Chapter 1

complex numbers

1.1 foundations of complex numbers

Let’s begin with the definition of complex numbers due to Gauss. We assume that the real numbers
exist with all their usual field axioms. Also, we assume that R™ is the set of n-tuples of real numbers.
For example, R? = {(z1, 2, 73) | z; € R}.

Definition 1.1.1.

We define complex multiplication of points in B* according to the rule:
(z,y) * (0, D) = (xa — yb, b+ ya)

for all (z,y),(a,b) € R: We define the real part of (z,y) by Re(x,y) = z and the
imaginary part of (x,y) by Im{z,y) = y. We define complex addition by the usual
addition of vectors in B®

(z,9) + (a,b) = (z+ a,y +b)

We say z € B? is real iff I'm(2) = 0. Likewise, » € R? is said to be imaginary iff Re(z) = 0.

Notice that # is a binary operation on R?; in other words % : R? x B? — R? is a function.
Of course, there are many other binary operations you can imagine for the plane. What makes
this one so special is that it models all the desired algebraic traits of a complex number. Since
many people are unwilling to cede the existence of mathematical objects merely on the basis of
algebra this construction due to Gauss is nice. It gives us an answer to the question: "what is a
complex number?” The answer is: "you can view them as two dimensional vectors with a special
multiplication”. There are many other answers but that is the one we mosily pursue in these
notes'. At this point you should be saying to yourself, WHAT? How in the world is R? with * the
same as the complex numbers € we needed to solve quadratic equations? Let's work it out.

*complex numbers can also be constructed from 2 x 2 matrices or through field extension theory as you can study

in Math 422 at LU, there are likely other ways to construct complex numbers.
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Proposition 1.1.2.

Let z € R* then z+(1,0) = z and (1,0) * z = z therefore the vector (1 0) is a multiplicative
identity for complex multiplication.

Proof: suppose z = (2,y) € R? then = = (1,0) = (z,9) * (1,0) = (21 — y0,20 + y1) = (z,y).
Likewise, (1,0) =z = {1,0) # {&,y) = (1o — Oy, 1y + Ox) = (z,y) = z. O

Proposition 1.1.3.

The equation (z,0) * {(z,0) = {(—1,0) has solution (0, 1).

Proof: to say that (0, 1) solves the equation means that if we substitute it into the given equation
then the equation holds true. Note then

(0,1) % (0,1) = (0(0) — 1(1),0(1) -+ 1(0)) = (~1,0). LI

In the notation of later sections (—1,0) = 1 and (0,1) = ¢ and we just proved that i* = —1. This
funny vector multiplication gives us a way to build the imaginary number 1.

Theorem 1.1.4. Compler numbers form a field.

Let v,w, z € R? with z = {z,y) then
1. z+w = w + z; addition is commutative.
2. {v+4w)+2z=v+ (w+ 2); addition is associative.
3. 2+ (0,0) = (0,0); additive identity.
4. z +{—=z, —y) = (0,0); additive inverse.
5. zxw = w* 2; multiplication is commutative.
6. (v+w)*z=1v«(w+ z); multiplication is associative.
7. z#(1,0) = z; multiplicative identity.
8. for z # 0 there exists z~! such that z + 271 = (1, 0); additive inverse.

9. v+ (z+w) = v+ z+ v *w,; distributive property.

Proof: each of these is proved by simply writing it out and using the definition of the = multi-
plication. Notice we already proved (7.). I'll prove (8.) and {9.), Some of the others are in vour
homewnrk.
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o

Begin with (9.). Let v = (a,b),z = (z,y) and w = (r,t). Observe by defintion of * and 4+ on R?,

v (x4 w) = (a,h) * [(z,y) + (r, )]
= (a,b) = (x4 ry-+1)
— (a4 ) = by + D aly + ) + bz 1)
= (ax + ar — by — bt,ay + at + bx + br}
= (ax — by, ay + ba} + {ar — bt, at -+ br}
(a,b) = (&,y) + (a,b) = (r.t)

=vH 24w,

I

Therefore {9.) is true for all v,w, z € B2, Notice in the calculation above I used the distributive
fleld axioms for R several times.

To prove (8.) we first must search out the formula for 271, Set it up as an algebra problem. We're
given that z = {2, y) # 0 hence either x # 0 or y # 0. We would like to find =71 = (a, b) such that
(r,9) # (a,b) = (1,0) = (ax — by, xb+ya) = (1,0)

Thus by delinition of vector equality,
ax— by =1 ani b+ ya =10
We'll need to consider several cases.
Case 1: x £ 0 but y = 0 then ar = 1 hence @ = 1/x and so ya = 0 and it follows b = 0 hence
b= 0 and we deduce 27! = (1/2,0).
Case 2: 7 =0 but y 7 0 then —by = 1 hence b = —1/y and so xb =10 and it follows ya = 0 hence

a = {0 and we dednce z7% = (0. ~1/y).
Case 3: x # 0 and ¢ # 0 s0 we can divide by both 2 and y without f{ear,

b+ ya=0= b= —ya/x

ax —by =1 = ar+yiafr=1 = ale"+y)=z= a= prop
22 4yt

Substitute that into b = —ya/z,

—y_ @ ~y

b=— =

oty af 4t

Note that the formulas for cases 1 and 2 are also covered by 3 despite the fact that the derivation
for case 3 is nonsense in those cases, neat. To summarize:

= Py Ayt )

The formula above solves =71+ z = (1,0) for all ¢ € B? such that x? 4+ y* # 0. The proof of (8.)
follows. ]
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Definition 1.1.5.
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of the reciproc

We define division of z by w for z,w € B? where w = 0 to be multiplication by the inverse

al, z/w = zxw™},

Example 1.1.6. .

-(_LL/.R__)_. = (UII)HI

(o,

Rgmmrh : P
\J\]e_ Coon

1)

% (1,3)

= (D/—I) %(1,’3\)

= (a,-1),

(&%Mw’f\'(% SPC’A.LLI.I\.\B ’W\ES l'\o'hs:HOn f_g hot‘(l’}DLL,

learn XD

1.2 complex conjugation

Definition 1.2.1.

I+ 31 — (H-ai)i: -V Rl S B
2 r /2 1= -t

The complex conjugate of (z,y) € R? is denoted (=, y) where we define (z,y) = (z, —y).

The complex conjugate of a vector is the reflection of the vector about the z-axis. Naturally if we
do two such reflections we'll get back to where we started. I don’t suppose that all the properties

listed in the theorem below are that easy to "see”.

Theorem 1.2.2. Properties of conjugation.

Let z,w € R?,

The properties above are easy to verify, I leave it to the reader or the test.

For E:mm?hz) z = (x4) thon F :Lx,-va) ond -:2:"-‘—'(","9) """fo'ﬂ)=2-

oC, Z+wW = -(_X—,‘:’)-E—(LLIE)_ = (¥X4a, Y+b) -;:(x.g.ql._y__b)

= (x%,-v) + (&, ~b)
- [x,}—j + C&.Ib)
= Z +W,

?roo{s b{! [3) wnd (9-) fnre sl\fvx;\o.r,

¢
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Theorem 1.2.3. Properties of conjugation.

Let z € R?,
1. if z = (z,y) then z * % = (2? + 3°, 0).
2. if z = (z,y) then (z,0) = ﬁ(z +Z)

3. if z = (z,y) then (y,0) =

oz —7)

-Proof: Begin with (1.),
247 = () + (=) = (22 + o~y + ) = (o + 2, 0).
Now (2.),
24+Z = (,y) + (v, —y) = 20,0) = :z+Z=(20)*(20).
To see {3.) we subtract,
—z=(x.y)~(x,—y)=(0.2y) = z2-Z=(y,0)*(0,2).
The theorem follows. .

Remark 1.2.4.

I believe at this point we have proved enough properties of R? paired with * to convince you
that we really can construct such a thing as C. From this point onward I will revert to the
standard notation which assumes the things we have just proved in these notes so far. In
short I will omit the * and write (x,0) = » and (0,y) = »i. The fundamental formulas are
(1,0) = Land (0,1) = 4. Thus we find the unit vectors in the Argand plane are precisely the
number one and the imaginary number i. In view of this correspondence we find great logic
in saying the vertical axes in the complex plane E? has unit vector i whereas the z-axes has
unit vector 1. We adopt the notation R? together with = is C.

Let me restate the theorem in less obtuse notation,
Theorem 1.2.5. Properties of conjugatmn
Let z € C,

1. if z = (z,y) then 2% = 2% -+ ¢%.
2. if z = (z,y) then z = }(Z + 2)

._if;z(m,y)thenﬂ%ﬁ-z/_gl Y = (E 2)

If 2 = Re(z) +iIm(z) then He(z) = 3(z + z) and Im(z) i.(z —Z).

W

We can also restate the field axioms with the * omitted. Our custom will be the usual one throught
the remainder of the course, we use jurtaposition to denote multiplication. At this point I have
covered what I am likely to cover from §1&2 of Churhill.
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1.3 modulus and reality

The modulus of a complex number is the length of the corresponding vector in R2.

Definition 1.3.1.

The modulus of 2 € € is denoted |z| where we define |z| = /2.

Notice that item (1.) of Theorem 1.2.5 shows that 2% is a non-negative gquantity therefore the

squareroot will return a real, non-negative, quantity. We also can calculate the distance between
complex numbers via the modulus as follows:

Definition 1.3.2.

Let z,w & C. The distance between z and w is denoted d(z, w) and we define d(z,w) =
|z —wl.

Let’s pause to contemplate the geometrical meaning of a few complex equations.
Example 1.3.3. . -
We mon  use X = -%(24-_2_) and Y = -5'&*(2*'2)
4o  tonvert & hnown car tesian eg(': 1, a ComFLn.)( eAb )
For example, % = Mx + b for mbe IR \-a'\eu;
'i."li"(%"é) = m(§(2+2) + b

!\Jolre, AMals is pru\:wlat»h net o UJL‘!"LUQ "Brmdp\'lm fir
linn in €. Tacead 2 = 2,44V oives paramefric
eq—r"" of lina ‘ﬂ'\rv‘“al\ 2., wih diredien V..., tere leder ...

Example 1.3.4. .

Ciccla |2 - z, | = R (R"‘d"“ R, centered b 7))

Q\\'\Ese_ . \z2—-2|+1Z~2] =R

Zz

Hyperbola = |2~2 |~ |2-2) =R
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Notice that we cannot write inequalities for complex numbers with nonzero imaginary parts. We
have no definition for z < w given arbitrary z,w € C. However, the modulus of a complex number
is a real number so we can write various inequalities. These will be important to limit arguments
in upcoming sections.

Theorem 1.3.5. Properties of the modulus.

Let z,w € C,

[z}g = Re(z)? + Im(z)?

ol

[ s]

. Re(z) < [Re(2)| < [2|

V]

. Im(2) < |Im(z)| < 2]

=

2w} = |zJw]

5. [z =1/l provided 2 # 0. G. lcz| =leiz| &r 'tetf
ong C € \R

Proof: follows from Theorem 1.2.3.
I+tum (l') D" ‘n‘& 1.9.3 So\J-BS -E“é- - XL‘*'LQZ 'c-'ur %":‘-— X’*‘Eu}
where RL[,E) =X  and Lm (2) = se ([t} s proved,

Tioms 22 3 fllew Feom tha M&Mq\) o = ]al va el
avd o ae ® 4T o= lal o lal= Jereer

2l = JRe@) (T2 Retz)] = 12

T [Im (2)] = 12)

\\an Rel2) = [Re(%]l <12 4 Tm(2) 2 (Imiz)l 12|,

Teo  prove (4) jurb  uge propecties of c,or\awaoje/

e (’ZW (zw)

= ZWZW

= EFDWw)
= 121* [w|? = [2w] = 2]wl  Shee |-

Non- tr\e%w(Hve_

S) fllows From (4.) . Assunw ?#o)
22" = | by ed® o ="
\2\(’3\ =l = 4 = |27 = —

(G\ -Co\louu_c -(:rovv\ \C,\ == 40" ‘“:-\'S o~ mb&(c): IC‘ .
mz\aLwLM ab;o(u?ti;v“i‘“—-
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Theorem 1.3.6. Inequalities of the modulus.

Let z,w € C,
L |z +w] < |z + |w|

2. |z +w| > |z| & jw| (s o mflws)

Proof: item (1.) is geometrically obvious. We'll prove it algebraically for the sake of logical
completeness.

EXTUE Z+w)(2+w)

¥

= (Z +W)(z+w)
= ZZ2 4+ ZW A WNWE + WW
12> + ZW+ Wz + \w)?

— . _
tAeN  Can shew ZWA+WZE = a\illW\ .

i

< 12\° + alz|wl+ wi’
= (1z + Ww)®
= + |w) sinca Yhe  gnan e
> (2wl £ =7}t T raref

pe sWRvL, Tn Cun{‘rar'f'/

To Preve (a-)/ C‘*S)z‘-"— c’
|2} = 12 +wW-— W] =% FS & 6.

= [2+w|+ 1=wl

"

1z +wl + 1wl

s zewl 2 12 = wl

[ 4
i
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1.4 polar form of complex numbers

Given a point z = (x,y) = T -+ iy in the complex plane we can find the polar coordinates in the
same way we did in calculus II or III. Recall that x = r cos(?) and y = rsin(#) so

x + iy = rcos(#) + irsin{f) = r(cos(8) -+ ¢ sin(f))

However, we insist that r > 0 in this course and the value for the angle requires some discussion.
The trouble with angles is that one direction geometrically corresponds to infinitely many angles.
This makes the angle a multiply-valued function (a contradiction in terms if you want to be criticall}.
To give a careful account of the ambiguity of choosing the angle we have to invent some notation to
summarize these concerns. This is the reason for "arg” and " Arg”. Be warned 1 am more careful
than Churchill in my use of arg however 1 probably agree with his use of Arg.

Definition 1.4.1.

Let z = (a,y} € €. We define the polar radius of z to be the modulus of z;
r = |z| = v/x? 4+ 3?. The argument of z is the set of values helow:
arg(z) ={f € R | z = r(cos(f) -+ isin(f)}

The principal argument of = is the single value defined bhelow:

Arg(z) =0 € arg(z) such that —n < < 7.

We may also use the notation Arg(z) = ©.

We should probably pause and appreciate that the following set of equations does define the angle
up to an integer multiple of 2x, if z = (x,y) = = + iy then

z = iz| cos(#) y = |z|sin(#).

