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preface

format of my notes

These notes were prepared with LATEX. You’ll notice a number of standard conventions in my notes:

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.

4. proofs start with a Proof: and are concluded with a �. However, we also use the discuss...
theorem format where a calculation/discussion leads to a theorem and the formal proof is left
to the reader.

The purpose of these notes is to organize a large part of the theory for this course. Your text
has much additional discussion about how to calculate given problems and, more importantly, the
detailed analysis of many applied problems. I include some applications in these notes, but my
focus is much more on the topic of computation and, where possible, the extent of our knowledge.
There are some comments in the text and in my notes which are not central to the course. To learn
what is most important you should come to class every time we meet.

sources and philosophy of my notes

I draw from a number of excellent sources to create these notes. Naturally, having taught from the
text for about a dozen courses, Nagle Saff and Snider has had great influence in my thinking on
DEqns, however, more recently I have been reading: the classic Introduction to Differential Equa-
tions by Albert Rabenstein. I reccomend that text for further reading. In particular, Rabenstein’s
treatment of existence and convergence is far deeper than I attempt in these notes. In addition,
the required text Differential Equations with Applications by Ritger and Rose is a classic text with
many details that are lost in the more recent generation of texts. I’m also planning to consult the
texts by Rice & Strange, Zill, Edwards & Penny , Finney and Ostberg, Coddington, Zachmanoglou
and Thoe, Hille, Ince, Blanchard-Devaney and Hall, Martin, Campbell as well as others I’ll add to
this list once these notes are more complete (some year).

Additional examples are also posted. My website has several hundred pages of solutions from prob-
lems in Nagle Saff and Snider. I hope you will read these notes and Ritger & Rose as you study
differential equations this semester. My old lecture notes are sometimes useful, but I hope the
theory in these notes is superior in clarity and extent. My primary goal is the algebraic justifica-
tion of the computational essentials for differential equations. For the Spring 2013 semester I have
changed to Ritger & Rose as the primary text. Nagle Saff and Snider is better in some respects,
but I think $160 is a bit much and older editions are a bit tricky to find for a relatively large class.
I decided to leave some comments about Nagel Saff and Snider in these notes, I’m sorry if they are
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a distraction, but if you are curious then you are free to take a look at my copy of Nagel Saff and
Snider in office hours. You don’t need to do that, but the resource is there if you want it. I hope
you can tell from these notes and your homework that my thinking comes from a variety of sources
and there is much more for everyone to learn. Of course we will hit all the basics in your course.

The topics which are very incomplete in this current version of my notes is:

1. the special case of Frobenius method

2. the magic formulas of Ritger and Rose on constant coefficient case

3. Laplace transforms

4. theory of orthogonal functions, Fourier techniques

5. separation of variables to solve PDEs

6. linear system analysis via Greens functions and the transfer function

I have hand-written notes on most of these topics and I will post links as the semester progresses
to appropriate pdfs. More than we need is already posted on my website, but I’m trying to refine
these notes in view of the presentation in Ritger and Rose hence I’ll probably write up a few new
sets of notes later this semester.

James Cook, January 5, 2013.

version 2.0
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Chapter 1

terminology and goals

1.1 terms and conditions

A differential equation (or DEqn) is simply an equation which involves derivatives. The order
of a differential equation is the highest derivative which appears nontrivially in the DEqn. The
domain of definition is the set of points for which the expression defining the DEqn exists. We
consider real independent variables and for the most part real depedent variables, however we will
have occasion to consider complex-valued objects. The complexity will occur in the range but not
in the domain. We continue to use the usual notations for derivatives and integrals in this course.
I will not define these here, but we should all understand the meaning of the symbols below: the
following are examples of ordinary dervatives

dy

dx
= y′

d2y

dt2
= y′′

dny

dtn
= y(n) d~r

dt
=

〈
dx

dt
,
dy

dt

〉
because the dependent variables depend on only one independent variable. Notation is not
reserved globally in this course. Sometimes x is an independent variable whereas other times it
is used as a dependent variable, context is key; dy

dx suggests x is independent and y is dependent

whereas dx
dt has independent variable t and dependent variable x. A DEqn which involves only

ordinary derivatives is called an Ordinary Differential Equation or as is often customary an
”ODE”. The majority of this course we focus our efforts on solving and analyzing ODEs. However,
even in the most basic first order differential equations the concept of partial differentiation and
functions of several variables play a key and notable role. For example, an n-th order ODE is an
equation of the form F (y(n), y(n−1), . . . , y′′, y′, y, x) = 0. For example,

y′′ + 3y′ + 4y2 = 0 (n = 2) y(k)(x)− y2 − xy = 0 (n = k)

When n = 1 we say we have a first-order ODE, often it is convenient to write such an ODE in
the form dy

dx = f(x, y). For example,

dy

dx
= x2 + y2 has f(x, y) = x2 + y2)

dr

dθ
= rθ + 7 has f(r, θ) = rθ + 7 + 7

9



10 CHAPTER 1. TERMINOLOGY AND GOALS

A system of ODEs is a set of ODEs which share a common independent variable and a set of
several dependent variables. For example, the following system has dependent variables x, y, z and
independent variable t:

dx

dt
= x2 + y + sin(t)z,

d2y

dt2
= xyz + et,

dz

dt
=
√
x2 + y2 + z2.

The examples given up to this point were all nonlinear ODEs because the dependent variable or
it’s derivatives appeared in a nonlinear manner. Such equations are actually quite challenging to
solve and the general theory is not found in introductory textbooks. It turns out that we can solve
many nonlinear first order ODEs, however, solvable higher-order nonlinear problems are for the
most part beyond the reach of this course.

A n-th order linear ODE in standard form is a DEqn of the form:

any
(n) + an−1y

(n−1) + · · ·+ a1y + aoy = g

where an, an−1, . . . , a1, ao are the coefficients which are generally functions and g is the forcing
function or inhomogenous term. Continuing, if an n-th order ODE has g = 0 then we say it
is a homogenous DEqn. When the coefficients are simply constants then the DEqn is said to be
a constant coefficient DEqn. It turns out that we can solve any constant coefficient n-th order
ODE. A system of ODEs for which each DEqn is linear is called a system of linear DEqns. For
example:

x′′ = x+ y + z + t y′′ = x− y + 2z, z′′ = z + t3.

If each linear DEqn in the system has constant coefficients then the system is also said to be a
constant coefficient system of linear ODEs. We will see how to solve any constant coefficient
linear system. Linear differential equations with nonconstant coefficients are not as simple to solve,
however, we will solve a number of interesting problems via the series technique.

Partial derivatives are defined for functions or variables which depend on multiple independent
variables. For example,

ux =
∂u

∂x
Txy =

∂2T

∂y∂x
∇2Φ = ∂2

xΦ + ∂2
yΦ + ∂2

zΦ ∇ • ~E ∇× ~B.

You should have studied the divergence ∇ • ~E and curl ∇ × ~B in multivariable calculus. The ex-
pression ∇2Φ is called the Laplacian of Φ. A DEqn which involves partial derivatives is called a
Partial Differential Equation or as is often customary a ”PDE”. We study PDEs towards the
conclusion of this course. It turns out that solving PDEs is naturally accomplished by a mixture
of ODE and general series techniques.
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1.2 philosophy and goals

What is our primary goal in this course? In a nutshell; to find the solution. Obviously this begs
a question: ”what is the solution to a DEqn?” I would answer that as follows: a solution to a
DEqn is a function or level set for which the given differential equation is a differential
consequence of the solution. In other words, a solution to a given DEqn is some object that
satifies the DEqn when you ”plug it in”. For example, y = cos(x) is a solution of y′′ + y = 0 since
y = cos(x) implies y′′ = − cos(x) = −y thus y′′ + y = 0. However, I prefer the term ”differen-
tial consequence” as it is more honest as to what I expect in calculations. Sometimes we cannot
even solve for the solution as a function, it may be that implicit differentiation is more natural.
Thinking in terms of functions alone would be a severely limiting perspective in this course. For
example, if you implicitly differentiate xy3 + y2 = sin(x) + 3 then it is easy to see the equation
xy3 + y2 = sin(x) + 3 defines a solution of y3 + 3xy2 dy

dx + 2y dydx − cos(x) = 0. I would rather not find
the solution as a function of x in that example. That said, it is convenient to define an explicit
solution on I ⊆ R for an n-th order ODE F (y(n), y(n−1), . . . , y′′, y′, y, x) = 0 is a function φ such
that F (φ(n)(x), φ(n−1)(x), . . . , φ′′(x), φ′(x), φ(x), x) = 0 for all x ∈ I. In many problems we do not
discuss I since I = R and it is obvious, however, when we discuss singular points in the later portion
of the course the domain of defintion plays an interesting and non-trivial role.

Very well, the concept of a solution is not too difficult. Let’s ask a harder question: how do we find
solutions? Begin with a simple problem:

dy

dx
= 0 ⇒

∫
dy

dx
dx =

∫
0 dx ⇒ y = co.

Integrating revealed that solutions of y′ = 0 are simply constant functions. Notice each distinct
value for co yields a distinct solution. What about y′′ = 0?

d2y

dx2
= 0 ⇒

∫
d

dx

[
dy

dx

]
dx =

∫
0 dx ⇒ dy

dx
= c1.

Integrate indefinitely once more,∫
dy

dx
dx =

∫
c1 dx ⇒ y = c1x+ co.

We derive y = c1x+ co is a solution for each pair of constants co, c1. In other words, there is a

whole family of solutions for y′′ = 0 the solution set is {f | f(x) = c1x + co for co, c1 ∈ R}. Each
integration brings in a new integration constant. To solve y(n)(x) = 0 we can integrate n-times

to derive y =
1

(n− 1)!
cn−1x

n−1 + · · ·+ 1

2
c2x

2 + c1x+ co. We should know from Taylor’s Theorem

in second semester calculus the constants are given by y(n)(0) = cn since the solution is a Taylor
polynomial centered at x = 0. Hence we can write the solution in terms of the value of y, y′, y′′

etc... at x = 0: suppose y(n)(0) = yn are given initial conditions then

y(x) =
1

(n− 1)!
ynx

n−1 + · · ·+ 1

2
y2x

2 + y1x+ yo
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We see that the arbitary constants we derived allow for different initial conditions which are possible.
In calculus we add C to the indefinite integral to allow for all possible antiderivatives. In truth,∫
f(x) dx = {F | F ′(x) = f(x)}, it is a set of antiderivatives of the integrand f . However, almost

nobody writes the set-notation because it is quite cumbersome. Likewise, in our current context
we will be looking for the solution set of a DEqn, but we will call it the general solution. The
general solution is usually many solutions which are indexed by a few arbitrary constants. For
example, the general solution to y′′′− 4y′′+ 3y′ = 0 is y = c1 + c2e

t + c3e
3t. Or the general solution

to x′ = −y and y′ = x is given by x = c1 cos(t) + c2 sin(t) and y = c1 sin(t) − c2 cos(t). To be
careful, this is not always the case, there are curious DEqns which have just one solution or even
none:

(y′)2 + y2 = 0 (y′)2 + y2 = −1.

There are other nonlinear examples where the constants index over most of the solution set, but
miss a few special solutions.

We just saw that integration can sometimes solve a problem. However, can we always integrate?
I mentioned that y′′ + y = 0 has solution y = cos(x). In fact, you can show that y = c1 cos(x) +
c2 sin(x) is the general solution. Does integration reveal this directly?

y′′ = −y ⇒
∫
y′′ dx =

∫
−y dx ⇒ y′ = C +

∫
−y dx

at this point we’re stuck. In order to integrate we need to know the formula for y. But, that is
what we are trying to find! DEqns that allow for solution by direct integration are somewhat rare.
I’m not saying the solution cannot have an integral, for example, y′′(x) = g(x) for some continuous
function g has a solution which is obtained from twice integrating the DEQn: I’ll find a solution
in terms of the initial condtions at x = 0:

y′′ = g ⇒
∫ x

0
y′(t) dt =

∫ x

0
g(t) dt ⇒ y′(x) = y′(0) +

∫ x

0
g(t) dt

integrate once more, this time use s as the dummy variable of integration,
note y′(s) = y′(0) +

∫ s
0 g(t) dt hence∫ x

0
y′(s) ds =

∫ x

0

[
y′(0) +

∫ s

0
g(t) dt

]
ds ⇒ y(x) = y(0) + y′(0)x+

∫ x

0

∫ s

0
g(t) dt ds.

Note that the integral above does not involve y itself, if we were give a nice enough function g then
we might be able to find an simple form of the solution in terms of elementary functions.

If direct integration is not how to solve all DEqns then what should we do? Well, that’s what
I’m going to be showing you this semester. Overall it is very similar to second semester calculus
and integration. We make educated guesses then we differentiate to check if it worked. Once we
find something that works then we look for ways to reformulate a broader class of problems back
into those basic templates. But, the key here is guessing. Not blind guessing though. Often we
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make a general guess that has flexibility built-in via a few parameters. If the guess or ansatz is
wise then the parameters are naturally chosen through some condition derived from the given DEqn.

If we make a guess then how do we know we didn’t miss some possibility? I suppose we don’t
know. Unless we discuss some of the theory of differential equations. Fortunately there are deep
and broad existence theorems which not only say the problems we are trying to solve are solvable,
even more, the theory tells us how many linearly independent solutions we must find. The theory
has the most to say about the linear case. However, as you can see from the nonlinear examples
(y′)2 + y2 = 0 and (y′)2 + y2 = −1, there is not much we can easily say in general about the
structure of solutions for nonlinear ODEs.

We say a set of conditions are initial conditions (IC) if they are all given at the same value of an
independent variable. In contrast, boundary conditions or BCs are given at two or more values
of the independent variables. If pair a DEqn with a set of initial conditions then the problem of
solving the DEqn subject to the intial conditions is called an initial value problem or IVP. If
pair a DEqn with a set of boundary conditions then the problem of solving the DEqn subject to
the boundary conditions is called a boundary value problem or BVP. For example,

y′′ + y = 0 with y(0) = 0 and y′(0) = 1

is an IVP. The unique solution is simply y(x) = sin(x). On the other hand,

y′′ + y = 0 with y(0) = 0 and y(π) = 0

is a BVP which has a family of solutions y(x) = sin(nx) indexed by n ∈ Z≥0. Other BVPs may have
no solutions at all. We study BVPs in our analysis of PDEs towards the end of this course. Given
a linear ODE with continuous coefficient and forcing functions on I ⊆ R the IVP has a unique
solution which extends to all of I. In particular, the constant coefficient linear ODE has solutions
on R. This is a very nice result which is physically natural; given a DEqn which models some
phenomenon we find that the same thing happens every time we start the system with a particular
initial condition. In constrast, nonlinear DEqns sometime allow for the same initial condition to
yield infinitely many possible solutions1

The majority of our efforts are placed on finding functions or equations which give solutions to
DEqns. These are quantitative results. There is also much that can be said qualitatively or
even graphically. In particular, we can study autonomous systems of the form dx/dt = f(x, y)
and dy/dt = g(x, y) by plotting the direction field of the system. The solutions can be seen by
tracing out curves which line-up with the arrows in the direction field. Software2 will plot direction
fields for autonomous systems and you can easily see what types of behaviour are possible. All of
this is possible when explicit quantitative solutions are intractable.

1I don’t mean to say nonlinear DEqns are unphysical, however, the linear case is easier to understand.
2such as pplane of Matlab which is built-in to an applet linked on the course page
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Numerical solutions to DEqns is one topic these notes neglect. If you are interested in numerical
methods then you should try to take the numerical methods course. That course very useful to
those who go on to business and industry, probably linear algebra is the only other course we
offer which has as wide an applicability. Sadly most students avoid this course due to its supposed
difficulty. The other topic which is neglected in these notes is rigor. For one thing, I use the concept
of a differential in this course. Recall that if F is a function of x1, x2, . . . , xn then we defined

dF =
∂F

∂x1
dx1 +

∂F

∂x2
dx2 + · · ·+ ∂F

∂xn
dxn =

n∑
i=1

∂F

∂xi
dxi.

When the symbol d acts on an equation it is understood we are taking the total differential. I
assume that is reasonable to either write

dy

dx
= f(x, y) or dy = f(x, y)dx or f(x, y)dx− dy = 0.

Some mathematicians will say the expressions on the right are not so meaningful. I reject that.
They are meaningful and I explain in great detail in the advanced calculus course how the method
of differentials enjoys its sucess on the back of the implicit and inverse function theorems. However,
this is not advanced calculus so I will not prove or deeply discuss those things here. I’m just going
to use them, formally if you wish. More serious is our lack of focus on existence and convergence,
those analytical discussions tend to beg questions from real analysis and are a bit beyond the level
of these notes and this course.

1.3 a short overview of differential equations in basic physics

I’ll speak to what I know a little about. These comments are for the reductionists in the audience.

1. Newtonian Mechanics is based on Newton’s Second Law which is stated in terms of a time
derivative of three functions. We use vector notation to say it succinctly as

d~P

dt
= ~Fnet

where ~P is the momentum and ~Fnet is the force applied.

2. Lagrangian Mechanics is the proper way of stating Newtonian mechanics. It centers its
focus on energy and conserved quantities. It is mathematically equivalent to Newtonian Me-
chanics for some systems. The fundamental equations are called the Euler Lagrange equations
they follow from Hamilton’s principle of least action δS = δ

∫
L dt = 0,

d

dt

[
∂L

∂ẏ

]
=
∂L

∂y
.
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Lagrangian mechanics allows you to derive equations of physics in all sorts of curvy geometries.
Geometric constraints are easily implemented by Lagrange multipliers. In any event, the
mathematics here is integration, differentiation and to see the big picture variational calculus
(I sometimes cover variational calculus in the Advanced Calculus course Math 332)

3. Electricity and Magnetism boils down to solving Maxwell’s equations subject to various
boundary conditions:

∇ · ~B = 0, ∇ · ~E =
ρ

εo
, ∇× ~B = µo ~J − µoεo

∂ ~E

∂t
∇× ~E = −∂

~B

∂t
.

Again, the mathematics here is calculus of several variables and vector notations. In other
words, the mathematics of electromagnetism is vector calculus.

4. Special Relativity also uses vector calculus. However, linear algebra is really needed to
properly understand the general structure of Lorentz transformations. Mathematically this is
actually not so far removed from electromagnetism. In fact, electromagnetism as discovered by
Maxwell around 1860 naturally included Einstein’s special relativity. In relativitic coordinate
free differential form language Maxwell’s equations are simply stated as

dF = 0, d ∗ F = ∗J.

Newtonian mechanics is inconsistent with these equations thus Einstein’s theory was in-
evitable.

5. General Relativity uses calculus on manifolds. A manifold is a curved surface which allows
for calculus in local coordinates. The geometry of the manifold encodes the influence of
gravity and conversely the presence of mass curves space and time.

6. Quantum Mechanics based on Schrodinger’s equation which is a partial differential equa-
tion (much like Maxwell’s equations) governing a complex wave function. Alternatively,
quantum mechanics can be formulated through the path integral formalism as championed
by Richard Feynman.

7. Quantum Field Theory is used to frame modern physics. The mathematics is not entirely
understood. However, Lie groups, Lie algebras, supermanifolds, jet-bundles, algebraic geom-
etry are likely to be part of the correct mathematical context. Physicists will say this is done,
but mathematicians do not in general agree. To understand quantum field theory one needs
to master calculus, differential equations and more generally develop an ability to conquer
very long calculations.

In fact, all modern technical fields in one way or another have differential equations at their core.
This is why you are expected to take this course.

Differential equations are also used to model phenomenon which are not basic; population models,
radioactive decay, chemical reactions, mixing tank problems, heating and cooling, financial markets,
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fluid flow, a snowball which gathers snow as it falls, a bus stopping as it rolls through a giant vat
of peanut butter, a rope falling off a table etc... the list is endless. If you think about the course
you took in physics you’ll realize that you were asked about specific times and events, but there is
also the question of how the objects move once the forces start to act. The step-by-step continuous
picture of the motion is going to be the solution to the differential equation called Newton’s Second
Law. Beyond the specific examples we look at in this course, it is my hope you gain a more general
appreciation of the method. In a nutshell, the leap in concept is to use derivatives to model things.
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1.4 course overview

1. Chapter 1: you’ve almost read the whole thing. By now you should realize it is to be read
once now and once again at the end of the semester.

2. Chapter 2: we study first order ODEs. One way or another it usually comes back to some
sort of integration.

3. Chapter 3: we study n-th order linear ODEs. I’ll lecture on a method presented in Ritger and
Rose which appears magical, however, we don’t just want answers. We want understanding
and this is brought to us from a powerful new way of thinking called the operator method.
We’ll see how many nontrivial problems are reduced to algebra. Variation of parameters takes
care of the rest.

4. Chapter 4: some problems are too tricky for the method of Chapter 3, we are forces to
resort to power series techniques. Moreover, some problems escape power series as well. The
method of Frobenius helps us capture behaviour near regular singular points. The functions
discovered here have tremendous application across the sciences.

5. Chapter 5: we study systems of linear ODEs, we’ll need matrices and vectors to properly treat
this topic. The concept of eigenvectors and eigenvalues plays an important role, however the
operator method shines bright once more here.

