

w − z
dw = 0.
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However, if γ+ϵ denotes the CCW-oriented circle, we have
∫
γ−
ϵ

f(w)
w−z dw = −

∫
γ+
ϵ

f(w)
w−z dw hence:∫

∂D

f(w)

w − z
dw =

∫
γ+
ϵ

f(w)

w − z
dw

The circle γ+ϵ has w = z + ϵeiθ for 0 ≤ θ ≤ 2π thus dz = iϵeiθdθ and we calculate:∫
γ+
ϵ

f(w)

w − z
dw =

∫ 2π

0

f(z + ϵeiθ)

ϵeiθ
iϵeiθdθ = 2πi

∫ 2π

0
f(z + ϵeiθ)

dθ

2π
= 2πif(z).

In the last step we used the Mean Value Property which was proved in homework. Finally, solve
for f(z) to obtain the desired result. □

We can formally derive the higher-order formulae by differentiation:

f ′(z) =
1

2πi

d

dz

∫
∂D

f(w)

w − z
dw =

1

2πi

∫
∂D

d

dz

[
f(w)

w − z

]
dw =

1!

2πi

∫
∂D

f(w)

(w − z)2
dw

Differentiate once more,

f ′′(z) =
1

2πi

d

dz

∫
∂D

f(w)

(w − z)2
dw =

1

2πi

∫
∂D

d

dz

[
f(w)

(w − z)2

]
dw =

2!

2πi

∫
∂D

f(w)

(w − z)3
dw

continuing, we would arrive at:

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw

which is known as Cauchy’s generalized integral formula. Note that 0! = 1 and f (0)(z) = f(z)
hence Theorem 7.3.1 naturally fits into the formula above.

It is probably worthwhile to examine a proof of the formulas above which is not based on differen-
tiating under the integral. The arguments below show that our formal derivation above were valid.
In the case m = 1 the needed algebra is simple enough:

1

w − (z +△z)
− 1

w − z
=

△z

(w − (z +△z))(w − z)
.

Then, appealing to the m = 0 case to write the functions as integrals:

f(z +△z)− f(z)

△z
=

1

2πi△z

∫
∂D

1

w − (z +△z)
dw +

1

2πi△z

∫
∂D

1

w − z
dw

=
1

2πi△z

∫
∂D

[
1

w − (z +△z)
− 1

w − z

]
f(w) dw

=
1

2πi

∫
∂D

f(w)

(w − (z +△z))(w − z)
dw.

Finally, as △z → 0 we find f ′(z) = 1
2πi

∫
∂D

f(w)
(w−z)2

dw. We assume that the limiting process △z → 0

can be interchanged with the integration process. Gamelin comments this is acceptable due to the
uniform continuity of the integrand.
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We now turn to the general case, assume Cauchy’s generalized integral formula holds for m − 1.
We need to make use of the binomial theorem:

((w − z) +△z)m = (w − z)m −m(w − z)m−1△z +
m(m− 1)

2
(w − z)m−2(△z)2 + · · ·+ (△z)m

Clearly, we have ((w − z) +△z)m = (w − z)m −m(w − z)m−1△z + g(z, w)(△z)2 It follows that:

1

(w − (z +△z))m
− 1

(w − z)m
=

m(w − z)m−1△z + g(z, w)(△z)2

(w − (z +△z))m(w − z)m

=
m△z

(w − (z +△z))(w − z)m
.+

g(z, w)(△z)2

(w − (z +△z))m(w − z)m

Apply the induction hypothesis to obtain the integrals below:
f (m−1)(z +△z)− f (m−1)(z)

△z
=

=
(m− 1)!

2πi△z

∫
∂D

f(w)

(w − (z +△z))m
dw +

(m− 1)!

2πi△z

∫
∂D

f(w)

(w − z)m
dw

=
(m− 1)!

2πi△z

∫
∂D

[
m△z

(w − (z +△z))(w − z)m
.+

g(z, w)(△z)2

(w − (z +△z))m(w − z)m

]
f(w) dw

=
m!

2πi

∫
∂D

f(w)dw

(w − (z +△z))(w − z)m
.+

(m− 1)!

2πi

∫
∂D

g(z, w)△zf(w)dw

(w − (z +△z))m(w − z)m
.

As △z → 0 we see the right integral vanishes and the left integral has a denominator which tends
to (w − z)m+1 hence, by the definition of the m-th derivative,

f (m)(z) =
m!

2πi

∫
∂D

f(w)dw

(w − z)m+1

The arguments just given provide proof of the following theorem:

Theorem 7.3.2. Cauchy’s Generalized Integral Formula (m ∈ N∪ {0}): let D be a bounded
domain with piecewise smooth boundary ∂D. If f(z) is holomorphic with continuous f ′(z) on D
and f(z), f ′(z) extend continuously to ∂D then for each z ∈ D,

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw

Often we need to use the theorem above with the role of z as the integration variable. For example:

f (m)(zo) =
m!

2πi

∫
∂D

f(z)

(z − zo)m+1
dz

from which we obtain the useful identity:∫
∂D

f(z)

(z − zo)m+1
dz =

2πif (m)(zo)

m!

This formula allows us to calculate many difficult integrals by simple evaluation of an approrpriate
derivative. That said, we do improve on this result when we uncover the technique of residues later
in the course. Think of this as an intermediate step in our calculational maturation.
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Example 7.3.3. Let the integral below be taken over the CCW-oriented curve |z| = 1:∮
|z|=2

sin(2z)

(z − i)6
dz =

2πi

5!

d5

dz5

∣∣∣∣
z=i

sin(2z) =
2πi

5 · 4 · 3 · 2
(−32 cos(2i)) =

−8πi cosh(2)

15
.

Example 7.3.4. Notice that z4 + i = 0 for z ∈ (−i)1/4 =
(
e−iπ/2

)1/4
= e−iπ/8{1, i,−1,−i} hence

z4 + i = (z − e−iπ/8)(z − ie−iπ/8)(z + e−iπ/8)(z + ie−iπ/8). Consider the circle |z − 1| = 1 (blue).
The dotted circle is the unit-circle and the intersection near ie−iπ/8 is at θ = π/3 which is roughly
as illustrated.

The circle of integration below encloses the principal root (red), but not the other three non-principal
fourth roots of −i(green). Consequently, we apply Cauchy’s integral formula based on the divergence
of the principal root:∮

|z−1|=1

dz

z4 + i
=

∮
|z−1|=1

dz

(z − e−iπ/8)(z − ie−iπ/8)(z + e−iπ/8)(z + ie−iπ/8)

=
2πi

(z − ie−iπ/8)(z + e−iπ/8)(z + ie−iπ/8)

∣∣∣∣
z=e−iπ/8

=
2πi

(e−iπ/8 − ie−iπ/8)(e−iπ/8 + e−iπ/8)(e−iπ/8 + ie−iπ/8)

=
2πi

e−3iπ/8(1− i)(1 + 1)(1 + i)

=
πi

2
e3iπ/8.

Of course, you could simplify the answer further and present it in Cartesian form.

Finally, one last point:

Corollary 7.3.5. If f(z) is holomorphic with continuous derivative f ′(z) on a domain D then f(z)
is infinitely complex differentiable. That is, f ′, f ′′, . . . all exist and are continuous on D.

The proof of this is that Cauchy’s integral formula gives us an explicit expression (which exists) for
any possible derivative of f . There are no just once or twice continuously complex differentiable
functions. You get one continuous derivative on a domain, you get infinitely many. Pretty good
deal. Moreover, the continuity of the derivative is not even needed as we discover soon.
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7.4 Liouville’s Theorem

It is our convention to say f(z) is holomorphic on a closed set D iff there exists an open set
D̃ containing D on which f(z) ∈ O(D̃). Consider a function f(z) for which f ′(z) exists and is
continuous for z ∈ C such that |z − zo| ≤ ρ. In such a case Cauchy’s integral formula applies:

f (m)(zo) =
m!

2πi

∫
|z−zo|≤ρ

f(z)

(z − zo)m+1
dz

We parametrize the circle by z = zo + ρeiθ for 0 ≤ θ ≤ 2π where dz = iρeiθdθ. Therefore,

f (m)(zo) =
m!

2πi

∫ 2π

0

f(zo + ρeiθ)

(ρeiθ)m+1
iρeiθdθ =

m!

2πρm

∫ 2π

0
f(zo + ρeiθ)e−imθdθ

If we have |f(zo + ρeiθ)| ≤ M for 0 ≤ θ ≤ 2π then the we find∣∣∣∣∫ 2π

0
f(zo + ρeiθ)e−imθdθ

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣f(zo + ρeiθ)e−imθ
∣∣∣ dθ

=

∫ 2π

0

∣∣∣f(zo + ρeiθ)
∣∣∣ dθ

≤ 2πM.

The discussion above serves to justify the bound given below:

Theorem 7.4.1. Cauchy’s Estimate: suppose f(z) is holomorphic with continuous derivative
on a domain D then for any closed disk {z ∈ C | |z − zo| ≤ ϵ} ⊂ D on which |f(z)| ≤ M for all
z ∈ C with |z − zo| = ρ we find ∣∣∣f (m)(zo)

∣∣∣ ≤ Mm!

ρm

Many interesting results flow from the estimate above. For example:

Theorem 7.4.2. Liouville’s Theorem: Suppose f(z) is holomorphic with continuous derivative
on C. If |f(z)| ≤ M for all z ∈ C then f(z) is constant.

Proof: Assume f(z), f ′(z) are continuous on C and |f(z)| ≤ M for all C. Let us consider the disk
of radius R centered at zo. From Cauchy’s Estimate with m = 1 we obtain:

∣∣f ′(zo)
∣∣ ≤ M

R
.

Observe, as R → ∞ we find |f ′(zo)| → 0 hence f ′(zo) = 0. But, zo was an arbitrary point in C
hence f ′(z) = 0 for all z ∈ C and as C is connected we find f(z) = c for all z ∈ C. □

We saw in the homework that this theorem allows a relatively easy proof of the Fundamental
Theorem of Algebra. In addition, we were able to show that an entire function whose range misses
a disk of values must be constant. As I mentioned in class, the take-away message here is simply
this: every bounded entire function is constant.
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7.5 Theorems of Morera and Goursat

In this section we prove that every holomorphic function on a domain is necessarily a continuously
differentiable function. This means the theorems in previous sections can be fine-tuned to delete
the precondition of continuous differentiability since holomorphic implies the desired continuity. It
is important to note that continuous differentiability of f(z) is not assumed as a precondition of
the theorem.

Theorem 7.5.1. Morera’s Theorem: Let f(z) be a continuous function on a domain U . If∫
∂R f(z)dz = 0 for every closed rectangle R contained in U with sides parallel to the coordinate
axes then f(z) is holomorphic with continuous f ′(z) in U .

Proof: the vanishing of the rectangular integral allows us to exchange the lower path between two
vertices of a rectangle for the upper path:

It suffices to prove the theorem for a disk D with center zo where D ⊆ U7. Define:

F (z) =

∫
γd(z)

f(w)dw

where γd(z) = [xo+iyo, iyo+x]∪ [iyo+x, x+iy] where zo = xo+iyo and z = x+iy. To show F ′(z)
exists we consider the difference: here △z is a small enough displacement as to keep z +△z ∈ D,
the calculation below is supported by the diagram which follows after:

F (z + △z)− F (z) =

∫
γd(z+△z)

f(w)dw −
∫
γd(z)

f(w)dw

=

∫
γd(z+△z)

f(w)dw +

∫
−γd(z)

f(w)dw

=

∫
γu(z,z+△z)

f(w)dw ⋆ .

Where −γd(z) denotes the reversal of γd(z). I plotted it as the red path below. The blue path is
γd(z +△z). By the assumption of the theorem we are able to replace the sum of the blue and red
paths by the green path γu(z, z +△z).

7do you understand why this is true and no loss of generality here?



96 CHAPTER 7. INTEGRATION

Notice, f(z) is just a constant in the integral below hence:∫
γu(z,z+△z)

f(z)dw = f(z)

∫ z+△z

z
dw = f(z)w

∣∣∣∣z+△z

z

= f(z)△z.

Return once more to ⋆ and add f(z)− f(z) to the integrand:

F (z + △z)− F (z) =

∫
γu(z,z+△z)

[f(z) + f(w)− f(z)]dw

= f(z)△z +

∫
γu(z,z+△z)

(
f(w)− f(z)

)
dw ⋆ ⋆

Note L(γu(z, z +△z)) < 2|△z| and if we set M = sup{|f(w)− f(z)| | z ∈ γu(z, z +△z)} then the
ML-estimate provides ∣∣∣∣∣

∫
γu(z,z+△z)

(
f(w)− f(z)

)
dw

∣∣∣∣∣ ≤ ML < 2M |△z|

Rearranging ⋆⋆ we find: ∣∣∣∣F (z + △z)− F (z)

△z
− f(z)

∣∣∣∣ ≤ 2M.

Notice that as △z → 0 we have 2M → 0 hence F ′(z) = f(z) be the inequality above. Furthermore,
we assumed f(z) continuous hence F ′(z) is continuous. Consequently F (z) is both holomorphic
and possesses continuous derivative F ′(z) on D. Apply the Corollary 7.3.5 to Cauchy’s Generalized
Integral Formula to see that F ′′(z) = f ′(z) exists and is continuous. □

Theorem 7.5.2. Goursat’s Theorem: If f(z) is a complex-valued function on a domain D such
that

f ′(zo) = lim
z→zo

f(z)− f(zo)

z − zo

exists at each point zo of D then f ′(z) is continuous on D.

In other words: If a function is holomorphic on a domain D then z → f ′(z) is continuous.

Proof: let R be a closed rectangle inD with sides parallel to the coordinate axes. Divide R into four

identical sub-rectangles and let R1 be the sub-rectangle for which
∣∣∣∫∂R1

f(z)dz
∣∣∣ is largest (among

the 4 sub-rectangles). Observe that
∣∣∣∫∂R1

f(z)dz
∣∣∣ ≥ 1

4

∣∣∫
∂R f(z)dz

∣∣ or, equivalently, ∣∣∫∂R f(z)dz
∣∣ ≤

4
∣∣∣∫∂R1

f(z)dz
∣∣∣. Then, we subdivide R1 into 4 sub-rectangles and the rectangle with largest integral

R2. Continuing in this fashion we obtain a sequence of nested rectangles R ⊃ R1 ⊃ R2 ⊃ · · · ⊃
Rn ⊃ · · · . It is a simple exercise to verify:∣∣∣∣∫

∂Rn

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
∫
∂Rn+1

f(z)dz

∣∣∣∣∣ ⇒
∣∣∣∣∫

∂R
f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂Rn

f(z)dz

∣∣∣∣ ⋆ .

The subdivision process is illustrated below:
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As n → ∞ it is clear that the sequence of nested rectangles converges to a point zo ∈ R. Fur-
thermore, if L is the length of the perimeter of R then L/2n is the length of ∂Rn. As f(z) is
complex-differentiable at zo we know for each z ∈ Rn there must exist an ϵn such that∣∣∣∣f(z)− f(zo)

z − zo
− f ′(zo)

∣∣∣∣ ≤ ϵn

hence ∣∣f(z)− f(zo)− f ′(zo)(z − zo)
∣∣ ≤ ϵn|z − zo| ≤ 2ϵnL/2

n ⋆ ⋆.

The last inequality is very generous since zo, z ∈ Rn surely implies they are closer than the perimeter
L/2n apart. Notice, the function g(z) = f(zo) + f ′(zo)(z − zo) has primitive G(z) = f(zo)z +
f ′(zo)(z

2/2− zzo) on Rn hence8
∫
∂Rn

g(z)dz = 0. Subtracting this zero is crucial:∣∣∣∣∫
∂Rn

f(z)dz

∣∣∣∣ = ∣∣∣∣∫
∂Rn

[
f(z)− f(zo)− f ′(zo)(z − zo)

]
dz

∣∣∣∣ ≤ (2ϵnL/2
n)(L/2n) =

2L2ϵn
4n

.

where we applied the ML-estimate by ⋆⋆ and L(∂Rn) = L/2n. Returning to ⋆,∣∣∣∣∫
∂R

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂Rn

f(z)dz

∣∣∣∣ ≤ 4n · 2L
2ϵn
4n

= 2L2ϵn.

Finally, as n → 0 we have ϵn → 0 thus it follows
∫
∂R f(z)dz = 0. But, this shows the integral

around an arbitrary rectangle in D is zero hence by Morera’s Theorem 7.5.1 we find f(z) is holo-
morphic with continuous f ′(z) on D. □

A good part of the reason I keep this section is that I think it is important for Math majors to see
the nesting argument given in the proof above.

7.6 Complex Notation and Pompeiu’s Formula

My apologies, it seems I have failed to write much here. I have many things to say, some of them
I said in class. Recently, we learned how to generalize the idea of this section to nearly arbitrary
associative algebras. More on that somewhere else.

8this application of Cauchy’s Theorem does not beg the question by assuming continuity of g′(z)
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Chapter VIII

Power Series

A power series is simply a polynomial without end. But, this begs questions. What does ”without
end” mean? How can we add, subtract, multiply and divide things which have no end? In this
chapter we give a careful account of things which go on without end.

History provides examples of the need for caution1. For example, even Cauchy wrongly asserted
in 1821 that an infinite series of continuous functions was once more continuous. In 1826 Abel2

provided a counter-example and in the years to follow the concept of uniform convergence was
invented to avoid such blunders. Abel had the following to say about the state of the theory as he
saw it: from page 114 of [R91]

If one examines more closely the reasoning which is usually employed in the treatment
of infinite series, he will find that by and large it is unsatisfactory and that the number
of propositions about infinite series which can be regarded as rigorously confirmed is
small indeed

The concept of uniform convergence is apparently due to the teacher of Weierstrauss. Christoph
Gudermann wrote in 1838: ”it is a fact worth noting that... the series just found have all the
same convergence rate”. Weierstrauss used the concept of uniform convergence throughout his
work. Apparently, Seidel and Stokes independently in 1848 and 1847 also used something akin to
uniform convergence of a series, but the emminent British mathematician G.H Hardy gives credit
to Weierstrauss:

Weierstrauss’s discovery was the earliest, and he alone fully realized its far-reaching
importance as one of the fundamental ideas of analysis

It is fun to note Cauchy’s own view of his 1821 oversight. In 1853 in the midst of a work which
used and made significant contributions to the theory of uniformly convergent series, he wrote that
it is easy to see how one should modify the statement of the theorem. See page 102 of [R91] for
more details as to be fair to Cauchy.

In this chapter, we study convergence of sequence and series. Ultimately, we find how power series
work in the complex domain. The results are surprisingly simple as we shall soon discover. Most
importantly, we introduce the term analytic and see in what sense it is equivalent to our term
holomorphic. Obviously, we differ from Gamelin on this point of emphasis.

1the facts which follow here are taken from [R91] pages 96-98 primarily
2did work on early group theory, we name commutative groups Abelian groups in his honor
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8.1 Infinite Series

We discussed and defined complex sequences in Chapter 2. See Definition 3.2.1. We now discuss
series of complex numbers. In short, a complex series is formed by adding the terms in some
sequence of complex numbers:

∞∑
n=0

zn = zo + z1 + z2 + · · ·

If this sum exists as a complex number then the series is convergent whereas if the sum above does
not converge then the series is said to be divergent. The convergence (or divergence) of the series
is described precisely by the convergence (or divergence) of the sequence of partial sums:

Definition 8.1.1. Let an ∈ C for each n ∈ N ∪ {0} then we define

∞∑
j=0

aj = lim
n→∞

n∑
j=0

aj .

If limn→∞
∑n

j=0 aj = S ∈ C then the series ao + a1 + · · · is said to converge to S.

The linearity theorems for sequences induce similar theorems for series. In particular, Theorem
3.2.3 leads us to:

Theorem 8.1.2. Let c ∈ C,
∑

aj = A and
∑

bj = B then
∑

(aj + bj) = A+B and
∑

caj = cA;∑
(aj + bj) =

∑
aj +

∑
bj additivity of convergent sums∑

cbj = c
∑

bj homogeneity of convergent sums

Proof: let Sn =
∑n

j=0 aj and Tn =
∑n

j=0 bj . We are given, from the definition of convergent series,
that these partial sums converge; Sn → A and Tn → B as n → ∞. Consider then,

n∑
j=0

(aj + cbj) =
n∑

j=0

aj + c
n∑

j=0

bj

Thus, the sequence of partial sums for
∑∞

j=0(aj + cbj) is found to be Sn + cTn. Apply Theorem
3.2.3 and conclude Sn + cTn → A+ cB as n → ∞. Therefore,

∞∑
j=0

(aj + cbj) =
∞∑
j=0

aj + c
∞∑
j=0

bj .

If we set c = 1 we obtain additivity, if we set A = 0 we obtain homogeneity. □

I offered a proof for series which start at j = 0, but, it ought to be clear the same holds for series
which start at any particular j ∈ Z.

Let me add a theorem which is a simple consequence of Theorem 3.2.10 applied to partial sums:

Theorem 8.1.3. Let xk, yk ∈ R then
∑

xk+ iyk converges iff
∑

xk and
∑

yk converge. Moreover,
in the convergent case,

∑
xk + iyk =

∑
xk + i

∑
yk.
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Series of real numbers enjoy a number of results which stem from the ordering of the real numbers.
The theory of series with non-negative terms is particularly intuitive. Suppose ao, a1, · · · > 0 then
{ao, ao + a1, ao + a1 + a2, . . . } is a monotonically increasing sequence. Recall Theorem 3.2.5 which
said that a monotonic sequence converged iff it was bounded.

Theorem 8.1.4. If 0 ≤ ak ≤ rk, and if
∑

rk converges, then
∑

ak converges, and
∑

ak ≤
∑

rk.

Proof: obviously ak, rk ∈ R by the condition 0 ≤ ak ≤ rk. Observe
∑n+1

k=0 rk = rn+1 +
∑n

k=0 rk
hence

∑n+1
k=0 rk ≥

∑n
k=0 rk. Thus the sequence of partial sums of

∑
rk is increasing. Since

∑
rk

converges it follows that the convergent sequence of partial sums is bounded. That is, there exists
M ≥ 0 such that

∑n
k=0 rk ≤ M for all n ∈ N ∪ {0}. Notice ak ≤ rk implies

∑n
k=0 ak ≤

∑n
k=0 rk.

Therefore,
∑n

k=0 ak ≤ M . Observe ak ≥ 0 implies
∑n

k=0 ak is increasing by the argument we
already offered for

∑n
k=0 rk. We find

∑n
k=0 ak is a bounded, increasing sequence of non-negative

real numbers thus limn→∞
∑n

k=0 ak = A ∈ R by Theorem 3.2.5. Finally, we appeal to part of
the sandwhich theorem for real sequences, if cn ≤ dn for all n and both cn and dn converge then
limn→∞ cn ≤ limn→∞ dn. Think of cn =

∑n
k=0 ak and dn =

∑n
k=0 rk. Note

∑n
k=0 ak ≤

∑n
k=0 rk

implies limn→∞
∑n

k=0 ak ≤ limn→∞
∑n

k=0 rk. The theorem follows. □

Can you appreciate the beauty of how Gamelin discusses convergence and proofs ? Compare the
proof I give here to his paragraph on page 130-131. His prose captures the essential details of what
I wrote above without burying you in details which obscure. In any event, I will continue to add
uglified versions of Gamelin’s prose in this chapter. I hope that by seeing both your understanding
is fortified.

We return to the study of complex series once more. Suppose aj ∈ C in what follows. The definition
of a finite sum is made recursively by

∑0
j=0 aj = ao and for n ≥ 1:

n∑
j=0

aj = an +
n−1∑
j=0

aj .

Notice this yields:

an =

n∑
j=0

aj −
n−1∑
j=0

aj .

Suppose
∑∞

j=0 aj = S ∈ C. Observe, as n → ∞ we see that
∑n

j=0 aj −
∑n−1

j=0 aj → S − S = 0.
Therefore, the condition an → 0 as n → ∞ is a necessary condition for convergence of ao+a1+· · · .

Theorem 8.1.5. If
∑∞

j=0 aj converges then aj → 0 as j → ∞.