The set of equations above does not suffer the ambiguity of the tangent.

Tri%‘ol’\bﬁ\.c'{'w\, Rg.mf\\d-ﬂl\ .
~y 14 -

’T‘(g £ we checle

(50 < O Ces® > © both e4°%
| snevo (@)

@ Ln® > o0 Yan® = O for shE d o5 @
tund < 0 . e au‘m“d

ambf i')rta d‘IE

Cos ©< 0 Cs®& > 0O

@ sind<co sinG <0
+on & 20 Tun <0

Remember, @’W o )
rang. (eot ) = Lo, congglein™) = [T, T
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1.4 polar form of complex numbers

Given a point z = (z,y) = z + {y in the complex plane we can find the polar coordinates in the
same way we did in calculus II or IIl. Recall that & = r cos(f) and y = rsin(f) so

x4 iy = rcos(f) + irsin(f) = r(cos(d) + isin(8))

However, we insist that » > 0 in this course and the value for the angle requires some discussion.
The trouble with angles is that one direction geometrically corresponds to infinitely many angles.
This makes the angle a multiply-valued function (a contradiction in terms if you want to be criticall).
To give a careful account of the ambiguity of choosing the angle we have to invent some notation to
summarize these concerns. This is the reason for "arg” and " Arg”. Be warned I am more careful
than Churchill in my use of arg however I probably agree with his use of Arg.

Definition 1.4.1.

Let z = (x,y) € €. We define the polar radius of z to be the modulus of z;
r=|z] = /z? + y*. The argument of z is the set of values below:

arg(z) = {0 e R | 2 = r{cos(f} + isin(#)}
The principal argument of = is the single value defined below:

Arg(z) = 0 € arg{z) such that — 7 <8 < 7.

We may also use the notation Arg(z) = 0.

Example 1.4.2. .

led 2 = \+1  Hew 12Z]1= A170F = {7

\ taney= 7 =1 —=> @ =T or

But, we alse have ©<© <y by

ST

p——

Y

M cgru.i)lﬂ So cletxrlta N‘c& (&) = V.

&f%(%]= {—-ﬂf+ann\n92}

Example 1.4.3. .

Let Z= -3 duwm |Zl=3 ond i\r%(z)zﬂ‘
where as mr%t?\: {Trdr‘arrr\ lne z}
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Example 1.4.2. .

l_e_.k. 72 = b+ 2 Hen ]2] = 1242 ____ﬁ

& = wy, or 8 = G% . 8ot sn g
o i) s B vemave Ay &.mb18 113

1 = 2] = A 14+

II~ Let 2= -| -1
= S — L} = -]
o = ST/ x"ﬁcp‘{"}“) = ﬁ(ﬁj
/D g = N7 sn(EE) = G (%) = -
lu&ou” (nn Sea 'waib O =S5T/ s
—I-.i \-\4\2 C,ol‘f'Etfi' C‘V\.ﬁf(,t ) A C‘*Mrﬁ “ P
O\r%(_z)t {§E+awk) lt & Z]
We contd jurt el e el = o U
ob,e,omc,’rnuﬂg, S?eo\.hl}\? Hawwer‘ Lo Wun.{_ p\n)a Cz)
'l’lwx, bu& deb ? we  ingigh —-T’< Ptrob(%] c_{cmrlua_
P’ﬁrea, ( ]”1)“ “qI‘r
] zAr%CE-J
’(\'\o_ Po\u.( ‘Form weill Soon b( L{Ufiq/l\’»h Ll l%le
\2| elafa(a) L %Ebnercvé.

7z =

wmb;%ﬂl}‘g o¥
LAy (2} _ (ot (Ara(%)) + i st (Rrg (2))

T

CLurr‘th in UPp U"Mﬂf\-g Sechon .

w /o

e
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1.5 complex exponential notation

There are various approaches to this topic. I'll get straight to the point here.

Definition 1.5.1.

Let z = (x,y) € C, we define the complex exponential funection by

€T = e*(cos(y) + isin(y))

where e is the usual exponential function as defined in elementary calculus and sine and
cosine are likewise the standard trigonometric functions defined in elementary trigonometry.

I wanted to emphasize that the definition of the complex exponential has been given purely in terms
of things that you already know from calculus and trig. Notice that an immediate consequence of
this definition is Euler's formula:

Definition 1.5.2.

Let f € B then e = cos{#) + isin(d).

Churchill says this defines the imaginary ezponentiol function?. Then later through a few sections
6 and 23 he eventually arrives at the definition I just gave. I give the definition now so we can
avoid heuristic calculuations. We should pause to appreciate the geometric genius of the formula
above. We prove on the next page that e*™% = e®e?| let’s look at the special case of imaginary
numbers z =10 and w = if:

9 . ig
01%iF < i " R) mulhiplicckion by €
rohates the point by

Gy an LA
Cowniter Llocht wi'ge d!feo‘i'\'on .

*sce page 13 equation (3)
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Theorem 1.5.3.

Let z,w € C then
1. 60 = 1
9. Ez+w — pfpW

3. ()t =¢"

Proof: This is one of my favorite proofs. I need to assume you know the adding angles formulas
for sine and cosine and also the ordinary law of exponents for the exponential function.

(l.) Qo _ eo-&i(fﬂ =6°CC°5(0]+ is:\n(o]‘) = 1 (|+ i(o)) = 1
(_3) | et ‘é— = X+'il.3 and W = 0\.+1:b
e¥eW = 7 e®+t®
— ex(cas‘% +isml&) eq(caxb —f-i‘,ﬂhb)
= exeq( os 9 osh +itshBshb 4 i fchgesb cwa.nhb])

— ex-(—a. (@S“}w,{b - Sh% sinb + i[,g[nva tes b+ o5y Sin bJ)

e**® ( (o5 (a4b) + i5h (24 b))
x+o. + 1 (%*b)

it

(x+i9) + (a+1b)

e}-ﬁ-\/\/.
B) e¥e ¥ = e¥"F by ()
= e c -3 =0 by deb o -3
= 1, s by (+.)
e @) = &7 and (3) Allows.

REMML:'- «ﬂ\z uloh\xa un%&o —?ocm.wt.w;
cos (a+ b)) = co;au_;b-—ﬂhasﬁw[)
s [a+b) = shoacgb + Shb tara
et geriNed Kim ben'c -’W:’aone,me)rr?.
T Ukouufd Ll p(bu-F T twn Show %dm‘
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Theorem 1.5.4.

Let z € C and define (e*)" inductively by (¢*)° = 1 and (e*)" = (e*)*'e* for all n € N..
Likewise define (e*)™ = '(e_z)” -f’qr,a’ﬂ n € N. :

1. (e*)t=e™ foraline Z

2. if z = |z}e!? then (¢*)* = |z| (cos(n@) + zsm('nﬁ)) for n € N.

@ prt:b-)c 'FDr n e N do show @2—}” = en%

tNote Nn=1 helds 4rua She (E&)l = (ez)'qleﬁ :(Ef%)o.é’a—:]féleé

Svppore induchively +hb €F)" =e"? Comcisen
/
N+ n &

(e%) = <‘e%) Qz - [D.g M‘ o’p (2 ewer O'F eE_
= Q_ﬂil (93 b u_(:'n;) i rcchonch g f\xfpc/ﬂtuf.f.
= enEtE by (3) of Th® sz,

e(me}z

Mene Hhe daim helds e fir n+p. the rvhre _
by methomodrod indachin on n e Al ) =e"® Yne [Ny

® Since we defe €F) = €F) £ ne N we
’E:\'\‘wl @ ‘Raum.u_f ffnm @. '\J +¢)
)" =@3)" = " = "7

-

’ 4 n n
To  prove {2.) we need o Formma (21-22) =22, . 1 leaw
m ?fvag' of Xl +o ’df\i Yeader, Given  Jhig :P,ez\mmu NJrf./

L\E IB)“ _ "Zln (eia)n : ‘Dva MM“
= n ilhe) S ()
- e S [ et
= \'731“ (Los ne+ismna) : du{) o7 € or

Cuderle Furmmde .
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Example 1.5.5. Show how to use de Moivre's formula to obtain nontriviel trig. identities

-3 2.0
(™) |
i

(cose +ism9) =

Cos?@ - sin‘@ + z (COS BSh® + Hn @ s 9)

co:z<9—~g.'n2@ g [sina@ = sin ¢9ng7

'/119 E’./"C--_.

cos (30 ) + 15in (28)
= Cos QG + 1S A®

—
———

—

= [cos 30 =
To fad ideather He 70 Jok b (@78) =g

Theorem 1.5.6.

Iz =m e‘gl and z; = rqe? are nonzero then

arg(mzs) = arg(n) + arg(z)

where the sum of the sets is defined by
arg(z1) +arg(zz) = {f1 + 02 | 0, € arg(z;), b2 € arg(za)}

n‘}e +l’\ﬂ)b —2. Z, = (Y_E r Q ) = ﬁrz 81(9‘4- 62)-

Fur%trMDrc Sinu 2 "-—"-'("e‘at = r. (c.os el-l".iS\rnQI) = @‘ = 0&.(6(2.)

ond s“\mnla.rlua e, e oo (2.). (-Hm‘s was vy definifon
we saigd B¢ n.ra(’z'l) 1—F1C z = \2| (CM&-&-IJH\:?))

Hor aco SN
Alse, 8,+8, € ouroé (2,2 2) She 27, = Y (ca_r@,+ea) + g (O+ 9:))
Hhen e = 9|+82_ + ATk o some ke Z

Let O € arca('i‘z)
S\-hu (A h_f\.nw ®|'-L 91 ‘_,f iﬂ ﬂ'\l’% (?..'Zz).

Yhad O, € ooy (2) and O,+2nk & acy (2]

heace @, + (9,_+EHTL1) & &rca(,? +0~r%{2)

S ]j:-i— = mﬂ_.:a—i:?.ﬂ.q—-i—;:a;:\ 'ﬂ\u"— i:\c_kn_r .{1 "‘Y for

Somma Y, € orm () od Vi € M;)(a) . @u'\'/ STh Ceo G & amy )
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The practical meaning of Theorem 1.5.6 is that when we are faced with solving equations such as
e® = e we must be careful to consider a multitude of possible cases. The complex exponential
function is far from one-one.

1.5.1 trigonmetric identities from the imaginary exponential

Now that we have a few of the basics settled let’s do a few interesting calculations. I probably
didn't cover these in lecture.

Example 1.5.7. . )
1

. -i&
Naobe Heh e ° - es © + isin® ond g ' = f @ ~ 15N O

smce S (-8) = 0 & ownd g (~8) = —sE, We
¢ an ochd g snbfract b fnd  Yhebd
16 -i 8
s © = (e +e'°) \

e = = (e - e_zs) j
these o&{ue us Foromdws  For e {eo-eww.lun{d sine g £78
Cofihg fnots. ih +erms o'F Yhe \Mua«ﬂow, axponmdnlal,o e
thir r nie Ssha  we Wnew e*tW o e¥ew applies
to  Ha M\&\b}\nhﬂa Q.X?ﬁf\-w‘-mldo. We  can Yderive ¥
+H'ob . ideb¥er via Fhere Formades,

Example i.5.8. .

I
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by
>
o
D
i
5
-
@/
G
I
2
5’
G}
I
q
%

(o5’ =

-
-~ -

T ooced (exb) = B¢ 30 #3407+ b2 Wk azed p=&'®
+D "ao 'Fﬂrm js‘i-' ‘b a"-‘l’ N\J.
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1.6 complex roots of unity

In this section we examine the meaning of fractional exponent of a complex number. It turns out

e
that we cannot expect a single value. Instead we’ll learn that z» is a set of values. The complex
roots of unity are used to generate the set of values. There is a neat connection between rotations
by # = 2n/n and € and Z,,.

Definition 1.6.1.

Let 2, € C be nonzero. The n-th roots of z, is the set of valites defined below:

v ={zeC| 2" =2z}

Suppose that z, = rpe'’ and z = re'? then the requirement 2" = z, yields

,rneinﬂ — Toeiﬂg
1t follows that ™ = 7, and nf, = # + 2wk for some &k € Z. Therefore, if we denote the positive
n~th root of the real number r, by 7, then » = y/r,. Moreover, we may write the set of
roots as follows:

z;/” = { {/roexp| mi(a’f”k)] |keZ}

For example,
1Y2 = {exp(i2nk/2) | k € Z}
where I identified that § = 0 and r, = 1 since z, = 1. Great, but what is this set 11727 Notice
that
exp(i27k/2) = cos(mk) + isin(wk)
If k € 2Z then k is an even integer and cos(wk) = 1. However, if & € 2Z + 1 then k is an odd integer
and cos(mk) = —1. In all cases the sine term vanishes. We find,

112 = {1,~1}

To find the cube roots of 1 we'd examine the values of exp(i27k/3) = cos(2nwk/3) + isin(27k/3).
We'd soon learn that k € 3Z give exp(i2wk/3) = 1 whereas k € 3Z + 1 give exp(i2wk/3) =
exp(27/3) = cos(2m/3) + isin(2n/3) = ~L + i% and finally & € 37 + 2 give exp(i2nk/3) =
exp(dn/3) = —3 + z@ We denote these by

193 = {1, w3, wi}
1 -\/§ . p(hﬁﬁf?ﬂo@ .
here wg = exp(2m/3) = —5 + 95" is called the priniepal cube root of unity. Naturally we can
do this for any n € N and it is not hard to show that the n-th roots of unity are generated from
powers of w, = exp(27/n). Indeed we could show that

1U/m = {Lwn,wi, ...,w;‘"l}
1A 1 L7 i MA Y ) A
Cxampla 1 Z, = lGe = 21 = %?Q , e U)q, de W, de
= et
R _ 3T\ o) 4 =1 =
> Wq’e"?("‘q")"('”(l)*'ml)'—f-————u Ly

i | -
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The correspondence with Z, = {0,1,...,n— 1} is provided by the mapping ®(w*) = k. You can
check that ®(zw) = ®(z) + ®(w). L isa homomorphlsm between the multiplicative group of units
and the additive group Z,.

Theorem 1.6.2.