6. Chapter 6: the method of Laplace transforms is shown to solve problems with discontinuous,
even infinite, forcing functions with ease.

7. Chapter 7: energy analysis and the phase plane approach. In other chapters our goal has
almost always to find a solution , but here we study properties of the solution without actually
finding it. This qualitative approach can reveal much without too much effort. When paired
with the convenient pplane software we can ascertain many things with a minimum of effort.

8. Chapter 8: we pause to study series of functions. The concept of orthogonal functions is
discussed. Fourier series and power series are important examples, however what else can we
say?

9. Chapter 9: some are PDEs solved. We study heat, wave and Laplace’s equations. Fourier
techniques from the previous chapter play a central role.

In the Spring 2013 semester your Test 1 will focus on Chapters 1-3. Then Chapters 4-7 are covered
by Test 2. Chapters 8 and 9 are likely covered on the (take-home) Test 3. The final focuses on
Tests 1 and 2.
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Chapter 2

ordinary first order problem

We wish to solve problems of the form dy
dx = f(x, y). An explicit solution is a function φ : I ⊂

R → R such that dφ
dx = f(x, φ(x)) for all x ∈ I. There are several common techniques to solve

such problems, although, in general the solution may be impossible to find in terms of elementary
functions. You should already anticipate this fact from second semester calculus. Performing an
indefinite integration is equivalent to solving a differential equation; observe that∫

ex
2
dx = y ⇔ dy

dx
= ex

2
.

you may recall that the integration above is not amenable to elementary techniques1. However, it
is simple enough to solve the problem with series techniques. Using term-by-term integration,∫

ex
2
dx =

∫ ∞∑
n=0

(x2)n

n!
dx =

∞∑
n=0

1

n!

∫
x2n dx =

∞∑
n=0

1

n!(2n+ 1)
x2n+1 + c.

This simple calculation shows that y = x+ 1
6x

3 + 1
10x

5 + · · · will solve dy
dx = ex

2
. We will return to

the application of series techniques to find analytic solutions later in this course. For this chapter,
we wish to discuss those techniques which allow us to solve first order problems via algebra and
integrals of elementary functions. There are really three2 main techniques:

1. separation of variables

2. integrating factor method

3. identification of problem as an exact equation

Beyond that we study substitutions which bring the problem back to one of the three problems above
in a new set of variables. The methods of this chapter are by no means complete or algorithmic.
Solving arbitrary first order problems is an art, not unlike the problem of parametrizing a level
curve. That said, it is not a hidden art, it is one we all must master.

1the proof of that is not elementary!
2you could divide these differently, it is true that the integrating factor technique is just a special substitution

19
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2.1 separation of variables

Suppose you are faced with the problem dy
dx = f(x, y). If it happens that f can be factored into

a product of functions f(x, y) = g(x)h(y) then the problem is said to be separable. Proceed
formally for now, suppose h(y) 6= 0,

dy

dx
= g(x)h(y) ⇒ dy

h(y)
= g(x) dx ⇒

∫
dy

h(y)
=

∫
g(x) dx

Ideally, we can perform the integrations above and solve for y to find an explicit solution. However,
it may even be preferrable to not solve for y and capture the solution in an implicit form. Let me
provide a couple examples before I prove the method at the end of this section.

Example 2.1.1. Problem: Solve dy
dx = 2xy.

Solution: Separate variables to find
∫ dy

y =
∫

2x dx hence ln |y| = x2 + c. Exponentiate to obtain

|y| = ex
2+c = ecex

2
. The constant ec 6= 0 however, the absolute value allows for either ±. Moreover,

we can also observe directly that y = 0 solves the problem. We find y = kex
2

is the general solution
to the problem.

An explicit solution of the differential equation is like an antiderivative of a given integrand. The
general solution is like the indefinite integral of a given integrand. The general solution and the
indefinite integral are not functions, instead, they are a family of functions of which each is an
explicit solution or an antiderivative. Notice that for the problem of indefinite integration the
constant can always just be thoughtlessly tacked on at the end and that will nicely index over
all the possible antiderivatives. On the other hand, for a differential equation the constant could
appear in many other ways.

Example 2.1.2. Problem: Solve dy
dx = −2x

2y .

Solution: separate variables and find
∫

2y dy = −
∫

2x dx hence y2 = −x2+c. We find x2+y2 = c.
It is clear that c < 0 give no interesting solutions. Therefore, without loss of generality, we assume

c ≥ 0 and denote c = R2 where R ≥ 0. Altogether we find x2 + y2 = R2 is the general implicit
solution to the problem. To find an explicit solution we need to focus our efforts, there are two
cases:

1. if (a, b) is a point on the solution and b > 0 then y =
√
a2 + b2 − x2.

2. if (a, b) is a point on the solution and b < 0 then y = −
√
a2 + b2 − x2.

Notice here the constant appeared inside the square-root. I find the implicit formulation of the
solution the most natural for the example above, it is obvious we have circles of radius R. To
capture a single circle we need two function graphs. Generally, given an implicit solution we can
solve for an explicit solution locally. The implicit function theorems of advanced calculus give
explicit conditions on when this is possible.
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Example 2.1.3. Problem: Solve dy
dx = ex−2 ln |y|.

Solution: recall ex−ln |y|2 = exeln |y|2 = ex|y|2 = exy2. Separate variables in view of this algebra:

dy

y2
= ex dx ⇒ −1

y
= ex + C ⇒ y =

−1

ex + C
.

When I began this section I mentioned the justification was formal. I meant that to indicate the
calculation seems plausible, but it is not justified. We now show that the method is in fact justified.
In short, I show that the notation works.

Proposition 2.1.4. separation of variables:

The differential equation dy
dx = g(x)h(y) has an implicit solution given by∫

dy

h(y)
=

∫
g(x) dx

for (x, y) such that h(y) 6= 0.

Proof: to say the integrals above are an implicit solution to dy
dx = g(x)h(y) means that the

differential equation is a differential consequence of the integral equation. In other words, if we
differentiate the integral equation we should hope to recover the given DEqn. Let’s see how this
happens, differentiate implicitly,

d

dx

∫
dy

h(y)
=

d

dx

∫
g(x) dx ⇒ 1

h(y)

dy

dx
= g(x) ⇒ dy

dx
= h(y)g(x). �

Remark 2.1.5.

Technically, there is a gap in the proof above. How did I know implicit differentiation was
possible? Is it clear that the integral equation defines y as a function of x at least locally? We
could use the implicit function theorem on the level curve F (x, y) =

∫ dy
h(y) −

∫
g(x) dx = 0.

Observe that ∂F
∂y = 1

h(y) 6= 0 hence the implicit function theorem provides the existence of

a function φ which has F (x, φ(x)) = 0 at points near the given point with h(y) 6= 0. This
comment comes to you from the advanced calculus course.
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2.2 integrating factor method

Let p and q be continuous functions. The following differential equation is called a linear differ-
ential equation in standard form:

dy

dx
+ py = q (?)

Our goal in this section is to solve equations of this type. Fortunately, linear differential equations
are very nice and the solution exists and is not too hard to find in general, well, at least up-to a
few integrations.

Notice, we cannot directly separate variables because of the py term. A natural thing to notice is
that it sort of looks like a product, maybe if we multiplied by some new function I then we could
separate and integrate: multiply ? by I,

I
dy

dx
+ pIy = qI

Now, if we choose I such that dI
dx = pI then the equation above separates by the product rule:

dI

dx
= pI ⇒ I

dy

dx
+
dI

dx
y = qI ⇒ d

dx

[
Iy
]

= qI ⇒ Iy =

∫
qI dx ⇒ y =

1

I

∫
qI dx.

Very well, but, is it possible to find such a function I? Can we solve dI
dx = pI? Yes. Separate

variables,
dI

dx
= pI ⇒ dI

I
= p dx ⇒ ln(I) =

∫
p dx ⇒ I = e

∫
p dx.

Proposition 2.2.1. integrating factor method:

Suppose p, q are continuous functions which define the linear differential equation dy
dx+py = q

(label this ?). We can solve ? by the following algorithm:

1. define I = exp(
∫
p dx),

2. multiply ? by I,

3. apply the product rule to write I? as d
dx

[
Iy
]

= Iq.

4. integrate both sides,

5. find general solution y = 1
I

∫
Iq dx.

Proof: Define I = e
∫
p dx, note that p is continuous thus the antiderivative of p exists by the FTC.

Calculate,
dI

dx
=

d

dx
e
∫
p dx = e

∫
p dx d

dx

∫
p dx = pe

∫
p dx = pI.
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Multiply ? by I, use calculation above, and apply the product rule:

I
dy

dx
+ Ipy = Iq ⇒ I

dy

dx
+
dI

dx
y = Iq ⇒ d

dx

[
Iy
]

= Iq.

Integrate both sides,∫
d

dx

[
Iy
]
dx =

∫
Iq dx ⇒ Iy =

∫
Iq dx ⇒ y =

1

I

∫
Iq dx. �

The integration in y = 1
I

∫
Iq dx is indefinite. It follows that we could write y = C

I + 1
I

∫
Iq dx.

Note once more that the constant is not simply added to the solution.

Example 2.2.2. Problem: find the general solution of dy
dx + 2

xy = 3

Solution: Identify that p = 2/x for this linear DE. Calculate, for x 6= 0,

I = exp

(∫
2dx

x

)
= exp(2 ln |x|) = exp(ln |x|2) = |x|2 = x2

Multiply the DEqn by I = x2 and then apply the reverse product rule;

x2 dy

dx
+ 2xy = 3x2 ⇒ d

dx

[
x2y

]
= 3x2

Integrate both sides to obtain x2y = x3 + c therefore y = x+ c/x2 .

We could also write y(x) = x+ c/x2 to emphasize that we have determined y as a function of x.

Example 2.2.3. Problem: let r be a real constant and suppose g is a continuous function, find
the general solution of dy

dt − ry = g

Solution: Identify that p = r for this linear DE with independent variable t. Calculate,

I = exp

(∫
r dt

)
= ert

Multiply the DEqn by I = ert and then apply the reverse product rule;

ert
dy

dt
+ rerty = gert ⇒ d

dt

[
erty

]
= gert

Integrate both sides to obtain erty =
∫
g(t)ert dt+c therefore y(t) = ce−rt + e−rt

∫
g(t)ert dt . Now

that we worked this in general it’s fun to look at a few special cases:

1. if g = 0 then y(t) = ce−rt .

2. if g(t) = e−rt then y(t) = ce−rt + e−rt
∫
e−rtert dt hence y(t) = ce−rt + te−rt .

3. if r 6= s and g(t) = e−st then y(t) = ce−rt + e−rt
∫
e−stert dt = ce−rt + e−rt

∫
e(r−s)t dt

consqeuently we find that y(t) = ce−rt + 1
r−se

−rte(r−s)t and thus y(t) = ce−rt +
1

r − s
e−st .
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2.3 exact equations

Before we discuss the theory I need to introduce some new notation:

Definition 2.3.1. Pffafian form of a differential equation

Let M,N be functions of x, y then Mdx + Ndy = 0 is a differential equation in Pfaffian
form.

For example, if dy
dx = f(x, y) then dy−f(x, y)dx = 0 is the differential equation in its Pfaffian form.

One advantage of the Pfaffian form is that it puts x, y on an equal footing. There is no artificial
requirement that y be a function of x implicit within the set-up, instead x and y appear in the
same way. The natural solution to a differential equation in Pfaffian form is a level curve.

Example 2.3.2. Consider the circle x2 + y2 = R2 note that 2xdx+ 2ydy = 0 hence the circle is a
solution curve of 2xdx+ 2ydy = 0

Recall the total differential3 of a function F : D ⊆ R2 → R was defined by:

dF =
∂F

∂x
dx+

∂F

∂y
dy.

Let k be a constant and observe that F (x, y) = k has dF = 0dx + 0dy = 0. Conversely, if we are
given ∂F

∂x dx + ∂F
∂y dy = 0 then we find natural solutions of the form F (x, y) = k for appropriate

constants k. Let us summarize the technique:

Proposition 2.3.3. exact equations:

If differential equation Mdx + Ndy = 0 has M = ∂F
∂x and N = ∂F

∂y for some differentiable
function F then the solutions to the differential equation are given by the level-curves of F .

A level-curve of F is simply the collection of points (x, y) which solve F (x, y) = k for a constant
k. You could also call the solution set of F (x, y) = k the k-level curve of F or the fiber F−1{k}.

Example 2.3.4. Problem: find the solutions of y2dx+ 2xydy = 0.

Solution: we wish to find F such that

∂F

∂x
= y2 &

∂F

∂y
= 2xy

You can integrate these equations holding the non-integrated variable fixed,

∂F

∂x
= y2 ⇒ F (x, y) =

∫
y2 dx = xy2 + C1(y)

3You might wonder what precisely dx and dy mean in such a context. If you want to really know then take
advanced calculus. For our purposes here is suffices to inform you that you can multiply and divide by differentials,
these formal algebraic operations are in fact a short-hand for deeper arguments justified by the implicit and/or inverse
function theorems. But, again, that’s advanced calculus.



2.3. EXACT EQUATIONS 25

∂F

∂y
= 2xy ⇒ F (x, y) =

∫
2xy dy = xy2 + C2(x)

It follows that F (x, y) = xy2 should suffice. Indeed a short calculation shows that the given differ-
ential equation in just dF = 0 hence the solutions have the form xy2 = k. One special solution
is x = 0 and y free, this is allowed by the given differential equation, but sometimes you might
not count this a solution. You can also find the explicit solutions here without too much trouble:
y2 = k/x hence y = ±

√
k/x . These solutions foliate the plane into disjoint families in the four

quadrants:

k > 0 and + in I, k < 0 and + in II, k < 0 and − in III, k > 0 and − in IV

The coordinate axes separate these cases and are themselves rather special solutions for the given
DEqn.

The explicit integration to find F is not really necessary if you can make an educated guess. That
is the approach I adopt for most problems.

Example 2.3.5. Problem: find the solutions of 2xy2dx+ (2x2y − sin(y))dy = 0

Solution: observe that the function F (x, y) = x2y2 + cos(y) has

∂F

∂x
= 2xy2 &

∂F

∂y
= 2x2y − sin(y)

Consequently, the given differential equation is nothing more than dF = 0 which has obvious solu-
tions of the form x2y2 + cos(y) = k.

I invite the reader to find explicit local solutions for this problem. I think I’ll stick with the level
curve view-point for examples like this one.

Example 2.3.6. Problem: find the solutions of xdx+ydy
x2+y2

= 0

Solution: observe that the function F (x, y) = 1
2 ln(x2 + y2) has

∂F

∂x
=

x

x2 + y2
&

∂F

∂y
=

y

x2 + y2

Consequently, the given differential equation is nothing more than dF = 0 which has curious solu-
tions of the form 1

2 ln(x2 + y2) = k. If you expoentiate this equation it yields
√
x2 + y2 = ek. We

can see that the unit-circle corresponds to k = 0 whereas generally the k-level curve has radius ek.

Notice that 2x+ 2y = 0 and xdx+ydy
x2+y2

= 0 share nearly the same set of solutions. The origin is the
only thing which distinguishes these examples. This raises a question we should think about. When
are two differential equations equivalent? I would offer this definition: two differential equations
are equivalent if they share the same solution set. This is the natural extension of the concept



26 CHAPTER 2. ORDINARY FIRST ORDER PROBLEM

we already know from algebra. Naturally the next question to ask is: how can we modify a given
differential equation to obtain an equivalent differential equation? This is something we have
to think about as the course progresses. Whenever we perform some operation to a differential
equation we ought to ask, did I just change the solution set?. For example, multiplying 2x+2y = 0
by 1

2(x2+y2)
removed the origin from the solution set of xdx+ydy

x2+y2
= 0.

2.3.1 conservative vector fields and exact equations

You should recognize the search for F in the examples above from an analgous problem in multi-
variable calculus4 Suppose ~G = 〈M,N〉 is conservative on U with potential function F such that
~G = ∇F . Pick a point (xo, yo) and let C be the level curve of F which starts at (xo, yo)

6. Recall
that the tangent vector field of the level curve F (x, y) = k is perpendicular to the gradient vector
field ∇F along C. It follows that

∫
C ∇F • d~r = 0. Or, in the differential notation for line-integrals,∫

CMdx+Ndy = 0.

Continuing our discussion, suppose (x1, y1) is the endpoint of C. Let us define the line-segment
L1 from (xo, yo) to (xo, y1) and the line-segment L2 from (xo, y1) to (x1, y1). The curve L1 ∪ L2

connects (xo, yo) to (x1, y1). By path-independence of conservative vector fields we know that∫
L1∪L2

~G • d~r =
∫
C
~G • d~r. It follows that7:

0 =

∫
L1∪L2

~G • d~r =

∫
L1

N dy +

∫
L2

M dx

=

∫ y1

yo

N(xo, t) dt+

∫ x1

xo

M(t, y1) dt

Let x1 = x and y1 = y and observe that the equation

0 =

∫ y

yo

N(xo, t) dt+

∫ x

xo

M(t, y) dt

ought to provide the level-curve solution of the exact equation Mdx + Ndy = 0 which passes
through the point (xo, yo). For future reference let me summarize our discussion here:

4 Let us briefly review the results we derived for conservative vector fields in multivariable calculus. Recall
that ~G = 〈M,N〉 is conservative iff there exists a potential function5 F such that ~G = ∇F = 〈∂xF, ∂yF 〉 on
dom(~G). Furthermore, it is known that ~G = 〈M,N〉 is conservative on a simply connected domain iff ∂M

∂y
= ∂N

∂x

for all points in the domain. The Fundamental Theorem of Calculus for line-integrals states if C is a curve from
P to Q then

∫
C
∇F • d~r = F (Q) − F (P ). It follows that conservative vector fields have the property of path-

independence. In particular, if ~G is conservative on U and C1, C2 are paths beginning and ending at the same points
then

∫
C1

~G • d~r =
∫
C1

~G • d~r.
6the level curve extends past C, we just want to make (xo, yo) the starting point
7Recall that if C is parametrized by ~r(t) = 〈x(t), y(t)〉 for t1 ≤ t ≤ t2 then the line-integral of ~G = 〈M,N〉 is by

definition: ∫
C

Mdx + Ndy =

∫ t2

t1

[
M(x(t), y(t))

dx

dt
+ N(x(t), y(t))

dy

dt

]
dt

I implicitly make use of this definition in the derivation that follows.
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Proposition 2.3.7. solution by line-integral for exact equations:

Suppose the differential equation Mdx+Ndy = 0 is exact on a simply connected region U
then the solution through (xo, yo) ∈ U is given implicitly by∫ x

xo

M(t, y) dt+

∫ y

yo

N(xo, t) dt = 0.

Perhaps you doubt this result. We can check it by taking the total differential of the proposed
solution:

d

[∫ x

xo

M(t, y) dt

]
=

∂

∂x

[∫ x

xo

M(t, y) dt

]
dx+

∂

∂y

[∫ x

xo

M(t, y) dt

]
dy

= M(x, y)dx+

[∫ x

xo

∂M

∂y
(t, y) dt

]
dy

= M(x, y)dx+

[∫ x

xo

∂N

∂x
(t, y) dt

]
dy since ∂xN = ∂yM

= M(x, y)dx+
[
N(x, y)−N(xo, y)

]
dy

On the other hand,

d

[∫ y

yo

N(xo, t) dt

]
=

∂

∂x

[∫ y

yo

N(xo, t) dt

]
dx+

∂

∂y

[∫ y

yo

N(xo, t) dt

]
dy = N(xo, y)dy

Add the above results together to see that M(x, y)dx+N(x, y)dy = 0 is a differential consequence
of the proposed solution. In other words, it works.

Example 2.3.8. Problem: find the solutions of (2xy+ey)dx+(2y+x2 +ey)dy = 0 through (0, 0).

Solution: note M(x, y) = 2xy+ey and N(x, y) = 2y+x2 +ey has ∂yM = ∂xN . Apply Proposition
2.3.7 ∫ x

0
M(t, y) dt+

∫ y

0
N(0, t) dt = 0 ⇒

∫ x

0
(2ty + ey) dt+

∫ y

0
(2t+ et) dt = 0

⇒
(
t2y + tey

)∣∣∣∣x
0

+

(
t2 + et

)∣∣∣∣y
0

= 0

⇒ x2y + xey + y2 + ey − 1 = 0.

You can easily verify that (0, 0) is a point on the curve boxed above.

The technique illustrated in the example above is missing from many differential equations texts,
I happened to discover it in the excellent text by Ritger and Rose Differential Equations with
Applications. I suppose the real power of Proposition 2.3.7 is to capture formulas for an arbitrary
point with a minimum of calculation:
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Example 2.3.9. Problem: find the solutions of 2x dx+ 2y dy = 0 through (xo, yo).

Solution: note M(x, y) = 2x and N(x, y) = 2y has ∂yM = ∂xN . Apply Proposition 2.3.7∫ x

0
M(t, y) dt+

∫ y

0
N(0, t) dt = 0 ⇒

∫ x

xo

2t dt+

∫ y

yo

2t dt = 0

⇒ t2
∣∣x
xo

+ t2
∣∣y
yo

= 0

⇒ x2 − x2
o + y2 − y2

o = 0.