Of course, you should recall from calculus that the criteria above is not sufficient for convergence
of the series. For example, 1 + 1/2 + 1/3 + · · · diverges despite the fact 1/n → 0 as n → ∞.

I decided to elevate Gamelin’s example on page 131 to a proposition.

Proposition 8.1.6. Let zj ∈ C for j ∈ N ∪ {0}.

If |z| < 1 then
∞∑
j=0

zn =
1

1− z
. If |z| ≥ 1 then

∞∑
j=0

zn diverges.
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Proof: if |z| ≥ 1 then the n-th term test shows the series diverges. Suppose |z| < 1. Consider,

Sn = 1 + z + z2 · · ·+ zn ⇒ zSn = z + z2 + · · ·+ zn + zn+1

and we find Sn − zSn = 1− zn+1 thus (1− z)Sn = 1− zn+1 and derive:

Sn =
1− zn+1

1− z

This is a rare and wonderful event that we were able to explicitly calculate the n-th partial sum
with such small effort. Note |z| < 1 implies |z|n+1 → 0 as n → ∞. Therefore,

∞∑
j=0

zn = lim
n→∞

1− zn+1

1− z
=

1

1− z
. □

Definition 8.1.7. A complex series
∑

ak is said to converge absolutely if
∑

|ak| converges.

Notice that |ak| denotes the modulus of ak. In the case ak ∈ R this reduces to the usual3 definition
of absolute convergence since the modulus is merely the absolute value function in that case. If
you’d like to see a proof of absolute convergence in the real case, I recommend page 82 of [J02].
The proof there is based on parsing the real series into non-negative and negative terms. We have
no such dichotomy to work with here so something else must be argued.

Theorem 8.1.8. If
∑

ak is absolutely convergent then
∑

ak converges and
∣∣∣∑ ak

∣∣∣ ≤∑ |ak|.

Proof: assume
∑

|ak| converges. Let ak = xk + iyk where xk, yk ∈ R. Observe:

|ak| =
√

x2k + y2k ≥
√
x2k = |xk| & |ak| ≥ |yk|.

Thus, |xk| ≤ |ak| hence by comparison test the series
∑

|xk| converges with
∑

|xk| ≤
∑

|ak|. Like-
wise, |yk| ≤ |ak| hence by comparison test the series

∑
|yk| converges with

∑
|yk| ≤

∑
|ak|. Recall

that absolute convergence of a real series implies convergence hence
∑

xk and
∑

yk exist. Theorem
8.1.3 allows us to conclude

∑
xk + iyk =

∑
ak converges. □

Given that I have used the absolute convergence theorem for real series I think it is appropriate to
offer the proof of that theorem since many of you may either have never seen it, or at a minimum,
have forgotten it. Following page 82 of [J02] consider a real series

∑∞
n=0 xn. We define:

pn =

{
xn if xn ≥ 0

0 if xn < 0
& qn =

{
0 if xn ≥ 0

−xn if xn < 0

Notice xn = pn − qn. Furthermore, notice pn, qn are non-negative terms. Observe

p0 + p1 + · · ·+ pn ≤ |xo|+ |x1|+ · · ·+ |xn|

Hence
∑

|xn| converging implies
∑

pn converges by Comparison Theorem 8.1.4 and
∑

pn ≤
∑

|xn|.
Likewise,

q0 + q1 + · · ·+ qn ≤ |xo|+ |x1|+ · · ·+ |xn|
3in the sense of second semester calculus where you probably first studied series
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Hence
∑

|xn| converging implies
∑

qn converges by Comparison Theorem 8.1.4 and
∑

qn ≤
∑

|xn|.
But, then

∑
xn =

∑
(pn − qn) =

∑
pn −

∑
qn by Theorem 8.1.2. Finally, notice

x0 + x1 + · · ·+ xn ≤ |x0|+ |x1|+ · · ·+ |xn|

thus as n → ∞ we obtain
∑

xn ≤
∑

|xn|. This completes the proof that absolute convergence
implies convergence for series with real terms.

I challenge you to see that my proof here is really not that different from what Gamelin wrote4.

Example 8.1.9. Consider |z| < 1. Proposition 8.1.6 applies to show
∑

zj is absolutely convergent
by direct calculation and: ∣∣∣∣ 1

1− z

∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=0

zj

∣∣∣∣∣∣ ≤
∞∑
j=0

|z|j = 1

1− |z|
.

Following Gamelin,

1

1− z
−

n∑
k=0

zk =
∞∑
k=0

zk −
n∑

k=0

zk =
∞∑

k=n+1

zk = zn+1
∞∑
k=0

zk =
zn+1

1− z
.

Therefore, ∣∣∣∣∣ 1

1− z
−

n∑
k=0

zk

∣∣∣∣∣ = |z|n+1

|1− z|
≤ |z|n+1

1− |z|
.

The inequality above gives us a bound on the error for the n-th partial sum of the geometric series.

If you are interested in the history of absolute convergence, you might look at pages 29-30 of [R91]
where he describes briefly the influence of Cauchy, Dirichlet and Riemann on the topic. It was
Riemann who proved that a series which converges but, does not converge absolutely, could be
rearranged to converge to any value in R.

8.2 Sequences and Series of Functions

A sequence of functions on E ⊆ C is an assignment of a function on E for each n ∈ N ∪ {0}.
Typically, we denote the sequence by {fn} or simply by fn. In addition, although we are ultimately
interested in the theory of sequences of complex functions, I will give a number of real examples to
illustrate the subtle issues which arise in general.

Definition 8.2.1. A sequence of functions fn on E is said to pointwise converge to f if
limn→∞ fn(z) = f(z) for all z ∈ E.

You might be tempted to suppose that if each function of the sequence is continuous and the limit
exists then surely the limit function is continuous. Well, you’d be wrong:

Example 8.2.2. Let n ∈ N ∪ {0} and define fn(x) = xn for x ∈ [0, 1]. We can calculate the limit
function:

f(x) = lim
n→∞

xn =

{
0 if 0 ≤ x < 1

1 if x = 1

4Bailu, notice the proof I give here easily extends to an associative algebra
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Notice, fn is continuous for each n ∈ N, but, the limit function f is not continuous. In particular,
you can see we cannot switch the order of the limits below:

0 = lim
x→1−

(
lim
n→∞

xn
)
̸= lim

n→∞

(
lim

x→1−
xn
)

= 1

To guarantee the continuity of the limit function we need a stronger mode of convergence. Following
Gamelin (and a host of other analysis texts) consider:

Example 8.2.3. We define a sequence for which each function gn makes a triangular tent of slope
±n2 from x = 0 to x = 2/n. In particular, for n ∈ N define:

gn(x) =


n2x if 0 ≤ x < 1/n

2n− n2x if 1/n ≤ x ≤ 2/n

0 if 2/n ≤ x ≤ 1

Notice, ∫ 1/n

0
n2xdx = n2 (1/n)

2

2
=

1

2

and ∫ 2/n

1/n
(2n− n2x)dx = 2n(2/n− 1/n)− n2

2
[(2/n)2 − (1/n)2] = 2− 3

2
=

1

2
.

Therefore,
∫ 1
0 gn(x) dx = 1 for each n ∈ N. However, as n → ∞ we find gn(x) → 0 for each

x ∈ [0, 1]. Observe:

1 = lim
n→∞

∫ 1

0
gn(x) dx ̸=

∫ 1

0
lim
n→∞

gn(x) dx = 0.

To guarantee the integral of the limit function is the limit of the integrals of the sequence we need
a stronger mode of convergence. Here I break from Gamelin and add one more example.

Example 8.2.4. For each n ∈ N define fn(x) = xn/n for 0 ≤ x ≤ 1. Notice that limn→∞ xn/n = 0
for each x ∈ [0, 1]. Furthermore, limx→a x

n/n = an/n for each a ∈ [0, 1] where we use one-sided
limits at a = 0+, 1−. It follows that:

lim
n→∞

lim
x→a

xn

n
= lim

n→∞

an

n
= 0

likewise,

lim
x→a

lim
n→∞

xn

n
= lim

x→a
0 = 0

Thus, the limit n → ∞ and x → a commute for this sequence of functions.

The example above shows us there is hope for the limit of a sequence of continuous function to be
continuous. Perhaps we preserve derivatives under the limit ? Consider:

Example 8.2.5. Once more study fn(x) = xn/n for 0 ≤ x ≤ 1. Notice dfn
dx = xn−1. However, this

is just the sequence we studied in Example 8.2.2,

lim
n→∞

dfn
dx

=

{
0 if 0 ≤ x < 1

1 if x = 1
⇒ lim

x→1−
lim
n→∞

dfn
dx

= lim
x→1−

(0) = 0.
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On the other hand,

lim
x→1−

dfn
dx

= lim
x→1−

xn−1 = 1 ⇒ lim
n→∞

lim
x→1−

dfn
dx

= lim
n→∞

(1) = 1.

Therefore, the limit of the sequence of derivatives is not the derivative of the limit function.

The examples above lead us to define a stronger type of convergence which preserves continuity
and integrals to the limit. However, in the real case, differentiation is still subtle.

The standard definition of uniform convergence is given below:5

Definition 8.2.6. Let {fn} be a sequence of functions on E. Let f be a function on E. We say
{fn} converges uniformly to f if for each ϵ > 0 there exists an N ∈ N such that n > N implies
|fn(x)− f(x)| < ϵ for all x ∈ E.

This is not quite Gamelin’s presentation. Instead, from page 134, Gamelin says:

We say a sequence of functions {fj} converges uniformly to f on E if |fj(x)−f(x)| ≤
ϵj for all x ∈ E where ϵj → 0 as j → ∞. We call ϵj the worst-case estimator of
the difference fj(x) − f(x) and usually take ϵj to be the supremum (maximum) of
|fj(x)− f(x)| over x ∈ E,

ϵj = sup
x∈E

|fj(x)− f(x)|.

Very well, are these definitions of uniform convergence equivalent? For a moment, let us define the
uniform convergence of Gamelin as G-uniform convergence whereas that given in the Definition
8.2.6 defines S-uniform convergence. The question becomes:

Can we show a sequence of functions {fn} on E is S-uniformly convergent to f on E
iff the sequence of functions is G-uniformly convergent to f on E ?

This seems like an excellent homework question, so, I will merely assert it’s verity for us here:

Theorem 8.2.7. Let {fn} be a sequence of functions on E. Then {fn} is S-uniformly convergent
to f on E if and only if {fn} is G-uniformly convergent to f on E.

Proof: by trust in Gamelin, or as is my preference, your homework. □

The beautiful feature of Gamelin’s definition is that it gives us a method to calculate the worst-
case estimator. We merely need to find the maximum difference between the n-th function in the
sequence and the limit function over the given domain of interest (E).

If you think about it, the supremum gives you the best worst-case estimator. Let me explain, if
ϵj has |fj(z) − f(z)| ≤ ϵj for all z ∈ E then ϵj is an upper bound on |fj(z) − f(z)|. But, the
supremum is the least upper bound hence |fj(w) − f(w)| ≤ supz∈E |fj(z) − f(z)| ≤ ϵj for all
w ∈ E. This simple reasoning shows us that when the supremum exists and we may use it as a
worst-case estimator provided we also know supz∈E |fj(z) − f(z)| → 0 as j → ∞. On the other
hand, if no supremum exists or if the supremum does not go to zero as j → ∞ then we have no
hope of finding a worst case estimator.

5for instance, see page 246 of [J02].
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The paragraph above outlines the logic used in the paragraphs to follow.

In Example 8.2.2 we had fn(x) = xn for x ∈ [0, 1] pointwise converged to f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

from which we may calculate6 supx∈[0,1] |xn−f(x)| = 1. Therefore, it is not possible to find ϵn → 0.
In Gamelin’s terminology, the worst-case estimator is 1 hence this sequence is not uniformly con-
vergent to f(x) on [0, 1].

In Example 8.2.3 we had

gn(x) =


n2x if 0 ≤ x < 1/n

2n− n2x if 1/n ≤ x ≤ 2/n

0 if 2/n ≤ x ≤ 1

which is point-wise convergent to g(x) = 0 for x ∈ [0, 1]. The largest value attained by gn(x) is
found at x = 1/n where

gn(1/n) = n2(1/n) = n

Therefore,

sup
x∈[0,1]

|gn(x)− g(x)| = n.

Therefore, the convergence of {gn} to g is not uniform on [0, 1].

Next, consider Example 8.2.4 where we noted that fn(x) = xn/n converges pointwise to f(x) = 0
on [0, 1]. In this case it is clear that fn(1) = 1/n is the largest value attained by fn(x) on [0, 1]
hence:

sup
x∈[0,1]

|fn(x)− f(x)| = 1/n = ϵn → 0 as n → ∞.

Hence {xn/n} converges uniformly to f(x) = 0 on [0, 1]. Apparently, continuity is preserved under
uniform convergence. On the other hand, Example 8.2.5 shows us that, for real functions, deriva-
tives need not be preserved in a uniformly convergent limit.

We now present the two major theorems about uniformly convergent sequences of functions.

Theorem 8.2.8. Let {fj} be a sequence of complex-valued functions on E ⊆ C. If each fj is
continuous on E and if {fj} converges uniformly to f on E then f is continuous on E.

Proof: let ϵ > 0. By uniform convergence, there exists N ∈ N for which

|fN (z)− f(z)| < ϵ

3
⋆

for all z ∈ E. However, by continuity of fN at z = a there exists δ > 0 such that 0 < |z − a| < δ
implies

|fN (z)− fN (a)| < ϵ

3
⋆ ⋆.

6sometimes the supremum is also known as the least upper bound, it is the smallest possible upper bound on the
set in question. In this case, 1 is not attained in the set, but numbers arbitrary close to 1 are attained. Technically,
this set has no maximum which is why the parenthetical comment in Gamelin suggesting supremum and maximum
are synonyms is sometimes not helpful.
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We claim f(z) is continuous at z = a by the same choice of δ. Consider, for 0 < |z − a| < δ,

|f(z)− f(a)| = |f(z)− fN (z) + fN (z)− fN (a) + fN (a)− f(a)|
≤ |fN (z)− f(z)|+ |fN (z)− fN (a)|+ |fN (a)− f(a)|

≤ ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

where I have used ⋆⋆ for the middle term and ⋆ for the left and rightmost terms. Thus limz→a f(z) =
f(a) and as a ∈ E was arbitrary we have shown f continuous on E. □

I followed the lead of [J02] page 246 where they offer the same proof for an arbitary metric space.

Theorem 8.2.9. Let γ be a piecewise smooth curve in the complex plane. If {fj} is a sequence of
continuous complex-valued functions on γ, and if {fj} converges uniformly to f on γ then

∫
γ fj(z)dz

converges to
∫
γ f(z)dz.

Proof: let ϵj be the worst-case estimator for fj − f on γ then |fj(z) − f(z)| ≤ ϵj for all z ∈ [γ].
Let γ have length L and apply the ML-estimate:∣∣∣∣∫

γ
(fj(z)− f(z))dz

∣∣∣∣ ≤ ϵjL.

Thus, as j → ∞ we find
∣∣∣∫γ fj(z)dz − ∫γ f(z)dz∣∣∣→ 0. □

This theorem is also true in the real case as you may read on page 249 of [J02]. However, that
proof requires we understand the real analysis of integrals which is addressed by our real analysis
course. The ML-theorem is the hero here. Furthermore, in the same section of [J02] you’ll find
what additional conditions are needed to preserve differentiability past the limiting process.

The definitions given for series below are quite natural. As a guiding concept, we say X is a feature
of a series if X is a feature of the sequence of partial sums.

Definition 8.2.10. Let
∑∞

j=0 fj be a sequence of complex-valued functions on E. The partial sums
are functions defined by Sn(z) =

∑n
j=0 fj(z) = f0(z) + f1(z) + · · · + fn(z) for each z ∈ E. The

series
∑∞

j=0 fj converges pointwise on E iff {Sn(z)} converges pointwise on E. The series
∑∞

j=0 fj
converges uniformly on E iff {Sn(z)} converges uniformly on E.

The theorem below gives us an analog of the comparison test for series of complex functions.

Theorem 8.2.11. Weierstrauss M-Test: suppose Mk ≥ 0 and
∑

Mk converges. If gk are
complex-valued functions on a set E such that |gk(z)| ≤ Mk for all z ∈ E then

∑
gk converges

uniformly on E.

Proof: let z ∈ E and note that |gk(z)| ≤ Mk implies that
∑

|gk(z)| is convergent by the comparison
test Theorem 8.1.4. Moreover, as absolute convergence implies convergence we have

∑∞
k=0 gk(z) =

g(z) ∈ C with |g(z)| ≤
∑

|gk(z)| ≤
∑

Mk by Theorem 8.1.8. The difference between the series and
the partial sum is bounded by the tail of the majorant series∣∣∣∣∣g(z)−

n∑
k=0

gk(z)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=n+1

gk(z)

∣∣∣∣∣ ≤
∞∑

k=n+1

Mk.
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However, this shows a worst-case estimator for Sn(z)−g(z) is given by ϵn =
∑∞

k=n+1Mk. We argue
ϵn =

∑∞
k=n+1Mk → 0 as n → ∞ for each z ∈ E hence

∑
gk converges uniformly on E. □

For future reference:

Definition 8.2.12. A given series of functions
∑

fj on E is dominated by Mj if |fj(z)| ≤ Mj.
When

∑
Mj converges we call Mj a majorant for

∑
fj.

Just to reiterate: if we can find a majorant for a given series of functions then it serves to show
the series is uniformly convergent by Weierstrauss’ M -Test. Incidentally, as a historical aside,
Weierstrauss gave this M -test as a footnote on page 202 of his 1880 work Zur Functionenlehre see
[R91] page 103.

Example 8.2.13. The geometric series

∞∑
k=0

zk =
1

1− z
converges for each z ∈ C with |z| < 1.

Consider that in Example 8.1.9 we derived:∣∣∣∣∣
∞∑
k=0

zk −
n∑

k=0

zk

∣∣∣∣∣ = |z|n+1

|1− z|
.

Notice sup|z|<1

(
|z|n+1

1−|z|

)
is unbounded hence

∑∞
k=0 z

k does not converge uniformly on E = {z ∈
C | |z| < 1}. However, if 0 < R < 1 we consider a disk DR = {z ∈ C | |z| < R}. We can
find a majorant for the geometric series

∑∞
k=0 z

k as follows: let Mk = Rk for each z ∈ DR note
|zk| = |z|k ≤ Rk and

∑∞
k=0R

k = 1
1−R . Therefore,

∑∞
k=0 z

k is uniformly convergent on DR by
Weierstrauss’ M -Test.

The example above explains why
∑∞

k=0 z
k is pointwise convergent, but not uniformly convergent,

on the entire open unit-disk E. On the other hand, we have uniform convergence on any closed
disk inside E.

Example 8.2.14. Consider
∑∞

k=1
zk

k3
. If we consider |z| < 1 notice we have the inequality

∣∣∣ zkk3 ∣∣∣ =
|z|k
k3

≤ 1
k3
. Recall from calculus II that

∑∞
k=1

1
k3

is the p = 3 series which converges. Therefore, by

the Weierstrauss M -test, we find
∑∞

k=1
zk

k3
converges uniformly on |z| < 1.

We now turn to complex analysis. In particular, we work to describe how holomorphicity filters
through sequential limits. The theorem below is somewhat shocking given what we saw in the real
case in Example 8.2.5.

Theorem 8.2.15. If {fj} is a sequence of holomorphic functions on a domain D that converge
uniformly to f on D then f is holomorphic on D.

Proof: We follow Gamelin and use Morera’s Theorem. To begin, We need continuity to apply
Morera’s Theorem. Notice fj holomorphic implies fj converges to f which is continuous on D by
the supposed uniform covergence and Theorem 8.2.8.

let R be a rectangle in D with sides parallel to the coordinate axes. Uniform convergence of the
sequence and Theorem 8.2.9 shows:

lim
j→∞

∫
∂R

fj(z)dz =

∫
∂R

lim
j→∞

(fj(z)) dz =

∫
∂R

f(z)dz.
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Consider that fj ∈ O(D) allows us to apply Morera’s Theorem to deduce
∫
∂R fj(z)dz = 0 for each

j. Therefore,
∫
∂R f(z)dz = limj→∞(0) = 0. However, as R was arbitrary, we have by Morera’s

Theorem that f is holomorphic on D. □

I suspect the discussion of continuity above is a vestige of our unwillingness to embrace Goursat’s
result in Gamelin.

Theorem 8.2.16. Suppose that {fj} is holomorphic for |z−zo| ≤ R, and suppose that the sequence
{fj} converges uniformly to f for |z − zo| ≤ R. Then for each r < R and for each m ≥ 1, the

sequence of m-th derivatives {f (m)
j } converges uniformly to f (m) for |z − zo| ≤ r.

Proof: as the convergence of {fj} is uniform we may select ϵj such that |fj(z) − f(z)| ≤ ϵj for
|z − zo| < R where ϵj → 0 as j → ∞. Fix s such that r < s < R. Apply the Cauchy Integral
Formula for the m-th derivative of fj(z)− f(z) on the disk |z − zo| ≤ s:

f
(m)
j (z)− f (m)(z) =

m!

2πi

∮
|z−zo|=s

fj(w)− f(w)

(w − z)m+1
dw

for |z − zo| ≤ r. Consider, if |w − zo| = s and |z − zo| ≤ r then

|w − z| = |w − zo + zo − z| ≥ ||w − zo| − |z − zo|| = |s− |z − zo|| ≥ |s− r|.

Thus |w − z| ≥ s− r and it follows that∣∣∣∣fj(w)− f(w)

(w − z)m+1

∣∣∣∣ ≤ ϵj
(s− r)m+1

Therefore, as L = 2πs for |z − zo| = s the ML-estimate provides:

|f (m)
j (z)− f (m)(z)| ≤ m!

2πi
· ϵj
(s− r)m+1

· 2πs = ρj (this defines ρj)

for |z − zo| ≤ r. Notice, m is fixed thus ρj → 0 as j → ∞. In other words, ρj serves as the
worst-case estimator for the m-th derivative and we have established the uniform convergence of

{f (m)
j } for |z − zo| ≤ r. □

I believe there are a couple small typos in Gamelin’s proof on 136-137. They are corrected in what
is given above.

Definition 8.2.17. A sequence {fj} of holomorphic functions on a domain D converges nor-
mally to an analytic function f on D if it converges uniformly to f on each closed disk contained
in D.

Gamelin points out this leads immediately to our final theorem for this section: (this is really just
Theorem 8.2.16 rephrased with our new normal convergence terminology)

Theorem 8.2.18. Suppose that {fj} is a sequence of holomorphic functions on a domain D that
converges normally on D to the holomorphic function f . Then for each m ≥ 1, the sequence of

m-th derivatives {f (m)
j } converges normally to f (m) on D.
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We already saw this behaviour with the geometric series. Notice that Example 8.2.13 shows
∑∞

j=0 z
j

converges normally to 1
1−z on E = {z ∈ C | |z| < 1}. Furthermore, we ought to note that the Weier-

strauss M -test provides normal convergence. See [R91] page 92-93 for a nuanced discussion of the
applicability and purpose of each mode of convergence. In summary, local uniform convergence is a
natural mode for sequences of holomorphic functions whereas, normal convergence is the prefered
mode of convergence for series of holomorphic functions. If the series are not normally convergent
then we face the rearrangement ambiguity just as we did in the real case. Finally, a historical note
which is a bit amusing. The term normally convergent is due to Baire of the famed Baire Catagory
Theorem. From page 107 of [R91]

Although in my opinion the introduction of new terms must only be made with extreme
prudence, it appeared indispensable to me to characterize by a brief phrase the simplest
and by far the most prevalent case of uniformly convergent series, that of series whose
terms are smaller in modulus than positive numbers forming a convergent series (what
one sometimes calls the Weierstrauss criterion). I call these series normally convergent,
and I hope that people will be willing to excuse this innovation. A great number of
demonstrations, be they in theory of series or somewhat further along in the theory of
infinite products, are considerably simplified when one advances this notion, which is
much more manageable than that of uniform convergence. ( 1908 )

8.3 Power Series

In this section we study series of power functions.