If z, = reexp(if,) then the n-th roots of z, are generated from the n-th roots of unity as
follows:

1/n 2 n-—1
zo/ = {¢, cwp, Wiy .oy ewl 0}

where ¢ is a particular n-th root of z,; ¢" = z,. Notice that |e| = /7, and in the case
that 0 < z, € R we may choose ¢ = {/r, where {/r, denotes the positive n-th root of the
positive real number 7. In the formula above I am using our standard notation that w, is
the principal n-th root of unity which is given by the formula: B ' '

wr, = exp(i27/n).

Geometrically this theorem is very nice. It gives us a way to find the vectors which point to the
vertices of a regular polygon with n-sides. Moreover, we can rotate the polygon by using a 2z, # 1.

Example 1.6.3.

(JJS2 ﬁ' UJS m am
R ) _ 5 _ am 1
e We=e ° = cos (%) + isi(%T)
i ‘."’:1 - Vs 2 7 Y
w; R 1= { l; Wy 2 We s Ws s W, }
o
5
Example 1.6.4 o
&-__L U_JG = @ & Co!(%‘)i—isin (1—;?):_—, A + LE
LLU‘, "““.__ iws 2 R
v w " e .
: /5 . . 2 Yy o+ 5
wr E“ = {1)1%,1% tW, sz)Lu‘}
T & ) i
1 . — g : 7
S O (hete 36 ==~ = i€ €)' ]
é

Example 1.6.5.

' n .
f\ﬂel e ton Usle (ele) = e!ﬁ@ ’l‘D Cn.ltwlhjte
exp\ic'\-} cartesion foran  of P&-r'H oHor  toete Fur cxamp&)

iu)s = 3 (ei%)LI C'/) = (co.r L *4_317;)
o iw: = -sin(% )+1£a5 "”T) +4_ %_ =2‘LU;

-

As o cheeh on dhe  cod cuhabion lets W-Wlhf’l% bta Wy and
ser  whed hoppen

. I N E WY AUV 5 E N IRt i U S TIL
Gus ) Wy -—'(“"'z)(z* z) =Tt =Y
( checks wilh F:'du.re.}
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1.7 complex numbers and factoring

In this section we examine a few examples of the factor theorem. This theorem states that every
zero of a complex polynomial corresponds to a factor. Don’t mind the definitions if you’re not

interested, just skip to the examples:

Definition 1.7.1.

A polynomial in x with coefficients in S is an expression
oo
plz) =cp+eix+ -+ gt = Z et
—

where ¢; € S for all j € NU{0} and only finitely many of these coefficients are nonzero. The
deg(p) = k if ¢y is the nonzero coeflicient with the largest index k. We say that p{z) € S(z).
The set of polynomials in z with coefficients in € is denoted C (z). The set of polynomials
in z with coeflicients in R is denoted R (z).

Remark 1.7.2.

Obviously we are primarily interested in either € (z) or R () in most undergraduate mathematics.
These are precisely the objects we learned to factor in highschool and so forth. Let me give a
precise definition of factoring. Since we can view R (z) ¢ C(z) we will focus on € (z} in remainder

In the definition above T am thinking of polynomials as abstract expressions. Notice we can
add, subtract and multiply polynomials provided we can perform the same operations in 5.
This makes S(z)} a vector space over § if § is a field. However, if § is only a ring then the
set of polynomials forms what is known as a module. Polynomials can be used to build
number systems through an algebraic construction called field extension. This material
is discussed in some depth in Math 422 at TLU.

of this section.

Definition 1.7.3.

Suppose f(z),9(z),h{z) € C(z). Suppose deg(h),deg(g) > 1. If f(z) == h(z)g(z) then we
say that g(z) and h(z) factor f(z). If f(z) has no factors then we say that f is irreducible.
If deg(f) = 1 then we say f(z) is a linear factor.

Example 1.7.4. .

“

'F(Z) = -ES"'% has Fuchrs Z — bV, Z 'Ez-i-l) 'zz...]

Z+l, Z2-1 and 241, Z-1.

fzy = =2(z2"-1)
=z (2*+1){(2°- 1)

= Z (Z+ i)l%—i)(2+‘)(z‘ i),
N~

linear o chorr,

2
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3 L
Example 1.7.5. . Luchorin Z2 — | is tied b
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In the next chapter we discuss the concept of a complex function. Once we take that viewpoint we ¢ ()
can evaluate polynomials at complex numbers. It's worth noticing that if (z —r) is a factor of f(z) T
then it follows f(c) = 0. The converse is also true; if f{r) = 0 for some 7 € C then f(z) = (z—7)g(z)

where g(z) is some other polynomial (the proof of the converse is less obvious}). In any event, if

you believe me, then we have the following: (here I mean for ¢;,b; to denote complex constants)

cptcrzd bzt =0forz=r & ctcz+-- ezt

=(z—7)(bog+brz+ -+ bpz™)

I sometimes refer to the calculation above as the fundmental theorem of algebra. We'll probably

prove that theorem sometime this semester.



Chapter 2
topology and mappings

Mathematics is built with functions and sets for the most part. In this chapter we learn what a
complex function is and we examine a number of interesting features. Mappings are also studied
and contrasted with functions. Since a complex function is a real mapping we begin with a brief
overview of what is known about real mappings. Continuity of complex functions is then discussed
in some depth. We then define connected sets, domains and regions. Next the extended complex
plane as modeled by the Riemann sphere is introduced as a convenient device to capture limits at oo.
We then examine a number of transformations and introduce the idea of the w-plane. Branch-cuts
are defined to extract functions from multiply-valued functions. In particular, n-th root functions
is defined. The complex logarithm is defined as a local inverse to the complex exponential. We
discover many of the standad examples in this chapter. Notable exceptions are sine, cosine and
hyperbolic sine or cosine etc... We focus on algebraic functions and the complex exponential.

2.1 open, closed and continuity in R"

In this section we describe the metric topology for R". The topology is built via the Euclidean
norm which is denoted by ||-|| : R®* x R™ — R where ||z|| = /= - © and z-z denotes the dot-product
where -y = z111 + - - - Toyy for all o,y € R®. Once we're done with this section 1 will recapitulate
many of the definitions given in this section in the special case of R? = C where we have the familar
formula |z| = +/Zz and this is in fact the same idea of length; |z| = ||2]|. These notes are borrowed
from my advanced calculus notes which in turn mirror the excellent text by Edwards on the subject.

In the study of functions of one real variable we often need to refer to open or closed intervals. The
definition that follows generalizes those concepts to n-dimensions.

Definition 2.1.1.

An open ball of radius ¢ centered at o € R™ is the subset all points in B™ which are less
than e units from a, we denote this open ball by B.(a) = {z € R" | {|z — al| < €}.

The closed ball of radius e centered at ¢ € R” is likewise defined by

Be(a) = {w € R | |l — ol < }.

27
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Notice that in the n = I case we observe an open ball is an open interval: let a € R,
Bla)={zeR]||lz—qa||<e}={zeR||z—al<e}=(a—ca+e)
In the n = 2 case we observe that an open ball is an open disk: let (a,b) € R?,
Be((a, b)) = {(z,9) € B* | || (%) — (@ B) | < ¢} = {(w,9) € R? | V(& ~ a)2 + (y — )% < €}

For n = 3 an open-ball is a sphere without the outer shell. In contrast, a closed ballinn =3 is a
solid sphere which includes the outer shell of the sphere.

Example 2.1.2. . . (C Losed o\f,(h) (c loged bt
Yy z o~
Be () &
o—-€ ¢ . \a+ € ‘ T B, (7 T
S s

(n=1)

Definition 2.1.3.

Let D C R". We say y € D is an interior point of D iff there exists some open ball
centered at y which is completely contained in D). We say y € R" is a limit point of D iff
every open ball centered at y contains points in D — {y}. We say y € R" is a boundary
point of D iff every open ball centered at ¥ contains points not in D and other points which
are in D — {y}. We say y € D is an isolated point or exterior point of D if there exist
open balls about y which do not contain other peints in D. The set of all interior points
of D is called the interior of D. Likewise the set of all boundary points for D is denoted
dD. The closure of D is defined to be D = DU {y € R” | ¥ a limit point}

If you're like me the paragraph above doesn’t help much until I see the picture below. All the terms
are aptly named. The term "limit point” is given because those points are the ones for which it is
natural to define a limit.

Example 2.1.4. . . 93

\91 —_ b-mndur% Py — Lg_?
W — issludsd point,
2,4, Y, — limib pendy,

;3

Definition 2.1.5.

Let A C RB" is an open set iff for each # € A there exists € > 0 such that » € B.(x) and
B.(x) C A. Let B C R" is an closed set iff it contains all of its boundary points.

In calculus I the limit of a function is defined in terms of deleted open intervals centered about the
limit point. The limit of a mapping is likewise defined via deleted open balls:
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Definition 2.1.6.

Let f: U CR" =V CR™ be a mapping. We say that f has limnit b € R™ at limit point «
of U iff for each ¢ > 0 there exists a § > 0 such that z € R" with 0 < {2 — af| < § implies
{|f(x) —b]| < e. In such a case we can denote the above by stating that lim,_., f(z) = b.

Definition 2.1.7.
Let f:UCR" =V CR™ be amapping. If a € U is a limit point of f then we say that f
is continuous at ¢ if

lim f(w) = f{a)

If 0. € U is an isolated point then we also say that f is continuous at a. The mapping f is
continuwous on 5 iff it is continuous at each point in S. The mapping f is continuous
if it is continuous on its domain.

Notice that in the m = n = 1 case we recover the definition of continuous functions from calc.
. It turns out that most of the theorems for continuous functions transfer over to appropriately
generalized theorems on mappings. The proofs can be found in Edwards.

Proposition 2.1.8.

Suppose that f: U CR™® = V C R™ is a mapping with component functions fi, fa,..., fm.
Let a € U be a limit point of f then f is continous at a iff f; is continuous at a for

J=1,2,...,m. Moreover, f is continuous on S iff all the component functions of f are
contmuous on S. Finally, a mapping f is continous iff all of its component functlons are
continuous.

Proposition 2.1.9.

Let f and g be mappings such that feg is well-defined. The composite function fog is
continuous for points a € dom(f ¢ g) such that the following two conditions hold:

1. g is continuous at a

2. f is continuous at g{a).

The proof of the proposition is in Edwards, it’s his Theorem 7.2. I'll prove this theorem in a
particular context in this chapter.

Proposition 2.1.10.

Assume f,g: U CR" - V C R are continuous functions at a € IJ and suppose ¢ € R..
1. f+ g is continuous at a. | '
2. fgis contiﬁuous at a
3. ¢f is continuous at a.

Moreover, if f, g are continuous then f -+ g, fg and ¢f are continuous.
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2.2 open, closed and continuity in C

The definitions of the preceding section remain unaltered except that we specialize to two dimen-
sions and use appropriate complex notation in this section. Trade the word "ball” for "disk” and
"norm” for "modulus”. Just to remind you the connection between the modulus and norm is simply

the following:
2| =vVZ = Va2 + 4 = ||(z,v)l].

Definition 2.2.1.

An open disk of radius € centered at z, € C is the subset all complex numbers which are
less than an e distance from z,, we denote this open ball by

De(zp) ={z€C ||z —z,| <¢€}.
The deleted-disk with radius ¢ centered at z, is likewise defined
Dz,) ={ze€C|0<|z— 2| <€}
The closed disk of radius ¢ centered at z, € C is defined by

Delz,) ={2 €T ||z — 20| < ¢}

The following definition is nearly unchanged from the preceding section.
Definition 2.2.2.

Let § CC. We say ¥ € S is an interior point of § iff there exists some open disk centered
at ¥ which is completely contained in §. We say y € C is a limit point of § iff every open
disk centered at y contains points in § — {y}. We say y € C is a boundary point of §
iff every open disk centered at y containg points not in § and other points which are in
S —{y}. Wesay y € S is an isolated point or exterior point of § if there exist open
disks about y which do not contain other points in S. The set of all interior points of 5 is
called the interior of 5. Likewise the set of all boundary points for S is denoted 85. The
closure of S is defined to be § = SU {y € T | y a limit point of 5}

Perhaps the following picture helps clarify these definitions: .

-2‘/ Z, bou.noluna ?+‘S.
?3 v iakersor F"S,
-'ZL‘ B I'SOIGJEMJ ?4'.

'a?g = O Union

%{ues e,d.%z_( of S
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Definition 2.2.3.

Let S € € is an open set iff for each z € § there exists ¢ > 0 such that De(z) c 5. If
B € C then B is a closed set iff it contains all of its boundary points. In other words, a
closed set 5 has 8 ¢ S.

A complex function is simply a function whose domain and codomain are subsets of C.

Definition 2.2.4.

Let f: U CC — V C C be a complex function. We say that f has Hmit w, € C
at limit point z, of U iff for each ¢ > 0 there exists a § > 0 such that » € C with
0 < |z — 2| < & implies | f(z) — w,| < €. In such a case we can denote the above by stating
that lim._.., f(z) = w,. In other words, we say lim,—,., f(z) = w, iff for each ¢ > 0 there
exists a d > 0 such that f{D3(z,)) C De(w,).

Example 2.2.5. . .
Lexr € > U and Z, € @ . (Woote S= & eand o5 S LA A

2 e € swih Y 0<1Z2-Zl<8 = |FfRI-W|< @

Lr f(2Y= 2 and W, = Z, . ’ﬂnerc-ﬁ:m,
ﬁlm (-E) = :20 -

-E'-—a Eo

We should also note that z, need not be inside the domain of f in the limit. In the special case
that f(z,) is defined and f(z,) = w, we say the complex function is continuous at z,.

Definition 2.2.6.

Let f: U CC— V CC be acomplex function. If z, € U is a limit point of f then we say
that f is continuous at g if

lim f(z) = .f(zo)

=t zo
If 2z, € U is an isolated point then we also say that f is continuous at z,. The function f is
continuous on S iff it is continuous at each point in §. The function f is continuous
iff it is continuous on its domain.

Example 2.2.7. . .
I—-E+ _F(E) = ‘_2_ + 2. SUFP‘ﬂ-t € >0 and thae &= €.

T z,e € and 2 €T such Fhd odz-2,]cd we findd

| =) - £(=)| = |T+3 -~ Z, -3l
—_— \’-E__ab l - lw‘ thl ¥ ?ru?-c'g

W\oo‘,w\.ur. (P{avc i‘}’ ! )

= lz-2,|<8§ = €.

Mo Aim F(2)) = £(2) = Z,+ 7.