⇒ x2 + y2 = x2
o + y2

o .

The solutions are circles with radius
√
x2
o + y2

o .

You can solve exact equations without Proposition 2.3.7, but I like how this result ties the math
back to multivariable calculus.

Example 2.3.10. Problem: find the solutions of E1 dx + E2 dy = 0 through (xo, yo). Assume
∂xE2 = ∂yE1.

Solution: the derivatiion of Proposition 2.3.7 showed that the solution of E1 dx + E2 dy = 0 is
given by level curves of the potential function for ~E = 〈E1, E2〉. In particular, if ~E = −∇V ,
where the minus is customary in physics, then the solution is simply given by the equipotential
curve V (x, y) = V (xo, yo). In other words, we could interpret the examples in terms of voltage and
electric fields. That is an important, real-world, application of this mathematics.

2.3.2 inexact equations and integrating factors

Consider once more the Pfaffian form Mdx+Ndy = 0. If ∂M∂y 6=
∂N
∂x at some point P then we cannot

find a potential function for a set which contains P . It follows that we can state the following no-go
proposition for the problem of exact equations.

Proposition 2.3.11. inexact equations:

If differential equation Mdx+Ndy = 0 has ∂M
∂y 6=

∂N
∂x then Mdx+Ndy = 0 is inexact. In

other words, if ∂M
∂y 6=

∂N
∂x then there does not exist F such that dF = Mdx+Ndy.

Pfaff was one of Gauss’ teachers at the beginning of the nineteenth century. He was one of the first
mathematicians to pursue solutions to exact equations. One of the theorems he discovered is that
almost any first order differential equation Mdx + Ndy = 0 can be multiplied by an integrating
factor I to make the equation IMdx+ INdy = 0 an exact equation. In other words, we can find I
such that there exists F with dF = IMdx+ INdy. I have not found a simple proof of this claim8

8this may be a pretty deep result, I would like to better understand the geometry of Pfaff‘s Theorem.
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Given the proposition above, it is clear we must seek an integrating factor I such that

∂

∂y

[
IM

]
=

∂

∂x

[
IN

]
.

Often for a particular problem we add some restriction to make the search for I less daunting. In
each of the examples below I add a restriction on the search for I which helps us narrow the search9

Example 2.3.12. Problem: find the solutions of(
3x+

2

y

)
dx+

(
x2

y

)
dy = 0 (?)

by finding an integrating factor to make the equation exact.

Solution: Since the problem only involves simple polynomials and rational functions the factor
I = xAyB may suffice. Let us give it a try and see if we can choose a particular value for A,B to
make I a proper integrating factor for the given problem. Multiply ? by I = xAyB,(

3xA+1yB + 2xAyB−1

)
dx+

(
xA+2yB−1

)
dy = 0 (I?)

Let M = 3xA+1yB + 2xAyB−1 and N = xA+2yB−1. We need ∂yM = ∂xN , this yields:

3BxA+1yB−1 + 2(B − 1)xAyB−2 = (A+ 2)xA+1yB−1

It follows that 3B = A+ 2 and 2(B − 1) = 0. Thus B = 1 and A = 1. We propose I = xy serves
as an integrating factor for ?. Multiply by ? by xy to obtain(

3x2y + 2x

)
dx+

(
x3

)
dy = 0 (xy?)

note that F (x, y) = x3y+x2 = k has ∂xF = 3x2y+2x and ∂yF = x3 therefore F (x, y) = x3y+x2 = k
yield solutions to xy?. These are also solutions for ?. However, we may have removed several
solutions from the solution set when we multiplied by I. If I = 0 or if I is undefined for some
points in the plane then we must consider those points separately and directly with ?. Note that
I = xy is zero for x = 0 or y = 0. Clearly y = 0 is not a solution for ? since it is outside the
domain of definition for ?. On the other hand, x = 0 does solve ? and is an extraneous solution.
Let us summarize: ? has solutions of the form x3y + x2 = k or x ≡ 0.

9 It turns out that there are infinitely many integrating factors for a given inexact equation and we just need to
find one that works.
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Example 2.3.13. Problem: find the solutions of dy
dx + Py = Q by the method of exact equations.

Assume that P,Q are differentiable functions of x.

Solution: in Pfaffian form this DEqn takes the form dy + Pydx = Qdx or (Py −Q)dx+ dy = 0.
Generally, P,Q are not given such that this equation is exact. We seek an integrating factor I such
that I(Py −Q)dx+ Idy = 0 is exact. We need:

∂

∂y

[
I(Py −Q)

]
=

∂

∂x

[
I
]

Assume that I is not a function of y for the sake of discovery, and it follows that IP = dI
dx . This

is solved by separation of variables: dI
I = Pdx implies ln |I| =

∫
P dx yielding I = exp(

∫
P dx).

This means the integrating factor is an integrating factor. We gave several examples in the previous
section.

The nice feature of the integrating factor I = exp(
∫
P dx) is that when we multiply the linear dif-

ferential equation dy
dx +Py = Q we lose no solutions since I 6= 0. There are no extraneous solutions

in this linear case.

You can read Nagel Saff and Snider pages 70-71 for further analysis of special integrating factors.
This is a fascinating topic that we could easily spend a semester developing better tools to solve
such problems. In particular, if you wish to do further reading I recommend the text by Peter
Hydon on symmetries and differential equations. Or, if you want a deeper discussion which is still
primarily computational you might look at the text by Brian Cantwell. The basic idea is that if
you know a symmetry of the differential equation it allows you to find special coordinates where the
equation is easy to solve. Ignoring the symmetry part, this is what we did in this section, we found
an integrating factor which transforms the given inexact equation to the simple exact equation
dF = 0. I’ll conclude this section with a theorem borrowed from Ritger and Rose page 53 of §2.5:

Theorem 2.3.14. integrating factors are not unique

If u(x, y) is an integrating factor of M dx + N dy = 0 and if dv = uM dx + uN dy then
u(x, y)F (v(x, y)) is also an integrating factor for any continuous function F

To see how this is true, integrate F to obtain G such that G′(v) = F (v). Observe dG = G′(v)dv =
F (v)dv. However, we know dv = uM dx+ uN dy hence dG = F (v)[uM dx+ uN dy] = uFM dx+
uFN dy which shows the DEqn M dx+N dy = 0 is made exact upon multiplication by uF . This
makes uF and integrating factor as the theorem claims.
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2.4 substitutions

In this section we discuss a few common substitutions. The idea of substitution is simply to
transform a given problem to one we already know how to solve. Let me sketch the general idea
before we get into examples: we are given

dy

dx
= f(x, y)

We propose a new dependent variable v which is defined by y = h(x, v) for some function h.
Observe, by the multivariate chain-rule,

dy

dx
=

d

dx
h(x, v) =

∂h

∂x

dx

dx
+
∂h

∂v

dv

dx

Hence, the substitution yields:
∂h

∂x
+
∂h

∂v

dv

dx
= f(x, h(x, v))

which, if we choose wisely, is simpler to solve.

Example 2.4.1. Problem: solve dy
dx = (x+ y − 6)2. (call this ?)

Solution: the substitution v = x+y−6 looks promising. We obtain y = v−x+6 hence dy
dx = dv

dx−1
thus the DEQn ? transforms to

dv

dx
− 1 = v2 ⇒ dv

dx
= v2 + 1 ⇒ dv

1 + v2
= dx ⇒ tan−1(v) = x+ C

Hence, tan−1(x + y − 6) = x + C is the general, implicit, solution to ?. In this case we can solve
for y to find the explicit solution y = 6 + tan(x+ C)− x.

Remark 2.4.2.

Generally the example above gives us hope that a DEqn of the form dy
dx = F (ax + by + c)

is solved through the substitution v = ax+ by + c.

Example 2.4.3. Problem: solve dy
dx = y/x+1

y/x−1 . (call this ?)

Solution: the substitution v = y/x looks promising. Note that y = xv hence dy
dx = v + x dvdx by the

product rule. We find ? transforms to:

v + x
dv

dx
=
v + 1

v − 1
⇒ x

dv

dx
=
v + 1

v − 1
− v =

v + 1− v(v − 1)

v − 1
=
−v2 + 2v + 1

v − 1

Hence, separating variables,

(v − 1) dv

−v2 + 2v + 1
=
dx

x
⇒ −1

2
ln |v2 − 2v − 1| = ln |x|+ C̃

Thus, ln |v2− 2v− 1| = ln(1/x2) +C and after exponentiation and multiplication by x2 we find the

implicit solution y2 − 2xy − x2 = K.
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A differential equation of the form dy
dx = F (y/x) is called homogeneous10 . If we change coordi-

nates by rescaling both x and y by the same scale then the ratio y/x remains invariant; x̄ = λx
and ȳ = λy gives ȳ

x̄ = λy
λx = y

x . It turns out this is the reason the example above worked out so
nicely, the coordinate v = y/x is invariant under the rescaling symmetry.

Remark 2.4.4.

Generally the example above gives us hope that a DEqn of the form dy
dx = F (y/x) is solved

through the substitution v = y/x.

Example 2.4.5. Problem: Solve y′ + xy = xy3. (call this ?)

Solution: multiply by y−3 to obtain y−3y′+xy−2 = x. Let z = y−2 and observe z′ = −2y−3y′ thus
y−3y′ = −1

2 z
′. It follows that:

−1

2

dz

dx
+ xz = x ⇒ dz

dx
− 2xz = −2x

Identify this is a linear ODE and calculate the integrating factor is e−x
2

hence

e−x
2 dz

dx
− 2xe−x

2
z = −2xe−x

2 ⇒ d(e−x
2
z) = −2xe−x

2
dx

Conquently, e−x
2
z = e−x

2
+ C which gives z = y−2 = 1 + Cex

2
. Finally, solve for y

y =
±1√

1 + Cex2
.

Given an initial condition we would need to select either + or − as appropriate.

Remark 2.4.6.

This type of differential equation actually has a name; a differential equation of the type
dy
dx + P (x)y = Q(x)yn is called a Bernoulli DEqn. The procedure to solve such problems
is as follows:

1. multiply dy
dx + P (x)y = Q(x)yn by y−n to obtain y−n dydx + P (x)y−n+1 = Q(x),

2. make the substitution z = y−n+1 and observe z′ = (1−n)y−ny′ hence y−ny′ = 1
1−nz

′,

3. solve the linear ODE in z; 1
1−n

dz
dx + P (x)z = Q(x),

4. replace z with y−n+1 and solve if worthile for y.

10this term is used several times in this course with differing meanings. The more common use arises in the
discussion of linear differential equations.
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Substututions which change both the dependent and independent variable are naturally handled
in the differential notation. If we replace x = f(s, t) and y = g(s, t) then dx = fsds + ftdt and
dy = gsds + gtdt. If we wish to transform M(x, y)dx + N(x, y)dy into s, t coordinates we simply
substitute the natural expressions:

M(x, y)dx+N(x, y)dy = M(f(s, t), g(s, t))

[
∂f

∂s
ds+

∂f

∂t
dt

]
+N(f(s, t), g(s, t))

[
∂g

∂s
ds+

∂g

∂t
dt

]
.

Let us see how this works in a particular example:

Example 2.4.7. Problem: solve (x+ y + 2)dx+ (x− y)dy = 0. (call this ?)

Solution: the substitution s = x+y+2 and t = x−y looks promising. Algebra yields x = 1
2(s+t−2)

and y = 1
2(s− t− 2) hence dx = 1

2(ds+ dt) and dy = 1
2(ds− dt) thus ? transforms to:

s
1

2
(ds+ dt) + t

1

2
(ds− dt) = 0 ⇒ (t+ s)ds+ (s− t)dt = 0 ⇒ dt

ds
=
t+ s

t− s
.

It follows, for s 6= 0,
dt

ds
=
t/s+ 1

t/s− 1

Recall we solved this in Example 2.4.3 hence:

t2 − 2st− s2 = K ⇒ (x− y)2 − 2(x+ y + 2)(x− y)− (x+ y + 2)2 = K.

You can simplify that to −2x2− 4xy− 8x+ 2y2− 4 = K. On the other hand, this DEqn is exact so

it is considerably easier to see that 2x+ x2−y2
2 + xy = C is the solution. Multiply by −4 to obtain

−8x − 2x2 + 2y2 − 4xy = −4C. It is the same solution as we just found through a much more
laborious method. I include this example here to illustrate the method, naturally the exact equation
approach is the better solution. Most of these problems do not admit the exact equation short-cut.

In retrospect, we were fortunate the transformed ? was homogeneous. In Nagel Saff and Snider on
pages 77-78 of the 5-th ed. a method for choosing s and t to insure homogeneity of the transformed
DEqn is given.

Example 2.4.8. Problem: solve

[
x√
x2+y2

+ y2

]
dx+

[
y√
x2+y2

− xy
]
dy = 0. (call this ?)

Solution: polar coordinates look promising here. Let x = r cos(θ) and y = r sin(θ),

dx = cos(θ)dr − r sin(θ)dθ, dy = sin(θ)dr + r cos(θ)dθ

Furthermore, r =
√
x2 + y2. We find ? in polar coordinates,[

cos(θ) + r2 sin2(θ)
][

cos(θ)dr − r sin(θ)dθ
]

+
[
sin(θ)− r2 cos(θ) sin(θ)

][
sin(θ)dr + r cos(θ)dθ

]
= 0
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Multiply, collect terms, a few things cancel and we obtain:

dr +
[
−r3 sin3(θ)− r3 sin(θ) cos2(θ)

]
dθ = 0

Hence,

dr − r3 sin(θ)dθ = 0 ⇒ dr

r3
= sin(θ)dθ ⇒ −1

2r2
= − cos(θ) + C.

Returning to Cartesian coordinates we find the implicit solution:

1

2(x2 + y2)
=

x√
x2 + y2

− C.

Sometimes a second-order differential equation is easily reduced to a first-order problem. The
examples below illustrate a technique called reduction of order.

Example 2.4.9. Problem: solve y′′ + y′ = x2. (call this ?)

Solution: Let y′ = v and observe y′′ = v′ hence ? transforms to

dv

dx
− v = e−x

multiply the DEqn above by the integrating factor ex:

ex
dv

dx
− vex = 1 ⇒ d

dx

[
exv

]
= 1

thus exv = x + c1 and we find v = xe−x + c1e
−x. Then as v = dy

dx we can integrate once more to
find the solution:

y =

∫ [
xe−x + c1e

−x]dx = −xe−x − e−x − c1e
−x + c2

cleaning it up a bit,

y = −e−x(x− 1 + c1) + c2.

Remark 2.4.10.

Generally, given a differential equation of the form y′′ = F (y′, x) we can solve it by a
two-step process:

1. substitute v = y′ to obtain the first-order problem v′ = F (v, x). Solve for v.

2. recall v = y′, integrate to find y.

There will be two constants of integration. This is a typical feature of second-order ODE.
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Example 2.4.11. Problem: solve d2y
dt2

+ y = 0. (call this ?)

Solution: once more let v = dy
dt . Notice that

d2y

dt2
=
dv

dt
=
dy

dt

dv

dy
= v

dv

dy

thus ? transforms to the first-order problem:

v
dv

dy
+ y = 0 ⇒ vdv + ydy = 0 ⇒ 1

2
v2 +

1

2
y2 =

1

2
C2.

assume the constant C > 0, note nothing is lost in doing this except the point solution y = 0, v = 0.
Solving for v we obtain v = ±

√
C − y2. However, v = dy

dt so we find:

dy√
C2 − y2

= ±dt ⇒ sin−1(y/C) = ±t+ φ

Thus, y = C sin(±t + φ). We can just as well write y = A sin(t + φ). Moreover, by trigonometry,
this is the same as y = B cos(t + γ), it’s just a matter of relabeling the constants in the general
solution.

Remark 2.4.12.

Generally, given a differential equation of the form y′′ = F (y) we can solve it by a two-step
process:

1. substitute v = y′ and use the identity dv
dt = v dvdy to obtain the first-order problem

v dvdy = F (y). Solve for v.

2. recall v = y′, integrate to find y.

There may be several cases possible as we solve for v, but in the end there will be two
constants of integration.
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2.5 physics and applications

I’ve broken this section into two parts. The initial subsection examines how we can use differential-
equations techniques to better understand Newton’s Laws and energy in classical mechanics. This
sort of discussion is found in many of the older classic texts on differential equations. The second
portion of this section is a collection of isolated application examples which are focused on a
particular problems from a variety of fields.

2.5.1 physics

In physics we learn that ~Fnet = m~a or, in terms of momentum ~Fnet = d~p
dt . We consider the one-

dimensional problem hence we have no need of the vector notation and we generally are faced with
the problem:

Fnet = m
dv

dt
or Fnet =

dp

dt

where the momentum p for a body with mass m is given by p = mv where v is the velocity as
defined by v = dx

dt . The acceleration a is defined by a = dv
dt . It is also customary to use the dot and

double dot notation for problems of classical mechanics. In particular: v = ẋ, a = v̇ = ẍ. Generally
the net-force can be a function of position, velocity and time; Fnet = F (x, v, t). For example,

1. the spring force is given by F = −kx

2. the force of gravity near the surface of the earth is given by F = ±mg (± depends on
interpretation of x)

3. force of gravity distance x from center of mass M given by F = −GmM
x2

4. thrust force on a rocket depends on speed and rate at which mass is ejected

5. friction forces which depend on velocity F = ±bvn (± needed to insure friction force is
opposite the direction of motion)

6. an external force, could be sinusoidal F = A cos(ωt), ...

Suppose that the force only depends on x; F = F (x) consider Newton’s Second Law:

m
dv

dt
= F (x)

Notice that we can use the identity dv
dt = dx

dt
dv
dx = v dvdx hence

mv
dv

dx
= F (x) ⇒

∫ vf

vo

mv dv =

∫ xf

xo

F (x) dx ⇒ 1
2mv

2
f − 1

2mv
2
o =

∫ xf

xo

F (x) dx.

The equation boxed above is the work-energy theorem, it says the change in the kinetic energy
K = 1

2mv
2 is given by

∫ xf
xo
F (x) dx. which is the work done by the force F . This result holds for
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any net-force, however, in the case of a conservative force we have F = −dU
dx for the potential

energy function U hence the work done by F simplifies nicely∫ xf

xo

F (x) dx = −
∫ xf

xo

dU

dx
dx = −U(xf ) + U(xo)

and we obtain the conservation of total mechanical energy 1
2mv

2
f −

1
2mv

2
o = −U(xf ) +U(xo)

which is better written in terms of energy E(x, v) = 1
2mv

2 + U(x) as E(xo, vo) = E(xf , vf ). The
total energy of a conservative system is constant. We can also see this by a direct-argument on the
differential equation below:

m
dv

dt
= −dU

dx
⇒ m

dv

dt
+
dU

dx
= 0

multiply by dx
dt and use the identity d

dt

[
1
2v

2

]
= v dvdt :

m
dx

dt

dv

dt
+
dx

dt

dU

dx
= 0 ⇒ d

dt

[
1

2
mv2

]
+
dU

dt
= 0 ⇒ d

dt

[
1

2
mv2 + U

]
= 0 ⇒ dE

dt
= 0.

Once more we have derived that the energy is constant for a system with a net-force which is
conservative. Note that as time evolves the expression E(x, v) = 1

2mv
2 + U(x) is invariant. It

follows that the motion of the system is in described by an energy-level curve in the xv-plane.
This plane is commonly called the phase plane in physics literature. Much information can be
gleaned about the possible motions of a system by studying the energy level curves in the phase
plane. I’ll return to that topic later in the course.

We now turn to a mass m for which the net-force is of the form F (x, v) = −dU
dx ∓ b|v|

n. Here we
insist that − is given for v > 0 whereas the + is given for the case v < 0 since we assume b > 0 and
this friction force ought to point opposite the direction of motion. Once more consider Newton’s
Second Law:

m
dv

dt
= −dU

dx
∓ bvn ⇒ m

dv

dt
− dU

dx
= ∓b|v|n

multiply by the velocity and use the identity as we did in the conservative case:

m
dx

dt

dv

dt
− dx

dt

dU

dx
= ∓bv|v|n ⇒ d

dt

[
1

2
mv2 + U

]
= ∓bv|v|n ⇒ dE

dt
= ∓bv|v|n.

The friction force reduces the energy. For example, if n = 1 then we have dE
dt = −bv2.

Remark 2.5.1.

The concept of energy is implicit within Example 2.4.11. I should also mention that the
trick of multiplying by the velocity to reveal a conservation law is used again and again in
the junior-level classical mechanics course.
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2.5.2 applications

Example 2.5.2. Problem: Suppose x is the position of a mass undergoing one-dimensional, con-
stant acceleration motion. You are given that initially we have velocity vo at position xo and later
we have velocity vf at position xf . Find how the initial and final velocities and positions are related.

Solution: recall that a = dv
dt but, by the chain-rule we can write a = dx

dt
dv
dx = v dvdx . We are given

that a is a constant. Separate variables, and integrate with respect to the given data

a =
dx

dt

dv

dx
= v

dv

dx
⇒ a dx = v dv ⇒

∫ xf

xo

a dx =

∫ vf

vo

v dv ⇒ a(xf − xo) =
1

2

(
v2
f − v2

o

)
.