Definition 8.3.1. A power series centered at zo is a series of the form

∞∑
k=0

ak(z − zo)
k where

ak, zo ∈ C for all k ∈ N ∪ {0}. We say ak are the coefficients of the series.

Example 8.3.2.
∑∞

k=0
2k

k! (z − 3i)k is a power series centered at zo = 3i with coefficient ak = 2k

k! .

I will diverge from Gamelin slightly here and add some structure from [R91] page 110-111.

Lemma 8.3.3. Abel’s Convergence Lemma: Suppose for the power series
∑

akz
k there are

positive real numbers s and M such that |ak|sk ≤ M for all k. Then this power series is normally
convergent in {z ∈ C | |z| < s}.

Proof: consider r with 0 < r < s and let q = r/s. Observe, for z ∈ {z ∈ C | |z| < r},

|akzk| < |ak|rk = |ak|sk
(r
s

)k
≤ Mqk

The series
∑

Mqk is geometric with q = r/s < 1 hence
∑

Mqk = M
1−q . Therefore, by Weierstrauss’

criterion we find
∑

akz
k is normally convergent on {z ∈ C | |z| < s}. □

This leads to the insightful result below:

Corollary 8.3.4. If the series
∑

akz
k converges at zo ̸= 0, then it converges normally in the open

disk {z ∈ C | |z| < |zo|}.
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Proof: as
∑

akz
k
o converges we have akz

k
o → 0 as k → ∞. Thus, |ak||zko | → 0 as k → ∞. Conse-

quently, the sequence {|ak||zko |} of positive terms is convergent and hence bounded. That is, there
exists M > 0 for which ak||zko | ≤ M for all k. □

The result above is a guiding principle as we search for possible domains of a given power series. If
we find even one point at a certain distance from the center of the expansion then the whole disk
is included in the domain. On the other hand, if we found the series diverged at a particular point
then we can be sure no larger disk is included in the domain of power series. However, there might
be points closer to the center which are also divergent. To find the domain of convergence we need
to find the closest singularity to the center of the expansion (the center was z = 0 in Lemma and
Corollary above, but, clearly these results translate naturally to series of the form

∑
ak(z − zo)

k).
Indeed, we should make a definition in view of our findings:

Definition 8.3.5. A power series

∞∑
k=0

ak(z − zo)
k has radius of convergence R if the series

converges for |z− zo| < R but diverges for |z− zo| > R. In the case the series converges everywhere
we say R = ∞ and in the case the series only converges at z = zo we say R = 0.

It turns out the concept above is meaningful for all power series:

Theorem 8.3.6. Let
∑

ak(z − zo)
k be a power series. Then there is R, 0 ≤ R ≤ ∞ such that∑

ak(z− zo)
k converges normally on {z ∈ C | |z− zo| < R}, and

∑
ak(z− zo)

k does not converge
if |z − zo| > R.

Proof: Let us define (this can be a non-negative real number or ∞)

R = sup{t ∈ [0,∞) | |ak|tk is a bounded sequence}

If R = 0 then the series converges only at z = zo. Suppose R > 0 and let s be such that 0 < s < R.
By construction ofR, the sequence |ak|sk is bounded and by Abel’s convergence lemma

∑
ak(z−zo)

k

is normally convergent in {z ∈ C | |z − zo| < s}. However, {z ∈ C | |z − zo| < R} is formed by a
union of the open s-disks and thus we find normal convergence on the open R-disk centered at zo. □

The proof above is from page 111 of [R91]. Note the union argument is similar to V.2#10 of page
138 in Gamelin where you were asked to show uniform convergence extends to finite unions.

Example 8.3.7. The series
∑∞

k=0 z
k is the geometric series. We have shown it converges iff |z| < 1

which shows R = 1.

Example 8.3.8. The series
∑∞

k=1
zk

k4
has majorant Mk = 1/k4 for |z| < 1. Recall, by the p-

series test, with p = 4 > 1 the series
∑∞

k=1
1
k4

converges. Thus, the given series in z is normally
convergent on |z| < 1.

Example 8.3.9. Consider
∞∑
j=0

(−1)j

4j
(z− i)2j. Notice this is geometric, simply let w = −(z− i)2/4

and note:

wj =

(
−(z − i)2

4

)j

=
(−1)j(z − i)2j

4j
⇒

∞∑
j=0

(−1)j

4j
(z − i)2j =

∞∑
j=0

wj =
1

1− w
=

1

1 + (z − i)2/4
.
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The convergence above is only given if we have |w| < 1 which means |− (z− i)2/4| < 1 which yields
|z − i| < 2. The given series represents the function f(z) = 1

1+(z−i)2/4
on the open disk |z − i| < 2.

The power series
∞∑
j=0

(−1)j

4j
(z − i)2j is centered at zo = i and has R = 2.

It is customary to begin series where the formula is reasonable when the start of the sum is not
indicated.

Example 8.3.10. The series
∑

kkzk has R = 0. Notice this series diverges by the n-th term test
whenever z ̸= 0.

Example 8.3.11. The series
∑

k−kzk has R = ∞. To see this, apply of Theorem 8.3.17 .

At times I refer to what follows as Taylor’s Theorem. This is probably not a good practice since
Taylor’s work was in the real domain and we make no mention of an estimate on the remainder
term. That said, Cauchy has enough already so I continue this abuse of attribution.

Theorem 8.3.12. Let
∑

ak(z − zo)
k be a power series with radius of convergence R > 0. Then,

the function

f(z) =
∑

ak(z − zo)
k, |z − zo| < R,

is holomorphic. The derivatives of f(z) are obtained by term-by-term differentiation ,

f ′(z) =

∞∑
k=1

kak(z − zo)
k−1, f ′′(z) =

∞∑
k=2

k(k − 1)ak(z − zo)
k−2,

and similarly for higher-order derivatives. The coefficients are given by:

ak =
1

k!
f (k)(zo), k ≥ 0.

Proof: by Theorem 8.3.6 the given series is normally convergent on DR(zo); recall, DR(zo) =
{z ∈ C | |z − zo| < R}. Notice that, for each k ∈ {0} ∪ N, fk(z) = ak(z − zo)

k is holomorphic on
DR(zo) hence by Theorem 8.2.15 we find f(z) is holomorphic on DR(zo). Furthermore, by Theorem
8.2.16, f ′ and f ′′ are holomorphic on DR(zo) and are formed by the series of derivatives and second
derivatives of fk(z) = ak(z − zo)

k. We can calculate,

dfk
dz

= kak(z − zo)
k−1 &

d2fk
dz2

= k(k − 1)ak(z − zo)
k−2.

Finally, the k-th coefficients of the series may be selected by evaluation at zo of the k-th derivative
of f . For k = 0 notice

f(zo) = ao + a1(zo − zo) + a2(zo − zo)
2 + · · · = ao

thus, as f (0)(z) = f(z) we have f (0)(zo) = ao. Consider f (k)(z), apply the earlier result of this
theorem for the k-th derivative,

f (k)(z) =
∞∑
j=k

j(j − 1)(j − 2) · · · (j − k + 1)aj(z − zo)
j−k
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evaluate the above at z = zo, only j − k = 0 gives nonzero term:

f (k)(zo) = k(k − 1)(k − 2) · · · (k − k + 1)ak = k!ak ⇒ ak =
f (k)(zo)

k!
. □

The next few examples illustrate an important calculational technique in this course. Basically,
the idea is to twist geometric series via the term-by-term calculus to obtain near-geometric series.
This allows us a wealth of examples with a minimum of calculation. I begin with a basic algebra
trick before moving to the calculus-based slight of hand.

Example 8.3.13.
∞∑
k=0

z3k+4 =

∞∑
k=0

z4z3k = z4
∞∑
k=0

(z3)k =
z4

1− z3k
.

The series above normally converges to f(z) = z4

1−z3k
for |z3| < 1 which is simply |z| < 1.

Example 8.3.14.

∞∑
k=0

(
z2k + (z − 1)2k

)
=

∞∑
k=0

z2k +

∞∑
k=0

(z − 1)2k =
1

1− z2
+

1

1− (z − 1)2

where the geometric series both converge only if we have a simultaneous solution of |z| < 1 and
|z − 1| < 1. The open region on which the series above converges is not a disk. Why does this not
contradict Theorem 8.3.6 ?

Ok, getting back to the calculus tricks I mentioned previous to the above pair of examples,

Example 8.3.15. Notice f(z) = 1
1−z2

has df
dz = 2z

(1−z2)2
. However, for |z2| < 1 which is more

naturally presented as |z| < 1 we have:

f(z) =
1

1− z2
=

∞∑
k=0

z2k ⇒ df

dz
=

∞∑
k=1

2kz2k−1.

Therefore, we discover, for |z| < 1 the function g(z) = 2z
(1−z2)2

has the following power series

representation centered at zo = 0,

2z

(1− z2)2
=

∞∑
k=1

2kz2k−1 = 2z + 4z3 + 6z5 + · · · .

Example 8.3.16. The singularity of f(z) = Log(1 − z) is found at z = 1 hence we have hope
to look for power series representations for this function away from zo = 1. Differentiate f(z) to
obtain (note, the −1 is from the chain rule):

df

dz
=

−1

1− z
= −

∞∑
k=0

zk.

Integrate both sides of the above to see that there must exist a constant C for which

Log(1− z) = C −
∞∑
k=0

zk+1

k + 1
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But, we have Log(1− 0) = 0 = C hence,

−Log(1− z) =
∞∑
k=0

zk+1

k + 1
= z +

1

2
z2 +

1

3
z3 + · · · .

The calculation above holds for |z| < 1 according to the theorems we have developed about the
geometric series and term-by-term calculus. However, in this case, we may also observe z = −1
produces the negative of alternating harmonic series which converges. Thus, there is at least one
point on which the series for −Log(1−z) converges where the differentiated series did not converge.
This is illustrative of a general principle which is worth noticing: differentiation may remove points
from the boundary of the disk of convergence whereas integration tends to add points of convergence
on the boundary.

Theorem 8.3.17. If |ak/ak+1| has a limit as k → ∞, either finite or +∞, then the limit is the
radius of convergence R of

∑
ak(z − zo)

k

Proof: Let L = limk→∞ |ak/ak+1|. If r < L then there must exist N ∈ N such that |ak/ak+1| > r
for all k > N . Observe |ak| > r|ak+1| for k > N . It follows,

|aN |rN ≥ |aN+1|rN+1 ≥ |aN+2|rN+2 ≥ · · ·

Let M = max{|ao|, |a1|r, . . . , |aN−1|rN−1, |aN |rN} and note |ak|rk ≤ M for all k hence by Abel’s
Convergence Lemma, the power series

∑
ak(z − zo)

k is normally convergent for |z| < r. Thus,
r ≤ R as R defines the maximal disk on which

∑
ak(z − zo)

k is normally convergent. Let {rn} be
a sequence of such that rn < L for each n and rn → L as n → ∞. For rn < L we’ve shown rn ≤ R
hence limn→∞ rn ≤ limn→∞R by the sandwhich theorem. Thus L ≤ R.

Suppose s > L. We again begin with an observation that there exists an N ∈ N such that
|ak/ak+1| < s for k > N . It follows,

|aN |sN ≤ |aN+1|sN+1 ≤ |aN+2|sN+2 ≤ · · ·

and clearly
∑

ak(z− zo)
k fails the n-th term test for z ∈ C with |z− zo| > s. We find the series di-

verges for |z−zo| > s and thus we find s ≥ R. Let {sn} be a sequence of values with sn > L for each
n and limn→∞ sn = L. The argument we gave for s equally well applies to each sn hence sn ≥ R
for all n. Once again, take n → ∞ and apply the sandwhich lemma to obtain limn→∞ sn = L ≤ R.

Thus L ≤ R and L ≥ R and we conclude L = R as desired. □

Theorem 8.3.18. If k
√
|ak| has a limit as k → ∞, either finite or +∞, then the radius of conver-

gence R of
∑

ak(z − zo)
k is given by:

R =
1

limk→∞
k
√
|ak|

.

Proof: see page 142. Again, you can see Abel’s Convergence Lemma at work. □

One serious short-coming of the ratio and root tests is their failure to apply to series with infinitely
many terms which are zero. The Cauchy Hadamard formula gives a refinement which allows us
to capture such examples. In short, the limit superior replaces the limit in Theorem 8.3.18. If you
would like to read more, I recommend page 112 of [R91].
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8.4 Power Series Expansion of an Analytic Function

In the previous section we studied some of the basic properties of complex power series. Our
main result was that a function defined by a power series is holomorphic on the open disk of
convergence. We discover a converse in this section: holomorphic functions on a disk admit power
series representation on the disk. We finally introduce the term analytic

Definition 8.4.1. A function f(z) is analytic on DR(zo) = {z ∈ C | |z − zo| < R} if there exist
coefficients ak ∈ C such that f(z) =

∑∞
k=0 ak(z − zo)

k for all z ∈ DR(zo).

Of course, by Theorem 8.3.12 we immediately know f(z) analytic on some disk about zo forces the
coefficients to follow Taylor’s Theorem ak = f (k)(zo)/k!. Thus, another way of characterizing an
analytic function is that an analytic function is one which is generated by its Taylor series7.

Theorem 8.4.2. Suppose f(z) is holomorphic for |z − zo| < ρ. Then f(z) is represented by the
power series

f(z) =

∞∑
k=0

ak(z − zo)
k, |z − zo| < ρ,

where

ak =
f (k)(zo)

k!
, k ≥ 0,

and where the power series has radius of convergence8 R ≥ ρ. For any fixed r, 0 < r < ρ, we have

ak =
1

2πi

∮
|w−zo|=r

f(w)

(w − zo)k+1
dw, k ≥ 0.

Further, if |f(z)| ≤ M for |z − zo| = r, then

|ak| ≤
M

rk
, k ≥ 0.

Proof: assume f(z) is as stated in the theorem. Let z ∈ C such that |z| < r < ρ. Suppose |w| = r
then by the geometric series Proposition 8.1.6

f(w)

w − z
=

f(w)

w

1

1− z/w
=

f(w)

w

∞∑
k=0

( z

w

)k
=

∞∑
k=0

f(w)
zk

wk+1
.

Moreover, we are given the convergence of the above series is uniform for |w| = r. This allows us
to expand Cauchy’s Integral formula into the integral of a series of holomorphic functions which
converges uniformly. It follows we are free to apply Theorem 8.2.9 to exchange the order of the
integration and the infinite summation in what follows:

f(z) =
1

2πi

∫
|w|=r

f(w)

w − z
dw

=
1

2πi

∫
|w|=r

( ∞∑
k=0

f(w)
zk

wk+1

)
dw

=

∞∑
k=0

(
1

2πi

∫
|w|=r

f(w)

wk+1
dw

)
︸ ︷︷ ︸

ak

zk.

7again, I feel obligated to mention Taylor’s work was in the real domain, so this term is primarily to allow the
reader to connect with their experience with real power series

8we should remember Theorem 8.3.6 provides the series is normally convergent
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This suffices to prove the theorem in the case zo = 0. Notice the result holds whenever |z| < r and
as r < ρ is arbitrary, we must have the radius of convergence9 R ≥ ρ. Continuing, I reiterate the
argument for zo ̸= 0 as I think it is healthy to see the argument twice and as the algebra I use in
this proof is relevant to future work on a multitude of examples.

Suppose z ∈ C such that |z − zo| < r < ρ. Suppose |w − zo| = r hence |z − zo|/|w − zo| < 1 thus:

f(w)

w − z
=

f(w)

w − zo − (z − zo)

=
f(w)

w − zo
· 1

1−
(

z−zo
w−zo

)
=

f(w)

w − zo

∞∑
k=0

(
z − zo
w − zo

)k

=

∞∑
k=0

f(w)(z − zo)
k

(w − zo)k+1

Thus, following the same logic as in the zo = 0 case, but now for |w − zo| = r, we obtain:

f(z) =
1

2πi

∫
|w−zo|=r

f(w)

w − z
dw

=
1

2πi

∫
|w−zo|=r

( ∞∑
k=0

f(w)(z − zo)
k

(w − zo)k+1

)
dw

=
∞∑
k=0

(
1

2πi

∫
|w−zo|=r

f(w)

(w − zo)k+1
dw

)
︸ ︷︷ ︸

ak

(z − zo)
k.

Once again we can argue that as |z − zo| < r < ρ gives f(z) presented as the power series centered
at zo above for arbitrary r it must be that the radius of convergence R ≥ ρ.

The derivative identity ak = f (k)(zo)
k! is given by Theorem 8.3.12 and certain applies here as we have

shown the power series representation of f(z) exists. Finally, if |f(z)| ≤ M for |z − zo| < r then
apply Cauchy’s Estimate 7.4.1

|ak| =

∣∣∣∣∣f (k)(zo)

k!

∣∣∣∣∣ ≤ 1

k!

Mk!

rk
=

M

rk
□

Consider the argument of the theorem above. If you were a carefree early nineteenth century
mathematician you might have tried the same calculations. If you look at was derived for ak and
compare the differential to the integral result then you would have derived the Generalized Cauchy
Integral Formula:

ak =
f (k)(zo)

k!
=

1

2πi

∫
|w−zo|=r

f(w)

(w − zo)k+1
dw.

You can contrast our viewpoint now with that which we proved the Generalized Cauchy Integral
Formula back in Theorem 7.3.2. The technique of expanding 1

w−z into a power series for which

9this can be made rigorous with a sequential argument as I offered twice in the proof of Theorem 8.3.17
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integration and differentiation term-by-term was to be utilized was known and practiced by Cauchy
at least as early as 1831 see page 210 of [R91]. In retrospect, it is easy to see how once one of these
theorems was discovered, the discovery of the rest was inevitable to the curious.

What follows is a corollary to Theorem 8.4.2.

Corollary 8.4.3. Suppose f(z) and g(z) are holomorphic for |z − zo| < r. If f (k)(zo) = g(k)(zo)
for k ≥ 0 then f(z) = g(z) for |z − zo| < r.

Proof: if f, g are holomorphic on |z − zo| < r then Theorem 8.4.2 said they are also analytic
on |z − zo| < r with coefficients fixed by the values of the function and their derivatives at zo.
Consequently, both functions share identical power series on |z − zo| < r hence their values match
at each point in the disk. □

Theorem 8.3.6 told us that the domain of a power series included an open disk of some maximal
radius R. Now, we learn that if f(z) is holomorphic on an open disk centered at zo then it has a
power series representation on the disk. It follows that the function cannot be holomorphic beyond
the radius of convergence given to us by Theorem 8.3.6 for if it did then we would find the power
series centered at zo converged beyond the radius of convergence.

Corollary 8.4.4. Suppose f(z) is analytic at zo, with power series expansion centered at zo;
f(z) =

∑∞
k=0 ak(z − zo)

k. The radius of convergence of the power series is the largest number R
such that f(z) extends to be holomorphic on the disk {z ∈ C | |z − zo| < R}

Notice that power series converge normally on the disk of their convergence. It seems that Gamelin
is unwilling to use the term normally convergent except to introduce it. Of course, this is not a big
deal, we can either use the term or state it’s equivalent in terms of uniform convergence on closed
subsets.

Example 8.4.5. Let f(z) =
∞∑
k=0

1

k!
zk = 1+z+

1

2
z2+

1

6
z3+ · · · . We can show f(z)f(w) = f(z+w)

by direct calculation of the Cauchy product. Once that is known and we observe f(0) = 0 then it
is simple to see f(z)f(−z) = f(z − z) = f(0) = 1 hence 1

f(z) = f(−z). Furthermore, we can

easily show df
dz = f . All of these facts are derived from the arithmetic of power series alone. That

said, perhaps you recognize these properties as those of the exponential function. There are two
viewpoints to take here:

1. define the complex exponential function by the power series here and derive the basic properties
by the calculus of series

2. define the complex exponential function by ex+iy = ex(cos y + i sin y) and verify the given
series represents the complex exponential on C.

Whichever viewpoint you prefer, we all agree:

ez =

∞∑
k=0

1

k!
zk = 1 + z +

1

2
z2 +

1

6
z3 + · · ·

Notice ak = 1/k! hence ak/ak+1 = (k + 1)!/k! = k + 1 hence R = ∞ by ratio test for series.
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Example 8.4.6. Consider f(z) = cosh z notice f ′(z) = sinh z and f ′′(z) = cosh z and in general
f (2k)(z) = cosh z and f (2k+1)(z) = sinh z. We calculate f (2k)(0) = cosh 0 = 1 and f (2k+1)(0) =
sinh 0 = 0. Thus,

cosh z =

∞∑
k=0

1

(2k)!
z2k = 1 +

1

2
z2 +

1

4!
z4 + · · ·

Example 8.4.7. Following from Definition 2.5.2 we find ez = cosh z + sinh z. Thus, sinh z =
ez − cosh z. Therefore,

sinh z =

∞∑
n=0

1

n!
zn −

∞∑
k=0

1

(2k)!
z2k.

However,

∞∑
n=0

1

n!
zn =

∞∑
k=0

1

(2k)!
z2k +

∞∑
k=0

1

(2k + 1)!
z2k+1 hence the even terms cancel and we find

the odd series below for hyperbolic sine:

sinh z =
∞∑
k=0

1

(2k + 1)!
z2k+1 = 1 +

1

3!
z3 +

1

5!
z5 + · · ·

Example 8.4.8. To derive the power series for sin z and cos z we use the relations cosh(iz) = cos(z)
and sinh(iz) = i sin z hence

cos z =
∞∑
k=0

1

(2k)!
(iz)2k =

∞∑
k=0

(−1)k

(2k)!
z2k

since i2k = (i2)k = (−1)k. Likewise, as i2k+1 = i(−1)k

i sin z =
∞∑
k=0

1

(2k + 1)!
(iz)2k+1 = i

∞∑
k=0

(−1)k

(2k)!
z2k

Therefore,

cos z =

∞∑
k=0

(−1)k

(2k)!
z2k = 1− 1

2
z2 +

1

4!
z4 + · · ·

and

sin z =
∞∑
k=0

(−1)k

(2k + 1)!
z2k+1 = z − 1

3!
z3 +

1

5!
z5 + · · · .

Once again, I should comment, we could use the boxed formulas above to define cosine and sine. It
is then straightforward to derive all the usual properties of sine and cosine. A very nice presentation
of this is found on pages 274-278 of [J02]. You might be interested to know that π can be carefully
defined as twice the smallest positive zero of cos z. Since the series definition of cosine does not
implicitly use the definition of π, this gives us a careful, non-geometric, definition of π.



8.5. POWER SERIES EXPANSION AT INFINITY 119

8.5 Power Series Expansion at Infinity

The technique used in this section could have been utilized in earlier discussions of ∞. To study
the behaviour of f(z) at z = ∞ we simple study the corresponding function g(w) = f(1/w) at
w = 0.

Example 8.5.1. Notice limz→∞ f(z) = limw→0 f(1/w) allows us to calculate:

lim
z→∞

z

z + 1
= lim

w→0

1/w

1/w + 1
= lim

w→0

1

1 + w
=

1

1 + 0
= 1.

Definition 8.5.2. A function f(z) is analytic at z = ∞ if g(w) = f(1/w) is analytic at w = 0.

In particular, we mean that there exist coefficients bo, b1, . . . and ρ > 0 such that g(w) = bo+b1w+
b2w

2 + · · · for all w ∈ C such that 0 < |w| < ρ. Recall, by Theorem 8.4.2 we have
∑

k=0 bkw
k

converging normally to g(w) on the open disk of convergence. If |z| > 1/ρ then 1/|z| < ρ hence

f(z) = g(1/z) = bo + b1/z + b2/z
2 + · · · .

The series bo+b1/z+b2/z
2+· · · coverges normally to f(z) on the exterior domain {z ∈ C | |z| > R}

where R = 1/ρ. Recall that normal convergence previous meant we had uniform convergence on all
closed subdisks, in this context, it means we have uniform convergence for any S > R. In particular,
for each S > R, the series bo+ b1/z+ b2/z

2+ · · · converges uniformly to f(z) for {z ∈ C | |z| > S}.

Example 8.5.3. Let P (z) ∈ C[z] be a polynomial of order N . Then P (z) = ao + a1z+ · · ·+ aNzN

is not analytic at z = ∞ as the function g(w) = ao + a1/w+ · · ·+ an/z
N is not analytic at w = 0.