-2
WQ ,‘-\*\_\d .F (‘2.) = ?-&-Q s o Contnuas 'F\\I\UQ‘. on C
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We postpone the proof of the proposition below until the end of this section. In short, most of the
limit theorems for real-valued functions generalize naturally to the context of C.

Proposition 2.2.8.

Assume f,g: U CC— V CC are functions with limit point z, € U where the limits of f
and g exist at z,. h

—

. limz_m_n(f(:—:) —I— g(z)) _:..limz_}zn f(z) + limyys, g(z),.

| 1im;_;;‘,(f(é)g(_%)ﬁ) - (iimH;a 72)) (i 502)).

v}

3. fc€ C then Iim;_wo (cflz)) = c(limz_,zn f(z)).

b )0 e i [ ] = 2l

5. if h: dom(h) — €. is continuous at lim,.,;, f(z) then

lim i(f(z)) = f(Im f(2)).

Z—r2o

An immediate consequence of the theorem above is that the sum, product, quotient and composite of
continuous complex functions is again continucus. Moreover, induction can be used to extend these
results to power functions of 2 and arbitrary finite sums. It then follows that complex polynomials
are continuous on C. A complex rational function is defined pointwise as the quotient of two
complex polynomials. Rational functions in € are continuous for points where the denominator
polynomial is nonzero.

Example 2.2.9. , .

‘ Adis conk b z7= nd
z) = Coninu olg =0 =
f) = gy T VI g

| _ 1
'F(z) = Zq'*'l - (2+1)(2-})(_2+i.)(2"‘i)

e—— T
L—__/_/Pic{u:e of p'H
O‘F df{ CUV\-'HIAU!H .
Example 2.2.10. .

‘?(2) = Q—E &> -F(x,ta) = ¥ sy + iefcs Yy

o nhnuoug tonhnusws
2

- .F ey conhavew CuV\r\Fan-cV‘J[T en “_2

i

C

s «F('—};) --.----e-2 s Condnvaur,
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2.2.1 complex functions are real mappings

If the complex function is as simple as the last example then the direct computation of limits via
the modulus is not too difficult. However, in general it is nice to be able to apply the calculus of
many real variables. Notice that f : dom(f) C € — C then we can split each output of the function
into its real and imaginary part. We define:

u(z) = Re(f(z)) v(z) = Im(f(z))

Therefore, since Re(f(z)), Im{f(z)} € R for all 2 € dom(f) there exist real-valued functions w,v :
dom{f) = R such that

f(z) = u(z) +iv(z).
Moreover, since or convention is to write 2 = = - iy = (z,y} we can view a complex function as a
mapping from dom(f) C R? to R? where

J(@ + i) = ulz, y) + iv(w,y)
This is a standard notation in most texts.
Example 2.2.11. . .

f(z) = 2% = (< +i9)(x #i%) = x*-9% + i (3x9)

Hhny U= Xm0 and V= Axy.
[A/Hu.wa’l. voe  Showld wiilte U (%9) /V(x,y) koAm’uVZ/H,)

Example 2.2.12, . .
.F (z2) = Z = X- 1Y
S (X)) = X and  VIX9) = <%

Example 2.2.13. . .
f(z) = 2% = &+iv)lx-19) = x*+4°
O Uxy) = X9t et VIX7) = O,

Example 2.2.14. . . 2 <+ 2%
fz) = 2e® = &ein)e’
— (><+3‘|-a)ea‘x(ﬁaj A9 1"‘1'.1'1')1 39)

_ eax(x Gos (329} = 9 Sin /8‘6)) + ieM(chr;y 1'-)(_{’/71259_‘)
N

V(% ¥)
— , Ufixy) ‘
’c('ﬁ‘)—_— S = ...g_. = X“IU}\
2 22 =yt
oWy = o 4 v k) = 0

eyt X+



34 CHAPTER 2. TOPOLOGY AND MAPPINGS

2.2.2 proofs on continuity of complex functions

To begin note that if f = « + v is a complex function then we may as well identify f = (u,v) as
a mapping from R? to R? with compoenent functions f; = u and fs = v. Therefore, by Proposition
2.1.8 we find:

Proposition 2.2.15.

If f: DCC — Cisa complex function with f(z + iy) = u(z,y) + iv(z,y) for all
(z,5) € D then f is continuous at z, € D as a complex function iff v and v are continuous
at z, = (mo,yo) € D as real functions from dom(f) C R? to R. Moreover, a compiex
function is continuous iff its component functions are continuous real functions.

Proof: it is interesting that the proof in Edwards is similar, just it uses norms instead of modulus.

In any event, since you may not have had advanced calculus it’s probably best for me to include
this proof here:

Assume N §(2) = W, whee f(2) = U@) +1V(E) amd W, = UHIY,.
2> 2,

WQ. w’iS\r\ to S\\ow _‘21‘\:&929 U[E) = uo DW‘*{ ?&Mavtz);H \/oo Le+

€ >0 oan by otven Lot or f(2), choose §> 0 such b
1 f2) - Wol<c € fr 2 D (8). Supese 0<lz-2|<8

lw=) - U, | = | Re (F(2)) —Ra(w,)]

| Re (£(2) -
= f(@)-w.\< €

Litewise Oclr-2,|c§ = lvtz)-v.,l<é. /“’\Ef‘fpbre)

Mo W)Y = U, e V() =V,
227, Z->2,

uv\-u,,w_ we've OQE/R’\"(\L& uo"‘" R.l'\v\ 'F (3)) FU’WP V Jm (///M ‘F/g‘))
-ty 2'b _ ?—sa

The re*(-nra -F(% corhvon; oo B, = WI(E) ,V(2) continvew b 2, .
St e 'ﬁ\a det™ of reud aw-cl' (,umlmx Cw\hr\ul%g are e ch.m Mo duwle
fe nohdon  and  a [, i‘www.—c\ we Hind w,v: R°—s 1(8

are  (owhnuown§ ag real frnchions.

I




Converge pot of pevet:

ASSU\.M 9\im U\[?) = U, o nd R;\M \/(2) = V, . \\Jo%e
2> 2

22,

. =V
A | e B WOR) =W ¢ i v(x, 7] = Ve
oo il () = (%) ()= (%, 0.)

be € OAQR \\ULZ) \\ = lm(%)\ and “\I(E} “ = l\/(%)] ) L!\/f.cu_ll‘u
| s@l = Wl = T iv] = AJutavEe
(.onu&?’} of Cﬂﬂ’\“ivw-i)‘\@ e ches fe (\2 ond € becawse

’hf\ﬁ Nerm o Wkwlwhuf ace Aha gams for Cufrewpd,\d;'né/
\J&:‘-vr (V,‘,\jv) nned meLq,x u\uwvl:e_r \/,;-H\/,a_.

ipj) € >0 and Cheoge S>0 such A

e lz2 -2 < g = \\ME)—UGI < €/ andd &V(E)-\/al(_ €4

Wence et £ (2) = u(Z] r1v () snd C.onjfd_e/\/ %

@)= Ui | = (U2 +IVE) - U -1

— lute-y, i@ -

= uz)-u) + ltvE =)

—

= |ulz) -u,|+ V@ -Vl
< Efo + €N
= &

Thas o0ciz2-2.1¢8 = l—F(a)—u‘,-ivc,\< =

hen ce 2%0«2 £(z) = U, + V. $or ’P(%):U(‘E)"“;V(Z'),

prs Lollowss ﬁ/l‘wj) U'N“vw't% o‘g' U.,\J ov'b Zbo =§ Cﬂw“}‘l’h\nl«a/
of £(2) = w(z)*rV(E oD Zo.

_‘EJ we  ton  do Ahic b.é L\n.oor:ma 8,’70 cuch -ﬁ\f-’é }u[«%)”ao/< A
i &5 0 st W@-v.[<ces he ze D) o 2el) (2)
fespechve. The £>0 h Pno—F i choten > be &= hin (5;,63)
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In view of Proposition 2.2.15 we can easily deduce that Examples 2.2.11 - 2.2.14 give complex
functions that are mostly continuous. I assume you recall the definition of continuous functions
of two variables from calculus III, remember the function g(z,y) is continuous iff the limit of the
function g(r(t)} — g(p) as ¢ — 0 for all curves ¢ — 7(¢) with 7(0) = p. Typically we only employ
this definition directly for the purpose of finding a contradiction. If you can show the limit is
different along two different paths then the limit does not exist. Of course, to be rigorous one
should consult the e — 4 definition of continuity offered in the preceding section.

Example 2.2.16. . .
_3xg B (.)"'fV()] #0, )

CYRYTY
f(x,9) = X ;‘6 . xe) =6,0
A’ —
&lm ‘F‘()‘/‘D) — /Ql\m\ -—{rﬁ) = 1 g o.\uwb B =X
W3

{#,%) ~2(0, 0)
ﬁt\m 'F(":V] - QI\N\ (%ﬁ-ﬁ%) = .r_g._ g a.\on.ta Ué. =2ZX
{(=,2x) =23 (c,0) xX—2o AR (2) T (D

DES&"UL .? V_\-c',i (,oh.'l‘;v\unwj avb L0,0) . L\L‘.&WIKJ_ 'F (%) - Ra(-l)z-!Ln(?.Jl

X . L. , b —i‘ #O u.n.gl Cn) = D r d-'..iédﬂﬁkvu‘
The proof of the following proposition is identical to the proof given in Edwards for the general

case. I leave the proof as an exercise for the reader.

Proposition 2.2.17.

Let f and g be complex functions such that fe-g is well-defined. The composite function
S g is continuous for points a € dom(f o g) such that the following two conditions hold:

1. g is continuous at a

‘2. f is continuous at g(a).

The proof of part (1.) the following theorem is identical to the proof given in Edwards for the
general case. I will show that (2.) and (3.) also follow from the corresponding proposition for sums
and products of real functions. Then I give a second proof which does not borrow from the theory
of real mappings.

Proposition 2.2.18,

Assume f,g: U CR" -+ V CR are continuous functions at z, € U and suppose ¢ € R.
1.. f + ¢ is contimious at z,. o
2. fg is continuous at z,

3. cf is continuous at z,.

Moreover, if f, g are continuous then f+g, fg and ¢f are continuous.
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Proof: We begin with the proof of (2.). Suppose f = u + iv and g = a + ib are continuous at z,
and note, omitting the z-dependence,

fo = (u+iv)(a+ib) = va — vh+ i(ub+ va).

In terms of real notation we have fg = (ue — vb, ub+ ve). But, we know u, v, a, b are continuous at
zo because they are the component functions of continuous functions f, g. Moreover, we find fg is
continuous at z, since it has component functions (fg); = va — vb and (fg)2 = ub -+ va which are
the sum or difference of products of continuous functions at z,.

To prove (3.} just take the constant function g(z) = ¢. I leave the proof that the constant function
is contimuous as an exercise for the reader. O

Hopefully you've noticed that the heart of the proofs given above were stolen from the correspond-
ing theorems of real mappings. I did this purposefully because I want to draw a clear distinction
between these results on continuity and the later results we'll find for complex differentiability. The
proof that follows is self-contained.

Proof: Suppose im._,., f{z) = f, and lim.., g(2) = g,. Let € > 0. Since the limit of f at z,
exists we can find d; > 0 such that 0 < |z — z,| < d; implies {f(z) — fo| < /2. Likewise, as the

limit of g at z, exists we can find 4, > 0 such that 0 < |z — z,} < 4, implies [g(2) ~ go] < /2.
Suppose that 0 = min(dy, d,) and assume that = € D§{z,). Tt follows that

|(f +g)(2) = (fo+go)| = |f(2) +9(z) = fo— 8] £ Ij'(é) — fol +19(2) = gol < €/2+ €/2=¢.

Thus 0 < |z — 2,0 < § implies {(f + g)(z} ~ (fs + ga)] < e. Therefore,

lim (7z) + 9(z)) = Jim 7(2) + i g(2)

Z-+zg

Part (1.) of the proposition follows immediately.

Preparing for the proof of (2): We need to study |f(2)g(z) — fogo|. Consider that
|f(2)g(2) = fogol = |£(2)g(2) — F(2)90 + [(2)90 — fogel = | F(2)(9(2) ~ Go) + (£(2) — f0) 50|
Then we can use properties of the modulus to find:
|/ (2}g(z) — fogol < |f(2)llg(2) — gol + |90l f(2) — fol

Note that we can choose a d > 0 such that if z € D¢(z,)} then both |g(z) — gol and |f(z) — f,| are
as small as we'd like. Furthermore, if |f(z) — f,] < 8 then |f(2}| < |fo| + 8. Consider then that if
|f(2) — fol < B and |g(2) — go| < B8 it follows that ‘

[F(2)9(2) — fogol < (|fol + B)B + 19018 = 8% + B(|fol + 19a])
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Our goal is to find a d such that z € D$(z,) implies | f(2)g(2) — fago| < €. In view of our calculations
up to this point we see that this can be accomplished if we could choose # such that

B2+ B(Ifol +1g0l) = e

Apply the quadatric equation to find

— _lfﬂl _ Igﬂl :l: \/(lfol + ]90[)2 +4E
2

B

Note that it is clear that the (+) solution does yield § > 0.

Proof: Let ¢ > . Define

g = ~{fal = 90| + \/(ifni + |go])?* + 4e
: 5 .

Since the limits of f and g exist it follows that we choose § > 0 such that = € D$(z,) implies both
9{z) — go] < 3 and [f(2) — fol < 8. The following calculations were justified in the paragraph
preceding the proof:

Ul(z)g(z) - ,fogal < 132 -+ .B(“uf + |gn” =t

Therefore,

tim ()o@ = (1im 1)) (1m o)

I—+Zo

Part (2.) of the propuosition follows immediately. [
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2.3 connected sets, domains and regions

To avoid certain pathological cases we often insist that the set considered is a domain or a region.
These are technical terms in this context and we should be careful not to confuse them with their
previous uses in mathematical discussion.

Definition 2.3.1.

If a,b € C then we define the directed line segment from « to b to be the set

la, b ={a+t(b—a) | t €[0,1]}

Definition 2.3.2.

A polygonal path v from a to b in C is the union of finitely many line segments which
are placed end to end;

o= [G., 31] U [31 s Z"] U---u [znm% znml} . [Zuwla b]

Definition 2.3.3.

A set S CC is connected iff there exists a polygonal path contained in S hetween any
two points in 5. That is for all a,b € S there exists a polygonal path + from a to & such
that v C §.

Incidentally, the definitions just offered for € apply equally well to R™.