Therefore, v2
f = v2

o + 2a(xf − xo) . I hope you recognize this equation from physics.

Example 2.5.3. Problem: suppose the population P grows at a rate which is directly proportional
to the population. Let k be the proportionality constant. Find the population at time t in terms of
the initial population Po.

Solution: the given problem translates into the differential equation dP
dt = kP with P (0) = Po.

Seperate variables and integrate, note P > 0 so I drop the absolute value bars in the integral,

dP

dt
= kP ⇒

∫
dP

P
=

∫
k dt ⇒ ln(P (t)) = kt+ C

Apply the initial condition; ln(P (0)) = k(0) + C hence C = ln(Po). Consequently ln(P (t)) =

ln(Po) + kt. Exponentiate to derive P (t) = Poe
kt .

In the example above I have in mind k > 0, but if we allow k < 0 that models exponential population
decline. Or, if we think of P as the number of radioactive particles then the same mathematics for
k < 0 models radioactive decay.

Example 2.5.4. Problem: the voltage dropped across a resistor R is given by the product of R
and the current I through R. The voltage dropped across a capacitor C depends on the charge
Q according to C = Q/V (this is actually the definition of capacitance). If we connect R and C
end-to-end making a loop then they are in parallel hence share the same voltage: IR = Q

C . As time

goes on the charge on C flows off the capacitor and through the resistor. It follows that I = −dQ
dt .

If the capacitor initially has charge Qo then find Q(t) and I(t) for the discharging capacitor

Solution: We must solve

−RdQ
dt

=
Q

C

Separate variables, integrate, apply Q(0) = Qo:

dQ

Q
= − dt

RC
⇒ ln |Q| = − t

RC
+ c1 ⇒ Q(t) = ±ec1e−t/RC ⇒ Q(t) = Qoe

−t/RC
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Another application of first order differential equations is simply to search for curves with particular
properties. The next example illustrates that concept.

Example 2.5.5. Problem: find a family of curves which are increasing whenever y < −2 or
y > 2 and are decreasing whenever −2 < y < 2.

Solution: while many examples exist, the simplest example is one for which the derivative is
quadratic in y. Think about the quadratic (y+ 2)(y− 2). This expression is positive for |y| > 2 and
negative for |y| < 2. It follows that solutions to the differential equation dy

dx = (y + 2)(y − 2) will
have the desired properties. Note that y = ±2 are exceptional solutions for the give DEqn. Proceed
by separation of variables, recall the technique of partial fractions,

dy

(y + 2)(y − 2)
= dx ⇒

∫ [
1

4(y − 2)
− 1

4(y + 2)

]
dy =

∫
dx ?

⇒ ln |y − 2| − ln |y + 2| = 4x+ C

⇒ ln

∣∣∣∣y − 2

y + 2

∣∣∣∣ = 4x+ C

⇒ ln

∣∣∣∣y + 2

y + 2
− 4

y + 2

∣∣∣∣ = 4x+ C

⇒ ln

∣∣∣∣1− 4

y + 2

∣∣∣∣ = 4x+ C

⇒
∣∣∣∣1− 4

y + 2

∣∣∣∣ = e4x+C = eCe4x

⇒ 1− 4

y + 2
= ±eCe4x = Ke4x

⇒ 1

y + 2
=

1−Ke4x

4

⇒ y = −2 +
4

1−Ke4x
, for K 6= 0.

It is neat that K = 0 returns the exceptional solution y = 2 whereas the other exceptional solution
is lost since we have division by y + 2 in the calculation above. If we had multiplied ? by −1 then
the tables would turn and we would recover y = −2 in the general formula.

The plot of the solutions below was prepared with pplane which is a feature of Matlab. To plot
solutions to dy

dx = f(x, y) you can put x′ = 1 and y′ = f(x, y). This is an under-use of pplane. We
discuss some of the deeper features towards the end of this chapter. Doubtless Mathematica will
do these things, however, I don’t have 10 hours to code it so, here it is:
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If you study the solutions in the previous example you’ll find that all solutions tend to either y = 2
or y = −2 in some limit. You can also show that all the solutions which cross the x-axis have
inflection points at their x-intercept. We can derive that from the differential equation directly:

dy

dx
= (y + 2)(y − 2) = y2 − 4 ⇒ d2y

dx2
= 2y

dy

dx
= 2y(y + 2)(y − 2).

We can easily reason when solutions have y > 2 or −2 < y < 0 they are concave up whereas
solutions with 0 < y < 2 or y < −2 are concave down. It follows that a solution crossing y = 0,−2
or 2 is at a point of inflection. Careful study of the solutions show that solutions do not cross
y = −2 or y = 2 thus only y = 0 has solutions with genuine points of inflection.

Example 2.5.6. Problem: suppose you are given a family S of curves which satisfy dy
dx = f(x, y).

Find a differential equation for a family of curves which are orthogonal to the given set of curves.
In other words, find a differential equation whose solution consists of curves S⊥ whose tangent
vectors are perpendicular to the tangent vectors of curves in S at points of intersection.

Solution: Consider a point (xo, yo), note that the solution to dy
dx = f(x, y) has slope f(xo, yo)

at that point. The perpendicular to the tangent has slope −1/f(xo, yo). Thus, we should use the
differential equation dy

dx = − 1
f(x,y) to obtain orthogonal trajectories.

Let me give a concrete example of orthogonal trajectories:



2.5. PHYSICS AND APPLICATIONS 41

Example 2.5.7. Problem: find orthogonal trajectories of xdx+ ydy = 0.

Solution: we find dy
dx = −x

y hence the orthogonal trajectories are found in the solution set of
dy
dx = −y

x . Separate variables to obtain:

dy

y
=
dx

x
⇒ ln |y| = ln |x|+ C ⇒ y = ±eCx.

In other words, the orthogonal trajectories are lines through the origin y = kx. Technically, by our
derivation, we ought not allow k = 0 but when you understand the solutions of xdx+ ydy = 0 are
simply circles x2 + y2 = R2 it is clear that y = 0 is indeed an orthogonal trajectory.

Example 2.5.8. Problem: find orthogonal trajectories of x2 − y2 = 1.

Solution: observe that the hyperbola above is a solution of the differential equation 2x− 2y dydx = 0

hence dy
dx = x

y . Orthogonal trajectories are found from dy
dx = −y

x . Separate variables,

dy

y
=
−dx
x

⇒ ln |y| = − ln |x|+ C ⇒ y = k/x.

Once more, the case k = 0 is exceptional, but it is clear that y = 0 is an orthogonal trajectory of
the given hyperbola.

Orthogonal trajectories are important to the theory of electrostatics. The field lines which are
integral curves of the electric field form orthogonal trajectories to the equpotential curves. Or, in
the study of heatflow, the isothermal curves are orthgonal to the curves which line-up with the flow
of heat.



42 CHAPTER 2. ORDINARY FIRST ORDER PROBLEM

Example 2.5.9. Problem: Suppose the force of friction on a speeding car is given by Ff = −bv2.
If the car has mass m and initial speed vo and position xo then find the velocity and position as a
function of t as the car glides to a stop. Assume that the net-force is the friction force since the
normal force and gravity cancel.

Solution: by Newton’s second law we have mdv
dt = −bv2. Separate variables, integrate. apply

initital condition,

dv

v2
= −bdt

m
⇒ −1

v
=
−bt
m

+ c1 ⇒ −1

vo
=
−b(0)

m
+ c1 ⇒ c1 =

−1

vo

Thus,
1

v(t)
=
bt

m
+

1

vo
⇒ v(t) =

1
bt
m + 1

vo

⇒ v(t) =
vo

btvo
m + 1

.

Since v = dx
dt we can integrate the velocity to find the position

x(t) = c1 +
m

b
ln

∣∣∣∣1 +
bvot

m

∣∣∣∣ ⇒ x(0) = c1 + ln(1) = xo ⇒ x(t) = xo +
m

b
ln

∣∣∣∣1 +
bvot

m

∣∣∣∣ .
Notice the slightly counter-intuitive nature of this solution, the position is unbounded even though
the velocity tends to zero. Common sense might tell you that if the car slows to zero for large time
then the total distance covered must be finite. Well, common sense fails, math wins. The point is
that the velocity actually goes too zero too slowly to give bounded motion.

Example 2.5.10. Problem: Newton’s Law of Cooling states that the change in temperature T for
an object is proportional to the difference between the ambient temperature R and T ; in particular:
dT
dt = −k(T − R) for some constant k and R is the room-temperature. Suppose that T (0) = 150
and T (1) = 120 if R = 70, find T (t)

Solution: To begin let us examine the differential equation for arbitrary k and R,

dT

dt
= −k(T −R) ⇒ dT

dt
+ kT = kR

Identify that p = k hence I = ekt and we find

ekt
dT

dt
+ kektT = kektR ⇒ d

dt

[
ektT

]
= kektR ⇒ ektT = Rekt +C ⇒ T (t) = R+ Ce−kt.

Now we may apply the given data to find both C and k, we already know R = 70 from the problem
statement;

T (0) = 70 + C = 150 & T (1) = 70 + Ce−k = 120

Hence C = 80 which implies e−k = 5/8 thus ek = 8/5 and k = ln(8/5). Therefore,

T (t) = 70 + 80et ln(5/8) . To understand this solution note that ln(5/8) < 0 hence the term

80et ln(5/8) → 0 as t→∞ hence T (t)→ 70 as t→∞. After a long time, Newton’s Law of Cooling
predicts objects will assume room temperature.
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Example 2.5.11. Suppose you decide to have coffee with a friend and you both get your coffee
ten minutes before the end of a serious presentation by your petty boss who will be offended if you
start drinking during his fascinating talk on maximal efficiencies for production of widgets. You
both desire to drink your coffee with the same amount of cream and you both like the coffee as hot
as possible. Your friend puts the creamer in immediately and waits quitely for the talk to end. You
on the other hand think you wait to put the cream in at the end of talk. Who has hotter coffee and
why? Discuss.

Example 2.5.12. Problem: the voltage dropped across a resistor R is given by the product of R
and the current I through R. The voltage dropped across an inductor L depends on the change in
the current according to LdIdt . An inductor resists a change in current whereas a resistor just resists
current. If we connect R and L in series with a voltage source E then the Kirchoff’s voltage law
yields the differential equation

E − IR− LdI
dt

= 0

Given that I(0) = Io find I(t) for the circuit.

Solution: Identify that this is a linear DE with independent variable t,

dI

dt
+
R

L
I =
E
L

The integrating factor is simply µ = e
Rt
L (using I here would be a poor notation). Multiplying the

DEqn above by µ to obtain,

e
Rt
L
dI

dt
+
R

L
e
Rt
L I =

E
L
e
Rt
L ⇒ d

dt

[
e
Rt
L I
]

=
E
L
e
Rt
L

Introduce a dummy variable of integration τ and integrate from τ = 0 to τ = t,∫ t

0

d

dτ

[
e
Rτ
L I
]
dτ =

∫ t

0

E
L
e
Rτ
L dτ ⇒ e

Rt
L I(t)− Io =

∫ t

0

E
L
e
Rτ
L dτ.

Therefore, I(t) = Ioe
−Rt
L + e

−Rt
L

∫ t
0
E
Le

Rτ
L dτ . If the voltage source is constant then E(t) = Eo for all

t and the solution yields to I(t) = Ioe
−Rt
L + e

−Rt
L
Eo
L
L
R

(
e
Rt
L − 1

)
which simplifies to

I(t) =

[
Io −

Eo
R

]
e
−Rt
L +

Eo
R
.

The steady-state current found from letting t → ∞ where we find I(t) → Eo
R . After a long time

it is approximately correct to say the inductor is just a short-circuit. What happens is that as the
current changes in the inductor a magnetic field is built up. The magnetic field contains energy
and the maximum energy that can be stored in the field is governed by the voltage source. So,
after a while, the field is approximately maximal and all the voltage is dropped across the resistor.
You could think of it like saving money in a piggy-bank which cannot fit more than Eo dollars. If
every week you get an allowance then eventually you have no choice but to spend the money if the
piggy-bank is full and there is no other way to save.
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Example 2.5.13. Problem: Suppose a tank of salty water has 15kg of salt disolved in 1000L of
water at time t = 0. Furthermore, assume pure water enters the tank at a rate of 10L/min and salty
water drains out at a rate of 10L/min. If y(t) is the number of kg of salt at time t then find y(t)
for t > 0. Also, how much salt is left in the tank when t = 20 (minutes). We suppose that this tank
is arranged such that the concentration of salt is constant throughout the liquid in this mixing tank.

Solution: Generally when we work such a problem we are interested in the rate of salt enetering
the tank and the rate of salt exiting the tank ; dy

dt = Rin − Rout. However, this problem only has a
nonzero out-rate: Rout = 10L

min
y

1000L = y
100min . We omit the ”min” in the math below as we assume

t is in minutes,

dy

dt
= − y

100
⇒ dy

y
= − dt

100
⇒ ln |y| = − t

100
+ C ⇒ y(t) = ke−

t
100 .

However, we are given that y(0) = 15 hence k = 15 and we find11:

y(t) = 15e−0.01t.

Evaluating at t = 20min yields y(20) = 12.28 kg.

Example 2.5.14. Problem: Suppose a water tank has 100L of pure water at time t = 0. Suppose
salty water with a concentration of 1.5kg of salt per L enters the tank at a rate of 8L/min and gets
quickly mixed with the initially pure water. There is a drain in the tank where water drains out
at a rate of 6L/min. If y(t) is the number of kg of salt at time t then find y(t) for t > 0. If the
water tank has a maximum capacity of 1000L then what are the physically reasonable values for the
solution? For what t does your solution cease to be reasonable?

Solution: Generally when we work such a problem we are interested in the rate of salt enetering
the tank and the rate of salt exiting the tank ; dy

dt = Rin − Rout. The input-rate is constant and is
easily found from multiplying the given concentration by the flow-rate:

Rin =
1.5 kg

L

8L

min
=

12 kg

min

notice how the units help us verify we are setting-up the model wisely. That said, I omit them in
what follows to reduce clutter for the math. The output-rate is given by the product of the flow-rate
6L/min and the salt-concentration y(t)/V (t) where V (t) is the volume of water in L at time t.
Notice that the V (t) is given by V (t) = 100 + 2t for the given flow-rates, each minute the volume
increases by 2L. We find (in units of kg and min):

Rout =
6y

100 + 2t

Therefore, we must solve:

dy

dt
= 12− 6y

100 + 2t
⇒ dy

dt
+

3dt

50 + t
y = 12.

11to be physically explicit, y(t) = (15kg)exp(−0.01t
min

), but the units clutter the math here so we omit them
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This is a linear ODE, we can solve it by the integrating factor method.

I(t) = exp

(∫
3dt

50 + t

)
= exp

(
3 ln(50 + t)

)
= (50 + t)3.

Multiplying by I yields:

(50 + t)3dy

dt
+ 3(50 + t)2y = 12(50 + t)3 ⇒ d

dt

[
(50 + t)3y

]
= 12(50 + t)3

Integrating yields (50 + t)3y(t) = 3(50 + t)4 + C hence y(t) = 3(50 + t) + C
(50+t)3

. The water is

initially pure thus y(0) = 0 thus 0 = 150 + C/503 which gives C = −150(50)3. The solution is12

y(t) = 3(50 + t)− 150

(
50

50 + t

)3

Observe that V (t) ≤ 1000L thus we need 100 + 2t ≤ 1000 which gives t ≤ 450. The solution is only
appropriate physically for 0 ≤ t ≤ 450.

Example 2.5.15. Problem: suppose the population P grows at a rate which is directly propor-
tional to the population. Let k1 be the proportionality constant for the growth rate. Suppose further
that as the population grows the death-rate is proportional to the square of the population. Suppose
k2 is the proportionality constant for the death-rate. Find the population at time t in terms of the
initial population Po.

Solution: the given problem translates into the IVP of dP
dt = k1P −k2P

2 with P (0) = Po. Observe
that k1P − k2P

2 = k1P (1− k2P/k1). Introduce C = k1/k2). Separate variables:

dP

P (1− P/C)
= k1dt

Recall the technique of partial fractions:

1

P (1− P/C)
=

−C
P (P − C)

=
A

P
+

B

P − C
⇒ −C = A(P − C) +BP

Set P = 0 to obtain −C = −AC hence A = 1 and set P = C to obtain −C = BC hence B = −1
and we find: ∫ [

1

P
− 1

P − C

]
dP = k1dt ⇒ ln |P | − ln |P − C| = k1t+ c1

It follows that letting c2 = ec1 and c3 = ±c2∣∣∣∣ P

P − C

∣∣∣∣ = c2e
k1t ⇒ P = (P − C)c3e

k1t

12following the formatting of Example 7 of § 2.7 of Rice & Strange’s Ordinary Differential Equations with Appli-
cations



46 CHAPTER 2. ORDINARY FIRST ORDER PROBLEM

hence, P [1− c3e
k1t] = −c3Ce

k1t

P (t) =
c3Ce

k1t

c3ek1t − 1
⇒ P (t) =

C

1− c4e−k1t

where I let c4 = 1/c3 for convenience. Let us work on writing this general solution in-terms of the
initial population P (0) = Po:

Po =
C

1− c4
⇒ Po(1− c4) = C ⇒ Po − C = Poc4 ⇒ c4 =

Po − C
Po

.

This yields,

P (t) =
C

1− Po−C
Po

e−k1t
⇒ P (t) = C

[
Po

Po − [Po − C]e−k1t

]
The quantity C is called the carrying capacity for the system. As we defined it here it is given
by the quotient of the birth-rate and death-rate constants C = k1/k2. Notice that as t → ∞ we
find P (t) → C. If Po > C then the population decreases towards C whereas if Po < C then the
population increases towards C. If Po = C then we have a special solution where dP

dt = 0 for all t,
the equilbrium solution. A a bit of fun trivia, these models are notoriously incorrect for human
populations. For example, in 1920 a paper by R. Pearl and L. J. Reed found P (t) = 210

1+51.5e−0.03t .
The time t is the number of years past 1790 (t = 60 for 1850 for example). As discussed in Ritger
and Rose page 85 this formula does quite well for 1950 where is well-approximates the population
as 151 million. However, the carrying capacity of 210 million people is not even close to correct.
Why? Because there are many factors which influence population which are simply not known.
The same problem exists for economic models. You can’t model game-changing events such as
an interfering government. It doesn’t flow from logic or optimal principles, political convenience
whether it benefits or hurts a given market cannot be factored in over a long-term. Natural disasters
also spoil our efforts to model populations and markets. That said, the exponential and logarthmic
population models are important to a wide-swath of reasonably isolated populations which are free
of chaotic events.

Example 2.5.16. Problem: Suppose a raindrop falls through a cloud and gathers water from the
cloud as it drops towards the ground. Suppose the mass of the raindrop is m and the suppose the
rate at which the mass increases is proportional to the mass; dm

dt = km for some constant k > 0.
Find the equation of the velocity for the drop.

Solution: Newton’s equation is −mg = dp
dt . This follows from the assumption that, on average,

there is no net-momentum of the water vapor which adheres to the raindrop thus the momentum
change is all from the gravitational force. Since p = mv the product rule gives:

−mg =
dm

dt
v +m

dv

dt
⇒ −mg = kmv +m

dv

dt

Consequently, dividing by m and applying the integrating factor method gives:

dv

dt
+ kv = −g ⇒ ekt

dv

dt
+ kektv = −gekt ⇒ d

dt

[
ektv

]
= −gekt
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Integrate to obtain ektv = −g
k e

kt +C from which it follows v(t) = −g
k

+ Ce−kt. Consider the limit

t → ∞, we find v∞(t) = − g
k . This is called the terminal velocity. Physically this is a very

natural result; the velocity is constant when the forces balance. There are two forces at work here
(1.) gravity −mg and (2.) water friction −kmv and we look at

m
dv

dt
= −mg − kmv

If v = − g
k then you obtain ma = 0. You might question if we should call the term −kmv a ”force”.

Is it really a force? In any event, you might note we can find the terminal velocity without solving
the DEqn, we just have to look for an equilbrium of the forces.

Not all falling objects have a terminal velocity... well, at least if you believe the following example.
To be honest, I’m not so sure it is very physical. I would be interested in your thoughts on the
analysis if your thoughts happen to differ from my own.

Example 2.5.17. Problem: Suppose a raindrop falls through a cloud and gathers water from the
cloud as it drops towards the ground. Suppose the mass of the raindrop is m and the suppose the
drop is spherical and the rate at which the mass adheres to the drop is proportional to the cross-
sectional area relative the vertical drop (dmdt = kπR2). Find the equation of the velocity for the drop.