Example 8.5.4. Let f(z) = 1
z2

+ 1
z42

is analytic at z = ∞ since g(w) = f(1/w) = w2 + w42 is
analytic at w = 0. In fact, g is entire which goes to show f(z) = 1

z2
+ 1

z42
on C×. Refering to the

terminology just after 8.5.2 we have ρ = ∞ hence R = 0.

The example above is a rather silly example of a Laurent Series. It is much like being asked to
find the Taylor polynomial for f(z) = z2 + 3z + 2 centered at z = 0; in the same way, the function
is defined by a Laurent polynomial centered at z = 0, there’s nothing to find. The major effort of
the next Chapter is to develop theory to understand the structure of these Laurent series.

Example 8.5.5. Let f(z) = z2

z2−1
consider g(w) = f(1/w) = 1/w2

1/w2−1
= 1

1−w2 =
∑∞

k=0w
2k. Hence

f(z) is analytic at z = ∞. Notice, the power series centered at w = 0 converges normally on
|w| < 1 hence the series below converges normally to f(z) for |z| > 1

f(z) =
∞∑
k=0

(
1

z

)2k

= 1 +
1

z2
+

1

z4
+ · · · .

Example 8.5.6. Let f(z) = sin(1/z2). Notice g(w) = sin(w2) = w2 − 1
3!(w

2)3 + · · · for w ∈ C.
Thus f(z) is analytic at z = ∞ and f(z) is represented normally on the punctured plane by:

f(z) =
1

z2
− 1

3!

1

z6
+

1

5!

1

z10
+ · · · =

∞∑
k=0

(−1)k

(2k + 1)!

1

z4k+2
.

In summary, we have seen that a function which is analytic at z = zo ̸= ∞ allows a power series
representation

∑∞
k=0 ak(z−zo)

k on disk of radius 0 < R ≤ ∞. On the other hand, a function which

is analytic at z = ∞ has a representation of the form
∑k=0

−∞ akz
k = ao + a−1/z + a−2/z

2 + · · · on
an annulus |z| > R where 0 ≤ R < ∞.
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Theorem 8.5.7. If f is analyic at ∞ then there exists ρ > 0 such that for |z − zo| > ρ

f(z) =

0∑
k=−∞

ak(z − zo)
k = ao +

a−1

z − zo
+

a−1

(z − zo)2
+ · · · .

I should mention, if you wish a more careful treatment, you might meditate on the arguments
offered on page 348 of [R91].

8.6 Manipulation of Power Series

The sum, difference, scalar multiple, product and quotient of power series are discussed in this
section.

Theorem 8.6.1. Suppose
∑∞

k=0 ak(z − zo)
k and

∑∞
k=0 bk(z − zo)

k are convergent power series on
a domain D then

∞∑
k=0

ak(z − zo)
k + c

∞∑
k=0

bk(z − zo)
k =

∞∑
k=0

(ak + cbk)(z − zo)
k

for all z ∈ D.

Proof: suppose f, g are analytic on D where f(z) =
∑∞

k=0 ak(z−zo)
k and g(z) =

∑∞
k=0 bk(z−zo)

k.
Let c ∈ C and define h(z) = f(z) + cg(z) for each z ∈ D. Observe,

h(k)(zo) = f (k)(zo) + cg(k)(zo) ⇒ h(k)(zo)

k!
=

f (k)(zo)

k!
+ c

g(k)(zo)

k!
= ak + cbk

by Theorem 8.4.2. Thus, h(z) =
∑∞

k=0(ak + cbk)(z − zo)
k by Corollary 8.4.4. □

The method of proof is essentially the same for the product of series theorem. We use Corollary
8.4.4 to obtain equality of functions by comparing derivatives. I suppose we should define the
product of series:

Definition 8.6.2. Cauchy Product: Let
∑∞

k=0 ak(z − zo)
k and

∑∞
k=0 bk(z − zo)

k then( ∞∑
k=0

ak(z − zo)
k

)( ∞∑
k=0

bk(z − zo)
k

)
=

∞∑
k=0

ck(z − zo)
k

where we define ck =
∑k

n=0 anbk−n for each k ≥ 0.

Technically, we ought to wait until we prove the theorem below to make the definition above. I
hope you can forgive me.

Theorem 8.6.3. Suppose
∑∞

k=0 ak(z − zo)
k and

∑∞
k=0 bk(z − zo)

k are convergent power series on
an open disk D with center zo ∈ D then( ∞∑

k=0

ak(z − zo)
k

)( ∞∑
k=0

bk(z − zo)
k

)
=

∞∑
k=0

ck(z − zo)
k

for all z ∈ D where ck is defined by the Cauchy Product; ck =
∑k

n=0 anbk−n for each k ≥ 0.



8.6. MANIPULATION OF POWER SERIES 121

Proof: I follow the proof on page 217 of [R91]. Let f(z) =
∑∞

k=0 ak(z−zo)
k and g(z) =

∑∞
k=0 bk(z−

zo)
k for each z ∈ D. By Theorem 8.3.12 both f and g are holomorphic on D. Therefore, h = fg is

holomorphic on D as (fg)′(z) = f ′(z)g(z) + f(z)g′(z) for each z ∈ D. Theorem 8.4.2 then shows
fg is analytic at zo hence there exist ck such that h(z) = f(z)g(z) =

∑
k ck(z − zo)

k. It remains to
show that ck is as given by the Cauchy product. We proceed via Corollary 8.4.4. We need to show
h(k)(zo)

k! = ck for k ≥ 0. Begin with k = 0,

h(zo) = f(zo)g(zo) = aobo = co.

Continuing, for k = 1,

h′(zo) = f ′(zo)g(zo) + f(zo)g
′(zo) = a1b0 + a0b1 = c1.

Differentiating once again we find k = 2, note f ′′(zo)/2 = a2,

h′′(zo) = f ′′(zo)g(zo) + f ′(zo)g
′(zo) + g′(zo)f

′(zo) + f(zo)g
′′(zo)

= 2a2b0 + 2a1b1 + 2a0b2

= 2c2.

To treat the k-th coefficient in general it is useful for us to observe the Leibniz k-th derivative rule:

(fg)(k)(z) =
∑

i+j=k

k!

i!j!
f (i)(z)g(j)(z) = f (k)(z)g(z) + kf (k−1)(z)g′(z) · · ·+ f(z)g(k)(z)

Observe, f (i)(zo)/i! = ai and g(j)(zo)/j! = bj hence:

(fg)(k)(zo) =
∑

i+j=k

k!aibj = k!(aobk + · · ·+ akbo) = k!ck.

Thus, (fg)(k)(zo)/k! = ck and the theorem by Corollary 8.4.4. □

I offered the argument for k = 0, 1 and 2 explicitly to take the mystery out of the Leibniz rule
argument. I leave the proof of the Leibniz rule to the reader. There are other proofs of the product
theorem which are just given in terms of the explicit analysis of the series. For example, see
Theorem 3.50d of [R76] where the product of a convergent and an absolutely convergent series is
shown to converge to an absolutely convergent series defined by the Cauchy Product.

Example 8.6.4. Find the power series to order 5 centered at z = 0 for 2 sin z cos z

2 sin z cos z = 2

(
z − 1

6
z3 +

1

120
z5 + · · ·

)(
1− 1

2
z2 +

1

24
z4 + · · ·

)
= 2

(
z −

[
1

2
+

1

6

]
z3 +

[
1

24
+

1

12
+

1

120

]
z5 + · · ·

)
= 2z − 4

3
z3 +

4

15
z5 + · · ·

Of course, as 2 sin z cos z = sin(2z) = 2z − 1
3!(2z)

3 + 1
5!(2z)

5 + · · · we can avoid the calculation
above. I merely illustrate the consistency.

The example below is typical of the type of calculation we wish to master:
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Example 8.6.5. Calculate the product below to second order in z:

ez cos(2z + 1) = ez (cos(2z) cos(1)− sin(2z) sin(1))

=

(
1 + z +

1

2
z2
)(

cos(1)(1− 1

2
(2z)2)− 2z sin(1)

)
+ · · ·

=

(
1 + z +

1

2
z2
)(

cos(1)− 2 sin(1)z − 2 cos(1)z2
)
+ · · ·

= cos(1) + [cos(1)− 2 sin(1)] z +

(
cos(1)

2
− 2 sin(1)− 2 cos(1)

)
z2 + · · ·

Stop and ponder why I did not directly expand cos(2z+1) as
∑∞

k=0
(−1)k

(2k+1)!(2z+1)2k+1. If you did
that, then you would need to gather infinitely many terms together to form the sines and cosines
we derived with relative ease from the adding-angles formula for cosine.

The geometric series allows fascinating calculation:

Example 8.6.6. Multiply 1 + z + z2 + · · · and 1− z + z2 + · · · .

(1 + z + z2 + · · · )(1− z + z2 + · · · ) = 1

1− z
· 1

1 + z
=

1

1− z2
= 1 + z2 + z4 + · · · .

I probably could add some insight here by merging the calculations I cover in calculus II here,
however, I’ll stop at this point and turn to the question of division.

Suppose
∑∞

k=0 ak(z − zo)
k where ao ̸= 0. Calculation of 1∑∞

k=0 ak(z−zo)k
amounts to calculation of

coefficients bk for k ≥ 0 such that
(∑∞

k=0 ak(z − zo)
k
) (∑∞

k=0 bk(z − zo)
k
)
= 1. The Cauchy product

provides a sequence of equations we must solve:

aobo = 1 ⇒ bo = 1/ao.

aob1 + a1bo = 0, ⇒ b1 =
−a1bo
ao

=
−a1
a2o

.

aob2 + a1b1 + a2bo = 0, ⇒ b2 = −a1b1 + a2bo
ao

=
a21
a3o

− a2
a2o

.

aob3 + a1b2 + a2b1 + a3b0 = 0 ⇒ b3 = −a1b2 + a2b1 + a3bo
ao

.

The calculation above can clearly be extended to higher order. Recursively, we have solution:

bk = −a1bk−1 + a2bk−2 + · · ·+ ak−1b1 + akbo
ao

for k ≥ 0.

Example 8.6.7. Consider 2− 4z + 8z2 − 16z3 · · · identify ao = 2, a1 = −4, a2 = 8 and a3 = −16.
Using the general calculation above this example, calculate

bo =
1

2
, b1 =

4

4
= 1, b2 =

−(−4)(1)− (8)(1/2)

2
= 0, b3 = −−4(0) + (8)(1) + (−16)(1/2)

2
= 0.

Hence,
1

2− 4z + 8z2 − 16z3 · · ·
=

1

2
+ z + · · · .

I can check our work as 2 − 4z + 8z2 − 16z3 · · · = 2(1 − 2z + (−2z)2 + (−2z)3 · · · ) = 2
1+2z hence

1
2−4z+8z2−16z3··· =

1+2z
2 = 1

2 + z. Apparently, we could calculate bk = 0 for k ≥ 2.
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We next illustrate how to find the power series for tan(z) by long-division:

The calculation above shows that sin z = z− 1
3!z

3+ 1
5!z

5+ · · · divided by cos z = 1− 1
2!z

2+ 1
4!z

4+ · · ·
yields:

tan z =
sin z

cos z
= z +

1

3
z3 +

2

15
z5 + · · · .

It should be fairly clear how to obtain higher-order terms by the method of long-division.

We now consider a different method to calculate the power series for tan z which uses the geometric
series to obtain the reciprocal of the cosine series. Consider,

1

cos z
=

1

1− 1
2!z

2 + 1
4!z

4 + · · ·

=
1

1−
(
1
2z

2 − 1
24z

4 + · · ·
)

= 1 +

(
1

2
z2 − 1

24
z4 + · · ·

)
+

(
1

2
z2 − 1

24
z4 + · · ·

)2

+ · · ·

= 1 +
1

2
z2 +

(
− 1

24
+

1

2
· 1
2

)
z4 + · · ·

= 1 +
1

2
z2 +

5

24
z4 + · · · .

Then, to find tan(z) we simply multiply by the sine series,

sin z · 1

cos z
=

(
z − 1

6
z3 +

1

120
z5 + · · ·

)(
1 +

1

2
z2 +

5

24
z4 + · · ·

)
= z +

(
1

2
− 1

6

)
z3 +

(
5

24
− 1

12
+

1

120

)
z5 + · · ·

= z +
1

3
z3 +

2

15
z5 + · · · .

The recursive technique, long-division and geometric series manipulation are all excellent tools
which we use freely throughout the remainder of our study. Some additional techniques are eucli-
dated in §8.8. There I show my standard bag of tricks for recentering series.
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8.7 The Zeros of an Analytic Function

Power series are, according to Dr. Monty Kester, Texas sized polynomials. With all due respect to
Texas, it’s not that big. That said, power series and polynomials do share much in common. In
particular, we find a meaningful and interesting generalization of the factor theorem.

Definition 8.7.1. Let f be an analytic function which is not identically zero near z = zo then we
say f has a zero of order N at zo if

f(zo) = 0, f ′(zo) = 0, · · · f (N−1)(zo) = 0, f (N)(zo) ̸= 0.

A zero of order N = 1 is called a simple zero. A zero of order N = 2 is called a double zero.

Suppose f(z) has a zero of order N at zo. If f(z) =
∑∞

k=0 ak(z − zo)
k then as ak = f (k)

k! = 0 for
k = 0, 1, . . . , N − 1 we have

f(z) =
∞∑

k=N

ak(z − zo)
k = (z − zo)

N
∞∑

k=N

ak(z − zo)
k−N = (z − zo)

N
∞∑
j=0

aj+N (z − zo)
j

︸ ︷︷ ︸
h(z)

Observe that h(z) is also analytic at zo and h(zo) = aN = f (N)(zo)
N ! ̸= 0. It follows that there exists

ρ > 0 for which 0 < |z − zo| < ρ implies f(z) ̸= 0. In other words, the zero of an analytic function
is isolated.

Definition 8.7.2. Let U ⊆ C then zo ∈ U is an isolated point of U if there exists some ρ > 0
such that {z ∈ U | |z − zo| < ρ} = {zo}.

We prove that all zeros of an analytic function are isolated a bit later in this section. However, first
let me record the content of our calculations thus far:

Theorem 8.7.3. Factor Theorem for Power Series: If f(z) is an analytic function with a
zero of order N at zo then there exists h(z) analytic at zo with h(zo) ̸= 0 and f(z) = (z− zo)

Nh(z).

Example 8.7.4. The prototypical example is simply the monomial f(z) = (z−zo)
n. You can easily

check f has a zero z = zo of order n.

Example 8.7.5. Consider f(z) = sin(z2) = z2 − 1
6z

6 + 1
120z

10 + · · · . Notice f(0) = f ′(0) = 0
and f ′′(0) = 2 thus f(z) as a double zero of z = 0 and we can factor out z2 from the power series
centered at z = 0 for f(z):

f(z) = z2
(
1− 1

6
z4 +

1

120
z8 + · · ·

)
.

Example 8.7.6. Consider f(z) = sin(z2) = z2− 1
6z

6+ 1
120z

10+ · · · once again. Let us consider the
zero for f(z) which is given by z2 = nπ for some n ∈ Z with n ̸= 0. This has solutions z = ±

√
nπ.

In each case, f(±
√
nπ) = sinnπ = 0 and f ′(±

√
nπ) = ±2

√
nπ cos±

√
nπ ̸= 0. Therefore, every

other zero of f(z) is simple. Only z = 0 is a double zero for f(z). Although the arguments offered
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thus far suffice, I find explicit calculation of the power series centered at
√
nπ a worthwhile exercise:

sin(z2) = sin
(
[z −

√
nπ +

√
nπ ]2

)
= sin

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ) + nπ

)
= (−1)n sin

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ)

)
= (−1)n

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ)− 1

6

(
(z −

√
nπ)2 + 2

√
nπ(z −

√
nπ)

)3

+ · · ·

)

= (z −
√
nπ)(−1)n

(
2
√
nπ + (z −

√
nπ)− 4nπ

√
nπ

3
(z −

√
nπ)2 + · · ·

)
Example 8.7.7. Consider f(z) = 1− cosh(z) once again f(0) = 1−1 = 0 and f ′(0) = sinh(0) = 0
whereas f ′′(0) = − cosh(0) = −1 ̸= 0 hence f(z) has a double zero at z = 0. The power series for
hyperbolic cosine is cosh(z) = 1 + z2/2 + z4/4! + · · · and thus

f(z) =
1

2
z2 +

1

4!
z4 + · · · = z2

(
1

2
+

1

4!
z2 + · · ·

)

Definition 8.7.8. Let f be an analytic function on an exterior domain |z| > R for some R > 0.
If f is not identically zero for |z| > R then we say f has a zero of order N at ∞ if g(w) = f(1/w)
has a zero of order N at w = 0.

Theorem 8.7.9 translates to the following result for Laurent series10:

Theorem 8.7.9. If f(z) is an analytic function with a zero of order N at ∞ then

f(z) =
aN

(z − zo)N
+

aN+1

(z − zo)N+1
+

aN+2

(z − zo)N+2
+ · · · .

Example 8.7.10. Let f(z) = 1
1+z3

has

g(w) =
1

1 + 1/w3
=

w3

w3 + 1
= w3 − w6 + w9 + · · ·

hence g(w) has a triple zero at w = 0 which means f(z) has a triple zero at ∞. We could also have
seen this simply by expressing f as a function of 1/z:

f(z) =
1

1 + z3
=

1/z3

1 + 1/z3
=

1

z3
− 1

z6
+

1

z9
+ · · · .

Example 8.7.11. Consider f(z) = ez notice g(w) = f(1/w) = e1/w = 1 + 1
w + 1

2
1
w2 + · · · is not

analytic at w = 0 hence we cannot even hope to ask if there is a zero at ∞ for f(z) or what its
order is.

Following Gamelin, we include this nice example.

10I will get around to properly defining this term in the next chaper
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Example 8.7.12. Let f(z) = 1
(z−zo)n

then observe

f(z) =
1

zn − nzn−1zo + · · · − nzzn−1
o + zno

=
1

zn

(
1

1− nzn−1zo+···+nzzn−1
o −zno

zn

)

=
1

zn

(
1

1− nzo
z + · · ·+ nzn−1

o
zn−1 − zno

zn

)

=
1

zn

(
1 +

nzo
z

+ · · · − nzn−1
o

zn−1
+

zno
zn

+ · · ·
)
.

This serves to show f(z) has z = ∞ as a zero of order n.

Statements as above may be understood literally on the extended complex plane C∪{∞} or simply
as a shorthand for facts about exterior domains in C.

If you survey the examples we have covered so far in this section you might have noticed that when
f(z) is analytic at zo then f(z) has a zero at zo iff the zero has finite order. If we were to discuss a
zero of infinite order then intuitively that would produce the zero function since all the coefficients
in the Taylor series would vanish. Intuition is not always the best guide on such matters, therefore,
let us establish the result carefully:

Theorem 8.7.13. If D is a domain and f is an analytic function on D, which is not identically
zero, then the zeros of f are isolated points in D.

Proof: let U = {z ∈ D | f (m)(z) = 0 for all m ≥ 0}. Suppose zo ∈ U then f (k)(zo)/k! = 0 for all
k ≥ 0 hence f(z) =

∑∞
k=0 ak(z − zo)

k = 0. Thus, f(z) vanishes on an open disk D(zo) centered
at zo and it follows f (k)(z) = 0 for each z ∈ D(zo) and k ≥ 0. Thus D(zo) ⊆ U . Hence zo is an
interior point of U , but, as zo was arbitrary, it follows U is open.

Next, consider V = D − U and let zo ∈ V . There must exist n ≥ 0 such that f (n)(zo) ̸= 0 thus
an ̸= 0 and consequently f(z) =

∑∞
k=0 ak(z − zo)

k ̸= 0. It follows there is a disk D(zo) centered at
zo on which f(z) ̸= 0 for each z ∈ D(zo). Thus D(zo) ⊆ V and this shows V is an open set.

Consider then, D = U ∪ (D − U) hence as D is connected we can only have U = ∅ or U = D. If
U = D then we find f(z) = 0 for all z ∈ D and that is not possible by the preconditions of the
theorem. Therefore U = ∅. In simple terms, we have shown that every zero of an non-indentically-
vanishing analytic function must have finite order.

To complete the argument, we must show the zeros are isolated. Notice that zo a zero of f(z) has fi-
nite order N hence, by Theorem 8.7.9, f(z) = (z−zo)

nh(z) where h is analytic at zo with h(zo) ̸= 0.
Therefore, there exists ρ > 0 for which the series for h(z) centered at zo represents h(z) for each
|z − zo| < ρ. Moreover, observe h(z) ̸= 0 for all |z − zo| < ρ. Consider |f(z)| = |z − zo|N |h(z)|,
this cannot be zero except at the point z = zo hence there is no other zero for f(z) on |z − zo| < ρ
hence zo is isolated. □.

The theorem above has interesting consequences.



8.7. THE ZEROS OF AN ANALYTIC FUNCTION 127

Theorem 8.7.14. If f and g are analytic on a domain D, and if f(z) = g(z) for each z belonging
to a set with a nonisolated point, then f(z) = g(z) for all z ∈ D.

Proof: let C = {z ∈ D | f(z) = g(z)} and suppose the coincidence set C has a nonisolated point.
Consider h(z) = f(z) − g(z) for z ∈ D. If h(z) is not identically zero on D then the existence of
C contradicts Theorem 8.7.13 since C by its definition is a set with non-isolated zeros for h(z).
Consequently, h(z) = f(z)− g(z) = 0 for all z ∈ D. □

Gamelin points out that if we apply the theorem above twice we obtain:

Theorem 8.7.15. Let D be a domain, and let E be a subset of D that has a nonisolated point.
Let F (z, w) be a function defined for each z, w ∈ D which is analytic in z with w-fixed and likewise
analytic in w when we fix z. If F (z, w) = 0 whenever z, w ∈ E, then F (z, w) = 0 for all z, w ∈ D.

Early in this course I made some transitional definitions which you might argue are somewhat
adhoc. For example, we defined ez, sin z, sinh z, cos z and cosh z all by simply extending their real
formulas in the natural manner in view of Euler’s formula eiθ = cos θ+ i sin θ. The pair of theorems
above show us an astonishing fact about complex analysis: there is just one way to define it as
a natural extension of real calculus. Once Euler found his formula for real θ, there was only one
complex extension which could be found.

Example 8.7.16. Let f(z) = ez. Let g(z) be another entire function. Suppose f(z) = g(z) for all
z ∈ R. Then, as R has a nonisolated point we find f(z) = g(z) for all z ∈ C. In other words, there
is only one entire function on C which restricts to the real exponential on R ⊂ C.

The same argument may be repeated for sin z, sinh z, cos z and cosh z. Each of these functions is
the unique entire extension of the corresponding function on R. So, in complex analysis, we fix
an analytic function on a domain if we know its values on some set with a nonisolated point. For
example, the values of an analytic function on a domain are uniquely prescribed if we are given
the values on a line-segment, open or closed disk, or even a sequence with a cluster-point in the
domain. For further insight and some history on the topic of the identity theorem you can read
pages 227-232 of [R91].

You might constrast this situation to that of linear algebra; if we are given the finite set of values
to which a given basis in the domain must map then there is a unique linear transformation which
is the extension from the finite set to the infinite set of points which forms the vector space. On
the other side, a smooth function on an interval of R may be extended smoothly in infinitely many
ways. Thus, the structure of complex analysis is stronger than that of real analysis and weaker
than that of linear algebra.

One last thought, I have discussed extensions of functions to entire functions on C. However, there
may not exist an entire function to which we may extend. For example, ln(x) for x ∈ (0,∞) does
not permit an extension to an entire function. Worse yet, we know this extends most naturally to
log(z) which is a multiply-valued function. Remmert explains that 18-th century mathematicians
wrestled with this issue. The temptation to assume by the principle of permanence there was a
unique extension for the natural log led to considerable confusion. Euler wrote this in 1749 (page
159 [R91])

We see therefore that is is essential to the nature of logarithms that each number have
an infinity of logarithms and that all these logarithms be different, not only from one
another, but also[different] from all the logarithms of every other number.
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Ok, to be fair, this is a translation.