Definition 2.3.4.

An open connected set is called a domain. We say R is a region if B = DU S where D is
a domain [J and § C 8D.

Example 2.3.5. . .
"W\Q Se:*‘ be lew  is pu..‘“\—omneu'rarj Sih L O P“'-H" in S!
Lur\nec}h‘ o,nua ?o.[r ot Paﬁv‘h’ M S Thside CE o
Aurng  ouh vnnedred  oand Pu.,k’],\ tnne hed are Samt
Con Cept (osh me if Ao wich v lhnaow %e_,ne‘rp.—Q

ded® ok c,unneuh.r.l) T =

SYNCe
\s
closed

ond
Lunnevf’ecﬂ

L examplt — '
e {fe‘:ﬁ; S 2 e,z ulz, 2BV A, 2R B V[Z, 2]V (M, O]
v o
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2.4 Riemann sphere and the point at oo

The Riemann sphere sets up a correspondence between the sphere 22 +3? 4+ 22 = 1 and the complex
plane. In short, the stereographic projection maps each point on the sphere to a particular point
on the complex plane. The one exception is the North Pole (0,0,1). It is natural to identify the
North Pole with oo for the complex plane. This is primarily a topolegical construction, all sense of
distance is lost in the mapping.
¢
;g}rtm.omgﬁm .y ! D> 2 , G s W

S-{-—-—‘B’ Z e
N S TR om0
I {z:u,i‘(}"f;?;}aa

As far as this course is concerned the point at infinity is simply a convenient concept to describe
a limit where the value of the modulus gets arbitrarily large. The complex numbers together with
oo is called the estended complex plane.

Definition 2.4.1.

We say that lim._,;, f{z) = oo iff for all € > 0 there exists a § > O such that 0 < |z —z,| < §
implies |f(z)] > 1/e. We define a neighborhood of o as follows:

Defoo) ={we C| |w| > 1/e}

For each € > 0 we need to find & > 0 such that f{Ds(z,)) C D¢(oco) if we wish to prove lim, ., f(z) =
oc. Limits "at” infinity are likewise defined:

Definition 2.4.2.

We say that lim._,o f(z) = w, iff for all ¢ > 0 there exists a § > 0 such that |z| > 1/§
implies |f{2) — wo| < €.

Example 2.4.3.

Clevim ¢ th (‘“‘é‘") = O,

& -3 Do

F_)r_gg_-[—_: Let & >0 oin d (_}Locs,g 8= I
Suppese 1z > I/S ohl ch:[o(y\/ 2l >l = 1= < &

4 -0l = [ - =5 -e.

Thws  Hae | on i -R:Houug.
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Proposition 2.4.4.

Suppose f: .5 — Cis a complex fanction and 2, is a limit point of S then,
) . . . : ) '- . 1 B )
@) i fle) =00 i lim sy =0
(2) Hm f(z)=wo, ~ iff lim F(1/2) = w,

. . S |
(3.) z]_l_}[]élo f(2)=cc iff :1:1_1}% m =0

I leave the proof to the reader. Let’s see how to use these. We will need these later in places.

Example 2.4.5. . .

d 30 .
Lim <az+ 3) — (._.../__zz__t__) : by (8.) and

2 —3 po QE*-I Z—>0 Ll/z_l ‘B«‘f‘u-re j"("EP.S/
need for Ahe
= Xim (.’%ﬂ) I} Ao exiel.
Z—20 -2

= |2
L{ ]

Example 2.4.6. . . (Le+ ne IN)

1
b (27) = diw [ ) = Jm (") = O.
Z—>» 00 Z 3o Z" ?‘/ﬁ"Y___

Cla o,

€ . Soppore 0<lEl< c?/

st

prou»;- o-F Clﬂ-l\m" Le €>0 choose 8

n n
‘En\ — l?-‘l < 8 = < .
s ocizlcs = 1z-ol=e : lm(E")=0.

= -3d

Remarke 24.7: we'll see these sort of limidy
when we vehaen o ﬂaue,,;-l{un: m\Jalw‘nB o0 .
For exomple, if Yo wiyh 4o ir\-\-uqﬂ:b- +o
P(NY ed&y_ of € Ahen you wu:AJb ?-_jlm'
Tor now Thee \inatts oce o bt vnuswoek,
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2.5 transformations and mappings

The examples given in this section are by no means comprehensive. Mostly this section is just for
fun. Notice that most of the transformations are given by functions with the exception of the square
root transformation. The transformation z — w = z!/2 is called a multiply-valued function.
We could say it is a 1 to 2 function, technically this means it is not a function in the strict sense
of the term common to modern mathematics. We ought to say it is a relation. However, it is
customary to refer to such relations as multiply-valued functions. We begin with a few simple
transformations: in each case we picture the domain and range as separate complex planes. The
domain is called the z-plane whereas the range is in the w-plane.

2.5.1 translations

Example 2.5.1. .. Let £(2)= 2+ Z,, _ﬂ\t’-h of gc—:@a
welll Bnd £(S)=2,+ 5 ¢ C,

va
4 A
£
T T
> — e
z X W w

2.5.2 rotations

Example 2.5.2. . . Let §£(2) = e'®% . Noke Aok Anir s
Some os £ (%+414) = (Los e +i5|'he)(xffta\= tof % — $ThRY 4 t{siaBx+ m&‘é)

=5 Llxy) = [co.ra —sin‘g][x]

5in 8 tos & (Y

Pxd robahin vhadrix.

Y




42 CHAPTER 2. TOPOLOGY AND MAPPINGS

2.5.3 magnifications

Example 2.5.3. .. Lety F (E) = CZ 'For‘ Somue. C & n2

Ya

> ~ : A > L

(C>1 maoGV\l"Pies whecess  C < | shrinkes s}u»pes)

2.5.4 linear mappings
Example 2.5.4. . . -‘F ("2) - MT + b 15 u.c"i‘u.kﬂtg an Q.‘F‘Fi'r\p_ mo-rpf}x%,
sinee f(0Y = b #o 'r»ée/\r\cm.ﬂia(\J speo-ld;h%v Now  me
be  wiitlen in p.olog %L"_.“ by M = CezF Mhow s
t
'F(%): CQ@Z + b /TB(E}= 2+b '»'\"rn.n,[ta}(\an.
= £ = (T o M Re J(@) =

Can

M. (2)=c2 : m“a“"ac\'wf!‘wm

- TRy =iz - mhhon,
For &x’umPLn./ -{-\(E)___ Qe’ €5+ i

AV

IF. Iml=1 dhen ()= mz2+b %,ivef ri”é,fid Moton on plane |
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2.5.5 the w = 2 mapping
Example 2.5.5. . . '
W=z = (x+i%)° = xPoy? waixy = UH1V £(z)
This oaves W= %%~y and V= XY .
@ X=X, maps o UT X,,z-Laz and V= %%
Henee 4=

V/ax., = U= X - Va/qx: sideways parnbola
epens leftwecd ha;

Mkrcmp{- u\ x
U= %2yt

@ Y=Y, meps o

andy V= a><l'9a
2
Y = U= Viur ~4y’ sidewny s o neobale
wﬂ@nu = /'3:%“ o /'-!‘éa s spens %\fbu_,wd hins
D{ ConfLe X o= O U.J‘\-d % =0 o re SPP_L‘KF‘ foger

\/-ll'\Jctr(.&Pf W= —‘éb

e e -
2.5.6 the w = z!/2 mapping {®=f (@) g £®) = 4(@) :
Example 2.5.6. . .

W = ?I/z =

{zcedf[ Z. = Z}
f(2) = f(re®) = {2 cC|ne® =2 ne" O = rel®}
= {roe“e" , =3+anh)k62]
{~F e | o, =% Tk, keZ}
{’\]——El /:, t.(a/z+'l'f‘)} el'n__ N
{ Fe‘&/z relé/i} D — .

v =7
'ﬂ'\n SWMQ rout mv-?p{\\va '}‘mhas Z= re_‘e o boda qu & u\v’ re ¢
‘94g

2z

rr=r , 38,

i

1

AV
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2.5.7 reciprocal mapping x
W= 2+;,’L
Example 2.5.7. . . — . ' / >
Z_ . X®1% _ UtV -
2z B A x‘;}-ﬂa"

let () = _‘ii*_ = 23 X* 4yt
f(re) =+

Colar (oordimetey N here,
“This means W = 8 and v:-Sif\@/r.
eliminedy r  w/e wmwuih Mwbh; V/LL = —+un(

ﬂ\\)\s ; ‘F\:r \"?IO angd Ces © "r'éO e hawve \l_':-‘}'b-r\g L

(o5 & = 15O

e Lo

A
fes@= 0O
on Y=oy
2.5.8 exponential mapping
Example 2.5.8, . . N '
flz)=e = ™Y _ Xy +ig sin) = U+ IV
v .
We have o= EXSW\LQ and W= exCax 9B =D v Sin ‘%M v
L?_‘l' W= e% P r\o+€

Thag V‘—-’-(‘hn"&)l}l Be o34 # 0.
iwl = le%l: \Q_x e'pel = X dhws (W] F0 wheres

Hrabo
~ S0 ¢ K< 0O  masps T pciwl < e® =1 and X2O
mups o | € {wl < o,
' VA g :
® . o @
© % £(©)

o T{ g = { (X,m\ xefl ond W, e W €W, + AT} dhonm -F(g‘) _ (E__,[o:;‘
[ WI'#T fCSPe.G’/L’ ‘][o oS- wi}{fﬂ\ }wrf'zwxﬁj S‘ILI"JP.

o m Q,xPnnLn'Ilfivg is /-
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2.6 branch cuts

The inverse mappings of w = 2" and w = e* are w = 21/™ or w = log(z). Technically these are
not functions since the mappings w = 2™ and w = ¢* are not injective. If we cut down the domain
of w = 2" or w = e® then we can gain injectivity. The process of selecting just one of the many
values of a multiply-valued function is called a branch cut. If a particular point is common to all
the branch cuts for a particular mapping then the point is called a branch point. I don’t attempt
a general definition here. We’ll see how the branch cuts work for the root and logarithm in this

section.

2.6.1 the principal root functions

0 Vn _ n A z(;Q*' ;F) . i %+ ;Tl'(n-l})}
(re ) “‘Y"E\i J&M f‘":“ﬂ:e "
CD co LU“ Cu wnn-]

n

f(z)=2 s nef

4o restrict Yo dom (F)
‘F(?]) - 'g(%z)
z = 2,

{r\éedn"va on ol of (C/ we need
v o seeter, Constdan

Geo) - (e R
| & :
- — + 2 r
r“eie'n _ nh eLB,_lﬂ = nel - n@z >
l (2K 2w e+ 1))
14 e cectiied ©,, 8 4o Yha ro-nnl n -9 n
Mo 2Tk <o, 8, < ELCD g
" . Ak
I
11wzl ond N> L dhem we’d have -
ik o o, ¢ AR+ AT and 6= 04 ET
— v, e h h ,
A C——9 ®|"81=3"E"‘1‘£ ?_ -;-\E

Bu*l iy oontrendictr e ?\nz,s)(wln}\a,
henw =0 and B =06, .

abuut

Bbservmon: f(z)= 20 s (f\}ec{-\\m on any Se ctor
T

with 6, € 6 < 6, + 5

A beonch C.Lni o'p ?l/n o .S‘Q/(CUHOF\ o'F o S'ﬂ'né/to_
ook Foe e sob of oukouts. This makes Yhe

Deandn b & \or_apQ IAverse ‘Fbr 'F('?)':?n. N

bran dh ok rahes o mwl‘i‘i?\xa-—valwu[ map  Tnte o foan eheon,



§ 2.6, | "HF\Q Pl'(-l’\tl-Pl/e Took ‘R“‘\.C-‘h'ﬁn_r Qun'l"ﬁ\.%d.)

QfomELn: £(z) = {we 24| 0g Ay W = T }) dom(ﬂ:{?ede%“ﬂ

F)= {we 1" | os halwie ™} 1% = {121}
O/Arg(’U‘-‘TT'

]

§(1+i) =

w3
= 141 A+E) g
Bl e Ay (L) = g

Yuv\- Cann  seR )H?\C\Jb 'F Ty Sinbl.n_ ua—\uu:cl bec‘a.uu:e
we Nave seleoted é}-ﬂ“' ont of Ho Awoe -~ vadue,

for B celabwt b dhe set dom () = {26 C ! EEX<O, ?=X+i%}

BT T

Re(2)<0

Let Alw) = wr  dor 0. % Py (W) < TT dhen we req
~f ~i “ —
Yhab o = £ and £l = o, Th other werds
-F i o loced Muerpe for the SﬂMarecQ ’g./«_y\,pfwn /1[?__} -_:2.2:

-ﬂltre Bre Muma othir  branches for =z A . TE e
cestrick hw) = w? b oniy hol { -plang Ahen  h oo ihace_m'-ndg
onto C MUJMLB o bmnob\ C..Jt‘,

e 8

dom - ¢ -3 , T
(3) = {we I g -g.ana(z-)<..q_}



£36/1 the /9//;?(/)7&/( reof Hfunchan (confraued)

gx“"gfﬁf: :be ‘F(i‘) =Eg wih  dem f‘H"—*{’a‘-e C ) OéAr‘H[EJ<a%}
Anen {3"(w).= [Ze dom ()| 2= W}

\_______________v______..._,_._._—
Pais Selects he (wbe~ root
with 0 Am(a < *7%

L
3
> o nete (B)
K'fr net ™ domain
f of .
- f@le=2?
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Chapter 3

complex differentiation

The concept of complex differentiation is the natural analogue of real differentiation.

02 — tim LET I )

h—=0 h

The interesting feature is that there are many complex functions which have simple formulas and
yet fail to be complex-differentiable. For example f(z) = Z. Such functions are usually real-
differentiable. The Cauchy-Riemann equations for f = u + iv are

Up = —TUy Uy = Uy Cauchy-Riemann (CR)-equations.

We'll see the CR-equations at a point are necessary conditions for differentiability of a complex
function at a point. However, they are not sufficient. This is not surprising since the same is true in
multivariate real calculus. We all should have learned in calculus il that the derivative of a map-
ping exists at some point iff the partial derivatives exist and are continuous in some neighborhood
of a point. What is interesting is that the rather unrestrictive condition that the partial derivatives
of the component functions exist is replaced with the technical condition that the Cauchy Riemann
equations are satisfied. But again, that is not enough to insure complex differentiability. We need
continuity of the partial derivatives in some neighborhood of the point.