Solution: we should assume the water in the could is motionless hence the water collected from
cloud does not impart momentum directly to the raindrop. It follows that Newton’s Law is −mg = dp

dt
where the momentum is given by p = mv and v = ẏ and y is the distance from the ground. The
mass m is a function of time. However, the density of water is constant at ρ = 1000kg/m3 hence
we can relate the mass m to the volume V = 4

3πR
3 we have

ρ =
4πR3

3m

Solve for R2,

R2 =

[
3ρm

4π

]2/3

As the drop falls the rate of water collected should be proportional to the cross-sectional area πR2

the drop presents to cloud. It follows that:

dm

dt
= km2/3

Newton’s Second Law for varying mass,

−mg =
d

dt

[
mv
]

=
dm

dt
v +m

dv

dt
= km2/3v +m

dv

dt

This is a linear ODE in velocity,
dv

dt
+

(
k

m1/3

)
v = −g
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We should find the mass as a function of time,

dm

dt
= km2/3 ⇒ dm

m2/3
= kdt ⇒ 3m1/3 = kt+ C1 ⇒ m =

1

27

[
kt+ C1

]3
where mo is the initial mass of the droplet.

dv

dt
+

3kv

kt+ C1
= −g

The integrating factor is found from integrating the coefficient of v,

I = exp

[∫
3kdt

kt+ C1

]
= exp

[
3 ln(kt+ C1)

]
= (kt+ C1)3

Hence,

(kt+ C1)3dv

dt
+ 3(kt+ C1)2v = −g(kt+ C1)3 ⇒ d

dt

[
(kt+ C1)3v

]
= −g(kt+ C1)3

Hence v(t) = −gt
4
− C3 + C2/(kt+ C1)3. The constants C1, C2, C3 have to do with the geometry

of the drop, its initial mass and its initial velocity. Suppose t = 0 marks the intiial formation of
the raindrop, it is interesting to consider the case t→∞, we find

v∞(t) = −gt
4
− C3

which says that the drop accelerates at approximately constant acceleration −g/4 as it falls through
the cloud. There is no terminal velocity in contrast to the previous example. You can integrate
v(t) = dy

dt to find the equation of motion for y.

Example 2.5.18. Problem: Rocket flight. Rockets fly by ejecting mass with momentum to form
thrust. We analyze the upward motion of a vertically launched rocket in this example. In this case
Netwon’s Second Law takes the form:

d

dt

[
mv

]
= Fexternal + Fthrust

the external force could include gravity as well as friction and the thrust arises from conservation
of momentum. Suppose the rocket expells gas downward at speed u relative the rocket. Suppose that
the rocket burns mass at a uniform rate m(t) = mo − αt and find the resulting equation of motion.
Assume air friction is neglible.

Solution: If the rocket has velocity v then the expelled gas has velocity v − u relative the ground’s
frame of reference. It follows that:

Fthrust = (v − u)
dm

dt
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Since Fexternal = −mg and dm
dt = −α we must solve

d

dt

[
mv

]
= −mg + (v − u)

dm

dt
⇒ dm

dt
v +m

dv

dt
= −mg + v

dm

dt
− udm

dt

Thus,

m
dv

dt
= −udm

dt
−mg

Suppose, as was given, that m(t) = mo − αt hence dm
dt = −α

(mo − αt)
dv

dt
= αu− (mo − αt)g ⇒ dv

dt
=

αu

mo − αt
− g

We can solve by integration: assume v(0) = 0 as is physically reasonable,

v(t) = −u ln(mo − αt) + u ln(mo)− gt = −u ln

(
1− αt

mo

)
− gt.

The initial mass mo consists of fuel and the rocket itself: mo = mf + mr. This model is only
physical for time t such that mr ≤ mf + mr − αt hence 0 ≤ t ≤ mf/α. Once the fuel is finished
the empty rocket completes the flight by projectile motion. You can integrate v = dy/dt to find the
equation of motion. In particular:

y(t) =

∫ t

0

[
−u ln(mo − ατ) + u ln(mo)− gτ

]
dτ (2.1)

=

(
−u
α

[
(ατ −mo) ln(mo − ατ)− ατ

]
+ uτ ln(mo)−

1

2
gτ2

)∣∣∣∣t
0

= −u
α

[
(αt−mo) ln(mo − αt)− αt

]
+ ut ln(mo)−

1

2
gt2 − mou

α
ln(mo)

= ut− 1

2
gt2 − umo

α

(
1− αt

mo

)
ln

(
1− αt

mo

)

Suppose −
∫ mf

α
0 u ln

(
1− αt

mo

)
dt = A then y(t) = A− 1

2g

(
t− mf

α

)2

for t >
mf
α as the rocket freefalls

back to earth having exhausted its fuel.

Technically, if the rocket flies more than a few miles vertically then we ought to use the variable
force of gravity which correctly accounts for the weaking of the gravitational force with increasing
altitude. Mostly this example is included to show how variable mass with momentum transfer is
handled.

Other interesting applications include chemical reactions, radioactive decay, blood-flow, other pop-
ulation models, dozens if not hundreds of modifications of the physics examples we’ve considered,
rumor propogation, etc... the math here is likely found in any discipline which uses math to quantia-
tively describe variables. I’ll conclude this section with an interesting example I found in Edwards
and Penny’s Elementary Differential Equations with Boundary Value Problems, the 3rd Ed.



50 CHAPTER 2. ORDINARY FIRST ORDER PROBLEM

Example 2.5.19. Problem: Suppose a flexiible rope of length 4ft has 3ft coiled on the edge of
a balcony and 1ft hangs over the edge. If at t = 0 the rope begins to uncoil further then find the
velocity of the rope as it falls. Also, how long does it take for the rope to fall completely off the
balcony. Suppose that the force of friction is neglible.

Solution: let x be the length of rope hanging off and suppose v = dx/dt. It follows that x(0) = 1
and v(0) = 0. The force of gravity is mg, note that if λ is the mass per unit length of the rope then
m = λx, thus:

d

dt

[
mv

]
= mg ⇒ d

dt

[
λxv

]
= λxg ⇒ λ

dx

dt
v + λx

dv

dt
= λxg

The mass-density λ cancels and since v = dx
dt and dv

dt = dx
dt
dv
dx = v dvdx we find:

v2 + xv
dv

dx
= xg ⇒

(
v2

x
− g
)
dx+ v dv = 0

In your text, in the discussion of special integrating factors, it is indicated that when
∂yM−∂xN

N =

A(x) then I =
∫
Adx is an integrating factor. Observe M(x, v) = v2

x − g and N(x, v) = v hence

∂vM − ∂xN = 2/x hence we calculate I = exp(
∫

2dx
x ) = exp(2 ln |x|) = x2. Don’t believe it? Well,

believe this: (
xv2 − gx2

)
dx+ x2v dv = 0 ⇒ 1

2
x2v2 − 1

3
gx3 = C.

Apply the intiial condtions x(0) = 1 and v(0) = 0 gives −1
3g = C thus 1

2x
2v2 − 1

3gx
3 = −1

3g. and
we solve for v > 0,

v =

√
2g

3

(
x3 − 1

x2

)
However, v = dx

dt consequently, separating and integrating:

T =

√
3

2g

∫ 4

1

xdx√
x3 − 1

u 2.5

√
3

2g
= 0.541 s

by Wolfram Alpha. See Section 1.7 Example 6 of Edwards and Penny’s Elementary Differential
Equations with Boundary Value Problems, the 3rd Ed. for another approach involving Simpson’s
rule with 100 steps.
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2.6 visualizations, existence and uniqueness

Given a curve in the R2 we have two general methods to describe the curve:

(1.) F (x, y) = k as a level curve (2.) ~r(t) = 〈x(t), y(t)〉 as a parametrized curve

As an example, we can either write x2 + y2 = 1 or x = cos(t), y = sin(t). The parametric view
has the advantage of capturing the direction or orientation of the curve. We have studied solu-
tions of Mdx + Ndy = 0 in terms of cartesian coordinates and naturally our solutions were level
curves. We now turn to ask what conditions ought to hold for the parametrization of the solution
to Mdx+Ndy = 0.

Given a differentiable function of two variables F : D ⊆ R2 → R we may subsitute a differentiable
path ~r : I ⊆ R → D to form the composite function F ◦~r : I ⊆ R → R. If we denote ~r(t) =
〈x(t), y(t)〉 then the multivariate chain-rule says:

d

dt
F (x(t), y(t)) =

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
.

Suppose we have a level curve C which is the solution set of F (x, y) = k and suppose C is the
solution of Mdx + Ndy = 0 (call this (?xy). It follows that the level-function F must have
∂xF = M and ∂yF = N . Continuing, suppose a parametrization of C is given by the set of
functions x, y : I ⊆ R→ R where F (x(t), y(t)) = k for all t ∈ I. Notice that when we differentiate
k with respect to t we obtain zero hence, applying the general chain rule to our context,

∂F

∂x
(x(t), y(t))

dx

dt
+
∂F

∂y
(x(t), y(t))

dy

dt
= 0

for any parametrization of C. But, ∂xF = M and ∂yF = N hence

M(x(t), y(t))
dx

dt
+N(x(t), y(t))

dy

dt
= 0 (?t)

I probably cheated in class and just ”divided by dt” to derive this from Mdx+Ndy = 0. However,
that is just an abbreviation of the argument I present here. How should we solve (?t)? Observe
that the conditions

dx

dt
= −N(x(t), y(t)) &

dy

dt
= M(x(t), y(t))

will suffice. Moreover, these conditions show that the solution of Mdx+Ndy = 0 is an streamline
(or integral curve) of the vector field ~G = 〈−N,M〉. Naturally, we see that ~F = 〈M,N〉 is orthogo-
nal to ~G as ~F • ~G = 0. The solutions of Mdx+Ndy = 0 are perpendicular to the vector field 〈M,N〉.

There is an ambiguity we should face. Given Mdx + Ndy = 0 we can either view solutions as
streamlines to the vector field 〈−N,M〉 or we could use 〈N,−M〉. The solutions of Mdx+Ndy = 0
do not have a natural direction unless we make some other convention or have some larger context.
Therefore, as we seek to visualize the solutions of Mdx + Ndy = 0 we should either ignore the
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direction of the vector field 〈−N,M〉 or simply not plot the arrowheads. A plot of 〈−N,M〉 with
directionless vectors is called an isocline plot for Mdx + Ndy = 0. Perhaps you looked at some
isoclines in your second semester calculus course.

Example 2.6.1. Problem: plot the isocline field for xdx+ ydy = 0 and a few solutions.
Solution: use pplane with x′ = −y and y′ = x for the reasons we just derived in general.

Example 2.6.2. Problem: plot the isocline field for dy
dx = (x+ y − 6)2 and a few solutions.

Solution: in Pfaffian form we face (x + y − 6)2dx − dy hence we use pplane with x′ = −1 and
y′ = (x+ y − 6)2.

Recall that we found solutions y = 6 + tan(x+ C)− x in Example 2.4.1. This is the plot of that.
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Example 2.6.3. Problem: plot the isocline field for (x + y + 2)dx + (x − y)dy = 0 and a few
solutions.
Solution: in Pfaffian form we face (x + y − 6)2dx − dy hence we use pplane with x′ = −1 and
y′ = (x+ y − 6)2.

Recall that we found solutions 2x+ x2−y2
2 + xy = C in Example 2.4.7. This is the plot of that.

Example 2.6.4. Problem: plot the isocline field for dy
dx = y3+x2y−y−x

xy2+x3+y−x and a few solutions.

Solution: in Pfaffian form we face (y3 +x2y−y−x)dx− (xy2 +x3 +y−x)dy hence we use pplane
with x′ = xy2 + x3 + y − x and y′ = y3 + x2y − y − x.

See my handwritten notes (38-40) for the solution of this by algebraic methods. It is a beautiful
example of how polar coordinate change naturally solves a first order ODE with a rotational sym-
metry. Also, notice that all solutions asymptotically are drawn to the unit circle. If the solution
begins inside the circle it is drawn outwards to the circle whereas all solutions outside the circle
spiral inward.
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If you study the plots I just gave you will notice that at most points there is just one solution the
flows through. However, at certain points there are multiple solutions that intersect. When there
is just one solution at a given point (xo, yo) then we say that the solution is unique. It turns out
there are simple theorems that capture when the solution is unique for a general first order ODE
of the form dy

dx = f(x, y). I will not prove these here13

Theorem 2.6.5. existence of solution(s)

Suppose f is continuous on a rectangle R ⊂ R2 then at least one solution exists for
dy
dx = f(x, y) at each point in R. Moreover, these solutions exist on all of R in the sense
that they reach the edge of R.

This is a dumbed-down version of the theorem given in the older texts like Rabenstein or Ritger &
Rose. See pages 374-378 of Rabenstein or Chapter 4 of Ritger & Rose. You can read those if you
wish to see the man behind the curtain here.

Theorem 2.6.6. uniqueness of solution

Suppose f is continuous on a rectangle R ⊂ R2 and ∂f
∂y (xo, yo) 6= 0 then there exists a

unique solution near (xo, yo).

Uniqueness can be lost as we get too far away from the point where ∂f
∂y (xo, yo) 6= 0. The solution is

separated from other solutions near (xo, yo), but it may intersect other solutions as we travel away
from the given point.

Example 2.6.7. Solve dy
dx = y2 and analyze how the uniqueness and existence theorems are

validated. This nonlinear DEqn is easily solved by separation of variables: dy/y2 = dx hence
−1/y = x+ C or y = −1

x+C . We also have the solution y = 0. Consider,

∂f

∂y
=

∂

∂y
[y2] = 2y

Thus all points off the y = 0 (aka x-axis) should have locally unique solutions. In fact, it turns
out that the solution y = 0 is also unique in this case. Notice that the theorem does not forbid
this. The theorem on uniqueness only indicates that it is possible for multiple solutions to exist
at a point where ∂f

∂y (xo, yo) = 0. It is important to not over-extend the theorem. On the other

hand, the existence theorem says that solutions should extend to the edge of R2 and that is clearly
accomplished by the solutions we found. You can think of y = 0 as reaching the horizontal infinities
of the plane whereas the curves y = −1

x+C have vertical asymptotes which naturally extend to the
vertical infinities of the plane. (these comments are heuristic !)

Example 2.6.8. Solve dy
dx = 2

√
y and analyze how the uniqueness and existence theorems are

validated. Observe that dy
2
√
y = dx hence

√
y = x + C and we find y = (x + C)2. Note that the

13see Rosenlicht’s Introduction to Analysis for a proof of this theorem, you need ideas from advanced calculus and
real analysis to properly understand the proof.
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solutions reach points on R×[0,∞) however the solutions do not have y < 0. The existence theorem
suggests solutions should exist on R× [0,∞) and this is precisely what we found. On the other hand,
for uniqueness, consider: f(x, y) = 2

√
y

∂f

∂y
=

1
√
y

We can expect unique solutions at points with y 6= 0, however, we may find mutiple solutions at
points with y = 0. Indeed, note that y = 0 is a solution and at any point (a, 0) we also have the
solution y = (x − a)2. At each point along the x-axis we find two solutions intersect the point.
Moreover, if you look at an open interval centered at (a, 0) you’ll find infinitely many solutions
which flow off the special solution y = 0. Note, in the plot below, the pplane tool illustrates the
points outside the domain of defintion by the red dots:

Example 2.6.9. Consider the first order linear ODE dy
dx + P (x)y = Q(x). Identify that dy

dx =

Q(x) − P (x)y = f(x, y). Therefore, ∂f
∂y = P (x). We might find there are multiple solutions for

points with P (x) = 0. However, will we? Discuss.

If a first order ODE does not have the form14 dy
dx + P (x)y = Q(x) then it is said to be nonlinear.

Often the nonlinear ODEs we have studied have possessed unique solutions at most points. However,
the unique solutions flow into some exceptional solution like y = 0 in Example 2.6.8 or the unit circle
x2 + y2 = 1 or origin (0, 0) in Example 2.6.4. These exceptional solutions for nonlinear problems
are called singular solutions and a point like the origin in Example 2.6.4 is naturally called a
singular point. That said, we will discuss a more precise idea of singular point for systems of
ODEs later in this course. The study of nonlinear problems is a deep an interesting subject which
we have only scratched the surface of here. I hope you see by now that the resource of pplane allows
you to see things that would be very hard to see with more naive tools like a TI-83 or uncoded
Mathematica.

14could also write dy
dx

= Q(x)− P (x)y or dy = (Q(x)− P (x)y)dx etc... the key is that the expression has y and y′

appearing linearly when the DEqn is written in dy
dx

notation
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Chapter 3

ordinary n-th order problem

To be honest, we would more properly title this chapter ”the ordinary linear n-th order problem”. Our
focus is entirely in that direction here. We already saw that some things are known about solutions to
nonlinear problems. For example: the Bernoulli, Ricatti, or Clairaut equations in the n = 1 case are all
nonlinear ODEs. Generally the nonlinear problem is more challenging and we do not seek to describe what
is known in these notes. This introductory chapter instead focuses on the linear case. Linearity is a very
strong condition which at once yields very strong theorems about the existence and format of the general
solution. In particular, if we are given a linear n-th order ODE as well as n-initial conditions then a unique
solution usually exists. I’ll try to be a bit more precise on what I mean by ”usually” and beyond that we’ll
discuss techniques to derive the solution.

The approach here is less direct than the n = 1 case. We use operators and a series of propositions and
theorems to think through these problems. Don’t ignore the theory here, it is your guide to success. Once
the theory is completed we turn out attention to methods for deriving solutions. Section 2 gives the rules
for operator calculus as well as a little complex notation we will find useful in this course. In Section 3 we
see how any constant coefficient ODE can be disassembled into a polynomial P of the derivative operator D.
Moreover, this polynomial possesses all the usual algebraic properties and once we factor a given P (D) then
the solution of P (D)[y] = 0 is simple to write down. Then in Section 4 we turn to nonhomogeneous problems
of the simple type. We’ll see how the annihilator method allows us to propose the form of the particular
solution and a little algebra finishes the job. The technique of Section 4, while beatiful, is inadequate to face
general forcing functions. In Section 5 we find a method known as variation of parameters. The generality
of variation of parameters ultimately rests on the existence of the Wronskian and a little linear algebra we
introduce along the way. Section 6 discusses the general concept of reduction of order. A particular formula
is derived for the n = 2 case which allows us to find a second solution once we’ve found a first solution. In
Section 7 we see how a factored operator allows for a nested integral solution of the given DEqn. However,
when the operators are not commuting some interesting features occur. In section 8 the cauchy euler prob-
lem is studied and we use it as a laboratory to explore the factorization of operators concept further. It
turns out the cauchy euler problem can be cast as P (xD)[y] = 0. Finally, we study springs and RLC circuits.

I am indebted to Nagel Saff and Snider and Rabenstein’s texts primarily for this chapter. However, I wouldn’t
blaim them for any of the mistakes. Those are probably mine.1

1Ritger and Rose has added another tool to my toolbox for constant coefficient ODEs, I will show it to you before
much of the material in this chapter, sadly I do not have time to add it to these notes. It is crucial you take notes
in lecture.

57
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3.1 linear differential equations

We say I is an interval iff I = (a, b), [a, b), [a, b), [a, b], [a,∞), (a,∞), (−∞, a], (−∞, a), (−∞,∞).

Definition 3.1.1. n-th order linear differential equation

Let I be an interval of real numbers. Let ao, a1, . . . , an, f be real-valued functions on I such that
ao(x) 6= 0 for all x ∈ I. We say

ao
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = f

is an n-th order linear differential equation on I with coefficient functions ao, a1, . . . , an
and forcing function f . If f(x) = 0 for all x ∈ I then we say the differential equation is homo-
geneous. However, if f(x) 6= 0 for at least one x ∈ I then the differential equation is said to be
nonhomogeneous.

In the prime notation our generic linear ODE looks like:

aoy
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = f

If the independent variable was denoted by t then we could emphasize that by writing

aoy
(n)(t) + a1y

(n−1)(t) + · · ·+ an−1y
′(t) + any(t) = f(t).

Typically we either use x or t as the independent variable in this course. We can denote differentiation as
an operator D and, depending on the context, either D = d/dx or D = d/dt. In this operator notation we
can write the generic differential equation as

aoD
n[y] + a1D

n−1[y] + · · ·+ an−1D[y] + any = f

or, introducing L = aoD
n + a1D

n−1 + · · ·+ an−1D + an we find our generic linear ODE is simply L[y] = f .
We’ll calculate in a future section that this operator L is a linear transformation on function space. You
input a function y into L and you get out a new function L[y]. A function-valued function of functions is
called an operator, it follows that L is a linear operator. If all the coefficient functions were smooth then
we could say that L is a smooth operator. Enough math-jargon. The bottom line is that L enjoys the
following beautiful properties:

L[y1 + y2] = L[y1] + L[y2] & L[cy1] = cL[y1]

for any n-fold differentiable functions2 y1, y2 on I and constant c.

2in fact these could be complex-valued functions and c could be complex, but I don’t want to discuss the details
of that just yet
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Theorem 3.1.2. unique solutions to the initial value problem for L[y] = f .

Suppose ao, a1, . . . , an, f are continuous on an interval I with ao(x) 6= 0 for all x ∈ I. Suppose
xo ∈ I and yo, y1, . . . , yn−1 ∈ R then there exists a unique function φ such that:

(1.) ao(x)φ(n)(x) + a1(x)φ(n−1)(x) + · · ·+ an−1(x)φ′(x) + an(x)φ(x) = f(x)

for all x ∈ I and

(2.) φ(xo) = yo, φ
′(xo) = y1, φ

′′(xo) = y2, . . . , φ
(n−1)(xo) = yn−1.