8.8 Analytic Continuation

Suppose we have a function f(z) which is holomorphic on a domain D. If we consider zo ∈ D then
there exist ak for k ≥ 0 such that f(z) =

∑∞
k=0 ak(z − zo)

k for all z ∈ D(zo) ⊆ D. However, if we
define g(z) by the power series for f(z) at zo then the natural domain of g(z) =

∑∞
k=0 ak(z − zo)

k

is the disk of convergence DR(zo) where generally D(zo) ⊆ DR(zo). The function g is an analytic
continuation of f .

Example 8.8.1. Consider f(z) = ez for z ∈ A = {z ∈ C | 1/2 < |z| < 2}. If we note f(z) =
ez−1+1 = eez−1 =

∑∞
k=0

e
k!(z− 1)k for all z ∈ A. However, DR(1) = C thus the function defined by

the series is an analytic continuation of the exponential from the given annulus to the entire plane.

Analytic continuation is most interesting when there are singular points to work around. We can
also begin with a function defined by a power series as in the next example.

Example 8.8.2. Let f(z) =
∞∑
k=0

(z
2

)k
for |z| < 2. Notice that f(z) = 1

1−z/2 = 2
2−z and we can

expand the function as a power series centered at z = −1,

f(z) =
2

2− (z + 1− 1)
=

2

3− (z + 1)
=

2

3
· 1

1− (z + 1)/3
=

2

3

∞∑
k=0

1

3k
(z + 1)k.

for each z with |z + 1|/3 < 1 or |z + 1| < 3. In this case, the power series centered at z = −1

extends past |z| < 2. If we define g(z) =

∞∑
k=0

2

3k+1
(z + 1)k then R = 3 and the natural domain is

|z + 1| < 3.

The example above is easy to understand in the picture below:

Recentering the given series moves the center further from the singularity of the underlying function
z 7→ 2

2−z for z ̸= 2. We know what will happen if we move the center somewhere else, the new
radius of convergence will simply be the distance from the new center to z = 2.

In Gamelin §V.8 problem 2 you will see that the analytic continuation of a given holomorphic func-
tion need not match the function. It is possible to continue from one branch of a multiply-valued
function to another branch. This is also shown on page 160 of Gamelin where he continues the
principal branch of the squareroot mapping to the negative branch.

If we study the analytic continuation of a function defined by a series the main question which we
face is the nature of the function on the boundary of the disk of convergence. There must be at
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least one point of divergence. See our Corollary 8.3.4 or look at page 234 of [R91] for a careful
argument. Given f(z) =

∑
ak(z − zo)

k with disk DR(zo) of convergence, a point z1 ∈ ∂DR(zo)
is a singular point of f if there does not exist a holomorphic function g(z) on Ds(z1) for which
f(z) = g(z) for all z ∈ DR(zo) ∩Ds(z1). The set of all singular points for f is called the natural
boundary of f and the disk DR(zo) is called the region of holomorphy for f . On page 150 of
[R91] the following example is offered:

Example 8.8.3. Set g(z) = z+ z2+ z4+ z8+ · · · . The radius of convergence is found to be R = 1.
Furthermore, we can argue that g(z) → ∞ as z approaches any even root of unity. Remmert shows
on the page before that the even (or odd) roots of unity are dense on the unit circle hence the
function g(z) is unbounded at each point on |z| = 1 and it follows that the unit-circle is the natural
boundary of this series.

Certainly, many other things can happen on the boundary.

Example 8.8.4.

∞∑
k=1

(−1)k−1

k
zk = z − z

2
+

z

3
+ · · · converges for each z with |z| = 1 except the

single singular point z = −1.

Remmert informs that Lusin in 1911 found a series with coefficients ck → 0 yet
∑

ckz
k diverges

at each |z| = 1. Then Sierpinski in 1912 produced a series which diverges at every point on the
unit-circle except z = 1. See pages 120-121 [R91] for further details.

In summary, the problem of analytic continuation is subtle. When given a series presentation of
an analytic function it may not be immediately obvious where the natural boundary of the given
function resides. On the other hand, when the given function is captured by an algebraic expres-
sion or a formula in terms of sine, cosine etc. then through essentially precalculus-type domain
considerations we can find see the natural boundary arise from the nature of the formula. Any
series which represents the function will face the same natural boundaries. Well, I have tried not
to overstate anything here, I hope I was successful. The full appreciation of analytic continuation
is far beyond this course. For an attack similar to what I have done in examples here, see this
MSE question. For a still bigger picture, see Wikipedia article on analytic continuation where
it is mentioned that trouble with analytic continuation for functions of several complex variables
prompted the invention of sheaf cohomology.

Let me collect a few main points from Gamelin. If D is a disk and f is analytic on D and R(z1) is
the radius of convergence of the power series at z1 ∈ D and R(z2) is the radius of convergence of
the power series at z2 ∈ D, then |R(z1) − R(z2)| ≤ |z1 − z2|. This inequality shows the radius of
convergence is a continuous function on the domain of an analytic function.

Definition 8.8.5. We say that f is analytically continuable along γ if for each t there is a
convergent power series

ft(z) =

∞∑
n=0

an(t)(z − γ(t))n, |z − γ(t)| < r(t),

such that fa(z) is the power series representing f(z) at zo, and such that when s is near t, then
fs(z) = ft(z) for all z in the intersection of the disks of convergence for fs(z) and ft(z).

http://math.stackexchange.com/q/503527/36530
http://math.stackexchange.com/q/503527/36530
http://en.wikipedia.org/wiki/Analytic_continuation
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It turns out that when we analytically continue a given function from one initial point to a final
point it could be the continuations do not match. However, there is a simple condition which
assures the continuations do coincide. The idea here is quite like our deformation theorem for
closed forms.

Theorem 8.8.6. Monodromy Theorem: Let f(z) be analytic at zo. Let γo(t) and γ1(t) for
a ≤ t ≤ b be paths from zo to z1 along which f(z) can be continued analytically. Suppose γo can
be continuously deformed to γ1 along paths γs which begin at zo and end at z1 and allow f(z) to be
continued analytically. Then the analytic continuations of f(z) along γo and γ1 coincide at z1.

If there is a singularity, that is a point near the domain where the function cannot be analytically
extended, then the curves of continuation might not be able to be smoothly deformed. The defor-
mation could get snagged on a singularity. Of course, there is more to learn from Gamelin on this
point. I will not attempt to add to his treatment further here.



Chapter IX

Laurent Series and Isolated
Singularities

Laurent was a French engineer who lived from 1813 to 1854. He extended Cauchy’s work on disks to
annuli by introducing reciprocal terms centered about the center of the annulus. His original work
was not published. However, Cauchy was aware of the result and has this to say about Laurent’s
work in his report to the French Academy of 1843:

the extension given by M. Laurent · · · seems to us worthy of note

In this chapter we extend Cauchy’s theorems on power series for analytic functions. In particular,
we study how we can reproduce any analytic function on an annulus by simply adjoing recipro-
cal powers to the power series. A series built, in general, from both positive and negative power
functions centered about some point zo is called a Laurent series centered at zo. The annulus we
consider can reduce to a deleted disk or extend to ∞. Most of these results are fairly clean exten-
sions of what we have done in previous chapters. Excitingly, we shall see the generalized Cauchy
integral formula naturally extends. The extended theorem naturally ties coefficients of a given
Laurent series to integrals around a circle in the annulus of convergence. That simple connection
lays the foundation for the residue calculus of the next chapter. In terms of explicit calculation, we
continue to use the same techniques as in our previous work. However, the domain of consideration
is markedly different. We must keep in mind our study is about some annulus.

Laurent’s proof of the Laurent series development can be found in a publication which his widow
published in his honor in 1863. Apparently both Cauchy and Weierstrauss also has similar results
in terms of mean values around 1840-1841. As Remmert explains (page 350-355 [R91]), all known
proofs of the Laurent decomposition involve integration. Well, apparently, Pringsheim wrote a 1223
page work which avoided integration and instead did everything in terms of mean values. So, we
should say, no efficient proof without integrals is known. Also of note, Laurent’s Theorem can be
derived from the Cauchy-Taylor theorem by direct calculational attack; this difficult proof due to
Scheffer in 1884 (which also implicitly uses integral theory) is reproduced on p. 352-355 of [R91].

We could have made the definition some time ago, but, I give it here since I found myself using the
term at various points in my exposition of this chapter.

Definition 9.0.1. If f ∈ O(zo) then there exists some r > 0 such that f is holomorphic on
|z − zo| < r. In other words, O(zo) is the set of holomorphic functions at zo.
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9.1 The Laurent Decomposition

If a function f is analytic on an annulus then the function can be written as the sum of two analytic
functions fo, f1 on the annulus. Where, fo is analytic from the outer circle of the annulus to the
center and f1 is analytic from the inner circle of the annulus to ∞.

Theorem 9.1.1. Laurent Decomposition: Suppose 0 ≤ ρ < σ ≤ ∞, and suppose f(z) is
analytic for ρ < |z − zo| < σ. Then f(z) can be decomposed as a sum

f(z) = fo(z) + f1(z),

where fo is analytic for |z − zo| < σ and f1 is analytic for |z − zo| > ρ and at ∞. If we normalize
the decomposition such that f1(∞) = 0 then the decomposition is unique.

Let us examine a few examples and then we will offer a proof of the general assertion.

Example 9.1.2. Let f(z) =
z3 + z + 1

z
= z2 + 1+

1

z
for z ̸= 0. In this example ρ = 0 and σ = ∞

and fo(z) = z2 + 1 whereas f1(z) = 1/z.

Example 9.1.3. Let f(z) be an entire function. For example, ez, sin z, sinh z, cos z or cosh z. Then
f(z) = fo(z) and f1(z) = 0. The function fo is analytic on any disk, but, we do not assume it is
analytic at ∞. On the other hand, notice that f1 = 0 is analytic at ∞ as claimed.

Example 9.1.4. Suppose f(z) is analytic at zo = ∞ then there exists some exterior domain
|z−zo| > ρ for which f(z) is analytic. In this case, f(z) = f1(z) and fo(z) = 0 for all z ∈ C∪{∞}.

Proof: Suppose 0 ≤ ρ < σ ≤ ∞, and suppose f(z) is analytic for ρ < |z − zo| < σ. Furthermore,
suppose f(z) = fo(z) + f1(z) where fo is analyic for |z − zo| < σ and f1 is analytic for |z − zo| > ρ
and at ∞. Suppose go, g1 form another Laurent decomposition with f(z) = go(z) + g1(z). Notice,

go(z)− fo(z) = g1(z)− f1(z)

for ρ < |z − zo| < σ. In view of the above overlap condition we are free to define:

h(z) =

{
go(z)− fo(z), for |z − zo| < σ

g1(z)− f1(z), for |z − zo| > ρ

Notice h is entire and h(z) → 0 as z → ∞. Thus h is bounded and entire and we apply Liouville’s
Theorem to conclude h(z) = c for all z ∈ C. In particular, h(z) = 0 on the annulus ρ < |z− zo| < σ
and we conclude that if a Laurent decomposition exists then it must be unique.

The existence of the Laurent Decomposition is due to Cauchy’s Integral formula on an annulus.
Technically, we have not shown this result explicitly1, to derive it we simply need to use the
cross-cut idea which is illustrated in the discussion preceding Theorem ??. Once more, suppose
0 ≤ ρ < σ ≤ ∞, and suppose f(z) is analytic for ρ < |z − zo| < σ. Consider some subannulus
ρ < r < |z − zo| < s < σ. Cauchy’s Integral formula gives

f(z) =
1

2πi

∮
|w−zo|=s

f(w)

w − z
dw︸ ︷︷ ︸

fo(z)

− 1

2πi

∮
|w−zo|=r

f(w)

w − z
dw︸ ︷︷ ︸

−f1(z)

.

1see pages 344-346 of [R91] for careful proofs of these results
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Notice fo is analytic for |z − zo| < s and f1 is analytic for |z − zo| > r and f1(z) → 0 as z → ∞.
As Gameline points out here, our current formulation would seem to depend on r, s but we already
showed the decomposition is unique if it exists thus fo and f1 must be defined for ρ < |z−zo| < σ. □

If you wish to read a different formulation of essentially the same proof, I recommend page 347 of
[R91].

Example 9.1.5. Consider f(z) = 2z−i
z(z−i) . This function is analytic on C − {0, i}. A simple

calculation reveals:

f(z) =
1

z
+

1

z − i

With respect to the annulus 0 < |z| < 1 we have fo(z) =
1

z−i and f1(z) =
1
z . On the other hand,

for the annulus 0 < |z − i| < 1 we have f1(z) =
1

z−i and f0(z) =
1
z . If we study disks centered at

any point in C− {0, i} then fo(z) = f(z) and f1(z) = 0.

We sometimes call the set such as 0 < |z− i| < 1 an annulus, but, we would do equally well to call
it a punctured disk centered at i = 1.

Example 9.1.6. Consider f(z) = 1
sin z this has a Laurent decomposition on the annuli which fit

between the successive zeros of sin z. That is, on nπ < |z| < (n + 1)π. For example, when n = 0
we have sin z = z − 1

6z
3 + · · · hence, using our geometric series reciprocal technique,

f(z) =
1

sin z
=

1

z − 1
6z

3 + · · ·
=

1

z(1− 1
6z

2 + · · · )
=

1

z

(
1 + (z2/6 + · · · )2 + · · ·

)
=

1

z
+

1

36
z3 + · · ·

Hence f1(z) = 1/z whereas fo(z) = z3/36 + · · · for the punctured disk of raduis π centered about
z = 0.

Suppose f(z) = fo(z) + f1(z) is the Laurent decomposition on ρ < |z − zo| < σ. By Theorem 8.4.2
there exists a power series representation of fo

fo(z) =

∞∑
k=0

ak(z − zo)
k

for |z − zo| < σ. Next, by Theorem 8.5.7, noting that ao = f1(∞) = 0 gives

f1(z) =
−1∑

k=−∞
ak(z − zo)

k

for |z− zo| > ρ. Notice both the series for fo and f1 converge normally and summing both together
gives:

f(z) =
∞∑

k=−∞
ak(z − zo)

k

which is normally convergen on ρ < |z − zo| < σ. In this context, normally convergent means we
have uniform convergence for each s ≤ |z − zo| ≤ t where ρ < s < t < σ.

Given a function f(z) defined by a Laurent series centered at zo:

f(z) =
∞∑

k=−∞
ak(z − zo)

k ⋆
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for ρ < |z − zo| < σ. We naturally wish to characterize the meaning of the coefficients2 ak. This
is accomplished by integration. In particular, we begin by integration over the circle |z − zo| = r
where ρ < r < σ: ∫

|z−zo|=r
f(z) dz =

∫
|z−zo|=r

( ∞∑
k=−∞

ak(z − zo)
k

)
dz

=

∞∑
k=−∞

ak

(∫
|z−zo|=r

(z − zo)
kdz

)

=

∞∑
k=−∞

ak (2πiδk,−1)

= 2πia−1

We have used the uniform convergence of the given series which allows term-by-term integration.
In addition, the integration was before discussed in Example 7.1.9. In summary, we find the k = −1
coefficient has a rather beautiful significance:

a−1 =
1

2πi

∫
|z−zo|=r

f(z) dz

where the circle of integration can be taken as any circle in the annulus of convergence for the
Laurent series. What does this formula mean?

We can integrate by finding a Laurent expansion of the integrand!

Example 9.1.7. Let f(z) = sin z
1−z . Observe,

sin z

1− z
=

sin(z − 1 + 1)

1− z
=

cos(1) sin(z − 1) + sin(1) cos(z − 1)

z − 1
=

sin 1

z − 1
+ cos(1)− sin 1

2
(z− 1)+ · · ·

thus a−1 = sin 1 and we find: ∫
|z−1|=2

sin z

1− z
dz = 2πi sin 1.

We now continue our derivation of the values for the coefficients in ⋆, we divide by (z− zo)
n+1 and

once more integrate over the circle |z − zo| = r where ρ < r < σ:∫
|z−zo|=r

f(z)

(z − zo)n+1
dz =

∫
|z−zo|=r

( ∞∑
k=−∞

ak(z − zo)
k−n−1

)
dz

=
∞∑

k=−∞
ak

(∫
|z−zo|=r

(z − zo)
k−n−1dz

)

=
∞∑

k=−∞
ak (2πiδk−n−1,−1)

= 2πian

2We already know for power series on a disk the coefficients are tied to the derivatives of the function at the center
of the expansion. However, in the case of the Laurent expansion we only have knowledge about the function on the
annulus centered at zo and zo may not even be in the domain of the function.
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Once again, we have used the uniform convergence of the given series which allows term-by-
term integration and the integral identity shown in Example 7.1.9. Notice the Kronecker delta

δk−n−1,−1 =

{
1 if k − n− 1 = −1

0 if k − n− 1 ̸= −1
which means the only nonzero term occurs when k−n−1 = −1

which is simply k = n. Of course, the integral is familar to us. We saw this identity for k ≥ 0 in
our previous study of power series. In particular, Theorem 7.3.2 where we proved the generalized
Cauchy integral formula: adapted to our current notation

1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz =

f (n)(zo)

n!
.

For the Laurent series we study on ρ < |z − zo| < σ we cannot in general calculate f (n)(zo).
However, in the case ρ = 0, we have f(z) analytic on the disk |z − zo| < σ and then we are able to
either calculate, for n ≥ 0 an by differentiation or integration. Let us collect our results for future
reference:

Theorem 9.1.8. Laurent Series Decomposition: Suppose 0 ≤ ρ < σ ≤ ∞, and suppose f(z)
is analytic for ρ < |z − zo| < σ. Then f(z) can be decomposed as a Laurent series

f(z) =
∞∑

n=−∞
an(z − zo)

n

where the coefficients an are given by:

an =
1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz

for r > 0 with ρ < r < σ.

Notice the deformation theorem goes to show there is no hidden dependence on r in the formulation
of the coefficient an. The function f is assumed holomorphic between the inner and outer circles of
the annulus of convergence hence f(z)

(z−zo)n+1 is holomorpic on the annulus as well and the complex

integral is unchanged as we alter the value of r on (ρ, σ).

9.2 Isolated Singularities of an Analytic Function

A singularity of a function is some point which is nearly in the domain, and yet, is not. An isolated
singularity is a singular point which is also isolated. A careful definition is given below:

Definition 9.2.1. A function f has an isolated singularity at zo if there exists r > 0 such that
f is analytic on the punctured disk 0 < |z − zo| < r.

We describe in this section how isolated singularity fall into three classes where each class has
a particular type of Laurent series about the singular point. Let me define these now and we
will explain the terms as the section continues. Notice Theorem 9.1.8 implies f(z) has a Laurent
series in a punctured disk about singularity hence the definition below covers all possible isolated
singularities.
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Definition 9.2.2. Suppose f has an isolated singularity at zo.

(i.) If f(z) =
∞∑
k=0

ak(z − zo)
k then zo is a removable singularity.

(ii.) Let N ∈ N. If f(z) =

∞∑
k=−N

ak(z − zo)
k with a−N ̸= 0 then zo is a pole of order N .

(iii.) If f(z) =

∞∑
k=−∞

ak(z − zo)
k where ak ̸= 0 for infinitely many k < 0 then zo is an essential

singularity.

We begin by studying the case of removable singularity. This is essentially the generalization of a
hole in the graph you studied a few years ago.

Theorem 9.2.3. Riemann’s Theorem on Removable Singularities: let zo be an isolated
singularity of f(z). If f(z) is bounded near zo then f(z) has a removable singularity.

Proof: expand f(z) in a Laurent series about the punctured disk at zo:

f(z) =
∞∑

n=−∞
an(z − zo)

n

for 0 < |z − zo| < σ. If |f(z)| < M for 0 < |z − zo| < r then for r < min(σ, r) we may apply the
ML-theorem to the formula for the n-th coefficient of the Laurent series as given by Theorem 9.1.8

|an| =

∣∣∣∣∣ 1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz

∣∣∣∣∣ ≤ M(2πr)

2πrn+1
=

M

rn
.

As r → 0 we find |an| → 0 for n < 0. Thus an = 0 for all n = −1,−2, . . . . Thus, the Laurent series
for f(z) reduces to a power series for f(z) on the deleted disk 0 < |z − zo| < σ and it follows we
may extend f(z) to the disk |z − zo| < σ by simply defining f(zo) = ao. □

Example 9.2.4. Let f(z) = sin z
z on the punctured plane C×. Notice,

f(z) =
sin z

z
=

1

z

∞∑
j=0

(−1)j

(2j + 1)!
z2j+1 =

∞∑
j=0

(−1)j

(2j + 1)!
z2j = 1− 1

3!
z2 + · · · .

We can extend f to C by defining f(0) = 1.

To be a bit more pedantic, f̃ is the extension of f defined by f̃(z) = f(z) for z ̸= 0 and f̃(0) = 1.
The point ? The extension f̃ is a new function which is distinct from f .

We now study poles of order N . Let us begin by making a definition:

Definition 9.2.5. Suppose f has a pole of order N at zo. If

f(z) =
a−N

(z − zo)N
+ · · ·+ a−1

z − zo
+

∞∑
k=0

ak(z − zo)
k

then P (z) =
a−N

(z − zo)N
+ · · ·+ a−1

z − zo
is the principal part of f(z) about zo. When N = 1 then

zo is called a simple pole, when N = 2 then zo is called a double pole.
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Notice f(z)− P (z) is analytic.

Theorem 9.2.6. Let zo be an isolated singularity of f . Then zo is a pole of f of order N iff
f(z) = g(z)/(z − zo)

N where g is analytic at zo with g(zo) ̸= 0.

Proof: suppose f has a pole of order N at zo then by definition it has a Laurent series which
begins at n = −N . We calculate, for |z − zo| < r,

f(z) =

∞∑
k=−N

ak(z − zo)
k =

1

(z − zo)N

∞∑
k=−N

ak(z − zo)
k+N =

1

(z − zo)N

∞∑
j=0

aj−N (z − zo)
j .

Define g(z) =
∑∞

j=0 aj−N (z − zo)
j and note that g is analytic at zo with g(zo) = a−N ̸= 0. We

know a−N ̸= 0 by the definition of a pole of order N . Thus f(z) = g(z)/(z − zo)
N as claimed.

Conversely, suppose there exists g analytic at zo with g(zo) ̸= 0 and f(z) = g(z)/(z − zo)
N . There

exist bo, b1, . . . with g(zo) = bo ̸= 0 such that

g(z) =
∞∑
k=0

bk(z − zo)
k

divide by (z − zo)
N to obtain:

f(z) =
1

(z − zo)N

∞∑
k=0

bk(z − zo)
k =

∞∑
k=0

bk(z − zo)
k−N =

∞∑
j=−N

bj+N (z − zo)
j

identify that the coefficient of the Laurent series at order −N is precisely bo ̸= 0 and thus we have
shown f has a pole of order N at zo. □

Example 9.2.7. Consider f(z) =
ez

(z − 1)5
. Notice ez is analytic on C hence by Theorem 9.2.6

the function f has a pole of order N = 5 at zo = 1.

Example 9.2.8. Consider f(z) =
sin(z + 2)5

(z + 2)2
notice

f(z) =
1

(z + 2)5

(
(z + 2)3 − 1

3!
(z + 2)9 +

1

5!
(z + 2)15 + · · ·

)
=

simplifying yields

f(z) =
1

(z + 2)2

(
1− 1

3!
(z + 2)6 +

1

5!
(z + 2)12 + · · ·

)
︸ ︷︷ ︸

g(z)

which shows, by Theorem 9.2.6, the function f has a pole of order N = 2 at zo = −2.

Theorem 9.2.9. Let zo be an isolated singularity of f . Then zo is a pole of f of order N iff 1/f
is analytic at zo with a zero of order N .
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Proof: we know f has pole of order N iff f(z) = g(z)/(z − zo)
N with g(zo) ̸= 0 and g ∈ O(zo).