In this chapter we also discuss the polar form of the CR-equations as well as the concept of analytic

functions and entire functions. We introduce a few new functions which are natural extensions of
their real counterparts.

47



48 CHAPTER 3. COMPLEX DIFFERENTIATION

3.1 theory of differentiation for functions from R? to R?

I give a short account here. You can read more in the advanced calculus notes if you wish for
motivations and examples etc... Our goal here is to briefly describe how to differentiate f(z,y) =
{(u(z,y),v(x,y)). The derivative is the matrix of the linear transformation which gives the hest
linear approximation to the change in the transformation near some point.

Definition 3.1.1.

Suppose that I/ is open and f : U C R? — B? is a mapping the we say that f is dif-
ferentiable at p, = (z,,y,) € U iff there exists a linear mapping L : R® — K™ such

that i
lim fla+h) — fla) — L{h) _

0.
h—D Al

In such a case we call the linear mapping L the differential at p, and we denote L = df, .
If f = (u,v) then the matrix of the differential is called the Jacobian of f at p, and it
has the form

pe) = | efre) vl | ) = gyt

Example 3.1.2. . .
Tlxw) = (x+%, 2%+ 3% = w=x+2 § V=axe3y,

(%) UylR) I
Jy () = [u L ] = [

Vi (R) Wy (F) 2 3

NJ e te L (x,v) = :]-{ v;r] = ['t:.‘a)[?\;] —_ [:x:.“fgy] = (x+Y, Zx+ 32y )

Uen e L o(%,y) = 'F(*,Y) ™M dhir SEEr_l'cJ ‘a8 . |
The besd linear owpprex. of « lineor Franghrmohisn i e lf !

\

If we were given that the partial derivatives of u and v exist at p, then we could not say for certain
that the derivative of f = (u, v) exists at py. It could be that strange things happen along directions
other than the coordinate axes. We need another concept to be able to build differentiability from
partial derivatives. .

Definition 3.1.3.

A mapping f : U C R® -+ R? is continuously differentiable at p, ¢ U iff the partial
derivative mappings iy, i, Uy, vy are continuous on an open set containing po. and U VLo Hrvous,

The condition of continuity is key.
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Theorem 3.1.4.

!If f is contimuously differentiable at p, then f is differentiable at p,

You can find the proof in Edwards on pages 72-73. This is not a trivial theorem.
Example 3.1.5. . .

G__i-\_r_g_rl w xy) = e¥ . (o5 (x9) 5 vy = x9y e

note Had T = [12)x[1,2] aedes UV, Ue, Uy, Vi, ¥, Conhinuoyg
ot Eoik ?a(v\ﬂr in U. Thur we  can ponglrwd M

m&-\)?i\r\ -E (X,V) = (UI, V] ond  be (erhln W (s
difbecentehle ob ewch 9“'\\{‘ in U becawse we were opven

Yo nended L-“]Pa”*&!-&l fr tonhrvowg u\fﬁ{—f.rcwﬁwb\'lﬂva-

3.2 complex linearity

Finally, note that we have L{cv) = ¢L{v) for all ¢ € R in the context of the definitions and theorems

thus far in this section. The linearity is with respect to B. In contrast, if we has some function
T :C — C such that

(1) T{v+w) =T(v)+ T(w) for all v,w e C (2.) T'(ev) = T'(v) for all ¢,v € C

then we would say that 7' is complex-linear. Condition (1.) is additivity whereas condition (2.)
is homogeneity. Note that complex linearity implies real linearity however the converse is not
true.

Example 3.2.1. . . |
Noke £(xy) = (X+4, 3x+39) U Nt oanplex

Wede £ (x+i9) = (x+9) +1i(3x+39) T et s claim
C\emrl»a, tdote  aob )
£(3) = flo+il)) = g+1 +1 (20) +30)) = 1+ 34

]n]ne.u.r,

N o} every veod linenr wanp fomm ﬁ21H!R1 iy tomplex hewr.
Come&.x \f\\twﬂ\a s very S‘pec(d.

Let  f(x+iv) = (&+ib')(><+i”3) e ded? Hoe row.
= ax - by +i (b + a%)

- b .

[t: + O.‘?] rw\i; (ulcv\).mrhan Shoutr
o -b ® f{ -f ['g) = 2,2‘ ‘Ft:r J'dnﬁ-l.

= [b 'X\\;l 26 € whh A= o+1b
> Yhen W4 seme ox X

; o
IR FRN: U\hwl‘i'l'pliﬂk}ﬂ\h ad [E,

-b
o

J
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Suppose that L is a linear mapping from R? to R?. It is known from linear algebra that there exists

a matrix A = (2 Z) such that L{v) = Av for all v € R2.

Theorem 3.2.2.

The linear mapping L(v) = Av is complex linear iff the matrix A will have the special form

below:
a b
“A=b a

To be clear, we mean to identify R? with. C as before. Thus the condition of complex
homogeneity reads L{(a,b) = (z,y)) = (a,b) * L(z,y) ' -

Proof: assume L is complex linear. Define the matrix of L as before:

Lz, y) = (f 2) (;)

Lz + iy) = ax -+ by + i(cx + dy)

This yields,

We can gain conditions on the matrix by examining the special points 1 = (1,0) and 7 = (0, 1)
L{1,0) = (a.c) L{0,1) = (b, d)
Note that (e1.ez) # (1,0) = (¢1, ¢2) hence L{(eq + ica)1) = (¢y + ica) L(1) yields
(acy + bea) +i(cel + dea) = (e +iea)(a +i¢) = cya — cze + i(cre + coa)

We find two equations by equating the real and imaginary parts:

a4 Do = cpa — oo ceL + dos = ¢10 -+ caa
Therefore, bep = e and des = eon for all {cq,e2) € €. Suppose ¢; = 0 and o3 = 1. We find
b= —cand d = a. We leave the converse proof to the reader. The proposition Tollows. [

Example 3.2.3. . .
flz)y = 2% = (i)’
_F(_x'y) = Kzﬂ—t‘az +- ai X’Ub

U 7) =xty?
= [ 3 Y ] : Vo= 1Y
J = Ixy

&C*V“«D’E"a , I éwﬁ» did o+ on Pa- vye o
UKO " Yook , T Jhuw a_y\.ub erFpi}‘ﬂ
Liv) = AV con be wirten oy

L= [R2 228 Y] and

L dinear Aen € —> € D LIv)I=Av = VA o

ax =-2% ‘ |
U’F = ——_'é’ L (V) = I Vv [ Lampllﬂ.x ‘Jnca-.r MGT]
i il y = 2x+72

Com  olss write o L(V)=AV for A=ix+01y .

'\.ap' %a-\- ‘V\mg . {fom T—F -
?‘*"A“\

L (&,b) = L (asib) :'(’ax%?&iu&\(a-ﬁb) 7 , .
i Ix & - !auab+‘i(3~><b+9\av~)

[2x o >ob Remorh: this eguivelenw

Lax b+ dya a betwesn 3% and
o "3 = T M} ommplae # enldipli chuy
A % neede g._.MFm_x h\\cr\na\a .

t

!

th
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3.3 complex differentiability and the Cauchy Riemann equations

In analogy with the real case we could define f'(z) as the slope of the best complex-linear
approximation to the change in f near z. This is equivalent to the following definition:

Definition 3.3.1.
Suppose f: dom{f) C C = C and z € dom([) then we define f/(z) by the limit below:

f(z) = lim flzth) - f(z)_

fi—0 I

The derivative function f’ is defined pointwise for all such z € dom(f) that the limit above
exists. When £(2) exists we § v £ s Complax o\\'%gre bl ab 2.

Note that f/(z) = ima_q i '(}f)h hence

i SR fEEh) = fE) L S h) = f2) = @b

h—0 R h—+0 h h—0 h

0

Note that the limit above simply says that L{v) = f'(z)v gives the is the best complex-linear
approximation of Af = f(z+ k) — f(2).

Proposition 3.3.2.

If f is a complex differentiable at z, then linearization L{h) = f'(2,)h is a complex linear
mapping.
Proof: let ¢, h € T and note L{ch) = f'(z,}{ch) = ¢f'(z,)h = eL(h). O

The difference between the definitions of L{h) = f'(z,)h and L(v) = J¢(po)v ( see Definition 3.1.1)
is that in the complex derivative we divide by a small complex number whereas in the derivative
of f:R? — R? we divided by the norm of a two-dimensional vector®.

Proposition 3.3.3.

If f is a complex differentiable at z, then f is (real) differentiable at z, with L(h) = f'(2,)h.

Proof: note that limy,_,q 21 ,f_z)"’f MG L implies

flz+h) = f(2) = /(=)

lim . =10
h—) |1
but then |h| = ||hi] and we know L(h} = f'(z4)h is veal-linear hence L is the best linear approxi-

mation to Af at z, and the proposition follows. [J

Inote that the definition of the derivative for f : R® — R™ is the same but J;(po) is then a m x n matrix of
partials in the general case. Each row is the gradient vector of & component function, in the case n = 1 the Jacobian
matrix gives us the gradient of the function; J; = (Vf)T.
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Let’s summarize what we've learned: if f : dom(f) — C is complex differentiable at z, and
f =u+iv then,

1. L{h) = f'(zo)h is complex linear.

2. L{h) = f'(z,)h is the best real linear approximation to f viewed as a mapping on RZ.

The Jacobian matrix for f = (u,v) has the form

_ | valpe)  uy(po)

Ji(po) = { Un(po)  Uy{Ppo) ]

Theorem 3.2.2 applies to J¢(p,) since L is a complex linear mapping. Therefore we find the Cauchy
Riemann equations: u; = vy and uy = —v;. We have proved the following theorem:

Theorem 3.3.4.

If f =wu-+1vis a complex function which is differentiable at z, then the partial derivatives
of u and v exist at 2, and satisfy the Cauchy-Riemann equations at z, '

v Bv du dv

8z By gy Bz’

Example 3.3.5. . .

f(z)y= 2% = »*-9° + 23Xy fir 2= X+19%

hente U= X2-9Y ond V= 2xy . We cwn

l{)(’ouﬁ 'Evuw\ dﬁ%ﬂ ﬁ(az) = az S "F if A\H on a.
u)ﬁ - V%’ - X .

Yo CR ea% do Mcad held 3
More ovtr 4 Uy = -Vk = =24 .

Note, £(2) = 2 (%) = Uy~ iy,

The converse of Theorem 3.3.4 is not true in general. It is possible to have functions u,v : U C R? —
IR that satisfy the CR-equations at 2, € I/ and yet f = w+iv fails to be complex differentiable at z,.
Indeed, this is the case even if we weakened our demand and simply requested real differentiability
of f = (u,v).

Example 3.3.6. Counter-ezample to converse of Theorem 3.5.4.

iy oll  ether (xu)e R™= C.

Note 4hab alon dhe X er ) ouxer  we hove £(x+iy) = X+149

hence URY) = X and Vix,9) =49 .
w———-Y"‘“"‘—‘ R

=1, Uy=0 =0, Vy =1
ﬂquf b [c,o) 1%_4 C}?_gg“f’j /‘La/&//‘ HX:VVT-/ g‘(/y:-—\é;—: O

f//owgw( 'F,[Q) c/oaf i‘LoIl EXJ:WL Sih e ‘JC Xy ﬂff_}’(nnﬁnvau_f

a-)b [0} o)_ (welj/ Pfuug ,',q ujofam;‘rra Sechon /Mbj, ) ’
Eom/o&,x di =D amn)pévc o nw%.

{ree mext Pﬂé}ﬂj}

_]C ( o zlﬁ) {x 1% For _(x,u) e QRK 'h’})u GGZII x ”a)
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Theorem 3.3.7.

If u, v, Uz, Uy, vz, vy are continuous functions in some open disk of z, and u-{z,) = vy(20)
and wy(2,) = —vz{2z,) then f = u + iv is complex differentiable at z,. .

Proof: we are given that a function f : Dc(z.) ¢ B2 = R? is continuous with continuous partial
derivatives of its component functions « and v. Therefore, by Theorem 3.1.4 we know f is (real)
differentiable at z,. Therefore, we have a best linear approximation to the change in f near z,
which can be induced via multiplication of the Jacobian matrix:

oy o | telZe) uylze) || W
L{vy,va) = [ i (20) 'u,:(z(,) J [ v ] .

?L]‘—’{ o b]
o -b «

where @ = w,{z,) and b = v,(z,). Consequently we find L is complex linear and it follows that f
is complex differentiable at z, since we have a complex lincar map L such that

o L2 R) = Flz) — Lih)
-0 ”h”

=]

note that the limit with h in the denominator is equivalent to the limit above which followed directly
from the (real) differentiability at z,. (the following is not needed for the proof of the theorem, but
perhaps it is interesting anyway) Moreover, we can write

Ty Uy h,
L(hy ) = { o) } [ By }
o e -

_ Uphy -+ uyho
| —ughy + uzha

= why + uyho A+ i(—uyly 4 ughs)
= 1y — t1ty)(ha + ihy)

Therefore we find f/(z,) = u; — dwy, gives L{h) = ['{zp)z. [

FI’A'" 3.3.8: If £ s Conﬂ/?/EX aﬁ%fm?ﬁu{é qjé 2,

U F i eeatinvens o B,
vao'{:: GI\J&V\ -Ff('i'.,) = Qfm ({'-l?l;"'h

h—?o

\)ﬁ—#(a)) e O .