The linear differential equation L[y] = f on an interval I paired with the n-conditions y(xo) = yo, y
′(xo) =

y1, y
′′(xo) = y2, . . . , y

(n−1)(xo) = yn−1 is called an initial value problem (IVP). The theorem above
simply says that there is a unique solution to the initial value problem for any linear n-th order ODE with
continuous coefficients. The proof of this theorem can be found in many advanced calculus or differential
equations texts. See Chapter 13 of Nagle Saff and Snider for some discussion. We can’t cover it here because
we need ideas about convergence of sequences of functions. If you are interested you should return to this
theorem after you have completed the real analysis course. Proof aside, we will see how this theorem works
dozens if not hundreds of times as the course continues.

I’ll illustrate the theorem with some examples.

Example 3.1.3. The solution of of y′ = y with y(0) = 1 is given by y = ex. Here L[y] = y′ − y and the
coefficient functions are a0 = 1 and a1 = 1. These constant coefficients are continuous on R and ao = 1 6= 0
on R as well. It follows from Theorem 3.1.2 that the unique solution with y(0) = 1 should exist on R.

Example 3.1.4. The general solution of y′′ + y is given by

y = c1 cos(x) + c2 sin(x)

by the method of reduction of order shown in Example 2.4.11. Theorem 3.1.2 indicates that there is a unique
choice of c1, c2 to produce a particular set of initial conditions. For example: the solution of of y′′ + y = 0
with y(0) = 1, y′(0) = 1 is given by y = cos(x) + sin(x). Here L[y] = y′′ + y and the coefficient functions are
a0 = 1, a1 = 0 and a1 = 1. These constant coefficients are continuous on R and ao = 1 6= 0 on R as well.
Once more we see from Theorem 3.1.2 that the unique solution with y(0) = 1, y′(0) = 1 should exist on R,
and it does!

Example 3.1.5. The general solution of x3y′′ + xy′ − y = 0 is given by

y = c1x+ c2xe
1/x

Observe that ao(x) = x3 and a1(x) = x and ao(x) = −1. These coefficient functions are continuous on R,
however, ao(0) = 0. We can only expect, from Theorem 3.1.2, that solutions to exist on (0,∞) or (−∞, 0).
This is precisely the structure of the general solution. I leave it to the reader to verify that the initial value
problem has a unique solution on either (0,∞) or (−∞, 0).

Example 3.1.6. Consider y(n)(t) = 0. If we integrate n-times then we find (absorbing any fractions of
integration into the constants for convenience)

y(t) = c1 + c2t+ c3t
2 + · · ·+ cnt

n−1
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is the general solution. Is there a unique solution to the initial value problem here? Theorem 3.1.2 indicates
yes since ao = 1 is nonzero on R and all the other coefficient functions are clearly continuous. Once more
I leave the proof to the reader3, but as an example y′′′ = 0 with y(0) = 1, y′(0) = 1 and y′′(0) = 2 is solved
uniquely by y(t) = t2 + t+ 1.

We see that there seem to be n-distinct functions forming the solution to an n-th order linear ODE. We
need to develop some additional theory to make this idea of distinct a bit more precise. For example, we
would like to count ex and 2ex as the same function since multiplication by 2 in our context could easily be
absorbed into the constant. On the other hand, e2x and e3x are distinct functions.

Definition 3.1.7. linear independence of functions on an interval I.

Let I be an interval of real numbers. We say the set of functions {f1, f2, f3, . . . , fm} are linearly
independent (LI) on I iff

c1f1(x) + c2f2(x) + · · ·+ cmfm(x) = 0

for all x ∈ I implies c1 = c2 = · · · = cm = 0. Conversely, if {f1, f2, f3, . . . , fm} are not linearly
independent on I then they are said to be linearly dependent on I.

It is not hard to show that if {f1, f2, f3, . . . , fm} is linearly dependent set of functions on I then there is at
least one function, say fj such that

fj = c1f1 + c2f2 + · · · cj−1fj−1 + cj+1fj+1 + · · ·+ cnfn.

This means that the function fj is redundant. If these functions are solutions to L[y] = 0 then we don’t
really need fj since the other n − 1 functions can produce the same solutions under linear combinations.
On the other hand, if the set of solutions is linearly independent then every function in the set is needed to
produce the general solution. As a point of conversational convenience let us adopt the following convention:
f1 and f2 are independent on I iff {f1, f2} are linearly independent on I.

I may discuss direct application of the defintion above in lecture, however it is better to think about the
construction to follow here. We seek a convenient computational characterization of linear independence of
functions. Suppose that {y1, y2, y3, . . . , ym} is linearly independent set of functions on I which are at least
(n− 1)-times differentiable. Furthermore, suppose for all x ∈ I

c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0.

Differentiate to obtain for all x ∈ I:

c1y
′
1(x) + c2y

′
2(x) + · · ·+ cmy

′
m(x) = 0.

Differentiate again to obtain for all x ∈ I:

c1y
′′
1 (x) + c2y

′′
2 (x) + · · ·+ cmy

′′
m(x) = 0.

Continue differentiating until we obtain for all x ∈ I:

c1y
(m−1)
1 (x) + c2y

(m−1)
2 (x) + · · ·+ cmy

(m−1)
m (x) = 0.

3this makes a nice linear algebra problem
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Let us write these m-equations in matrix notation4
y1(x) y2(x) · · · ym(x)
y′1(x) y′2(x) · · · y′m(x)

...
... · · ·

...

y
(m−1)
1 (x) y

(m−1)
2 (x) · · · y

(m−1)
m (x)



c1
c2
...
cm

 =


0
0
...
0


In linear algebra we show that the linear equation A~x = ~b has a unique solution iff det(A) 6= 0. Since we have
assumed linear independence of {y1, y2, y3, . . . , ym} on I we know c1 = c2 = · · · = cm = 0 is the only solution
of the system above for each x ∈ I. Therefore, the coefficient matrix must have nonzero determinant5 on all
of I. This determinant is called the Wronskian.

Definition 3.1.8. Wronskian of functions y1, y2, . . . , ym at x.

W (y1, y2, . . . , ym;x) = det


y1(x) y2(x) · · · ym(x)
y′1(x) y′2(x) · · · y′m(x)

...
... · · ·

...

y
(m−1)
1 (x) y

(m−1)
2 (x) · · · y

(m−1)
m (x)

 .

It is clear from the discussion preceding this definition that we have the following proposition:

Theorem 3.1.9. nonzero Wronskian on I implies linear independence on I.

If W (y1, y2, . . . , ym;x) for each x ∈ I then {y1, y2, y3, . . . , ym} is linearly independent on I.

Let us pause to introduce the formulas for the determinant of a square matrix. We define,

det

(
a b
c d

)
= ad− bc.

Then the 3× 3 case is defined in terms of the 2× 2 formula as follows:

det

a b c
d e f
g h i

 = a · det

(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
and finally the 4× 4 determinant is given by

det


a b c d
e f g h
i j k l
m n o p

 = a · det

f g h
j k l
n o p

− b · det

 e g h
i k l
m o p



+ c · det

 e f h
i j l
m n p

− d · det

 e f g
i j k
m n o


4don’t worry too much if you don’t know matrix math just yet, we will cover some of the most important matrix

computations a little later in this course, for now just think of it as a convenient notation
5have no fear, I will soon remind you how we calculate determinants, you saw the pattern before with cross

products in calculus III



62 CHAPTER 3. ORDINARY N -TH ORDER PROBLEM

Expanding the formula for the determinant in terms of lower order determinants is known as Laplace’s
expansion by minors. It can be shown, after considerable effort, this is the same as defining the deteminant
as the completely antisymmetric multilinear combination of the rows of A:

det(A) =
∑

i1,i2,...,in

εi1,i2,...,inA1i1A2i2 · · ·Anin .

See my linear algebra notes if you want to learn more. For the most part we just need the 2× 2 or 3× 3 for
examples.

Example 3.1.10. Consider y1 = eax and y2 = ebx for a, b ∈ R with a 6= b. The Wronskian is

W (eax, ebx, x) = det

[
y1(x) y2(x)
y′1(x) y′2(x)

]
=

[
eax ebx

aeax bebx

]
= eaxbebx − ebxaeax = (a− b)e(a+b)x.

Since a− b 6= 0 it follows W (eax, ebx, x) 6= 0 on R and we find {eax, ebx} is LI on R.

Example 3.1.11. Consider y1(t) = 1 and y2(t) = t and y3(t) = t2. The Wronskian is

W (1, t, t2, t) = det

 1 t t2

0 1 2t
0 0 2

 = (1)(1)(2) = 2.

Clearly W (1, t, t2; t) 6= 0 for all t ∈ R and we find {1, t, t2} is LI on R.

Example 3.1.12. Consider y1(x) = x and y2(x) = sinh(x) and y3(x) = cosh(x). Calculate W (x, cosh(x), sinh(x);x) =

= det

 x cosh(x) sinh(x)
1 sinh(x) cosh(x)
0 cosh(x) sinh(x)


= xdet

[
sinh(x) cosh(x)
cosh(x) sinh(x)

]
− cosh(x)det

[
1 cosh(x)
0 sinh(x)

]
+ sinh(x)det

[
1 sinh(x)
0 cosh(x)

]
= x

[
sinh2(x)− cosh2(x)

]
− cosh(x)

[
1 sinh(x)− 0 cosh(x)

]
+ sinh(x)

[
1 cosh(x)− 0 sinh(x)

]
= −x.

Clearly W (x, cosh(x), sinh(x);x) 6= 0 for all x 6= 0. It follows {x, cosh(x), sinh(x)} is LI on any interval
which does not contain zero.

The interested reader is apt to ask: is {x, cosh(x), sinh(x)} linearly dependent on an interval which does
contain zero? The answer is no. In fact:

Theorem 3.1.13. Wronskian trivia.

Suppose {y1, y2, . . . , ym} are (n−1)-times differentiable on an interval I. If {y1, y2, . . . , ym} is linearly
dependent on I then W (y1, y2, . . . , ym;x) = 0 for all x ∈ I. Conversely, if there exists xo ∈ I such
that W (y1, y2, . . . , ym;x) 6= 0 then {y1, y2, . . . , ym} is LI on I.

The still interested reader might ask: ”what if the Wronskian is zero at all points of some interval? Does that
force linear dependence?”. Again, no. Here’s a standard example that probably dates back to a discussion
by Peano and others in the late 19-th century:
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Example 3.1.14. The functions y1(x) = x2 and y2(x) = x|x| are linearly independent on R. You can see
this from supposing c1x

2 + c2x|x| = 0 for all x ∈ R. Take x = 1 to obtain c1 + c2 = 0 and take x = −1 to
obtain c1 − c2 = 0 which solved simultaneously yield c1 = c2 = 0. However,

W (x, |x|;x) = det

[
x2 x|x|
2x 2|x|

]
= 0.

The Wronskian is useful for testing linear-dependence of complete solution sets of a linear ODE.

Theorem 3.1.15. Wronskian on a solution set of a linear ODE.

Suppose L[y] = 0 is an n-th order linear ODE on an interval I and y1, y2, . . . , yn are solutions on
I. If there exists xo ∈ I such that W (y1, y2, . . . , yn;xo) 6= 0 then {y1, y2, . . . , yn} is LI on I. On the
other hand, if there exists xo ∈ I such that W (y1, y2, . . . , yn;xo) = 0 then {y1, y2, . . . , yn} is linearly
dependent on I

Notice that the number of solutions considered must match the order of the equation. It turns out the
theorem does not apply to smaller sets of functions. It is possible for the Wronskian of two solutions to a
third order ODE to vanish even though the functions are linearly independent. The most interesting proof
of the theorem above is given by Abel’s formula. I’ll show how to derive it in the n = 2 case to begin:

Let ao, a1, a2 be continuous functions on an interval I with ao(x) 6= 0 for each x ∈ I. Suppose aoy
′′+ a1y

′+
a2y = 0 has solutions y1, y2 on I. Consider the Wronskian W (x) = y1y

′
2 − y2y′1. Something a bit interesting

happens as we calculate the derivative of W ,

W ′ = y′1y
′
2 + y1y

′′
2 − y′2y′1 − y2y′′1 = y1y

′′
2 − y2y′′1 .

However, y1 and y2 are solutions of aoy
′′ + a1y

′ + a2y = 0 hence

y′′1 = −a1
ao
y′1 −

a2
ao
y1 & y′′2 = −a1

ao
y′2 −

a2
ao
y2

Therefore,

W ′ = y1

(
−a1
ao
y′2 −

a2
ao
y2

)
− y2

(
−a1
ao
y′1 −

a2
ao
y1

)
=
a1
ao

(
y1y
′
2 − y2y′1

)
=
a1
ao
W

We can solve dW
dx = a1

ao
W by separation of variables:

W (x) = C exp

[∫
a1
ao
dx

]
⇐ Abel’s Formula.

It follows that either C = 0 and W (x) = 0 for all x ∈ I or C 6= 0 and W (x) 6= 0 for all x ∈ I.

It is a bit surprising that Abel’s formula does not involve a2 directly. It is fascinating that this continues to
be true for the n-th order problem: if y1, y2, . . . , yn are solutions of aoy

(n) +a1y
(n−1) + · · ·+an−1y

′+any = 0
and W is the Wronskian of the given n-functions then W is gvien by Abel’s formula W (x) = C exp

[∫
a1
ao
dx
]
.

You can skip the derivation that follows if you wish. What follows is an example of tensor calculus: let

Y = [y1, y2, . . . , yn] thus Y ′ = [y′1, y
′
2, . . . , y

′
n] and Y (n−1) = [y

(n−1)
1 , y

(n−1)
2 , . . . , y

(n−1)
n ]. The Wronskian is

given by

W =

n∑
i1,i2,...,in=1

εi1i2...inYi1Y
′
i2 · · ·Y

(n−1)
in
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Apply the product rule for n-fold products on each summand in the above sum,

W ′ =

n∑
i1,i2,...,in=1

εi1i2...in

(
Y ′i1Y

′
i2 · · ·Y

(n−1)
in

+ Yi1Y
′′
i2Y
′′
i3 · · ·Y

(n−1)
in

+ · · ·+ Yi1Y
′
i2 · · ·Y

(n−2)
in−1

Y
(n)
in

)
The term Y ′i1Y

′
i2
· · ·Y (n−1)

in
= Y ′i2Y

′
i1
· · ·Y (n−1)

in
hence is symmetric in the pair of indices i1, i2. Next, the

term Yi1Y
′′
i2
Y ′′i3 · · ·Y

(n−1)
in

is symmetric in the pair of indices i2, i3. This patterns continues up to the term

Yi1Y
′
i2
· · ·Y (n−1)

in−2
Y

(n−2)
in−1

Y
(n−1)
in

which is symmetric in the in−2, in−1 indices. In contrast, the completely
antisymmetric symbol εi1i2...in is antisymmetric in each possible pair of indices. Note that if Sij = Sji and
Aij = −Aji then∑

i

∑
j

SijAij =
∑
i

∑
j

−SjiAji = −
∑
j

∑
i

SjiAji = −
∑
i

∑
j

SijAij ⇒
∑
i

∑
j

SijAij = 0.

If we sum an antisymmetric object against a symetric object then the result is zero. It follows that only one
term remains in calculation of W ′:

W ′ =

n∑
i1,i2,...,in=1

εi1i2...inYi1Y
′
i2 · · ·Y

(n−2)
in−1

Y
(n)
in

(?)

Recall that y1, y2, . . . , yn are solutions of aoy
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0 hence

y
(n)
j = −a1

ao
y
(n−1)
j − · · · − an−1

ao
y′j −

an
ao
yj = 0

for each j = 1, 2, . . . , n. But, this yields

Y (n) = −a1
ao
Y (n−1) − · · · − an−1

ao
Y ′ − an

ao
Y

Substitute this into ?,

W ′ =

n∑
i1,i2,...,in=1

εi1i2...inYi1Y
′
i2 · · ·Y

(n−2)
in−1

[
−a1
ao
Y (n−1) − · · · − an−1

ao
Y ′ − an

ao
Y

]
in

=

n∑
i1,i2,...,in=1

εi1i2...in

(
−a1
ao
Yi1Y

′
i2 · · ·Y

(n−1)
in

− · · · − an−1
ao

Yi1Y
′
i2 · · ·Y

′
in −

an
ao
Yi1Y

′
i2 · · ·Yin

)

= −a1
ao

n∑
i1,i2,...,in=1

εi1i2...inYi1Y
′
i2 · · ·Y

(n−1)
in

? ?

= −a1
ao
W.

The ?? step is based on the observation that the index pairs i1, in and i2, in etc... are symmetric in the
line above it hence as they are summed against the completely antisymmetric symbol those terms vanish.
Alternatively, and equivalently, you could apply the multilinearity of the determinant paired with the fact
that a determinant with any two repeated rows vanishes. Linear algebra aside, we find W ′ = −a1aoW thus

Abel’s formula W (x) = C exp
[∫

a1
ao
dx
]

follows immediately.

Solution sets of functions reside in function space. As a vector space, function space is infinite dimensional.
The matrix techniques you learn in the linear algebra course do not apply to the totallity of function space.
Appreciate the Wronskian says what it says. In any event, we should continue our study of DEqns at this
point since we have all the tools we need to understand LI in this course.
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Definition 3.1.16. fundamental solutions sets of linear ODEs.

Suppose L[y] = f is an n-th order linear differential equation on an interval I. We say S =
{y1, y2, . . . , yn} is a fundamental solution set of L[y] = f iff S is linearly independent set of
solutions to the homogeneous equation; L[yj ] = 0 for j = 1, 2, . . . n.

Example 3.1.17. The differential equation y′′ + y = f has fundamental solution set {cos(x), sin(x)}. You
can easily verify that W (cos(x), sin(x);x) = 1 hence linear independence is established the given functions.
Moreover, it is simple to check y′′ + y = 0 has sine and cosine as solutions. The formula for f is irrelevant
to the fundamental solution set. Generally, the fundamental solution set is determined by the structure of L
when we consider the general problem L[y] = f .

Theorem 3.1.18. existence of a fundmental solution set.

If L[y] = f is an n-th order linear differential equation with continuous coefficient functions on an
interval I then there exists a fundamental solution set S = {y1, y2, . . . , yn} on I.

Proof: Theorem 3.1.2 applies. Pick xo ∈ I and use the existence theorem to obtain the solution y1 subject
to

y1(xo) = 1, y′1(xo) = 0, y′′1 (xo) = 0, . . . , y
(n−1)
1 (xo) = 0.

Apply the theorem once more to select solution y2 with:

y2(xo) = 0, y′2(xo) = 1, y′′2 (xo) = 0, . . . , y
(n−1)
2 (xo) = 0.

Then continue in this fashion selecting solutions y3, y4, . . . , yn−1 and finally yn subject to

yn(xo) = 0, y′n(xo) = 0, y′′n(xo) = 0, . . . , y(n−1)n (xo) = 1.

It remains to show that the solution set {y1, y2, . . . , yn} is indeed linearly independent on I. Calculate the
Wronskian at x = xo for the solution set {y1, y2, . . . , yn}: abbreviate W (y1, y2, . . . , yn;x) by W (x) for the
remainder of this proof:

W (xo) = det


y1(xo) y2(xo) · · · ym(xo)
y′1(xo) y′2(xo) · · · y′m(xo)

...
... · · ·

...

y
(n−1)
1 (xo) y

(n−1)
2 (xo) · · · y

(n−1)
n (xo)

 = det


1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

 = 1.

Therefore, by Abel’s formula, the Wronskian is nonzero on the whole interval I and it follows the solution
set is LI. �

Theorem 3.1.19. general solution of the homogeneous linear n-th order problem.

If L[y] = f is an n-th order linear differential equation with continuous coefficient functions on an
interval I with fundamental solution set S = {y1, y2, . . . , yn} on I. Then any solution of L[y] = 0 can
be expressed as a linear combination of the fundamental solution set: that is, there exist constants
c1, c2, . . . , cn such that:

y = c1y1 + c2y2 + · · ·+ cnyn.
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Proof: Suppose S = {y1, y2, . . . , yn} is a fundamental solution set of L[y] = 0 on I. Furthermore, suppose
y is a solution; L[y] = 0. We seek to find c1, c2, . . . , cn such that y = c1y1 + c2y2 + · · · cnyn. Consider a
particular point xo ∈ I, we need that solution y and its derivatives (y′, y′′, ...) up to order (n−1) match with
the proposed linear combination of the solution set:

y(xo) = c1y1(xo) + c2y2(xo) + · · ·+ cnyn(xo).

y′(xo) = c1y
′
1(xo) + c2y

′
2(xo) + · · ·+ cny

′
n(xo).

continuing, up to the (n− 1)-th derivative

y(n−1)(xo) = c1y
(n−1)
1 (xo) + c2y

(n−1)
2 (xo) + · · ·+ cny

(n−1)
n (xo).

It is instructive to write this as a matrix problem:
y(xo)
y′(xo)

...
y(n−1)(xo)

 =


y1(xo) y2(xo) · · · yn(xo)
y′1(xo) y′2(xo) · · · y′n(xo)

...
... · · ·

...

y
(n−1)
1 (xo) y

(n−1)
2 (xo) · · · y

(n−1)
n (xo)



c1
c2
...
cn


The coefficient matrix has nonzero determinant (it is the Wronskian at x = xo) hence this system of
equations has a unique solution. Therefore, we can select constants c1, c2, . . . , cn such that the solution
y = c1y1 + c2y2 + · · ·+ cnyn. �

In fact, the proof shows that these constants are unique for a given fundamental solution set. Each solution is
uniquely specified by the constants c1, c2, . . . , cn. When I think about the solution of a linear ODE, I always
think of the constants in the general solution as the reflection of the reality that a given DEqn can be assigned
many different initial conditions. However, once the initial condition is given the solution is specified uniquely.