Suppose f has a pole of order N then observe

1

f(z)
= (z − zo)

N · 1

g(z)
.

hence 1/f(z) has a zero of order N by Theorem 8.7.9. Conversely, if 1/f(z) has a zero of order
N then by Theorem 8.7.9 we have 1

f(z) = (z − zo)
Nh(z) where h ∈ O(zo) and h(zo) ̸= 0. Define

g(z) = 1/h(z) and note g ∈ O(zo) and g(zo) = 1/h(zo) ̸= 0 moreover,

1

f(z)
= (z − zo)

Nh(z) ⇒ f(z) =
1

(z − zo)Nh(z)
=

g(z)

(z − zo)N

and we conclude by Theorem 9.2.6 that f has a pole of order N at zo. □

The theorem above can be quite useful for quick calculation.

Example 9.2.10. f(z) = 1/ sin z has a simple pole at zo = nπ for n ∈ N ∪ {0} since

sin(z) = sin(z − nπ + nπ) = cos(nπ) sin(z − nπ) = (−1)n(z − n)π − (−1)n

3!
(z − n)3 + · · ·

shows sin z has a simple zero at zo = nπ for n ∈ N ∪ {0}.

Example 9.2.11. You should be sure to study the example given by Gamelin on page 173 to 174
where he derives the Laurent expansion which converges on |z| = 4 for f(z) = 1/ sin z.

Example 9.2.12. Let f(z) =
1

z3(z − 2− 3i)6
then f has a pole of order N = 3 at zo = 0 and a

pole of order N = 6 at z1 = 2 + 3i

Definition 9.2.13. We say a function f is meromorphic on a domain D if f is analytic on D
except possibly at isolated singularities of which each is a pole.

Example 9.2.14. An entire function is meromorphic on C. However, an entire function may not
be analytic at ∞. For example, sin z is not analytic at ∞ and it has an essential singularity at ∞
so f(z) = sin z is not meromorphic on C ∪ {∞}.

Example 9.2.15. A rational function is formed by the quotient of two polynomials p(z), q(z) ∈ C[z]
where q(z) is not identically zero; f(z) = p(z)/q(z). We will explain in Example 9.3.3 that f(z) is
meromorphic on the extended complex plane C ∪ {∞}.

Theorem 9.2.16. Let zo be an isolated singularity of f . Then zo is a pole of f of order N ≥ 1 iff
|f(z)| → ∞ as z → zo.

Proof: if zo is a pole of order N then f(z) = g(z)/(z − zo)
N for g(zo) ̸= 0 for 0 < |z − zo| < r for

some r > 0 where g is analytic at zo. Since g is analytic at zo it is continuous and hence bounded
on the disk; |g(z)| ≤ M for |z − zo| < r. Thus,

|f(z)| = |g(z)(z − zo)
−N | ≤ M(z − zo)

−N → ∞

as z → zo. Thus |f(z)| → ∞ as z → zo.
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Conversely, suppose |f(z)| → ∞ as z → zo. Hence, there exists r > 0 such that f(z) ̸= 0 for
0 < |z − zo| < r. It follows that h(z) = 1/f(z) is analytic in for 0 < |z − zo| < r. Note that
|f(z)| → ∞ as z → zo implies h(z) → 0 as z → zo. Thus h(z) is bounded near zo and we find by
Riemann’s removable singularity Theorem 9.2.3 there exist an for n = 0, 1, 2, . . . such that:

h(z) =

∞∑
n=0

an(z − zo)
n

However, h(z) → 0 as z → zo hence the extension of h(z) is zero at zo. If the zero has order N then
h(z) = (z − zo)

Nb(z) where b ∈ O(zo) and b(zo) ̸= 0. Therefore, we obtain f(z) = g(z)/(z − zo)
N

where g(z) = 1/b(z) where g ∈ O(zo) and g(zo) ̸= 0. We conclude zo is a pole of order N by
Theorem 9.2.6.

Example 9.2.17. Let f(z) = e
1
z = 1+ 1

z +
1

2z2
+ 1

6z3
+ · · · . Clearly zo = 0 is an essential singularity

of f . It has different behaviour than a removable singularity or a pole. First, notice for z = x > 0
we have f(z) = e1/x → ∞ as x → 0+ thus f is not bounded at zo = 0. On the other hand, if we

study z = iy for y > 0 then |f(z)| = |e
1
iy | = 1 hence |f(z)| does not tend to ∞ along the imaginary

axis.

Theorem 9.2.18. Casorati-Weierstrauss Theorem: Let zo be an essential isolated singularity
of f(z). Then for every complex number wo, there is a sequence zn → zo such that f(zn) → wo as
n → ∞.

Proof: by contrapositive argument. Suppose there exists a complex number wo for which there
does not exist a sequence zn → zo such that f(zn) → wo as n → ∞. It follows there exists ϵ > 0 for
which |f(z)− wo| > ϵ for all z in a small punctured disk about zo. Thus, h(z) = 1/(f(z)− wo) is
bounded close to zo. Consequently, zo is a removable singularity of h(z) and h(z) = (z − zo)

Ng(z)
for some N ≥ 0 and some analytic function g such that g(zo) ̸= 0. But, this gives:

1

f(z)− wo
= (z − zo)

Ng(z) ⇒ f(z) = wo +
b(z)

(z − zo)N

where b = 1/g ∈ O(zo) and b(zo) ̸= 0. If N = 0 then f extends to be analytic at zo. If N > 0 then
f has a pole of order N at zo. In all cases we have a contradiction to the given fact that zo is an
essential singularity. The theorem follows. □

Gamelin mentions Picard’s Theorem which states that for an essential singularity at zo, for all
wo except possibly one value, there is a sequence zn → zo for which f(zn) = wo for each n. In our
example e1/z the exceptional value is wo = 0.

9.3 Isolated Singularity at Infinity

As usual, we use the reciprocal function to transfer the definition from zero to infinity.

Definition 9.3.1. We say f has an isolated singular point at ∞ if there exists r > 0 such that f
is analytic on |z| > r. Equivalently, we say f has an isolated singular point at ∞ if g(w) = f(1/w)
has an isolated singularity at w = 0. Furthermore, we say that the isolated singular point at ∞ is
removable singularity, a pole of order N or an essential singularity if the corresponding singularity
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at w = 0 is likewise a removable singularity, pole of order N or an essential singular point of g. In
particular, if ∞ is a pole of order N then the Laurent series expansion:

f(z) = bNzN + · · ·+ b1z + bo +
b−1

z
+

b−2

z2
+ · · ·

has principal part

P∞(z) = bNzN + · · ·+ b1z + bo

hence f(z)− P∞(z) is analytic at ∞.

This section is mostly a definition. I now give a few illustrative examples, partly following Gamelin.

Example 9.3.2. The function ez = 1 + z + z2/2! + z3/3! + · · · has an essential singularity at ∞.
This implies that while ez is meromorphic on C, it is not meromorphic on C ∪ {∞} as it has a
singularity which is not a pole or removable.

Example 9.3.3. Let p(z), q(z) ∈ C[z] with deg(p(z)) = m and deg(q(z)) = n such that m > n.
Notice that long-division gives d(z), r(z) ∈ C[z] for which deg(d(z)) = m − n and deg(r(z)) < m
such that

f(z) =
p(z)

q(z)
= d(z) +

r(z)

q(z)

The function r(z)
q(z) is analytic at ∞ and d(z) serves as the principal part. We identify f has a pole of

order m−n at ∞. It follows that any rational function is meromorphic on the extended complex
plane C ∪ {∞}

Example 9.3.4. Following the last example, suppose m = n then d(z) = 0 and the singularity at
∞ is seen to be removable. If p(z) = amzm+ · · ·+ao and q(z) = bnz

n+ · · ·+ bo then we can extend
f analytically at ∞ by defining f(∞) = am/bn.

Example 9.3.5. Consider f(z) = (e1/z − 1)/z for z > 0. Observe

f(z) = (e1/z − 1)/z =

(
1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ · · ·

)
hence the singularity at ∞ is removable and we may extend f to be analytic on the extended complex
plane by defining f(∞) = 0.

9.4 Partial Fractions Decomposition

In the last section we noticed in Example 9.3.3 that rational functions were meromorphic on the
extended complex plane C∗ = C∪{∞}. Furthermore, it is interesting to notice the algebra of mero-
morphic functions is very nice: sums, products, quotients where the denominator is not identically
zero, all of these are once more meromorphic. In terms of abstract algebra, the set of meromorphic
functions on a domain forms a subalgebra of the algebra of holomorphic functions on D. See pages
315-320 of [R91] for a discussion which focuses on the algebraic aspects of meromorphic functions.

It turns out that not only are the rational functions meromorphic on C∗, in fact, they are the only
meromorphic functions on C∗.

Theorem 9.4.1. A meromorphic function on C∗ is a rational function.
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Proof: let f(z) be a meromorphic function on C∗. The number of poles of f must be finite
otherwise they would acculumate to give a singularity which was not isolated. If f is analytic at
∞ then we define P∞(z) = f(∞). Otherwise, f has a pole of order N and P∞(z) is a polynomial
of order N . In both cases, f(z) − P∞(z) is analytic at ∞ with f(z) − P∞(z) → 0 as z → ∞. Let
us label the poles in C as z1, z2, . . . , zm. Furthermore, let Pk(z) be the principal part of f(z) at zk
for k = 1, 2, . . . ,m. Notice, there exist α1, . . . , αnk

such that

Pk(z) =
α1

z − zk
+

α2

(z − zk)2
+ · · ·+ αnk

(z − zk)nk

for each k. Notice Pk(z) → 0 as z → ∞ and Pk is analytic at ∞. We define (still following Gamelin)

g(z) = f(z)− P∞(z)−
m∑
k=1

Pk(z).

Notice g is analytic at each of the poles including ∞. Thus g is an entire function and as g(z) → 0
as z → ∞ it follows g is bounded and by Liouville’s Theorem we find g(z) = 0 for all z ∈ C.
Therefore,

f(z) = P∞(z) +

m∑
k=1

Pk(z).

This completes the proof as we already argued the converse direction in Example 9.3.3. □

The boxed formula is the partial fractions decomposition of f . In fact, we have shown:

Theorem 9.4.2. Every rational function has a partial fractions decomposition: in particular, if
z1, . . . , zm are the poles of f then

f(z) = P∞(z) +

m∑
k=1

Pk(z)

where P∞(z) is a polynomial and Pk(z) is the principal part of f(z) around the pole zk.

The method to obtain the partial fractions decomposition of a given rational function is described
algorithmically on pages 180-181. Essentially, the first thing to do is to we can use long-division
to discover the principal part at ∞. Once that is done, factor the denominator to discover the
poles of f(z) and then we can simply write out a generic form of

∑m
k=1 Pk(z). Then, we determine

the unknown coefficients implicit within the generic form by algebra. I will illustrate with a few
examples:

Example 9.4.3. Let f(z) =
z3 + z + 1

z2 + 1
. Notice that z3 + z + 1 = z(z2 + 1) + 1 hence

f(z) = z+
1

z2 + 1
. We now focus on

1

z2 + 1
notice z2+1 = (z− i)(z+ i) hence each pole is simple

and we seek complex constants A,B such that:

1

z2 + 1
=

A

z + i
+

B

z − i
.

Multiply by z2 + 1 to obtain:
1 = A(z − i) +B(z + i)
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Next, evaluate at z = −i and z = i to obtain 1 = −2iA and 1 = 2iB hence A = −1/2i and
B = 1/2i and we conclude:

f(z) = z − 1

2i

1

z + i
+

1

2i

1

z − i
.

Example 9.4.4. Let f(z) =
2z + 1

z2 − 3z − 4
notice z2 − 3z − 4 = (z − 4)(z + 1) hence

2z + 1

z2 − 3z − 4
=

A

z − 4
+

B

z + 1
⇒ 2z + 1 = A(z + 1) +B(z − 4)

Evaluate at z = −1 and z = 4 to obtain:

−1 = −5B & 9 = 5A ⇒ A = 9/5, B = 1/5.

Thus,

f(z) =
1

5

(
5

z − 4
+

1

z + 1

)
Example 9.4.5. Suppose f(z) =

1 + z

z4 − 3z3 + 3z2 − z
. Long division is not needed as this is already

a proper rational function. Notice

z4 − 3z3 + 3z2 − z = z(z3 − 3z2 + 3z − 1) = z(z − 1)3.

Thus we seek: complex constants A,B,C,D for which

1 + z

z4 − 3z3 + 3z2 − z
=

A

z
+

B

z − 1
+

C

(z − 1)2
+

D

(z − 1)3

Multiplying by the denominator yields,

1 + z = A(z − 1)3 +Bz(z − 1)2 + Cz(z − 1) +Dz, ⋆

which is nice to write as

1 + z = A(z3 − 3z2 + 3z − 1) +B(z3 − 2z2 + z) + C(z2 − z) +Dz

for what follows. Differentiating gives

1 = A(3z2 − 6z + 3) +B(3z2 − 4z + 1) + C(2z − 1) +D,
d⋆

dz

differentiating once more yields

0 = A(6z − 6) +B(6z − 4) + C(2),
d2⋆

dz2

differentiating for the third time:
0 = 6A+ 6B

Thus A = −B. Set z = 1 in ⋆ to obtain 2 = D. Once again, set z = 1 in d⋆
dz to obtain 1 = C(2−1)+2

hence C = −1. Finally, set z = 1 in d2⋆
dz2

to obtain 0 = 2B − 2 thus B = 1 and we find A = −1 as
a consequence. In summary:

1 + z

z4 − 3z3 + 3z2 − z
= −1

z
+

1

z − 1
− 1

(z − 1)2
+

2

(z − 1)3
.



9.4. PARTIAL FRACTIONS DECOMPOSITION 143

Perhaps you did not see the technique I used in the example above in your previous work with
partial fractions. It is a nice addition to the usual algebraic technique.

Example 9.4.6. On how partial fractions helps us find Laurent Series in the last example
we found:

f(z) =
1 + z

z4 − 3z3 + 3z2 − z
= −1

z
+

1

z − 1
− 1

(z − 1)2
+

2

(z − 1)3
.

If we want the explicit Laurent series about z = 1 we simply need to expand the analytic function
−1/z as a power series:

−1

z
=

−1

1 + (z − 1)
=

∞∑
n=0

(−1)n+1(z − 1)n

thus for 0 < |z − 1| < 1

f(z) =
2

(z − 1)3
− 1

(z − 1)2
+

1

z − 1
+

∞∑
n=0

(−1)n+1(z − 1)n.

This is the Laurent series of f about zo = 1. The other singular point is z1 = 0. To find the Laurent
series about z1 we need to expand 1

z−1 − 1
(z−1)2

+ 2
(z−1)3

as a power series about z1 = 0. To begin,

1

z − 1
=

−1

1− z
= −

∞∑
n=0

zn.

Let g(z) = − 1
(z−1)2

and notice
∫
g(z)dz = C + 1

z−1 = C −
∑∞

n=0 z
n thus

g(z) =
d

dz

[∫
g(z)dz

]
=

d

dz

[
C −

∞∑
n=0

zn

]
= −

∞∑
n=1

nzn−1 = −
∞∑
j=0

(j + 1)zj .

Let h(z) = 2/(z − 1)3 notice
∫
h(z)dz = −1/(z − 1)2 and

∫
(
∫
h(z)dz)dz = 1/(z − 1) = −

∑∞
n=0 z

n.
I have ignored the constants of integration (why is this ok?). Observe,

h(z) =
d

dz

d

dz

[∫ (∫
h(z)dz

)
dz

]
=

d

dz

d

dz

[
−

∞∑
n=0

zn

]
=

d

dz

[
−

∞∑
n=1

nzn−1

]

= −
∞∑
n=2

n(n− 1)zn−2

= −
∞∑
j=0

(j + 2)(j + 1)zj .

Thus, noting f(z) = −1/z + 1/(z − 1) + g(z) + h(z) we collect our calculations above to obtain:

f(z) =
−1

z
−

∞∑
j=0

(1 + (j + 1) + (j + 2)(j + 1)) zj =
−1

z
−

∞∑
j=0

(
j2 + 4j + 4

)
zj .

Neat, j2 + 4j + 4 = (j + 2)2 hence:

f(z) =
−1

z
−

∞∑
j=0

(j + 2)2 zj =
−1

z
+ 4 + 9z + 16z2 + 25z3 + 36z4 + · · · .

Term-by-term integration and differentiation allowed us to use geometric series to expand the basic
rational functions which appear in the partial fractal decomposition. I hope you see the method I
used in the example above allows us a technique to go from a given partial fractal decomposition
to the Laurent series about any point we wish. Of course, singular points are most fun.
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Chapter X

The Residue Calculus

In this chapter we collect the essential tools of the residue calculus. Then, we solve a variety of
real integrals by relating the integral of interest to the residue of a complex function. The method
we present here is not general. Much like second semester calculus, we show some typical examples
and hold out hope the reader can generalize to similar examples. These examples date back to the
early nineteenth or late eighteenth centuries. Laplace, Poisson and ,of course, Cauchy were able to
use complex analysis to solve a myriad of real integrals. That said, according to Remmert [R91]
page 395:

Nevertheless there is no cannonical method of finding, for a given integrand and interval
of integration, the best path γ in C to use.

And if that isn’t sobering enough, from Ahlfors:

even complete mastery does not guarantee success

Ahlfors was a master so this comment is perhaps troubling. Generally, complex integration is an
art. For example, if you peruse the answers of Ron Gordon on the Math Stackexchange Website
you’ll see some truly difficult problems solved by one such artist.

Some of the examples solved in this chapter are also solved by techinques of real second semester
calculus. I include such examples to illustrate the complex technique with minimal difficulty.

Keep in mind I have additional examples posted in NotesWithE100toE117. I will lecture some from
those examples and some from these notes.
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10.1 The Residue Theorem

In Theorem 9.1.8 we learned that a function with an isolated singularity has a Laurent expansion:
in particular, if 0 ≤ ρ < σ ≤ ∞, and f(z) is analytic for ρ < |z − zo| < σ. Then f(z) can be
decomposed as a Laurent series

f(z) =
∞∑

n=−∞
an(z − zo)

n

where the coefficients an are given by:

an =
1

2πi

∫
|z−zo|=r

f(z)

(z − zo)n+1
dz

for r > 0 with ρ < r < σ. The n = −1 coefficient has special significance when we focus on the
expansion in a deleted disk about zo.

Definition 10.1.1. Suppose f(z) has an isolated singularity zo and Laurent series

f(z) =
∞∑

n=−∞
an(z − zo)

n

for 0 < |z − zo| < ρ then we define the residue of f at zo by

Res [f(z), zo] = a−1.

Notice, the n = −1 coefficient is only the residue when we consider the deleted disk around the
singularity. Furthermore, by Theorem 9.1.8, for the Laurent series in the definition above we have

a−1 =
1

2πi

∮
|z−zo|=r

f(z) dz

where r is any fixed radius with 0 < r < ρ.

Example 10.1.2. Suppose n ̸= 1,

Res

[
1

z − zo
, zo

]
= 1 & Res

[
1

(z − zo)n
, zo

]
= 0.

Example 10.1.3. In Example 9.4.3 we found

f(z) =
z3 + z + 1

z2 + 1
= z − 1

2i

1

z + i
+

1

2i

1

z − i
.

From this partial fractions decomposition we are free to read that

Res [f(z), i] =
1

2i
& Res [f(z),−i] =

−1

2i
.

Do you understand why there is no hidden 1/(z − i) term in f(z) − 1
2i

1
z−i? If you don’t then you

ought to read §V I.4 again.
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Example 10.1.4. In Example 9.4.4 we derived:

f(z) =
2z + 1

z2 − 3z − 4
=

1

5

(
5

z − 4
+

1

z + 1

)
From the above we can read:

Res [f(z), 4] = 1 & Res [f(z),−1] =
1

5
.

Example 10.1.5. In Example 9.4.5 we derived:

f(z) =
1 + z

z4 − 3z3 + 3z2 − z
= −1

z
+

1

z − 1
− 1

(z − 1)2
+

2

(z − 1)3

By inspection of the above partial fractal decomposition we find:

Res [f(z), 0] = −1 & Res [f(z), 1] = 1.

Example 10.1.6. Consider (sin z)/z6 observe

1

z6

(
z − 1

6
z3 +

1

120
z5 + · · ·

)
=

1

z5
− 1

6z3
+

1

120z
+ · · · .

In view of the expansion above, we find:

Res

[
sin z

z6
, 0

]
=

1

120

Theorem 10.1.7. Cauchy’s Residue Theorem: let D be a bounded domain in the complex
plane with a piecewise smooth boundary ∂D. Suppose that f is analytic on D ∪ ∂D, except for a
finite number of isolated singularities z1, . . . , zm in D. Then∫

∂D
f(z) dz = 2πi

m∑
j=1

Res [f(z), zj ] .

Proof: this follows immediately from m-applications of Theorem 9.1.8. We simply parse D into m
simply connected regions each of which contains just one singular point. The net-integration only
gives the boundary as the cross-cuts cancel. The picture below easily generalizes for m > 3.

Of course, we could also just envision little circles around each singularity and apply the deforma-
tion theorem to reach the ∂D. □

Our focus has shifted from finding the whole Laurent series to just finding the coefficient of the
reciprocal term. In the remainder of this section we examine some useful rules to find residues.
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Proposition 10.1.8. Rule 1: if f(z) has a simple pole at zo, then

Res [f(z), zo] = lim
z→zo

(z − zo)f(z).

Proof: since f has a simple pole at zo we have:

f(z) =
a−1

z − zo
+ g(z)

where g ∈ O(zo). Hence,

lim
z→zo

[(z − zo)f(z)] = lim
z→zo

[a−1 + (z − zo)g(z)] = a−1. □

Example 10.1.9.

Res

[
z3 + z + 1

z2 + 1
, i

]
= lim

z→i
(z − i)

z3 + z + 1

(z − i)(z + i)
= lim

z→i

z3 + z + 1

z + i
=

−i+ i+ 1

i+ i
=

1

2i
.

You can contrast the work above with that which was required in Example 10.2.2.

Example 10.1.10. Following Example 10.1.4, let’s see how Rule 1 helps:

Res

[
2z + 1

z2 − 3z − 4
,−1

]
= lim

z→−1
(z + 1)

2z + 1

(z + 1)(z − 4)
=

2(−1) + 1

−1− 4
=

1

5
.

Proposition 10.1.11. Rule 2: if f(z) has a double pole at zo, then

Res [f(z), zo] = lim
z→zo

d

dz

[
(z − zo)

2f(z)
]
.

Proof: since f has a double pole at zo we have:

f(z) =
a−2

(z − zo)2
+

a−1

z − zo
+ g(z)

where g ∈ O(zo). Hence,

lim
z→zo

d

dz

[
(z − zo)

2f(z)
]
= lim

z→zo

d

dz

[
a−2 + (z − zo)a−1 + (z − zo)

2g(z)
]

= lim
z→zo

[
a−1 + 2(z − zo)g(z) + (z − zo)

2g(z)
]

= a−1. □

Example 10.1.12.

Res

[
1

(z3 + 1)z2
, 0

]
= lim

z→0

d

dz

[
z2

(z3 + 1)z2

]
= lim

z→0

[
−3z2

(z3 + 1)2

]
= 0.

Let me generalize Gamelin’s example from page 197. I replace i in Gamelin with a.

Example 10.1.13. keep in mind z2 − a2 = (z + a)(z − a),

Res

[
1

(z2 − a2)2
, a

]
= lim

z→a

d

dz

[
(z − a)2

(z2 − a2)2

]
= lim

z→a

[
1

(z + a)2

]
=

2

(z + a)3

∣∣∣∣
z=a

=
−2

8a3
.
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In the classic text of Churchill and Brown, the rule below falls under one of the p, q theorems. See
§57 of [C96]. We use the notation of Gamelin here and resist the urge to mind our p’s and q’s.

Proposition 10.1.14. Rule 3: If f, g ∈ O(zo), and if g has a simple zero at zo, then

Res

[
f(z)

g(z)
, zo

]
=

f(zo)

g′(zo)
.