Moke,  Lim [{"(zﬁh)-ﬂa,)] &‘“ [ D (flzen) - WC(&)]]
h—> o - () Q\W[-FIZA—PH)"*{{?J}
h-2,

hW—3e
= o- £92,)
TL\Em'Forej ﬂtm 'F('i’o‘”’\ -F(Zo) nd @n‘h’nu.:].a 22 2o —:C;”cwé'_

h-a,
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3.3.1 how to calculate df/dz via partial derivatives of components

If the partials exist and are continuous near a point z, and satisfy the CR-equations then we have
a few nice formulas to calculate f'(z):

F(2) =y +iug | | J1(2) = vy —duy | | F(2) = u, — iu,

N N )
TN T~

F(z) = vy + ivg

é£:?_£ 0"1c=_‘_.?£ €Tl nrea, .
¥ 2% az 1

Example 3.3.8. . .
4(2) = 2e2 (\.<+1'Ua) ex((,os'-g +ish4) for 2= X+iy
X
= (ki - weTrng) ¢ ey 7 beene)
L_—_ 3

i

0 v
Mol Uy = ¥ n ex€orn - 9N ) e
UY = —xexsfwg —exmﬂg —‘ge"wtg- Ue = V‘f
Ve = e*shy -s'-xexffnlg. + Ye sy Uy = - Vi
- X eXcosy ® YeXsn
Vy = Xe cos )+ ces 9P

d y e C.
Also U,V,Mx,\/x,u\,!uv Conbhausws on ac “- 'F (%) exity Y=
In fob we  wn osee [ £7(2)= Uk ~1Uy \

Example 3.3.9. . . - ex(wjb}_'_xa:%_&gjw%) +
L@_Jr .F(%) — %’ +iex(:-:sm\f +sny + ‘4o ‘gz)
—F (_}(-i-iu};} = ’IUA
S W)y =X ‘ﬁ VIiY) =-%

0 ¢
Note Wy = | ol V\l = -] I, CR eq " £ £l -l_l:
}"ﬂlv{ Sor f{2)=2
. 24U . DV
Example 3.3.10. . . ‘Fw\ WM:\ ot w gé = :_g_%_. 4 1 =
\ —
0f _ 2% -ga_é_a_u+-e.a<.a\_f+a_a,\_f) x= $G+¥)
E_ﬁﬁ+ oz Y 22 X 22 2 \_{}__Jﬂte_a)
; }
= 3 Uy Uy z(_;:vx + eV
= ’-‘i(uX*‘Vy)*i(’%Vx-“‘iu\f) = uxwiu\’,,

. A NP4 v e s 7 Anrwers
&ueah'cy\} w‘ma ore )\i\es'.e IO FrUA cat uletons ! it
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3.3.2 Cauchy Riemann equations in polar coordinates

If we use polar coordinates to rewrite f as follows:
Haz(r, 0),y(r, 0)) = u(z(r, 6),y(r,0)) + iv(z(r, 8), y(r, 0))

we use shorthands F(r,f) = f(z(r,8),y(r,8)) and U(r,8) = u(z(r,8),y(r,8)) and V(r,8) =
v(z(r,8),y{r,8)). We derive the CR-equations in polar coordinates via the chain rule from multi-
variate calculus,

Up = zpty + Yty = cos{f)ug + sin(f)uy, and U = zgug + yauy = —rsin()u, + r cos(@)u,
Likewise,
Vi = mpuy + yrvy = cos(0)v + sin(f)vy, and Vy = zpus + yprvy = —rsin{f)v, + rcos(B)uy,

We can write these in matrix notation as follows:
U. | _ | cos{#) sin(#) Uz | g Vi | | cos(8) sin(A) Ug
Ug | | —rsin(f) rcos(d) Uy Vo | | —rsin(8) rcos(8) Uy

cos(f) sin(#} }_1 _1 [ rcos(f) —sin(6)
—rsin(f) rcos(f) rsin{f) cos(f)

T

Multiply these by the inverse matrix: [ ] to find

il R pec e i | g R et i g

A similar calculation holds for V. To summarize:

T

uy = cos{@)U, — L sin(f)Up|  |vs = cos(8)V; — Lsin{8)Vp

uy = sin(0)Ur + £ cos(B)Up|  |vy = sin(B)V; + L cos(8)Vp

Another way to derive these would be to just apply the chain-rule directly to u,,

_Ou  Ordu  080u

=%z dzor Gz o0

Ur

where r = /22 + y? and § = tan~!(y/z). I leave it to the reader to show you get the same formulas

_.from_that approach. The CR-equation ue =, yields: .

(A) cos(®)U, — Lsin(8)Uy = sin(6)V; + * cos(6)Vy
Likewise the CR-equation u, = —uv, yields:

(B.) sin{0)Ur + L cos(f)Up = — cos(8)V; + L sin(0)Vy
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Multiply (A.) by rsin(#) and (B.) by rcos(f) and subtract (A.) from (B.):

Up=—-rV;
Likewise multiply (A.) by 7 cos(#) and (B.) by rsin(f) and add (A.} and (B.):
rlUr =V

Finally, recall that z = re®? = r(cos(f) + isin{#)) hence
F(2) = ug + vz
= (cos(9)U, — Lsin(8)Ups) + i(cos(8)V, — Lsin(8)Vp)
= (cos(0)U, -+ sin(8)V;) -+ i(cos(§)V;. ~ sin(8)U,.)
= (cos(8} — isin(8)) U, -+ i(cos(8) — isin()) V.
= (U, +iV;)

Theorem 3.3.11.

If f(re’) = U(r,8) + iV (r,0) is a complex function written in polar coordinates 7,8 then
the Cauchy Riemann equations are written Uy = —rV, and rU, = V. If f(z,) exists then
the CR-equations in polar coordinates hold. Likewise, if the CR-equations held in polar
coordinates and all the polar component functions and their partial derivatives with respect
to r, § are continuous on an open disk about z, then f/(z,) exists and f/(z) = e~ (U, +iV;.).

I _ 0% (nek!)

Example 3.3.1?é. . " . ) ﬁ e
{(re' ) = re” = (eI@ + 1Wsihg

Ulre) = res®@ & VIirg) =vsine

U, = —riin @ & WV, = r(ec@ Ug = ~T Ve = ~rsn @ -
Ve = (oTO T s FU, = Vg = reoar

df e"ie((,og@-i—i,gfne) — e"f‘geie = 1 (l‘! o ﬁ)

[

47 Swrpris I-PMB .
Example 3.3.13. . . | -ia _
= ‘=i = - r
'ﬁ: (v, &) re'® r ro—- ———
vV \a
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3.4 analytic functions

In the preceding section we found necessary and suflicient conditions for the component functions
u,v to construct an complex differentiable function f == u + iv. The definition that follows is the
next logical step: we say a function is analytic? at 2, if it is complex differentiable at each point in
some open disk about z,.

Definition 3.4.1.

Let f = u+ iv be a complex function. If there exists ¢ > 0 such that f is complex
differentiable for each =z € D.(z,) then we say that f is analytic at z,. If f is analytic for
each z, € U then we say f is analytic on I7. If f is not analytic at z, then we say that z,
is a singular point. Singular points may be outside the domain of the function. If f is
analytic on the entire complex plane then we say f is entire. Analytic functions are
also called holomorphic functions

The theorem below shows that the sum, difference, quotient, product and composite of analytic
functions is again analytic provided that there is no division by zero in the expresssion. This means
that polynomials will be analytic everywhere, rational functions will be analytic at points where the
denominator is nonzero and similar comments apply to algebraic functions of a complex variable,
For the most part singular points will arise from division by zero in later examples.

Theorem 3.4.2.

Suppose f, g are complex differentiable at z € C and ¢ € C then
L £ (@) +o=) =L+ &
2. £((2)9(2)) = Lo(z) + F(2)E

3. if g(2) # 0 then & [ £&) | = [l 1))

a(z) g(z)?
) =k
5. if h is differentiable at f(z) then.d%(h(f(;))) = B ) (2)
6. L(c)=0 RO

T (2t =n"lforneN

ta

8. %(e") = ¥

2you may recall that a lunction on B was analyic at z, if its Talyor series at z, converged to the function in some
neighborbood of z,. This terminology is consistent but it’ll be while before we make the connection explicit
BY
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Proof: I use Proposition 2.2.8 to simplify limits throughout the argument below. That propuosition
helps us avoid direct € — § argumentation. Assume f, g are differentiable at z then
(z -+ I g4 h) - f(z)—glz z4 k)~ flz Hz+h)— gz
po FEAM H gD~ F2) - g(z) _ | Fleth) - f(2) | ge+h) = gl2)
h—0 h h—0 h k=0 h

= f'(z)+4'(2).

This proves (1.). I leave the of the other parts (2-7} as exercises for the reader. To prove (8.) recall
that e* = ¢” cos(y) + ie sin(y) for z = z +iy. Note that the Cauchy Riemann equations are indeed
satisfied by u(z,y) = e* cos(y) and v(r,y) = e® sin{y) since

Uy = U, Uy = —V, Vg =1, Uy =1U
! i ! y

gives 1, = vy and u, = —u,. Moreover, u, v, U, 1y, Uy, Uy are clearly continzous on € thus we find
flz) = ¢ iz differentiable at each z € C. Moreover,

f’("‘}) = Uy f iy = u v =
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This proves (1.). 1 leave the of the other parts (2-7) as exercises for the reader. To prove (8.) recall
that e* = e” cos(y) +ie” sin{y) for z = 2 +iy. Note that the Cauchy Riemann equations are indeed

satisfied by u(z,y) = €* cos(y) and 1}(;7:, y) = e*sin{y) since
Up = U, Uy = =V, Py =V, Uy =1U

gives uy, = vy, and u, = —v,. Moreover, v, v, Uy, Uy, vy, Uy are clearly continuous on C thus we find

f(z) = ¢% is differentiable at each =z € C. Moreover,

Fi2) =uy +ivg =u-+iv = —;(e:) = ¢, O

Example 3.4.3. . .
inj (224., zé?) = _9(_(22) + d.%('ae ) 2 It'neawf-]-ea_
- 22 + 927 4 2 2 (9_ ) : pradust caly

- A7 + e—E _ %e“'z A uje,& Cln-u..\r\ rull

* on @

Example 3.4.4. . .
d /1 _ e o L by 3)
dz (\ -2 ) - (\—2)" (-22 E

a\-l—um-h\:ol«a) d (.._.L___.) h- ‘2) (‘“ ) = Z:-L%Eﬁ

dz \\—%
l 1 o u. l-}'\. Ulmf -
noke €)= T3 and £@) = o O A h o.;‘: _1_:___:3&“31-
Example 3.4.5. . .
erc& (z) _ ra (en Sema  branch of Qc%)
oce)__»ﬂo(e)d - 4, ]__:_1__
= gt = e e ho@] = Flp@)]= & ~

b Zoa ()
Example 3.4.6. . . lel b € a 'H‘\e,h 'Zb = & 3
branch of ,Q_o%(E]. We  coleulidn b«a choin (oke,

1Y) = el e hblpte] =2 &

dz

on JSoume

j’l_;}(z*’) = bz 6@, a beanch of Qo?caJ)
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Theorem 3.4.7.

If f:U ¢ C— Cis complex differentiable at 2z, then f is continuous at z,. Moreover, if f
is analytic at z, then there exists an open disk D.(z,) on which f is continuous.

Proof: We seek to show that limy, . f{z, + k) = f(2e). Consider that
Ilh% flzg-+h) = f("fcil) = ]HII}( Flzo + h-) - f(:fl)) = {)
V—+

=

o gim PGt R) = fl2)
h—=0 h

< lim{h) lim Flzo 4 1)~ flza)
h—0 h—0 h

& 0 f1z)=0

= {}

={

The last statement is clearly true and the limit properties clearly hold because all the limits stated
in the caleulation exist. Finally, if f is analytic at z, then it follows that there exists an open disk
D (z,) such that f is differentiable at each point in the disk. But then f is contimious at each
poiut as well by the first part of the theoven. O

The contrapositive of the theorem above indicates that if there does not exist at least one open
disk on which the function is continuous then the function is not analytic at that point. It follows
that we have to throw out some of the domain of the branches we’ve used for the root function or
the principal argument. To avoid discontinuity we must throw out the branch entirely.

Example 3.4.8. The princpal square root function is defined by fi(z) = |z|lexp(iArg(z)/2). The
domain of f1 is governed by the princpal argument; dom(f) = {z € C| z # 0} However, Arg(z) =7
gives points of discontinuily since

fi(z) = izlexp(idrg(z)/2) = |2|(cos(Arg(2)/2) + isin{Arg(z}/2))

has fi(z) — lz|sin(w/2) = |2| for paths with Arg(z) — 7 whereas f1(z) — |z|sin(—7/2) = —|z]|
Jor paths with Arg(z) — —w. We must remove Arg(z)} = 7 from the domain if we wish f| to be
analytic.

Example 3.4.9. Note, f(z) = Arg(z) is analytic if we restrict to
dom(f) = {2z € C | if Im(z) = O then Re(z) £ 0}.

In other words, dom(f) = C — negative real azis and origin.

Similar comments apply to various branches of the logarithm and the n — ¢h root mapping. The
key is that continuity is required for an analytic function. However, continuity is not a sufficient
condition for analyticity.
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Theorem 3.4.10.

If f is analytic on a domain D and f'(z) =0 for all z € D then f is constant on D.

Proof: let a,b € D and, by connectedness of D, consider the line segment {a, b] C I parametrized
by ¥(t) =a+t(b—a) for 0 <¢ < 1. Note, f=vy:[0,1] = [a,b] = C. The generalized chain rule
states that the differential of the composite of two hunctions is the composite of the differentials,

Al fey)=dynfodiy

But, f'(z) = 0 for all z € D implies dyy f(h) = f'(v{(t))h = 0 for all h € C. Thus d,¢yf = 0 which
gives us di{f o) = 0. It follows that, if f = u+ v then df = (df /dt)dt = (du/dt + idv/di)dt = O
thus,
%(‘U("‘f{t))) = and %(?}(",‘(i))) = {}

for all t € [0, 1]. But then u([a,b]) = {u,} and v(Ja, b} = {v,} and we find that f([e,b]) = v, +iv,
so the function is constant along the line segment in 0. But, it D is connected then we can conuect
any two points p, ¢ by a sequence of line segments and each line segment remains in D hence the
value of the function is constant on each line segement. It follows that the function has f(p) = f(q¢)
for all p,q € D thus f(D) = {u, +ive}. U

3.5 differentiation of complex valued functions of a real variable

Perhaps some of the concepts in the proofs of Theorem 3.4.10 above seemed bizarre. In this section
we take some time to derive the chain rule for complex-valued functions of a real variable with an
analytic complex function. We'll conclude this section with a few comments which reflect on the
logical necessity of the complex exponential function®. Let me point out that differentiation of a
complex-valued function of a real variable is nothing more than differentiation of a two-dimensional
space curves in calculus II1. We just use a complex notation for two-dimensional real vectors in this
course. Let f{t) =< u(t),v(t) > for t € R then

d. = d d

= fO)i=<%. T >

In complex notation, f = u + 4v and df — du 4 ;dv  The criteria for the existence of df /dt for
dt dt di

f:R — C is much weaker than the criteria for the existence of df /dz for f : C — C.