Finally we turn to the nonhomogeneous problem. I present the theory here, however, the computational
schemes are given much later in this chapter.

Theorem 3.1.20. general solution of the nonhomogeneous linear n-th order problem.

If L[y] = f is an n-th order linear differential equation with continuous coefficient functions on an
interval I with fundamental solution set S = {y1, y2, . . . , yn} on I. Then any solution of L[y] = f
can be expressed as a linear combination of the fundamental solution set and a function yp with
L[yp] = f known as the particular solution :

y = c1y1 + c2y2 + · · ·+ cnyn + yp.

Proof: Theorem 3.1.2 applies, it follows there are many solutions to L[y] = f , one for each set of initial
conditions. Suppose y and yp are two solutions to L[y] = f . Observe that

L[y − yp] = L[y]− L[yp] = f − f = 0.

Therefore, yh = y − yp is a solution of the homogeneous ODE L[y] = 0 thus Theorem 3.1.19 we can write
yh as a linear comination of the fundamental solutions: yh = c1y1 + c2y2 + · · ·+ cnyn. But, y = yp + yh and
the theorem follows. �
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Example 3.1.21. Suppose L[y] = f is a second order linear ODE and y = ex + x2 and z = cos(x) + x2 are
solutions. Then

L[y − z] = L[y]− L[z] = f − f = 0

hence y − z = (ex + x2) − (cos(x) − x2) = ex − cos(x) gives a homogeneous solution y1(x) = ex − cos(x).
Notice that w = y + 2y1 = ex + x2 + 2(ex − cos(x)) = 3ex − cos(x) + x2 is also a solution since L[y + 2y1] =
L[y] + 2L[y1] = f + 0 = f . Consider that w − z = (3ex − cos(x) + x2) − (cos(x) + x2) = 3ex is also a
homogeneous solution. It follows that {3ex, ex − cos(x)} is a fundamental solution set of L[y] = f . In invite
the reader to show {ex, cos(x)} is also a fundamental solution set.

The example above is important because it illustrates that we can extract homogeneous solutions from
particular solutions. Physically speaking, perhaps you might be faced with the same system subject to
several different forces. If solutions are observed for L[y] = F1 and L[y] = 2F1 then we can deduce the
general solution set of L[y] = 0. In particular, this means you could deduce the mass and spring constant
of a particular spring-mass system by observing how it responds to a pair of forces. More can be said here,
we’ll return to these thoughts as we later discuss the principle of superposition.
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3.2 operators and calculus

In this section we seek to establish the calculus of operators. First we should settle a few rules:

Definition 3.2.1. operators, operator equality, new operators from old:

Suppose F is a set of functions then T : F → F is an operator on F . If T1, T2 are operators on F
then T1 = T2 iff T1[f ] = T2[f ] for all f ∈ F . In addition, T1 + T2, T1 − T2 and T1T2 are defined by

(T1 + T2)[f ] = T1[f ] + T2[f ] & (T1 − T2)[f ] = T1[f ]− T2[f ] & (T1T2)[f ] = T1[T2[f ]]

If g ∈ F and T is an operator on F then gT and Tg are the operators defined by (gT )[f ] = gT [f ] and
(Tg)[f ] = T [f ]g for all f ∈ F . In addition, for n ∈ N ∪ {0} we define Tn by Tn−1T where T 0 = 1;
that is Tn[f ] = T [T [· · · [T [f ]] · · · ]] where that is an n-fold composition. We are often interested in
differentiation thus it is convenient to denote differentiation by D; D[f ] = f ′ for all f ∈ F . Finally,
a polynomial of operators is naturally defined as follows: if P (x) = aox

n+a1x
n−1 + · · ·+an−1x+an

and T is an operator then

P (T ) = aoT
n + a1T

n−1 + · · ·+ an−1T + an.

We usually assume F is a set of smooth functions on an interval. In fact, sorry to be sloppy, but we will
not worry too much about what F is for most examples. Moreover, the functions we consider can take their
values in R or in C as we shall soon show.

Proposition 3.2.2.

Suppose T is an operator and g is a function then gT = Tg

Proof: let f be a function. Observe (gT )[f ] = gT [f ] = T [f ]g = (Tg)[f ] hence gT = Tg. �

Example 3.2.3. Suppose T = xd/dx and S = d/dx. Let’s see if TS = ST in this case. Let f be a function,

(TS)[f ] = T [S[f ]] = x
d

dx

[
df

dx

]
= x

d2f

dx2

(ST )[f ] = S[T [f ]] =
d

dx

[
x
df

dx

]
=
df

dx
+ x

d2f

dx2

Apparently TS − ST = d/dx. In any event, clearly not all operators commute.

On the other hand, we can show (aD + b)(cD + d) = acD2 + (ad+ bc)D + bd for constants a, b, c, d:

[(aD + b)(cD + d)][f ] = (aD + b)[cf ′ + df ] = (aD + b)[cf ′] + (aD + b)[df ] = acf ′′ + bcf ′ + adf ′ + bdf.

Thus (aD+b)(cD+d)][f ] = (acD2+(ad+bc)D+bd)[f ]. Clearly it follows that the operators T = aD+b and
S = cD + d commute. In fact, this calculation can be extended to arbitrary polynomials of the derivative.
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Proposition 3.2.4.

Suppose P (D) and Q(D) are polynomials of the differentiation operator D = d/dx then
P (D)Q(D) = (PQ)(D) where PQ denotes the usual multiplication of polynomials.

Proof: Suppose P (D) = aoD
n + a1D

n−1 + · · ·+ an−1D+ an and the special case Q(D) = Dk. Multiplying
P and Q as polynomials yields:

(PQ)(D) = aoD
n+k + a1D

n+k−1 + · · ·+ an−1D
k+1 + anD

k

Thus, (PQ)(D)[f ] = aoD
n+k[f ] + a1D

n+k−1[f ] + · · ·+ an−1D
k+1[f ] + anD

k[f ]. On the other hand,

P (D)[Dk[f ]] = aoD
n[Dk[f ]] + a1D

n−1[Dk[f ]] + · · ·+ an−1D[Dk[f ]] + anD
k[f ]

= aoD
n+k[f ] + a1D

n+k−1[f ] + · · ·+ an−1D
k+1[f ] + anD

k[f ]

= (P (D)Dk)[f ]

The calculation above shows (P (D)Dk)[f ] = P (D)[Dk[f ]]. Also we can pull out constants,

P (D)[cf ] = aoD
n[cf ] + a1D

n−1[cf ] + · · ·+ an−1D[cf ] + an[cf ]

= c(aoD
n[f ] + a1D

n−1[f ] + · · ·+ an−1D[f ] + an[f ])

= (cP (D))[f ] = (P (D)c)[f ] using Proposition 3.2.2

Next, examine P (D)[f + g],

P (D)[f + g] = aoD
n[f + g] + a1D

n−1[f + g] + · · ·+ an−1D[f + g] + ao[f + g]

= aoD
n[f ] + a1D

n−1[f ] + · · ·+ an−1D[f ] + an[f ]

+ aoD
n[g] + a1D

n−1[g] + · · ·+ an−1D[g] + an[g]

= P (D)[f ] + P (D)[g].

We use the results above to treat the general case. Suppose P (D) = aoD
n + a1D

n−1 + · · · + an−1D + an
and Q(D) = boD

k + b1D
k−1 + · · ·+ bk−1D + bk. Calculate:

P (D)[Q(D)[f ]] = P (D)[boD
n[f ] + b1D

n−1[f ] + · · ·+ bn−1D[f ] + bo[f ]]

= P (D)[boD
n[f ]] + P (D)[b1D

n−1[f ]] + · · ·+ P (D)[bn−1D[f ]] + P (D)[bo[f ]]

= (P (D)boD
n)[f ] + (P (D)b1D

n−1)[f ] + · · ·+ (P (D)bn−1D)[f ] + (P (D)bo)[f ]

= (P (D)boD
n + P (D)b1D

n−1 + · · ·+ P (D)bn−1D + P (D)bo)[f ]

= (P (D)(boD
n + b1D

n−1 + · · ·+ bn−1D + bo))[f ]

= (P (D)Q(D))[f ]

= (PQ(D))[f ].

Therefore, the operator formed from polynomial multiplication of P (D) and Q(D) is the same as the oper-
ator formed from composing the operators. �

The beauty of the proposition is the following observation:

(x− λ) is a factor of P (x) ⇒ (D − λ) is a factor of P (D)

For example, if P (x) = x2 + 3x + 2 then we can write P (x) = (x + 1)(x + 2). Hence it follows P (D) =
(D + 1)(D + 2). I’ll show the power of this fact in the next section.
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3.2.1 complex-valued functions of a real variable

Definition 3.2.5.

Suppose f is a function from an interval I ⊆ R to the complex numbers C. In particular, suppose
f(t) = u(t) + iv(t) where i2 = −1 we say Re(f) = u and Im(f) = v. Furthermore, define

df

dt
=
du

dt
+ i

dv

dt
&

∫
f(t) dt =

∫
u dt+ i

∫
v dt.

Higher derivatives are similarly defined. I invite the reader to verify the following properties for complex-
valued functions f, g:

d

dt
(f + g) =

df

dt
+
dg

dt
&

d

dt
(cf) = c

df

dt
&

d

dt
(fg) =

df

dt
g + f

dg

dt

These are all straightforward consequences of the corresponding properties for functions on R. Note that
the constant c can be complex in the property above.

Example 3.2.6. Let f(t) = cos(t) + iet. In this case Re(f) = cos(t) and Im(f) = et. Note,

df

dt
=

d

dt

(
cos(t) + iet

)
= − sin(t) + iet.

The proposition below is not the most general that can be offered in this direction, but it serves our purposes.
The proof is left to the reader.

Proposition 3.2.7.

Suppose L = aoD
n + a1D

n−1 + · · ·+ an−1D+ an is an n-th order linear differerential operator with
real-valued coefficient functions. If y1 and y2 are real-valued functions such that L[y1] = f1 and
L[y2] = f2 then L[y1 + iy2] = f1 + if2. Conversely, if z is a complex-valued solution with L[z] = w
then L[Re(z)] = Re(w) and L[Im(z)] = Im(w).

Of course the proposition above is also interesting in the homogeneous case as it says a nontrivial complex
solution of L[y] = 0 will reveal a pair of real solutions. Naturally there is much more to discuss about
complex numbers, but we really just need the following two functions for this course6.

6if you look at my calculus 131 notes you’ll find an extended discussion of the complex exponential, I make no
attempt to motivate this formula here.
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Definition 3.2.8. complex exponential function.

We define exp : C→ C by the following formula:

exp(z) = exp(Re(z) + iIm(z)) = eRe(z)
[
cos(Im(z)) + i sin(Im(z))

]
.

We can show exp(z + w) = exp(z)exp(w). Suppose that z = x + iy and w = a + ib where x, y, a, b ∈ R.
Observe:

exp(z + w) = exp(x+ iy + a+ ib)

= exp(x+ a+ i(y + b))

= ex+a
(
cos(y + b) + i sin(y + b)

)
defn. of complex exp.

= ex+a
(
cos y cos b− sin y sin b+ i[sin y cos b+ sin b cos y]

)
adding angles formulas

= ex+a
(
cos y + i sin y

)(
cos b+ i sin b

)
algebra

= exea
(
cos y + i sin y

)(
cos b+ i sin b

)
law of exponents

= ex+iyea+ib defn. of complex exp.

= exp(z)exp(w).

You can also show that e0+i(0) = 1 and e−z = 1
ez and ez 6= 0 in the complex case. There are many

similarities to the real exponential function. But be warned there is much more to say. For example,
exp(z + 2nπi) = exp(z) because the sine and cosine functions are 2π-periodic. But, this means that the
exponential is not 1-1 and consequently one cannot solve the equation ez = ew uniquely. This introduces all
sorts of ambiguities into the study of complex equations. Given ez = ew, you cannot conclude that z = w,
however you can conclude that there exists n ∈ Z and z = w + 2nπi. In the complex variables course you’ll
discuss local inverses of the complex exponential function, instead of just one natural logarithm there are
infinitely many to use.

Often, though, things work as we wish they ought:

Proposition 3.2.9. Let λ = α+ iβ for real constants α, β. We have:

d

dt

[
eλt
]

= λeλt.

Proof: direct calculation.

d

dt

[
eαt+iβt

]
=

d

dt

[
eαt(cos(βt) + i sin(βt))

]
= αeαt cos(βt)− βeαt sin(βt) + iαeαt sin(βt) + iβeαt cos(βt)

= αeαt(cos(βt) + i sin(βt)) + iβeαt(cos(βt) + i sin(βt))

= (α+ iβ)eαt(cos(βt) + i sin(βt))

= λeλt. �

This is a beautiful result. Let’s examine how it works in an example.
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Example 3.2.10. Let f(t) = e(2+i)t. In this case f(t) = e2t(cos(t) + i sin(t)) thus Re(f) = e2t cos(t) and
Im(f) = e2t sin(t). Note,

df

dt
=

d

dt

(
e(2+i)t

)
= (2 + i)e(2+i)t.

Expanding (2+i)e2t(cos(t)+i sin(t)) = 2et cos(t)−et sin(t)+i(2e2t sin(t)+e2t cos(t)). Which is what we would
naturally obtain via direct differentiation of f(t) = e2t cos(t) + ie2t sin(t). Obviously the complex notation
hides many details.

The example below is very important to the next section.

Example 3.2.11. Let λ ∈ C and calculate,

d

dt

[
teλt

]
= eλt + λteλt.

Thus D[teλt] = eλt + λteλt hence we could write (D − λ)[teλt] = eλt. Likewise, consider

d

dt

[
tneλt

]
= ntn−1eλt + λtneλt.

Therefore, (D − λ)[tneλt] = ntn−1eλt.

One other complex calculation is of considerable importance to a wide swath of examples; the complex power
function (here we insist the base is real... complex bases are the domain of the complex variables course,
we can’t deal with those here!). Forgive me for shifting notation to x as the independent variable at this
juncture. I have no particular reason except that power functions seem more natural with xn in our memory.

Definition 3.2.12. complex power function with real base.

Let a, b ∈ R, define xa+ib = xa(cos(b ln(x)) + i sin(b ln(x))).

Motivation: xc = elog(x
c) = eclog(x) = ea ln(x)+ib ln(x) = ea ln(x)eib ln(x) = xaeib ln(x).

I invite the reader to check that the power-rule holds for complex exponents:

Proposition 3.2.13. let c ∈ C then for x > 0,

d

dx

[
xc
]

= cxc−1.

It seems likely this is a homework problem. I worked the analogus problem for the complex exponential
earlier this section. We will need this result when we consider the Cauchy-Euler problem later in this course.
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3.3 constant coefficient homogeneous problem

Let L = P (D) for some polynomial with real coefficients P (x) = aox
n + a1x

n−1 + · · · + an−1x + an. By
the fundamental theorem of algebra we can factor P into n-linear factors. In particular, if P (x) = 0 has
solutions r1, r2, . . . , rk then the factor theorem implies that there are real constants m1,m2, . . . ,mk with
m1 +m2 + · · ·+mk = n and

P (x) = ao(x− r1)m1(x− r2)m2 · · · (x− rk)mk

I include the possibility that rj could be complex. P is a polynomial with real coefficients, it follows that if
rj is a complex zero then the complex conjugate r∗j also has P (r∗j ) = 0. By Proposition 3.2.4 the polynomial
of the differentiation operator P (D) shares the same factorization:

L = P (D) = ao(D − r1)m1(D − r2)m2 · · · (D − rk)mk

We wish to solve the differential equation P (D)[y] = 0. The following facts hold for both real and complex
zeros. However, understand that when rj is complex the corresponding solutions are likewise complex:

1. if (D − rj)mj [y] = 0 then P (D)[y] = 0.

2. if D = d/dt then the DEqn (D − r)[y] = 0 has solution y = ert.

3. if D = d/dt then the DEqn (D − r)2[y] = 0 has two solutions y = ert, tert.

4. if D = d/dt then the DEqn (D − r)3[y] = 0 has three solutions y = ert, tert, t2ert.

5. if D = d/dt then the DEqn (D − r)m[y] = 0 has m-solutions y = ert, tert, . . . , tm−1ert

6. {ert, tert, . . . , tm−1ert} is a LI set of functions (on R or C).

Let us unravel the complex case into real notation. Suppose r = α+ iβ then r∗ = α− iβ. Note:

ert = eαt+iβt = eαt cos(βt) + ieαt sin(βt)

er
∗t = eαt−iβt = eαt cos(βt)− ieαt sin(βt)

Observe that the both complex functions give the same real solution set:

Re(eαt±iβt) = eαt cos(βt) & Im(eαt±iβt) = ±eαt sin(βt)

If (D − r)m[y] = 0 has m-complex solutions y = ert, tert, . . . , tm−1ert then (D − r)m[y] = 0 possesses the
2m-real solutions

eαt cos(βt), eαt sin(βt), teαt cos(βt), teαt sin(βt), . . . , tm−1eαt cos(βt), tm−1eαt sin(βt).

It should be clear how to assemble the general solution to the general constant coefficient problem P (D)[y] =
0. I will abstain from that notational quagmire and instead illustrate with a series of examples.

Example 3.3.1. Problem: Solve y′′ + 3y′ + 2y = 0.
Solution: Note the differential equation is (D2 +3D+2)[y]. Hence (D+1)(D+2)[y] = 0. We find solutions

y1 = e−x and y2 = e−2x therefore the general solution is y = c1e
−x + c2e

−2x .

Example 3.3.2. Problem: Solve y′′ − 3y′ + 2y = 0.
Solution: Note the differential equation is (D2−3D+2)[y]. Hence (D−1)(D−2)[y] = 0. We find solutions

y1 = ex and y2 = e2x therefore the general solution is y = c1e
x + c2e

2x.
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Example 3.3.3. Problem: Solve y(4) − 5y′′ + 4y = 0.
Solution: Note the differential equation is (D4 − 5D + 4)[y]. Note that

D4 − 5D + 4 = (D2 − 1)(D2 − 4) = (D + 1)(D − 1)(D + 2)(D − 2)

It follows that the differential equation factors to (D+1)(D+2)(D−1)(D−2)[y] = 0 and the general solution
reads

y = c1e
−x + c2e

−2x + c3e
x + c4e

2x.

You should notice that I do not state that D = ±1 or D = ±2 in the example above. Those equations are
illogical nonsense. I am using the theory we’ve developed in this chapter to extract solutions from inspection
of the factored form. If you really want to think in terms of roots instead of factors then I would advise that
you use the following fact:

P (D)[eλt] = P (λ)eλt.

I exploited this identity to solve the second order problem in our first lecture on the n-th order problem.
Solutions to P (λ) = 0 are called the characteristic values of the DEqn P (D)[y] = 0. The equation
P (λ) = 0 is called the characteristic equation.

Example 3.3.4. Problem: Solve y(4) − 5y′′ + 4y = 0.
Solution: Let P (D) = D4 − 5D + 4 thus the DEqn is P (D)[y] = 0. Note that P (λ) = λ4 − 5λ+ 4.

λ4 − 5λ+ 4 = (λ2 − 1)(λ2 − 4) = (λ+ 1)(λ− 1)(λ+ 2)(λ− 2)

Hence, the solutions of P (λ) = 0 are λ1 = −1, λ1 = −2, λ3 = 1 and λ4 = 2 the characteristic values of
P (D)[y] = 0. The general solution follows:

y = c1e
−x + c2e

−2x + c3e
x + c4e

2x.

We can also group the exponential functions via the hyperbolic sine and cosine. Since

cosh(x) =
1

2
(ex + e−x) & sinh(x) =

1

2
(ex − e−x)

we have ex = cosh(x) + sinh(x) and e−x = cosh(x)− sinh(x). Thus,

c1e
−x + c3e

x = c1(cosh(x)− sinh(x)) + c3(cosh(x) + sinh(x)) = (c1 + c3) cosh(x) + (c1 − c3) sinh(x).

For a given problem we can either use exponentials or hyperbolic sine and cosine.

Example 3.3.5. Problem: Solve y′′ − y = 0 with y(0) = 1 and y′(0) = 2.
Solution: we find λ2 − 1 = 0. Hence λ = ±1. We find general solution y = c1 cosh(x) + c2 sinh(x) in view
of the comments just above this example (worth remembering for later btw). Observe:

y′ = c1 sinh(x) + c2 cosh(x)

Consequently, y(0) = c1 = 1 and y′(0) = c2 = 2 and we find y = cosh(x) + 2 sinh(x).