Proof: if f has a zero of order N ≥ 1 then f(z) = (z − zo)
Nh(z) and g(z) = (z − zo)k(z) where

h(zo), k(zo) ̸= 0 hence

f(z)

g(z)
=

(z − zo)
Nh(z)

(z − zo)k(z)
= (z − zo)

N−1h(z)

k(z)

which shows limz→zo
f(z)
g(z) = 0 if N > 1 and for N = 1 we have limz→zo

f(z)
g(z) = h(zo)

k(zo)
. In either case,

for N ≥ 0 we find f(z)
g(z) has a removable singularity hence the residue is zero which is consistent

with the formula of the proposition as f(zo) = 0. Next, suppose f(zo) ̸= 0 then by Theorem 9.2.6
we have f(z)/g(z) has a simple pole hence Rule 1 applies:

Res [f(z)/g(z), zo] = lim
z→zo

(z − zo)
f(z)

g(z)
=

f(zo)

limz→zo

(
g(z)−g(zo)

z−zo

) =
f(zo)

g′(zo)
.

where in the last step I used that g(zo) = 0 and g′(zo), f(zo) ∈ C with g′(zo) ̸= 0 were given. □

Example 10.1.15. Observe g(z) = sin z has simple zero at zo = π since g(π) = sinπ = 0 and
g′(π) = cosπ = −1 ̸= 0. Rule 3 hence applies as ez ∈ O(π),

Res

[
ez

sin z
, π

]
=

eπ

cosπ
= −eπ.

Example 10.1.16. Notice g(z) = (z− 3)ez has a simple zero at zo = 3. Thus, noting cos z ∈ O(3)
we apply Rule 3.

Res

[
cos z

(z − 3)ez
, 3

]
=

cos(z)

ez + (z − 3)ez

∣∣∣∣
z=3

=
cos(3)

e3
.

One more rule to go:

Proposition 10.1.17. Rule 4: if g(z) has a simple pole at zo, then

Res

[
1

g(z)
, zo

]
=

1

g′(zo)
.

Proof: apply Rule 3 with f(z) = 1. □

I’ll follow Gamelin and offer this example which does clearly show why Rule 4 is so nice to know:

Example 10.1.18. note that g(z) = z2 + 1 has g(i) = 0 and g′(i) = 2i ̸= 0 hence g has simple
zero at zo = i. Apply Rule 4,

Res

[
1

z2 + 1
, i

]
=

1

2z

∣∣∣∣
z=i

=
1

2i
.
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10.2 Integrals Featuring Rational Functions

Let R > 0. Consider the curve ∂D which is formed by joining the line-segment [−R,R] to the
upper-half of the positively oriented circle |z| = R. Let us denote the half-circle by CR hence
∂D = [−R,R]∪CR. Notice the domain D is a half-disk region of radius R with the diameter along
the real axis. If f(z) is a function which is analytic at all but a finite number of isolated singular
points z1, . . . , zk in D then Cauchy’s Residue Theorem yields:∫

CR

f(z) dz = 2πi

k∑
j=1

Res [f(z), zj ]

In particular, we find ∫
[−R,R]

f(z) dz +

∫
CR

f(z) dz = 2πi

k∑
j=1

Res [f(z), zj ]

But, [−R,R] has z = x hence dz = dx and f(z) = f(x) for −R ≤ x ≤ R and

∫ R

−R
f(x) dx+

∫
CR

f(z) dz = 2πi
k∑

j=1

Res [f(z), zj ] .

The formula above connects integrals in the real domain to residues and the contour integral along
a half-circle CR. We can say something interesting in general for rational functions.

Suppose f(z) = p(z)
q(z) where deg(q(z)) ≥ deg(p(z)) + 2. Let deg(q(z)) = n and deg(p(z)) = m hence

n−m ≥ 2. Also, assume q(x) ̸= 0 for all x ∈ R so that no1 singular points fall on [−R,R]. In the
homework2, based on an argument from page 131 of [C96], I showed there exists R > 0 for which

q(z) = anz
n + · · ·+ a2z

2 + a1z + ao is bounded below |an|Rn/2 for |z| > R; that is |q(z)| ≥ |an|
2 Rn

for all |z| > R. On the other hand, it is easier to argue that p(z) = bmzm+ · · ·+b1z+bo is bounded
for |z| > R by repeated application of the triangle inequality:

|p(z)| ≤ |bmzm|+ · · ·+ |b1z|+ |bo| ≤ |bm|Rm + · · ·+ |b1|R+ |bo|.

Therefore, if |z| > R as described above,

|f(z)| = |p(z)|
|q(z)|

≤ |bm|Rm + · · ·+ |b1|R+ |bo|
|an|
2 Rn

≤ M

Rn−m

1in §V II.5 we study fractional residues which allows us to treat singularities on the boundary in a natural manner,
but, for now, they are forbidden

2there exists a year where this was Problem 44
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where M is a constant which depends on the coefficients of p(z) and q(z). Applying the ML-
estimate to CR for R > 0 for which the bound applies we obtain:∣∣∣∣∫

CR

f(z) dz

∣∣∣∣ ≤ M(2πR)

Rn−m
=

2Mπ

Rn−m−1

This bound applies for all R beyond some positive value hence we deduce:

lim
R→∞

∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ lim
R→∞

2Mπ

Rn−m−1
= 0 ⇒ lim

R→∞

∫
CR

f(z) dz = 0.

as n−m ≥ 2 implies n−m−1 ≥ 1. Therefore, the boxed formula provides a direct link between the
so-called principal value of the real integral and the sum of the residues over the upper half-plane
of C:

lim
R→∞

∫ R

−R
f(x) dx = 2πi

m∑
j=1

Res [f(z), zj ] .

Sometimes, for explicit examples, it is expected that you show the details for the construction of
M and that you retrace the steps of the general path I sketched above. If I have no interest in that
detail then I will tell you to use the Proposition below:

Proposition 10.2.1. If f(z) is a rational function which has no real-singularities and for which
the denominator is of degree at least two higher than the numerator then

lim
R→∞

∫ R

−R
f(x) dx = 2πi

k∑
j=1

Res [f(z), zj ] .

where z1, . . . , zk are singular points of f(z) for which Im(zj) > 0 for j = 1, . . . , k.

Example 10.2.2. We calculate limR→∞
∫ R
−R

dx
x2+1

by noting the complex extension of the integrand

f(z) = 1
z2+1

satisfies the conditions of Proposition 10.2.1. Thus,

lim
R→∞

∫ R

−R

dx

x2 + 1
= 2πiRes

[
1

z2 + 1
, i

]
=

2πi

2z

∣∣∣∣
z=i

=
2πi

2i
= π.

Thus3
∫ ∞

−∞

dx

x2 + 1
= π.

3so, technically, the double infinite double integral is defined by distinct parameters tending to ∞ and −∞
independent of one another, however, for this integrand there is no difference between

∫ b

a
dx

x2+1
with a → ∞ and

b → −∞ verses a = −b = R tending to ∞. Gamelin starts to discuss this issue in §V II.6
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You can contrast the way I did the previous example with how Gamelin presents the work.

Example 10.2.3. Consider f(z) = 1
z4+1

notice singularities of this function are the fourth roots

of −1; z4 + 1 = 0 implies z ∈ (−1)1/4 = {eiπ/4, ieiπ/4,−eiπ/4,−ieiπ/4}. Only two of these fall in
the upper-half plane. Thus, by Proposition 10.2.1

lim
R→∞

∫ R

−R

dx

x4 + 1
= 2πiRes

[
1

z4 + 1
, eiπ/4

]
+ 2πiRes

[
1

z4 + 1
, ieiπ/4

]
.

=
2πi

4z3

∣∣∣∣
eiπ/4

+
2πi

4z3

∣∣∣∣
ieiπ/4

=
2πi

4ei3π/4
+

2πi

4i3e3iπ/4

=
π

2ei3π/4

[
i+

i

i3

]
=

−π

2ei3π/4
[1− i] =

−π

2ei3π/4

√
2e−iπ/4 =

π√
2
.

where we noted e−iπ/4/ei3π/4 = 1/eiπ = −1 to cancel the −1. It follows that:

∫ ∞

−∞

dx

x4 + 1
=

π√
2
.

Wolfram Alpha reveals the antiderivative for the previous example can be directly calculated:∫
dx

x4 + 1
= (− log(x2−

√
2x+1)+log(x2+

√
2x+1)−2 tan−1(1−

√
2x)+2 tan−1(

√
2x+1))/(4

√
2)+C.

Then to calculate the improper integral you just have to calculate the limit of the expression above
at ±∞ and take the difference. That said, I think I prefer the method which is more complex.

The method used to justify Proposition 10.2.1 applies to non-rational examples as well. The key
question is how to bound, or more generally capture, the integral along the half-circle as R → ∞.
Sometimes the direct complex extension of the real integral is not wise. For example, for a > 0,
when faced with ∫ ∞

−∞

p(x)

q(x)
cos(ax)dx

we would not want to use f(z) = p(z) cos(az)
q(z) since cos(aiy) = cosh(ay) is unbounded. Instead,

we would consider f(z) = p(z)eiaz

q(z) from which we obtain values for both
∫∞
−∞

p(x)
q(x) cos(ax)dx and∫∞

−∞
p(x)
q(x) sin(ax)dx. I will not attempt to derive an analog to Proposition 10.2.1. Instead, I consider

the example presented by Gamelin.
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Example 10.2.4. Consider f(z) = eiaz

z2+1
. Notice f has simple poles at z = ±i, the picture of

Example 10.2.2 applies here. By Rule 3,

Res

[
eiaz

z2 + 1
, i

]
=

eiaz

2z

∣∣∣∣
i

=
e−a

2i
.

Let D be the half disk with ∂D = [−R,R] ∪ CR then by Cauchy’s Residue Theorem∫
[−R,R]

eiaz

z2 + 1
dz +

∫
CR

eiaz

z2 + 1
dz =

2πie−a

2i
= πe−a ⋆ .

For CR we have z = Reiθ for 0 ≤ θ ≤ π hence for z ∈ CR with R > 1,

|f(z)| =
∣∣∣∣ eiaz

z2 + 1

∣∣∣∣ = 1

|z2 + 1|
≤ 1

||z|2 − 1|
=

1

R2 − 1

Thus, by ML-estimate,∣∣∣∣∫
CR

eiaz

z2 + 1
dz

∣∣∣∣ ≤ 2πR

1−R2
⇒ lim

R→∞

∫
CR

eiaz

z2 + 1
dz = 0.

Returning to ⋆ we find:

lim
R→∞

∫
[−R,R]

eiax

x2 + 1
dx = πe−a ⇒

∫ ∞

−∞

cos(ax)

x2 + 1
dx+ i

∫ ∞

−∞

sin(ax)

x2 + 1
dx = πe−a.

The real and imaginary parts of the equation above reveal:∫ ∞

−∞

cos(ax)

x2 + 1
dx = πe−a &

∫ ∞

−∞

sin(ax)

x2 + 1
dx = 0.

In §V II.7 we learn about Jordan’s Lemma which provides an estimate which allows for integration
of expressions such as sinx

x .

10.3 Integrals of Trigonometric Functions

The idea of this section is fairly simple once you grasp it:

Given an integral involving sine or cosine find a way to represent it as the formula for
the contour integral around the unit-circle, or some appropriate curve, then use residue
theory to calculate the complex integral hence calculating the given real integral.

Let us discuss the main algebraic identities to begin: if z = eiθ = cos θ + i sin θ then z̄ = e−iθ =
cos θ− i sin θ hence cos θ = 1

2

(
eiθ + e−iθ

)
and sin θ = 1

2i

(
eiθ − e−iθ

)
. Of course, we’ve known these

from earlier in the course. But, we also can see these as:

cos θ =
1

2

(
z +

1

z

)
& sin θ =

1

2i

(
z − 1

z

)
moreover, dz = ieiθdθ hence dθ = dz/iz. It should be emphasized, the formulas above hold for the
unit-circle.
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Consider a complex-valued rational function R(z) with singular points z1, z2, . . . zk for which |zj | ≠ 0
for all j = 1, 2, . . . , k. Then, by Cauchy’s Residue Theorem∫

|z|=1
R(z) dz = 2πi

∑
|zj |<1

Res (R(z), zj)

In particular, as z = eiθ parametrizes |z| = 1 for 0 ≤ θ ≤ 2π,∫ 2π

0
R(cos θ + i sin θ) ieiθdθ = 2πi

∑
|zj |<1

Res (R(z), zj)

In examples, we often begin with
∫ 2π
0 R(cos θ+i sin θ) ieiθdθ and work our way back to

∫
|z|=1R(z) dz.

Example 10.3.1. ∫ 2π

0

dθ

5 + 4 sin θ
=

∫
|z|=1

dz/iz

5− 4 · i
2

(
z − 1

z

)
=

∫
|z|=1

1

i
· dz

5z − 2i (z2 − 1)

=

∫
|z|=1

dz

2z2 − 2 + 5iz

Notice 2z2+5iz− 2 = (2z+ i)(z+2i) = 2(z+ i/2)(z+2i) is zero for zo = −i/2 or z1 = −2i. Only
zo falls inside |z| = 1 therefore, by Cauchy’s Residue Theorem,∫ 2π

0

dθ

5 + 4 sin θ
=

∫
|z|=1

dz

2z2 + 5iz − 2

= 2πiRes

[
1

2z2 + 5iz − 2
,−i/2

]
= (2πi)

1

4z + 5i

∣∣∣∣
z=−i/2

=
2πi

−2i+ 5i

=
2π

3
.

The example below is approximately borrowed from Remmert page 397 [R91].

Example 10.3.2. Suppose p ∈ C with |p| ≠ 1. We wish to calculate:∫ 2π

0

1

1− 2p cos θ + p2
dθ.

Converting the integrand and measure to |z| = 1 yields:

1

1− p
(
z + 1

z

)
+ p2

dz

iz
=

[
1

z − pz2 − p+ p2z

]
dz

i
=

[
1

(z − p)(1− pz)

]
dz

i
.
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Hence, if |p| < 1 then z = p is in |z| ≤ 1 and it follows 1− pz ̸= 0 for all points z on the unit-circle
|z| = 1. Thus, we have only one singular point as we apply the Residue Theorem:∫ 2π

0

1

1− 2p cos θ + p2
dθ =

∫
|z|=1

[
1

(z − p)(1− pz)

]
dz

i
= 2πRes

[
1

(z − p)(1− pz)
, p

]
By Rule 1,

Res

[
1

(z − p)(1− pz)
, p

]
= lim

z→p
(z − p)

1

(z − p)(1− pz)
=

1

1− p2

and we conclude: if |p| < 1 then∫ 2π

0

1

1− 2p cos θ + p2
dθ =

2π

1− p2
.

Suppose |p| > 1 then z − p ̸= 0 for |z| = 1 and 1− pz = 0 for zo = 1/p for which |zo| = 1/|p| < 1.
Thus the Residue Theorem faces just one singularity within |z| = 1 for the |p| > 1 case:∫ 2π

0

1

1− 2p cos θ + p2
dθ =

∫
|z|=1

[
1

(z − p)(1− pz)

]
dz

i
= 2πRes

[
1

(z − p)(1− pz)
, 1/p

]
By Rule 1,

Res

[
1

(z − p)(1− pz)
, 1/p

]
= lim

z→1/p
(z − 1/p)

1

(z − p)(z − 1/p)(−p)
=

1

(1/p− p)(−p)
=

1

p2 − 1
,

neat. Thus, we conclude, for |p| > 1,∫ 2π

0

1

1− 2p cos θ + p2
dθ =

2π

p2 − 1
.

10.4 Integrands with Branch Points

Cauchy’s Residue Theorem directly applies to functions with isolated singularities. If we wish to
study functions with branch cuts then some additional ingenuity is required. In particular, the
keyhole contour is often useful. For example, the following template could be used for branch
cuts along the positive real, negative imaginary and negative real axis.
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Example 10.4.1. Consider

∫ ∞

0

xa

(1 + x)2
dx where a ̸= 0 and −1 < a < 1. To capture this

integral we study f(z) = za

(1+z)2
where za = |z|aexp(aLog0(z)) is the branch of za which has a jump-

discontinuity along θ = 0 which is also at θ = 2π. Let ΓR be the outside circle in the contour
below. Let Γϵ be the small circle encircling z = 0. Furthermore, let L+ = [ϵ + iδ, R + iδ] and
L− = [R − iδ, ϵ − iδ] where δ is a small positive constant4 for which δ → 0 and ϵ → 0. Notice, in
the limits ϵ → 0 and R → ∞, we have L+ → [0,∞] and L− → [∞, 0]

The singularity zo = −1 falls within the contour for R > 1 and ϵ < 1. By Rule 2 for residues,

Res

(
za

(1 + z)2
,−1

)
= lim

z→−1

d

dz
[za] = lim

z→−1

(
aza−1

)
= a(−1)a−1 = −a(eiπ)a = −aeiπa.

Cauchy’s Residue Theorem applied to the contour thus yields:∫
ΓR

f(z) dz +

∫
L−

f(z) dz +

∫
Γϵ

f(z) dz +

∫
L+

f(z) dz = −2πiaeiπa

If |z| = R then notice: ∣∣∣∣ za

(1 + z)2

∣∣∣∣ ≤ Ra

(R− 1)2
.

Also, if |z| = ϵ then ∣∣∣∣ za

(1 + z)2

∣∣∣∣ ≤ ϵa

(1− ϵ)2
.

In the limits ϵ → 0 and R → ∞ we find by the ML-estimate∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ ≤ Ra

(R− 1)2
(2πR) =

2πRa−1

(1− 1/R)2
→ 0

as −1 < a < 1 implies a− 1 < 0. Likewise,as a+ 1 > 0 we find:∣∣∣∣∫
Γϵ

f(z) dz

∣∣∣∣ ≤ ϵa

(1− ϵ)2
(2πϵ) =

2πϵa+1

(1− ϵ)2
→ 0.

We now turn to unravel the integrals along L±. For z ∈ L+ we have Arg0(z) = 0 whereas z ∈ L−
we have Arg0(z) = 2π. In the limit ϵ → 0 and R → ∞ we have:∫

L+

za

(1 + z)2
dz =

∫ ∞

0

xa

(1 + x)2
dx & −

∫
L−

za

(1 + z)2
dz =

∫ ∞

0

xae2πia

(1 + x)2
dx

4we choose δ as to connect L± and the inner and outer circles
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where the phase factor on L− arises from the definition of za by the Arg0(z) branch of the argument.
Bringing it all together,∫ ∞

0

xa

(1 + x)2
dx− e2πia

∫ ∞

0

xa

(1 + x)2
dx = −2πiaeiπa.

Solving for the integral of interest yields:∫ ∞

0

xa

(1 + x)2
dx =

−2πiaeiπa

1− e2πia
=

πa
1
2i (e

iπa − e−iπa)
=

πa

sin(πa)

At this point, Gamein remarks that the function g(w) =
∫∞
0

xwdx
(1+x)2

is analytic on the strip

−1 < Re(w) < 1 as is the function πw
sinπw thus by the identity princple we find the integral

identity holds for −1 < Re(w) < 1.

The following example appears as a homework problem on page 227 of [C96].

Example 10.4.2. Show that

∫ ∞

0

dx√
x(x2 + 1)

=
π√
2
.

Let f(z) =
z−1/2

z2 + 1
where the root-function has a branch cut along [0,∞]. We use the keyhole

contour introduced in the previous example. Notice z = ±i are simple poles of f(z). We consider
z−1/2 = |z|−1/2exp

(−1
2 Log0(z)

)
. In other words, if z = re−θ for 0 < θ ≤ 2π then z−1/2 = 1√

reiθ/2
.

Thus, for z = x in L+ we have z−1/2 = 1/
√
x. On the other hand for z = x in L− we have

z−1/2 = −1/
√
x as ei(2π)/2 = eiπ = −1. Notice, z2 + 1 = (z − i)(z + i) and apply Rule 3 to see

Res (f(z), i) =
i−1/2

2i
=

e−iπ/4

2i
& Res (f(z),−i) =

(−i)−1/2

−2i
=

e−3πi/4

−2i

Consequently, assuming5 the integrals along ΓR and Γϵ vanish as R → ∞ and ϵ → 0 we find:

∫ ∞

0

dx√
x(x2 + 1)

−
∫ ∞

0

dx

−
√
x(x2 + 1)

= 2πi

(
e−iπ/4

2i
+

e−3πi/4

−2i

)

Notice −1 = eiπ and eiπe−3πi/4 = eπi/4 hence:

2

∫ ∞

0

dx√
x(x2 + 1)

= 2π

(
e−iπ/4

2
+

eπi/4

2

)
= 2π cosπ/4 ⇒

∫ ∞

0

dx√
x(x2 + 1)

=
π√
2
.

The key to success is care with the details of the branch cut. It is a critical detail. I should mention
that E116 in the handwritten notes is worthy of study. I believe I have assigned a homework
problem of a similar nature. There we consider a rectangular path of integration which tends to
infinity and uncovers and interesting integral. There are also fascinating examples of wedge-shaped
integrations and many other choices I currently have not included in this set of notes.

5I leave these details to the reader, but intuitively it is already clear the antiderivative is something like
√
x at the

origin and 1/
√
x for x → ∞.
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10.5 Fractional Residues

In general when a singularity falls on a proposed path of integration then there is no simple method
of calculation. Generically, you would make a little indentation and then take the limit as the
indentation squeezes down to the point. If that limiting process uniquely produces a value then
that gives the integral along such a path. In the case of a simple pole there is a nice reformulation
of Cauchy’s Residue Theorem.

Theorem 10.5.1. If zo is a simple pole of f and Cϵ is an arc of |z − zo| = ϵ of angle α then

lim
ϵ→0

∫
Cϵ

f(z) dz = αiRes (f(z), zo) .

Proof: since f has a simple pole we have:

f(z) =
A

z − zo
+ g(z)

where, by the definition of residue, A = Res (f(z), zo). The arc |z−zo| = ϵ of angle α is parametrized
by z = zo + ϵeiθ for θo ≤ θ ≤ θo + α. As the arc is a bounded subset and g is analytic on the arc it
follows there exists M > 0 for which |g(z)| < M for |z − zo| = ϵ. Furthermore, the integral of the
singular part is calculated:∫

Cϵ

Adz

z − zo
=

∫ θo+α

θo

Aiϵeiθdθ

ϵeiθ
= iA

∫ θo+α

θo

dθ = iαA. □

Of course this result is nicely consistent with the usual residue theorem if we consider α = 2π and
think about the deformation theorem shrinking a circular path to a point.

Example 10.5.2. Let γ = CR ∪ [−R,−1− ϵ] ∪ Cϵ ∪ [−1 + ϵ, R]. This is a half-circular path with
an indentation around zo = −1. Here we assume Cϵ is a half-circle of radius ϵ above the real axis.

The aperature is π hence the fractional residue theorem yields:

lim
ϵ→0

∫
Cϵ

dz

(z + 1)(z − i)
= −πiRes

(
1

(z + 1)(z − i)
,−1

)
= −πi

(
1

−1− i

)
=

π(1 + i)

2

For |z| = R > 1 notice
∣∣∣ 1
(z+1)(z−i)

∣∣∣ ≤ ∣∣∣ 1
||z|−|1||·||z|−|i||

∣∣∣ = 1
(R−1)2

= M . Thus, |
∫
CR

dz
(z+1)(z−i) | ≤

πR
(R−1)2

→ 0 as R → ∞. Cauchy’s Residue Theorem applied to the region bounded by γ yields:∫
γ

dz

(z + 1)(z − i)
= 2πiRes

(
1

(z + 1)(z − i)
,−i

)
=

2πi

−i+ 1
= π(i− 1)

Hence, in the limit R → ∞ and ϵ → 0 we find:

P.V.

∫ ∞

−∞

dx

(x+ 1)(x− i)
+

π(1 + i)

2
= π(i− 1)
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Therefore,

P.V.

∫ ∞

−∞

dx

(x+ 1)(x− i)
=

π

2
(i− 3).

The quantity above is called the principle value for two reasons: first: it approaches x = ∞ and
x = −∞ symmetrically, second: it approaches the improper point x = −1 from the left and right at
the same rate. The integral (which is defined in terms of asymmetric limits) itself is divergent in
this case. We define the term principal value in the next section.

Example 10.5.3. You may recall: Let γ(t) = 2
√
3eit for π/2 ≤ t ≤ 3π/2. Calculate

∫
γ

dz

z + 2
. A

wandering math ninja stumble across your path an mutters tan(π/3) =
√
3.