Example 3.5.1. Note, f(z) = Z is not analytic so f'(z) is not defined. However, if y(t) = t + it*
then (f oy){(t) = f(t +it?) =t — it* and

2 cde2 .
Ll (fop)ty] =4[ t—it* | =% — i =124,

3you could take this section as motivation for the complex exponential we defined earlier, this section is not
logically necessary to earlier calculations however it might give you some idea of why the complex exponential was
delined as it was. Another motivation comes from the extension of power series to the complex setting, we'll see that
later on
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Suppose f = u + v is analytic and and let y(¢) = a(t) + ib(t) for each t € R where a,b: R — R. If
we compose f with « then fey: R -+ € and we can calculate

£ (Fon®) 1= £l u(v®) +iv(v(¥) ]

L( u(a(t), b(t)) -+ iv(a(t), b(t)) ]

[ u(a(t), b(t)) 1+ %[ v(alt),b(t)) ]
= umdt +uy +i[vmfi—':+vy%

= (u + wx)% — iy + vy )i %

_ dfda 2_,ﬁzdb
= 3z di dt

= F(y(1)) 8 1 [ ()i
= [(y(t))(deidb)
= f{7(t) %

We could omit the arguments as is often done in the statement of a chain rule and simply say that

EL-|::. Sl &[n.

4] f(a(t) )= L=

I remind the reader that the formula above holds for analyfic functions.

Theorem 3.5.2.
Let f(t) = exp(At) for all ¢t € R then df /dt = Aexp(At).

Proof: Observe that v(¢) = M = Re( Ayt +ilm{A)t has dvy/dt = Re(X\)+ilm(X) and f(z) = exp(z)
has df /dz = cap(z) therefore, by the caleulation preceding the theorem, d/dt{eap(A)) = Aeap(At).

Some authors might motivate the definition of the complex exponential function by assuming it
should satisfy the theorem above. However you choose the starting point we should all agree that
the complex exponential function should reduce to the real exponential function when restricted
to the real-axis and it should maintain as many properties of the real exponential function as is
reasonably possible in the complex setting. Indeed this is how all complex functions are typically
defined. We want two main things: to extend f: R — R to f :C = C we expect

L flr="f

2. interesting properties of f generalize to properties of f.

~ Item (2.) is where the fun is. We'll see how to define complex trigonmetric and hyperbolic functions

in the upcoming sections. I suspect it’s worth noting that one problem that naturally supggests the
definition of the complex exponential is the problem of 27¢ order ordinary-constant-coefficient
differential equations:; that is, suppose you want to solve:

ay”“*‘by!'{‘ﬂ'y:o
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Since this analagous to ' = ay which has solution ¥ = e® it’s natural to guess the solution has
the form y = eM. Clearly, ¥’ = Ae™ and y" = A2e? hence

af +by ey =0 = aXleM+breM +cheM = (aA? +bA + c)e“ =0

Therefore we find a necessary condition on A is that it satisfy the characteristic equation:

y=e solves ay’ + 0/ +ey=0 = ad+bA+c=0.

Apparently, solving the differential equation ay” + by’ + cy = 0 reduces to the problem of solving
a corresponding algebra equation. Notice that we are tempted to answer the question of what
a complex exponential is in this setting. Whether or not we began this discussion with complex
things in mind the math has brought us an equation which necessarily includes complex cases.
Moreover, it’s easy to see that y” + y = 0 has y = sin(t) and y = cos{t) as solutions. Note that
y" + 1y = 0 gives A + 1 = 0 which has solutions A = &i. We then must suspect that the complex
exponential function has something to do with sine and cosine. The founders of complex analysis
were well aware of these sort of differential equations and it is likely that many of the complex
functions first found their home inside some differential equation where they naturally arise as part
of some general ansatz.
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3.6 analytic continuations

We do not yet have the tools to prove the following statement. I postpone the proof for now.

Conjecture 3.6.1.

If f is analytic on a disk )7 and f(z) = 0 for all z € § where S is either a line-segment or
another disk contined in Dy then f{z) =0 for all z € Dy.

Note we can extend this to a domain without too much trouble.
Theorem 3.6.2.

If f is analytic on a domain D and if f(z) = 0 for all z € § where S is either a line-segment
or another disk contined in I} then f(z) =0 for all z € D.

Proof: Let z, € § and pick w € O — 5. Since D is connected there exists a polygonal path
v = {zg, 21 U |71, 2a] U+ - U [2p-1, 0] where each of the line segments lies inside D. Let 6 be the
smallest distance between a point on L and the boundary of . Construct disks of radius § with
centers separated by a distance § all along L. Notice that [ is open so even the closest open disk
will not get to the edge of D (which is not contained in the open set D). Moreover, the rest of the
disks also remain in 2. By our conjecture we find that the disk which is partially in & must have
f identically zero since we can find a sinaller disk totally in 8 so the conjecture gives us f zero on
the first disk partly outside §. Then we can continue this process to the next disk. We simply take
a smaller digk in the intersection of the two disks and because we alveady know it is zero from the
last siep of the argument it follows by the conjecture that f is zero on the second disk. Let me
sketch a picture of the argument above:

As you ean see, the argument can be repeated until we reach the disk containing w. Thus we find
f(w) = 0 for arbitrary w € D hence f(D) = {0}. I
Theorem 3.6.3.

Let € be a domain or a line segment. If f is analytic on a domain D which contains {2 then
J is uniquely determined by its values on (2.

Proof: Suppose f and g are analytic on D and f(z) = g{z) for all z € £2. Natice that h : D — C

. Cl(‘ﬁl’l(’d ‘I.).Yhmf ___gis iderﬂl(‘ﬂll}" ZET0 UilQ Séll(:(’ h :) — ( ) ( ) — (} for _____ ﬂll > C ﬂ Bl.lt tl.len S

by 3.6 we find h{z) =0 for all z € D. It follows that f =

We say that f is the analytic continuation of f|g. There is more to learn and say about analytic,
continuations in general, however we have what we need for our purposes at this point. Let’s get
to the point:
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Theorem 3.6.4.

ff:R—=RCC isa function and f:C—= C is an extension of J which is analytic then
f is unique. In particular, if there is an analytic extension of sine, cosine, hyperbolic sine
or hyperbolic cosine then those extensions are unique.

This means if we demand analyticity then we actually had no freedom in our choice of the exponen-
tial. If we find a complex function which matches the exponential function on a line-segment ( in
particular a closed interval in R viewed as o subset of C is a line-segment ) then there is just one
complex function which agrees with the real exponential and is complex differentiable everywhere.

flz)=¢€" extends uniquely to f(z) = el (cos(Im(z)) + i sin(Im(z))).

Note f(z + 0i) = e*(cos{0) + isin{0)) = &® thus f|lzg = f. Naturally, analyiticity is a desireable
property for the complex-extension of known functions so this concept of analytic continuation is
very nice. Existence aside, we should first construct sine, cosine etc... then we have to check they
are both analytic and also that they actually agree with the real sine or cosine etc... If a function
on B has vertical asymptotes, points of discontinuity or points where it is not smooth then the
story is more complicated.

3.7 trigonometric and hyperbolic functions

Recall we found that for # € R the formulas cos(f) = £ (e’ + &™) and sin(f) = 2% (e — ™) were

useful for deriving trigonmetric identities. We now extend to complex arguments.

Definition 3.7.1.

We define cos(z) = -é—(e""’ + e %) and sin(z) = -,_,%(e“ —e ) forallzeC

Note that cos(z) and sin(z) are sums of composites of analytic functions since the function g(z) = cz
is clearly analytic and h(z) = €® is analytic. Moreover, it is clear that f(z) = cos{z) restricts to
the usual real cosine function along the real axis. This is a consequence of Euler’s formula:

cos(z + i0) = 1 (e + e7) = L (cos(z) + isin(z) + cos(z) + i sin{—z)) = cos(x)
Don't get lost in the notation here, the " cos” on the left is the newly defined complex cosine whereas
the "cos” on the right is the cosine you know and love from the study of circular functions. The
fact that the complex cosine is the unique analytic continuation of the real cosine function makes
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Proposition 3.7.2.

Let z € C,
1. sin(z) and cos(z) are unbounded.

2. sin(z) is an odd fimction of z

3. cos{z) is an even function of z

Notice that z = 4y gives cos(z) = cos(iy) = 3(e™¥ + €¥). Thus the complex cosine can assume
arbitrarily large values. Likewise, sin(iy) = zl(e Y — e¥) has |sin(iy)| take arbitrarily large values
) an

1
as we range over the complex plane. Items (2. d (3.) are immediate from the definition.

Proposition 3.7.3.

Let z,w € C,
1. sin(z + w) = sin(z) cos(w) + cos{z) sin{w)
2. cos(z + w) = cos(z) cos(w) — sin(z) sin(w)
3. sin?(2) + cos?(z) = 1
4. sin(2z) = 2sin(z) cos(z)
5. sin?(z) =

1
2
. cos?(z) = (1 + cos(2z))

o

I leave the proof to the reader. I think some of these are homeworks in Churchill, some I may have
assigned.

Definition 3.7.4.

We define the hyperbolic cosine cosh(z) = %(ez + e‘z) and the hyperbolic sine
sinh(z) = (e —e %) forall z € C.

You may recall that we defined hyperbolic cosine and sine to be the even and odd parts of the
exponential function respective,

e —%(e +e™" )+§(em—e_$)

o ]

n'a

Ccosha)  snh(m)

Clearly the complex hyperbohc functlons restrict to the real exponenmal functmns and they are
also entire since they are the sum and composite of entire functions e and —z. It follows that
the complex hyperbolic functions defined above are the unique analytic continuation of the real
hyperbolic functions. You could probably fill a small novel with interesting formulas which are
known for hyperbolic functions. We will content ourselves to notice these three items:
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Proposition 3.7.5.

1. isinh(iz) = sin(z)
2. cosh(iz} = cos(z)

3. qosh2(z) — sinh?(z) =1

Finally, I should mention that the other elementary trigonometric and hyperbolic functions are
likewise defined. For example,

tan(z) = zg;(Z}), tanh(z) = :;';;Ez) sec(z) =

sech(z) =

1 1
cos{z)’ cash(z) "’

Inverse functions may also be defined for suitably restricted functions. Of course this should not
be surprising, even in the real case we have to restrict sine, cosine and tangent in order to obtain
standard inverse functions. This is essentially the same issue as the one we were forced to deal with
in our discussion of branch cuts.

Proposition 3.7.6.

.1. d/dz(sin(z)) = cos(z)
2. d/dz(cos(z)}) = —sin(z)
3. d/dz(tan(z)) = sec?(z)
4. d/dz(sinh{z)) = cosh(z)
5. d/dz{cosh(z)) = sinh(z)

(

6. d/dz(tanh(z)}) = sech®(z}

I leave the proof of these to the reader. Also, it might be interesting to study the geometry of the
mapping w = sin(z)} and so forth. Many complex variables texts have nice pictures of the geometry,
I may put some up on the projecter in lecture. The links on the webpage point you to several sites
which explore the geometry of mappings.

We've discussed in some depth how to determine if a given function f = u + v is in fact analytic.
In this section we study another angle on the story. We learn that the component functions
u, v of an analytic function f = u - fv are harmonic conjugates and they satisfy the phyically
significant Laplace’s equation VZ¢ = 0 where V? = §%/8z% 4+ 82/0%°. Tn addition we'll learn
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that if we have one solution of Laplace’s equation then we can consider it to be the "u” of some
yet undetermined analytic function f = w + iwv. The remaining function v is then constructed
through some integration guided by the CR-equations. The construction is similar to the problem
of construction of a potential function for a given conservative force in calculus I11.

Proposition 3.8.1.

If f = u+ivis analytic on some domain D C C then u and v are solutions of Laplace’s
equation ¢yz + ¢y = 0 on D,

Proof: since f = u + iv is analytic we know the CR-equations hold true; u, = v, and u, = —uv,.
Moreover, f is continuously differentiable so we may commute partial derivatives by a theorem
from multivariate caleutus. Consider

U+ Uy = (Ur )+ (y)y = (Uy)e + (—a)y = Uy — Vayy = 0

Likewise,
Ve + Uy = ('U:z:):x -+ {'Uy)y = {““‘y):r: + (u.r)y = — Uy Uy = Q

Of course these relations hold for all points inside 2 and the propuosition follows. [J

Example 3.8.2. Note f(z) = 2% is analytic with u = z° — y® and v = 2zy. We calculate,
Uge = 2, Uyy = —2 = Ugg+ Uy, =0

Note vz = vy, = 0 so v is also e solution to Laplace’s equation.

Now let’s see if we can reverse this idea.

Example 3.8.3. Let u(z,y) = z + c1 notice that u solves Laplace’s equation. We seek to find a
harmonic conjugate of u. We need to find v such that,

ov  Ou du Bu_

R T2y

dy Oz dx dy
Integrate these equations to deduce v(x,y) = y + co for some constant ¢z € R. We thus construct
an analytic function f(x,y) =z + ey + iy + ) =z + iy + ¢y + ico. This is just f(z) = z -+ ¢ for
c=cy +ics.

Example 3.8.4. Suppose u(z,y) = e* cos(y}. Note that u,, = u whereas uy, = —u hence uyg -+
uyy = 0. We seek to find v such that

— = —— = T o8 — = —— =¢%gin
gy " aw ¢ W =gy W)

Integrating v, = e” cos(y) with respect to y end vz = e®sin(y)} with respect to x yields v{z,y) =

e®sin{y). We thus construct an anelytic function f(z,y) = e®cos(y) + ie”sin(y). Of course we

should recognize the function we just constructed, it’s just the complez exponential f(z) = e*.
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Notice we cannot just construct an analytic function from any given function of two variables. We
have to start with a solution to Laplace’s equation. This condition is rather restrictive. There
is much more to say about harmoenic functions, especially where applications are concerned. My
goal here was just to give another perspective on analytic functions. Geometrically one thing we
could see without further work at this point is that for an analytic function f = u + ‘v the families
of level curves u{z,y) = c1 and v(z,y) = co are orthogonal. Note grad(u) =< ug,u, > and
grad{v) =< vz, vy > have

grad(u) - grad(v) = uzvg + uyvy = —ugly + Uyl =0

This means the normal lines to the level curves for w and v are orthogonal. Hence the level curves
of v and v are orthogonal.
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