Residue Calculus Solution: if you imagine deforming the given arc from z = 2i
√
3 to z = −2i

√
3

into curves which begin and end along the rays connecting z = −2 to z = ±2i
√
3 then eventually

we reach tiny arcs Cϵ centered about z = −2 each subtending 4π/3 of arc.

Now, there must be some reason that this deformation leaves the integral unchanged since the
fractional residue theorem applied to the limiting case of the small circles yields:

lim
ϵ→0

∫
Cϵ

dz

z + 2
=

4π

3
iRes

(
1

z + 2
,−2

)
=

4πi

3
.

Of course, direct calculation by the complex FTC yields the same:∫
γ

dz

z + 2
= Log0(z + 2)

∣∣∣∣−2i
√
3

2i
√
3

= Log0(−2i
√
3 + 2)− Log0(2i

√
3 + 2)

= Log0(2(1− i
√
3))− Log0(2(1 + i

√
3))

= ln |2(1− i
√
3|+ iArg0(4 exp(5πi/3))− ln |2(1 + i

√
3|+ iArg0(4 exp(πi/3))

=
5πi

3
− πi

3

=
4πi

3

It must be that the integral along the line-segments is either zero or cancels. Notice z = −2+ t(2±
2i
√
3) for ϵ ≤ t ≤ 1 parametrizes the rays (−2,±2i

√
3] in the limit ϵ → 0 and dz = (2 ± 2i

√
3)dt

thus ∫
(−2,±2i

√
3]

dz

z + 2
=

∫ 1

ϵ

dt

t
= ln 1− ln ϵ = − ln ϵ.

However, the direction of the rays differs to complete the path in a consistent CCW direction. We
go from −2 to 2i

√
3, but, the lower ray goes from 2i

√
3 to −2. Apparently these infinities cancel

(gulp). I think the idea of this example is a dangerous game.
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I covered the example on page 210 of Gamelin in lecture. There we derive the identity:∫ ∞

0

ln(x)

x2 − 1
dx =

π2

4
.

by examining a half-circular path with indentations about z = 0 and z = −1.

10.6 Principal Values

If
∫∞
−∞ f(x) dx diverges or

∫ b
a f(x)dx diverges due to a singularity for f(x) at c ∈ [a, b] then it

may still be the case that the corresponding principal values exist. When the integrals converge
absolutely then the principal value agrees with the integral. These have mathematical application
as Gamelin describes briefly at the conclusion of the section.

Definition 10.6.1. We define P.V.

∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R
f(x) dx. Likewise, if f is continuous

on [a, c) and (c, b] then we define

P.V.

∫ b

a
f(x) dx = lim

ϵ→0+

(∫ c−ϵ

a
f(x) dx+

∫ b

c+ϵ
f(x) dx

)
In retrospect, this section is out of place. We would do better to introduce the concept of principal
value towards the beginning. For example, in [C96] this is put forth at the outset. Thus I am
inspired to present the following example stolen from [C96].

Example 10.6.2. We wish to calculate
∫∞
0

x2

x6+1
dx. The integral can be argued to exist by compar-

ison with other convergent integrals and, as the integrand is non-negative, it converges absolutely.
Thus we may find P.V.

∫∞
0

x2

x6+1
dx to calculate

∫∞
−∞

x2

x6+1
dx. The integrand is even thus:∫ ∞

0

x2

x6 + 1
dx =

1

2

∫ ∞

−∞

x2

x6 + 1
dx =

1

2
P.V.

∫ ∞

−∞

x2

x6 + 1
dx.

Observe f(z) = z2

z6+1
has singularities at solutions of z6 + 1 = 0. In particular, z ∈ (−1)1/6.

(−1)1/6 = eiπ/6{1, e2πi/6, e4πi/6,−1,−e2πi/6,−e4πi/6}
= {eiπ/6, e3πi/6, e5πi/6,−eiπ/6,−e3πi/6,−e5πi/6}
= {eiπ/6, i, e5πi/6,−eiπ/6,−i,−e5πi/6}

We use the half-circle path ∂D = CR ∪ [−R,R] as illustrated below:



10.7. JORDAN’S LEMMA 161

Application of Cauchy’s residue theorem requires we calculate the residue of z2

1+z6
at w = eiπ/6, i

and e5πi/6. In each case we have a simple pole and Rule 3 applies:

Res

(
z2

1 + z6
, w

)
=

w2

6w5
.

Hence,

Res

(
z2

1 + z6
, eiπ/6

)
=

(eiπ/6)2

6(eiπ/6)5
=

1

6e3iπ/6
=

1

6i
,

and

Res

(
z2

1 + z6
, i

)
=

(i)2

6(i)5
= − 1

6i
,

and

Res

(
z2

1 + z6
, e5iπ/6

)
=

(e5iπ/6)2

6(e5iπ/6)5
=

1

6e15iπ/6
=

1

6i
.

Therefore, ∫
∂D

z2

z6 + 1
dz = 2πi

(
1

6i
− 1

6i
+

1

6i

)
=

π

3
.

Notice if |z| = R > 1 then
∣∣∣ z2

z6+1

∣∣∣ ≤ R2

R6−1
hence the ML-estimate provides:

∣∣∣∣∫
CR

z2

z6 + 1
dz

∣∣∣∣ ≤ R2

R6 − 1
(πR) → 0

as R → ∞. If z ∈ [−R,R] then z = x for −R ≤ x ≤ R and dz = dx hence∫
[−R,R]

z2

z6 + 1
dz =

∫ R

−R

x2

x6 + 1
dx.

Thus, noting ∂D = CR ∪ [−R,R] we have:

lim
R→∞

∫ R

−R

x2

x6 + 1
dx =

π

3
⇒ P.V.

∫ ∞

−∞

x2

x6 + 1
dx =

π

3
⇒

∫ ∞

0

x2

x6 + 1
dx =

π

6
.

10.7 Jordan’s Lemma

Lemma 10.7.1. Jordan’s Lemma: if CR is the semi-circular contour z(θ) = Reiθ for 0 ≤ θ ≤ π,

in the upper half plane, then

∫
CR

|eiz||dz| < π.

Proof: note |eiz| = exp(Re(iz)) = exp(Re(iReiθ)) = e−R sin θ and |dz| = |iReiθdθ| = Rdθ hence
the Lemma is equivalent to the claim: ∫ π

0
e−R sin θ dθ <

π

R
.

By definition, a concave down function has a graph that resides above its secant line. Notice
y = sin θ has y′′ = − sin θ < 0 for 0 ≤ θ ≤ π/2. The secant line from (0, 0) to (π/2, 1) is y = 2θ/π.
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Therefore, it is geometrically (and analytically) evident that sin θ ≥ 2θ/π. Consequently, following
Gamelin page 216, ∫ π

0
e−R sin θ dθ = 2

∫ π/2

0
e−R sin θ dθ ≤ 2

∫ π/2

0
e−2Rθ/π dθ

make a t = 2Rθ/π substitution to find:∫ π

0
e−R sin θ dθ <

π

R

∫ 1/R

0
e−tdt <

π

R

∫ ∞

0
e−t dt =

π

R
. □

Jordan’s Lemma allows us to treat integrals of rational functions multiplied by sine or cosine where
the rational function has a denominator function with just one higher degree than the numerator.
Previously we needed two degrees higher to make the ML-estimate go through nicely. For instance,
see Example 10.2.4.

Example 10.7.2. To show
∫∞
0

sinx
x dx = π

2 we calculate the integral of f(z) = eiz

z along an indented
semi-circular path pictured below:

Notice, for |z| = R we have:∣∣∣∣∫
CR

eiz

z
dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣eizz
∣∣∣∣ |dz| = 1

R

∫
CR

∣∣eiz∣∣ |dz| < π

R

where in the last step we used Jordan’s Lemma. Thus as R → ∞ we see the integral of f(z) along
CR vanishes. Suppose R → ∞ and ϵ → 0 then Cauchy’s residue and fractional residue theorems
combine to yield:

lim
R→∞

∫ R

−R

eix

x
dx− πiRes

(
eiz

z
, 0

)
+ lim

R→∞

∫
CR

eiz

z
dz = 0

hence, noting the residue is 1,

lim
R→∞

∫ R

−R

eix

x
dx = iπ ⇒ lim

R→∞

∫ R

−R

(
cosx

x
+ i

sinx

x

)
dx = iπ.

Note, cosx
x is an odd function hence the principal value of that term vanishes. Thus,

lim
R→∞

i

∫ R

−R

sinx

x
dx = iπ ⇒ P.V.

∫ ∞

−∞

sinx

x
dx = π ⇒

∫ ∞

0

sinx

x
dx =

π

2
.
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Example 10.7.3. We can calculate

∫ ∞

0

x sin(2x)

x2 + 3
by studying the integral of f(z) =

ze2iz

z2 + 3
around

the curve γ = CR ∪ [−R,R] where CR is the half-circular path in the CCW-direction. Notice
z = ±i

√
3 are simple poles of f , but, only z = i

√
3 falls within γ. Notice, by Rule 3,

Res

(
ze2iz

z2 + 3
, i
√
3

)
=

i
√
3e−2

√
3

2i
√
3

=
e−2

√
3

2
.

Next, we consider |z| = R, in particular notice:∣∣∣∣∫
CR

ze2iz

z2 + 3
dz

∣∣∣∣ ≤ ∫
CR

∣∣∣∣ ze2izz2 + 3

∣∣∣∣ |dz| ≤ R

R2 − 3

∫
CR

∣∣e2iz∣∣ |dz| ≤ R

R2 − 3

∫
CR

∣∣eiz∣∣ ∣∣eiz∣∣ |dz|
Notice, Jordan’s Lemma gives∫

CR

∣∣eiz∣∣ |dz| < π = π · 1

πR

∫
CR

|dz| =
∫
CR

1

R
|dz|

hence,

R

R2 − 3

∫
CR

∣∣eiz∣∣ ∣∣eiz∣∣ |dz| ≤ R

R2 − 3

∫
CR

∣∣eiz∣∣ 1
R
|dz| = 1

R2 − 3

∫
CR

∣∣eiz∣∣ |dz| < π2

R2 − 3
.

Clearly as R → ∞ the integral of f(z) along CR vanishes. We find the integral along [−R,R] where
z = x and dz = dx must match the product of 2πi and the residue by Cauchy’s residue theorem

lim
R→∞

∫ R

−R

xe2ix

x2 + 3
dx = (2πi)

e−2
√
3

2
= πie−2

√
3.

Of course, e2ix = cos(2x) + i sin(2x) and the integral of x cos(2x)
x2+3

vanishes as it is an odd function.
Cancelling the factor of i we derive:

lim
R→∞

∫ R

−R

x sin(2x)

x2 + 3
dx = πe−2

√
3 ⇒

∫ ∞

0

x sin(2x)

x2 + 3
dx =

π

2
e−2

√
3

We have shown the solution of Problem 4 on page 214 of [C96]. The reader will find more useful
practice problems there as is often the case.

10.8 Exterior Domains

Exterior domains are interesting. Basically this is Cauchy’s residue theorem turned inside out.
Interestingly a term appears to account for the residue at ∞. We decided to move on to the next
chapter this semester. If you are interested in further reading on this topic, you might look at: this
MSE exchange or this MSE exchange or this nice Wikipedia example or this lecture from Michael
VanValkenburgh at UC Berkeley. Enjoy.

10.9 Application of Residue Theory to Summation of Series

http://math.stackexchange.com/q/385598/36530
http://math.stackexchange.com/q/385598/36530
http://math.stackexchange.com/q/428432/36530
http://en.wikipedia.org/wiki/Methods_of_contour_integration#Example_.28VI.29_.E2.80.93_logarithms_and_the_residue_at_infinity
http://math.berkeley.edu/~mjv/Lecture38.pdf
http://math.berkeley.edu/~mjv/Lecture38.pdf
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Chapter XI

The Logarithmic Integral

We just cover the basic part of Gamelin’s exposition in this chapter. It is interesting that he pro-
vides a proof of the Jordan curve theorem in the smooth case. In addition, there is a nice couple
pages on simply connected and equivalent conditions in view of complex analysis. All of these are
interesting, but our interests take us elsewhere this semester.

The argument principle is yet another interesting application of the residue calculus. In short,
it allows us to count the number of zeros and poles of a given complex function in terms of the
logarithmic integral of the function. Then, Rouché’s Theorem provides a technique for counting
zeros of a given function which has been extended by a small perturbation. Both of these sections
give us tools to analyze zeros of functions in surprising new ways.

11.1 The Argument Principle

Let us begin by defining the main tool for our analysis in this section:

Definition 11.1.1. Suppose f is analytic on a domain D. For a curve γ in D such that f(z) ̸= 0
on γ we say:

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ
d log f(z)

is the logarithmic integral of f(z) along γ.

Essentially, the logarithmic integral measures the change of log f(z) along γ.

Example 11.1.2. Consider f(z) = (z − zo)
n where n ∈ Z. Let γ(z) = zo +Reiθ for 0 ≤ θ ≤ 2πk.

Calculate,
f ′(z)

f(z)
=

n(z − zo)
n−1

(z − zo)n
=

n

z − zo

thus,
1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ

ndz

z − zo
=

n

2πi

∫ 2πk

0

Rieiθdθ

Reiθ
=

n

2π

∫ 2πk

0
dθ = nk.

The number k ∈ Z is the winding number of the curve and n is either (n > 0) the number of
zeros or (n < 0) −n is the number of poles inside γ. In the case n = 0 then there are neither
zeros nor poles inside γ. Our counting here is that a pole of order 5 counts as 5 poles and a zero
repeated counts as two zeros etc..
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The example above generalizes to the theorem below:

Theorem 11.1.3. argument principle I: Let D be a bounded domain with a piecewise smooth
boundary ∂D, and let f be a meromorphic function on D that extends to be analytic on ∂D, such
that f(z) ̸= 0 on ∂D. Then

1

2πi

∫
∂D

f ′(z)

f(z)
dz = N0 −N∞,

where N0 is the number of zeros of f(z) in D and N∞ is the number of poles of f(z) in D, counting
multiplicities.

Proof: Let zo be a zero of order N for f(z) then f(z) = (z− zo)
Nh(z) where h(zo) ̸= 0. Calculate:

f ′(z)

f(z)
=

N(z − zo)
N−1h(z) + (z − zo)

Nh′(z)

(z − zo)Nh(z)

=
N

z − zo
+

h′(z)

h(z)

likewise, if zo is a pole of order N then f(z) =
h(z)

(z − zo)N
= (z − zo)

−Nh(z) hence

f ′(z)

f(z)
=

−N(z − zo)
−N−1h(z) + (z − zo)

−Nh′(z)

(z − zo)−Nh(z)

=
−N

z − zo
+

h′(z)

h(z)

Thus,

Res

(
f ′(z)

f(z)
, zo

)
= ±N

where (+) is for a zero of order N and (−) is for a pole of order N . Let z1, . . . , zj be the zeros
and poles of f , which are finite in number as we assumed f was meromorphic. Cauchy’s residue
theorem yields:∫

∂D

f ′(z)

f(z)
dz = 2πi

j∑
k=1

Res

(
f ′(z)

f(z)
, zo

)
= 2πi

j∑
k=1

Nk = 2πi(N0 −N∞). □

To better understand the theorem is it useful to break down the logarithmic integral. The calcu-
lations below are a shorthand for the local selection of a branch of the logarithm

log(f(z)) = ln |f(z)|+ i arg(f(z)),

hence
d log(f(z)) = d ln |f(z)|+ id arg(f(z))

for a curve with f(z) ̸= 0 along the curve it is clear that ln|f(z)| is well-defined along the curve
and if z : [a, b] → γ then ∫

γ
d ln |f(z)| = ln |f(b)| − ln |f(a)|.

If the curve γ is closed then f(a) = f(b) and clearly∫
γ
d ln |f(z)| = 0.
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However, the argument cannot be defined on an entire circle because we must face the 2π-jump
somewhere. The logarithmic integral does not measure the argument of γ directly, rather, the
arguments of the image of γ under f :∫

γ
d arg(f(z)) = arg(f(γ(b)))− arg(f(γ(a))).

For a piecewise smooth curve we simply repeat this calculation along each piece and obtain the
net-change in the argument of f as we trace out the curve.

Theorem 11.1.4. argument principle II: Let D be a bounded domain with a piecewise smooth
boundary ∂D, and let f be a meromorphic function on D that extends to be analytic on ∂D, such
that f(z) ̸= 0 on ∂D. Then the increase in the argument of f(z) around the boundary of D is 2π
times the number of zeros minus the number of poles in D,∫

∂D
d arg(f(z)) = 2π(N0 −N∞).

We have shown this is reasonable by our study of d log(f(z)) = d ln |f(z)|+ id arg(f(z)). Note,

d

dz
log(f(z)) =

f ′(z)

f(z)
⇒ d log(f(z)) =

f ′(z)

f(z)
dz.

Thus the Theorem 11.1.4 is a just a reformulation of Theorem 11.1.3.

Gamelin’s example on page 227-228 is fascinating. I will provide a less sophisticated example of
the theorem above in action.

Example 11.1.5. Consider f(z) = z3 + 1. Let γ(t) = zo + Reit for R > 0 and 0 ≤ t ≤ 2π. Thus
[γ] is |z − zo| = R given the positive orientation. If R = 2 and zo = 0 then

f(γ(t)) = 8e3it + 1

The points traced out by f(γ(t)) above cover a circle centered at 1 with radius 8 three times. It
follows the argument of f(z) has increased by 6π along γ thus revealing N0 −N∞ = 3 and as f is
entire we know N∞ = 0 hence N0 = 3. Of course, this is not surprising, we can solve z3 + 1 = 0
to obtain z ∈ (−1)1/3. All of these zeros fall within the circle |z| = 2.

Consider R = 1 and zo = −1. Then γ(t) = −1 + eit hence

f(γ(t)) =
(
eit − 1

)3
+ 1 = e3it − 3e2it + 3eit − 1 + 1

If we plot the path above in the complex plane we find:

Which shows f(γ(t)) increases its argument by 2π hence just one zero falls within [γ] in this case.
I used Geogebra to create the image above. Notice the slider allows you to animate the path which
helps as we study the dynamics of the argument for examples such as this. To plot, as far as I
currently know, you’ll need to find Re(γ(t)) and Im(γ(t)) then its pretty straightforward.

http://www.geogebra.org/
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11.2 Rouché’s Theorem

This is certainly one of my top ten favorite theorems:

Theorem 11.2.1. Rouché’s Theorem: Let D be a bounded domain with a piecewise smooth
boundary ∂D. Let f and h be analytic on D ∪ ∂D. If |h(z)| < |f(z)| for z ∈ ∂D, then f(z) and
f(z) + h(z) have the same number of zeros in D, counting multiplicities.

Proof: by assumption |h(z)| < |f(z)| we cannot have a zero of f on the boundary of D hence
f(z) ̸= 0 for z ∈ ∂D. Moreover, it follows f(z) + h(z) ̸= 0 on ∂D. Observe, for z ∈ ∂D,

f(z) + h(z) = f(z)

[
1 +

h(z)

f(z)

]
,

We are given |h(z)| < |f(z)| thus
∣∣∣h(z)f(z)

∣∣∣ < 1 and we find Re
(
1 + h(z)

f(z)

)
> 0. Thus all the values of

1 + h(z)
f(z) on ∂D fall into a half plane which permits a single-valued argument function throughout

hence any closed curve gives no gain in argument from 1 + h(z)
f(z) . Moreover,

arg (f(z) + h(z)) = arg (f(z)) + arg

[
1 +

h(z)

f(z)

]
hence the change in arg (f(z) + h(z)) is matched by the change in arg (f(z)) and by Theorem 11.1.4,
and the observation that there are no poles by assumption, we conclude the number of zeros for f
and f + h are the same counting multiplicities. □

Once you understand the picture below it offers a convincing reason to believe:

The red curve we can think of as the image of f(z) for z ∈ ∂D. Note, ∂D is not pictured. Con-
tinuing, the green curve is a perturbation or deformation of the red curve by the blue curve which
is the graph of h(z) for z ∈ ∂D. In order for f(z) + h(z) = 0 we need for f(z) to be cancelled by
h(z). But, that is clearly impossible given the geometry.

Often the following story is offered: suppose you walk a dog on a path which is between R1 and
R2 feet from a pole. If your leash is less than R1 feet then there is no way the dog can get caught
on the pole. The function h(z) is like the leash, the path which doesn’t cross the origin is the red
curve and the green path is formed by the dog wandering about the path while being restricted by
the leash.
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Example 11.2.2. Find the number of zeros for p(z) = z11+12z7−3z2+z+2 within the unit circle.
Let f(z) = 12z7 and h(z) = z11 − 3z2 + z+2 observe for |z| = 1 we have |h(z)| ≤ 1+ 3+ 1+ 2 = 7
and |f(z)| = 12|z|7 = 12 hence |h(z)| ≤ f(z) for all z with |z| = 1. Observe f(z) = 12z7 has a zero
of multiplicity 7 at z = 0 hence by Rouché’s Theorem p(z) = f(z)+h(z) = z11+12z7− 3z2+ z+2
also has seven zeros within the unit-circle.

Rouché’s Theorem also has great application beyond polynomial problems:

Example 11.2.3. Prove that the equation z+3+2ez = 0 has precisely one solution in the left-half-
plane. The idea here is to view f(z) = z + 3 as being perturbed by h(z) = 2ez. Clearly f(−3) = 0
hence if we can find a curve γ which bounds Re(z) < 0 and for which |h(γ(t))| ≤ |f(γ(t))| for all
t ∈ dom(γ) then Rouché’s Theorem will provide the conclusion we desire.

Therefore, consider γ = CR ∪ [−iR, iR] where CR has z = Reit for π/2 ≤ t ≤ 3π/2.

Consider z ∈ [−iR, iR] then z = iy for −R ≤ y ≤ R observe:

|f(z)| = |iy + 3| =
√
9 + y2 & |h(z)| = |2eiy| = 2

thus |h(z)| < |f(z)| for all z ∈ [−iR, iR]. Next, suppose z = x + iy ∈ CR hence −R ≤ x ≤ 0 and
−R ≤ y ≤ R with x2 + y2 = R2. In particular, assume R > 5. Note:

|f(z)| = |x+ iy + 3| ⇒ R− 3 ≤ |f(z)| ≤
√

9 +R2.

the claim above is easy to see geometrically as |z + 3| is simply the distance from z to −3 which
is smallest when y = 0 and largest when x = 0. Furthermore, as −R ≤ x ≤ 0 and ex is a strictly
increasing function,

|h(z)| =
∣∣2exeiy∣∣ = 2ex < 2 < R− 3 < |f(z)|

where you now hopefully appreciate why we assumed R > 5. Consequently |h(z)| ≤ |f(z)| for all
z ∈ CR with R > 5. We find by Rouché’s Theorem f(z) and f(z)+h(z) = z+3+2ez has only one
zero in γ for R > 5. Thus, suppose R → ∞ and observe γ serves as the boundary of Re(z) < 0
and so the equation z + 3 + 2ez = 0 has just one solution in the left-half plane.

Notice, Rouché’s Theorem does not tell us what the solution of z + 3+ 2ez = 0 with Re(z) < 0 is.
The theorem merely tells us that the solution uniquely exists.

Example 11.2.4. Consider p(z) = anz
n+an−1z

n−1+ · · ·+a1z+ao where an ̸= 0. Let f(z) = anz
n

and h(z) = an−1z
n−1 + · · · + a1z + ao then p(z) = f(z) + h(z). Moreover, if we choose R > 0

sufficiently large then |h(z)| ≤ |an−1|Rn−1 + · · ·+ |a1|R+ |ao| < |an|Rn = |f(z)| for |z| = R hence
Rouché’s Theorem tells us that there are n-zeros for p(z) inside |z| = R as it is clear that z = 0 is
a zero of multiplicity n for f(z) = anz

n. Thus every p(z) ∈ C[z] has n-zeros, counting multiplicity,
on the complex plane.

The proof of the Fundamental Theorem of Algebra above is nicely direct in contrast to other proofs
by contradiction we saw in previous parts of this course.
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Chapter 12

Conformal Mapping

12.1 Fractional Linear Transformations

12.2 the conformal mapping technique
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