Believe it or not, the hyperbolic sine and cosine are easier to work with when we encounter this type of
ODE in our study of boundary value problems in partial differential equations towards the conclusion of this
course.
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Example 3.3.6. Problem: Solve y(4) + 2y′′ + y = 0.
Solution: the characteristic equation is λ4 + 2λ2 + 1 = 0. Hence (λ2 + 1)2 = 0. It follows that we have
λ = ±i repeated. The general solution is found from the real and imaginary parts of eit and teit. Since
eit = cos(t) + i sin(t) we find:

y = c1 cos(t) + c2 sin(t) + c3t cos(t) + c4t sin(t).

Up to this point I have given examples where we had to factor the operator (or characteristic eqn.) to extract
the solution. Sometimes we find problems where the operators are already factored. I consider a few such
problems now.

Example 3.3.7. Problem: Solve (D2 + 9)(D − 2)3[y] = 0 with D = d/dx for a change.
Solution: I read from the expression above that we have λ = ±3i and λ = 2 thrice. Hence,

y = c1 cos(3x) + c2 sin(3x) + c3e
2x + c4xe

2x + c5x
2e2x.

Example 3.3.8. Problem: Solve (D2 + 4D + 5)[y] = 0 with D = d/dx.
Solution: Complete the square to see that P (D) is not reducible; D2 + 4D+ 5 = (D+ 2)2 + 1 it follows that
the characteristic values are λ = −2± i and the general solution is given from the real and imaginary parts
of e−2x+ix = e−2xeix

y = c1e
−2x cos(x) + c2e

−2x sin(x).

Example 3.3.9. Problem: Solve (D2 + 4D − 5)[y] = 0 with D = d/dx.
Solution: Complete the square; D2 + 4D − 5 = (D + 2)2 − 9 it follows that the characteristic values are
λ = −2± 3 or λ1 = 1 or λ2 = −5

y = c1e
x + c2e

−5x.

Of course, if you love hyperbolic sine and cosine then perhaps you would prefer that we see from ((D+ 2)2−
9)[y] = 0 the solutions

y = b1e
−2x cosh(3x) + b2e

−2x sinh(3x)

as the natural expression of the general solution. In invite the reader to verify the solution above is just
another way to write the solution y = c1e

x + c2e
−5x.

Example 3.3.10. Problem: Solve (D2 + 6D + 15)(D2 + 1)(D2 − 4)[y] = 0 with D = d/dx.
Solution: Completing the square gives ((D + 3)2 + 6)(D2 + 1)(D2 − 4)[y] = 0 hence we find characteristic
values of λ = −3± i

√
6,±i,±2. The general solution follows:

y = c1e
−3x cos(

√
6x) + c2e

−3x sin(
√

6x) + c3 cos(x) + c4 sin(x) + c5e
2x + c6e

−2x.

The example that follows is a bit more challenging since it involves both theory and a command of polynomial
algebra.

Example 3.3.11. Problem: Solve (D5 − 8D2 − 4D3 + 32)[y] = 0 given that y = cosh(2t) is a solution.
Solution: Straightforward factoring of the polynomial is challenging here, but I gave an olive branch. Note
that if y = cosh(2t) is a solution then y = sinh(2t) is also a solution. It follows that (D2−4) = (D−2)(D+2)
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is a factor of D5− 8D2− 4D3 + 32. For clarity of thought lets work on x5− 8x2− 4x3 + 32 and try to factor
out x2 − 4. Long division is a nice tool for this problem. Recall:

x3 − 8

x2 − 4
)

x5 − 4x3 − 8x2 + 32
− x5 + 4x3

− 8x2 + 32
8x2 − 32

0

Thus,
x5 − 8x2 − 4x3 + 32 = (x2 − 4)(x3 − 8)

Clearly x3−8 = 0 has solution x = 2 hence we can factor (x−2). I’ll use long-division once more (of course,
some of you might prefer synthetic division and/or have this memorized already... good)

x2 + 2x+ 4

x− 2
)

x3 − 8
− x3 + 2x2

2x2

− 2x2 + 4x

4x− 8
− 4x+ 8

0

Consequently, x5 − 8x2 − 4x3 + 32 = (x2 − 4)(x− 2)(x2 + 2x+ 4). It follows that

(D5 − 8D2 − 4D3 + 32)[y] = 0⇒ (D − 2)2)(D + 2)((D + 1)2 + 3)[y] = 0

Which suggests the solution below:

y = c1e
2t + c2te

2t + c3e
−2t + c4e

−t cos(
√

3t) + c5e
−t sin(

√
3t).
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3.4 annihilator method for nonhomogeneous problems

In the previous section we learned how to solve any constant coefficient n-th order ODE. We now seek to
extend the technique to the nonhomogeneous problem. Our goal is to solve:

L[y] = f

where L = P (D) as in the previous section, it is a polynomial in the differentiation operator D. Suppose we
find a differential operator A such that A[f ] = 0. This is called an annihilator for f . Operate on L[y] = f to
obtain AL[y] = A[f ] = 0. Therefore, if we have an annihilator for the forcing function f then the differential
equation yields a corresponding homogeneous differential equation AL[y] = 0. Suppose y = yh + yp is the
general solution as discussed for Theorem 3.1.20 we have L[yh] = 0 and L[yp] = f . Observe:

AL[yh + yp] = A[L[yh + yp]] = A[f ] = 0

It follows that the general solution to AL[y] = 0 will include the general solution of L[y] = f . The method we
justify and implement in this section is commonly called the method of undetermined coefficients. The
annihilator method shows us how to set-up the coefficients. To begin, we should work on finding annihilators
to a few simple functions.

Example 3.4.1. Problem: find an annihilator for ex.
Solution: recall that ex arises as the solution of (D−1)[y] = 0 therefore a natural choice for the annihilator
is A = D − 1. This choice is minimal. Observe that A2 = Q(D)(D − 1) is also an annihilator of ex

since A2[ex] = Q(D)[(D − 1)[ex]] = Q(D)[0] = 0. There are many choices, however, we prefer the minimal
annihilator. It will go without saying that all the choices that follow from here on out are minimal.

Example 3.4.2. Problem: find an annihilator for xe3x.
Solution: recall that xe3x arises as a solution of (D − 3)2[y] = 0 hence choose A = (D − 3)2.

Example 3.4.3. Problem: find an annihilator for e3x cos(x).
Solution: recall that e3x cos(x) arises as a solution of ((D−3)2 +1)[y] = 0 hence choose A = ((D−3)2 +1).

Example 3.4.4. Problem: find an annihilator for x2e3x cos(x).
Solution: recall that x2e3x cos(x) arises as a solution of ((D − 3)2 + 1)3[y] = 0 hence choose A = ((D −
3)2 + 1)3.

Example 3.4.5. Problem: find an annihilator for 2ex cosh(2x).
Solution: observe that 2ex cosh(2x) = ex(e2x + e−2x) = e3x + e−x and note that (D − 3)[e3x] = 0 and
(D + 1)[e−x] = 0 thus A = (D − 3)(D + 1) will do nicely.

For those who love symmetric calculational schemes, you could also view 2ex cosh(2x) as the solution arising
from ((D − 1)2 − 4)[y]− 0. Naturally (D − 1)2 − 4 = D2 − 2D − 3 = (D − 3)(D + 1).
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Example 3.4.6. Problem: find an annihilator for x2 + e3x cos(x).
Solution: recall that e3x cos(x) arises as a solution of ((D−3)2+1)[y] = 0 hence choose A1 = ((D−3)2+1).
Next notice that x2 arises as a solution of D3[y] = 0 hence we choose A2 = D3. Construct A = A1A2 and
notice how this works: (use A1A2 = A2A1 which is true since these are constant coefficient operators)

A1[A2[x2 + e3x cos(x)]] = A1[A2[x2] +A2[A1[e3x cos(x)]]

= A1[0] +A2[0]

= 0

because A1A2 = A2A1 for these constant coefficient operators. To summarize, we find
A = D3((D − 3)2 + 1) is an annihilator for x2 + e3x cos(x).

I hope you see the idea generally. If we are given a function which arises as the solution of a constant
coefficient differential equation then we can use the equation to write the annihilator. You might wonder if
there are other ways to find annihilators.... well, surely there are, but not usually for this course. I think
the examples thus far give us a good grasp of how to kill the forcing function. Let’s complete the method.
We proceed by example.

Example 3.4.7. Problem: find the general solution of y′′ + y = 2ex

Solution: observe L = D2 + 1 and we face (D2 + 1)[y] = ex. Let A = D − 1 and operate on the given
nonhomogeneous ODE,

(D − 1)(D2 + 1)[y] = (D − 1)[ex] = 0

We find general solution y = c1e
x + c2 cos(x) + c3 sin(x). Notice this is not the finished product. We should

only have two constants in the general solution of this second order problem. But, remember, we insist that
L[y] = f in addition to the condition AL[y] = 0 hence:

L[c1e
x + c2 cos(x) + c3 sin(x)] = 2ex

which simplifes to L[c1e
x] = 2ex since the functions cos(x), sin(x) are solutions of L[y] = 0. Expanding

L[c1e
x] = 2ex in detail gives us:

D2[c1e
x] + c1e

x = 2ex ⇒ 2c1e
x = 2ex ⇒ c1 = 1.

Therefore we find, y = ex + c2 cos(x) + c3 sin(x).

The notation used in the example above is not optimal for calculation. Usually I skip some of those steps
because they’re not needed once we understand the method. For example, once I write y = c1e

x+c2 cos(x)+
c3 sin(x) then I usually look to see which functions are in the fundamental solution set. Since {cos(x), sin(x)}
is a natural fundamental solution set this tells me that only the remaining function ex is needed to construct
the particular solution. Since c1 is annoying to do algebra on, I instead use notation yp = Aex. Next,
calculate y′p = Aex and y′′p = Aex and plug these into the given ODE:

Aex +Aex = 2ex ⇒ 2Aex = 2ex ⇒ A = 1.

which brings us to the fact that yp = ex and naturally yh = c1 cos(x) + c2 sin(x). The general solution is
y = yh + yp = c1 cos(x) + c2 sin(x) + ex.

Example 3.4.8. Problem: find the general solution of y′′ + 3y′ + 2y = x2 − 1
Solution: in operator notation the DEqn is (D2 + 3D + 2)[y] = (D + 1)(D + 2)[y] = 0. Let A = D3 and
operate on the given nonhomogeneous ODE,

D3(D + 1)(D + 2)[y] = D3[x2 − 1] = 0



3.4. ANNIHILATOR METHOD FOR NONHOMOGENEOUS PROBLEMS 79

The homogeneous ODE above has solutions 1, x, x2, e−x, e−2x. Clearly the last two of these form the homo-
geneous solution whereas the particular solution is of the form yp = Ax2 +Bx+ C. Calculate:

y′p = 2Ax+B, y′′p = 2A

Plug this into the DEqn y′′p + 3y′p + 2yp = x2 − 1,

2A+ 3(2Ax+B) + 2(Ax2 +Bx+ C) = x2 − 1

multiply it out and collect terms:

2A+ 6Ax+ 3B + 2Ax2 + 2Bx+ 2C = x2 − 1 ⇒ 2Ax2 + (6A+ 2B)x+ 2A+ 3B + 2C = x2 − 1

this sort of equation is actually really easy to solve. We have two polynomials. When are they equal? Simple.
When the coefficients match, thus calculate:

2A = 1, 6A+ 2B = 0, 2A+ 3B + 2C = −1

Clearly A = 1/2 hence B = −3A = −3/2. Solve for C = −1/2 − A − 3B/2 = −1/2 − 1/2 + 9/4 = 5/4.
Therefore, the general solution is given by:

y = c1e
−x + c2e

−2x +
1

2
x2 − 3

2
x+

5

4
.

At this point you might start to get the wrong impression. It might appear to you that the form of yp has
nothing to do with the form of yh. That is a fortunate feature of the examples we have thus far considered.
The next example features what I usually call overlap.

Example 3.4.9. Problem: find the general solution of y′ − y = ex + x
Solution: Observe the annihilator is A = (D− 1)D2 and when we operate on (D− 1)[y] = ex +x we obtain

(D − 1)D2(D − 1)[y] = (D − 1)D2[ex + x] = 0 ⇒ (D − 1)2D2[y] = 0

Thus, ex, xex, 1, x are solutions. We find yh = c1e
x whereas the particular solution is of the form yp =

Axex +Bx+ C. Calculate y′p = A(ex + xex) +B and substitute into the DEqn to obtain:

A(ex + xex) +B − (Axex +Bx+ C) = ex + x ⇒ (A−A)xex +Aex −Bx− C = ex + x

We find from equating coefficients of the linearly independent functions ex, 1, x that A = 1 and −B = 1

and −C = 0. Therefore, y = c1e
x + xex − x.

If you look in my linear algebra notes I give a proof which shows we can equate coefficients for linearly
independent sets. Usually in the calculation of yp we find it useful to use the technique of equating coefficients
to fix the undetermined constants A,B,C, etc...
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Remark 3.4.10.

When this material is covered in a calculus II course the operator method is not typically discussed.
Instead, when you try to solve ay′′+by′+cy = f you simply look at f and its derivatives f, f ′, f ′′, ...
then identify all the basic functions and form yp as a linear combination. For example, to solve
y′′+y′ = cos(x) you would note f = cos(x), f ′ = − sin(x) and f ′′, f ′′′ etc... yield the same functions
once again, the naive guess for the particular solution is simply yp = A cos(x) +B sin(x). Consider
y′′ + y′ = x + e2x, this time f = x + e2x, f ′ = 1 + 2e2x, f ′′ = 4e2x so we would naively try
yp = Ae2x + Bx + C. However, this construction of yp is only partially successful. If we use the
operator method of this section we would instead be led to use yp = Ae2x+Bx2 +Cx. The inclusion
of these extra x factors is sold to the calculus II students in terms of ”overlap”. This sort of idea is
given in Chapter 5 of your text where you are given a general formula to anticipate the formula for
yp. In contrast, the annihilator method we use requires only that you know the homogeneous case
in depth. The inclusion of the extra x factors are derived not memorized.

Example 3.4.11. Problem: find the general solution of y′′ + y = 4 cos(t)
Solution: Observe the annihilator is A = D2 + 1 and when we operate on (D2 + 1)[y] = cos(t) we obtain

(D2 + 1)2[y] = 0

Thus, cos(t), sin(t), t cos(t), t sin(t) are solutions. We find yh = c1 cos(t) + c2 sin(t) whereas the particular
solution is of the form yp = At cos(t) +Bt sin(t) = t(A cos(t) +B sin(t)). Calculate

y′p = A cos(t) +B sin(t) + t(−A sin(t) +B cos(t)) = (A+Bt) cos(t) + (B −At) sin(t)

y′′p = B cos(t)−A sin(t)− (A+Bt) sin(t) + (B −At) cos(t) = (2B −At) cos(t)− (2A+Bt) sin(t)

It is nice to notice that y′′p = 2B cos(t)− 2A sin(t)− yp hence y′′p + yp = 4 cos(t) yields:

2B cos(t)− 2A sin(t) = 4 cos(t)

thus 2B = 4, −2A = 0. Consequently, A = 0, B = 2 and the general solution is found to be:

y = c1 cos(t) + c2 sin(t) + 2t sin(t).

From this point forward I omit the details of the annihilator method and simply propose the correct template
for yp.

Example 3.4.12. Problem: find the general solution of y′ + y = x
Solution: Observe yh = c1e

−x for the given DEqn. Let yp = Ax+B then y′p+yp = A+Ax+B = x implies

A+B = 0 and A = 1 hence B = −1 and we find y = c1e
−x + x− 1 .

Example 3.4.13. Problem: find the general solution of y′′ + 4y′ = x
Solution: Observe λ2 + 4λ = 0 gives solutions λ = 0,−4 hence yh = c1 + c2e

−4x for the given DEqn. Let7

yp = Ax2 + Bx then y′p = 2Ax + B and y′′p = 2A hence y′′p + 4y′p = x yields 2A + 4(2Ax + B) = x hence
8Ax + 2A + 4B = x. Equate coefficients of x and 1 to find 8A = 1 and 2A + 4B = 0 hence A = 1/8 and
B = −1/16. We find

y = c1 + c2e
−4x +

1

8
x2 − 1

16
x .

7I know this by experience, but you can derive this by the annihilator method, of course the merit is made manifest
in the successful selection of A,B below to actually solve y′′p + 4y′p = x.



3.4. ANNIHILATOR METHOD FOR NONHOMOGENEOUS PROBLEMS 81

Example 3.4.14. Problem: find the general solution of y′′ + 4y′ = cos(x) + 3 sin(x) + 1
Solution: Observe λ2 + 4λ = 0 gives solutions λ = 0,−4 hence yh = c1 + c2e

−4x for the given DEqn. Let
yp = A cos(x) + B sin(x) + Cx then y′p = −A sin(x) + B cos(x) + C and y′′p == −A cos(x)− B sin(x) hence
y′′p + 4y′p = cos(x) + 3 sin(x) + 1 yields

−A cos(x)−B sin(x) + 4(−A sin(x) +B cos(x) + C) = cos(x) + 3 sin(x) + 1

Collecting like terms:

⇒ (4B −A) cos(x) + (−4A−B) sin(x) + 4C = cos(x) + 3 sin(x) + 1

Equate coefficients of cos(x), sin(x), 1 to obtain:

4B −A = 1, −4A−B = 3, 4C = 1

Observe B = −4A − 3 hence 4(−4A − 3) − A = 1 or −17A − 12 = 1 thus A = −13/17. Consequently,
B = 52/17− 3 = (52− 51)/17 = 1/17. Obviously C = 1/4 thus we find

y = c1 + c2e
−4x − 13

17
cos(x) +

1

17
sin(x) +

1

4
x .

We have enough examples to appreciate the theorem given below:

Theorem 3.4.15. superposition principle for linear differential equations.

Suppose L[y] = 0 is an n-th order linear differential equation with continuous coefficient functions
on an interval I with fundamental solution set S = {y1, y2, . . . , yn} on I. Furthermore, suppose
L[ypj ] = fj for functions fj on I then for any choice of constants b1, b2, . . . , bk the function y =∑k
j=1 bjypj forms the particular solution of L[y] =

∑k
j=1 bjfj on the interval I.

Proof: we just use k-fold additivity and then homogeneity of L to show:

L

[ k∑
j=1

bjypj

]
=

k∑
j=1

L[bjypj ] =

k∑
j=1

bjL[ypj ] =

k∑
j=1

bjfj . �

The Superposition Theorem paired with Theorem 3.1.20 allow us to find general solutions for complicated
problems by breaking down the problem into pieces. In the example that follows we already dealt with the
pieces in previous examples.

Example 3.4.16. Problem: find the general solution of y′′ + 4y′ = 17(cos(x) + 3 sin(x) + 1) + 16x = f
(introduced f for convenience here)
Solution: observe that L = D2 + 4D for both Example 3.4.13 and Example 3.4.14. We derived that the
particular solutions yp1 = 1

8x
2 − 1

16x and yp2 = − 13
17 cos(x) + 1

17 sin(x) + 1
4x satisfy

L[yp1 ] = f1 = x & L[yp2 ] = f2 = cos(x) + 3 sin(x) + 1

Note that f = 17f2 + 16f1 thus L[y] = f has particular solution y = 17yp2 + 16yp1 by the superposition
principle. Therefore, the general solution is given by:

y = c1 + c2e
−4x − 13 cos(x) + sin(x) +

17

4
x+ 2x2 − x.

Or, collecting the x-terms together,

y = c1 + c2e
−4x − 13 cos(x) + sin(x) +

13

4
x+ 2x2.
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Example 3.4.17. Problem: find the general solution of y′′ + 5y′ + 6y = 2 sinh(t)
Solution: It is easy to see that y′′ + 5y′ + 6y = et has yp1 = 1

12e
t. On the other hand, it is easy to see that

y′′ + 5y′ + 6y = e−t has solution yp2 = 1
2e
−t. The definition of hyperbolic sine gives 2 sinh(t) = et − e−t

hence, by the principle of superposition we find particular solution of y′′ + 5y′ + 6y = 2 sinh(t) is simply
yp = 2yp1 − 2yp2 . Note λ2 + 5λ+ 6 = 0 factors to (λ+ 2)(λ+ 3) = 0 hence yh = c1e

−2t + c2e
−3t. Therefore,

the general solution of y′′ + 5y′ + 6y = 2 sinh(t) is

y = c1e
−2t + c2e

−3t +
1

12
et − 1

2
e−t .

Naturally, you can solve the example above directly. I was merely illustrating the superposition principle.

Example 3.4.18. Problem: find the general solution of y′′ + 5y′ + 6y = 2 sinh(t)
Solution: a natural choice for the particular solution is yp = A cosh(t) +B sinh(t) hence

y′p = A sinh(t) +B cosh(t), , y′′p = A cosh(t) +B sinh(t) = yp

Thus y′′p + 5y′p + 6yp = 5y′p + 7yp = 2 sinh(t) and we find

(5A+ 7B) cosh(t) + (5B + 7A) sinh(t) = 2 sinh(t)

Thus 5A + 7B = 0 and 5B + 7A = 2. Algebra yields A = 7/12 and B = −5/12. Therefore, as the
characteristic values are λ = −2,−3 the general solution is given as follows:

y = c1e
−2x + c2e

−3x +
7

12
cosh(t)− 5

12
sinh(t) .

I invite the reader to verify the answers in the previous pair of examples are in fact equivalent.
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3.5 variation of parameters

The method of annihilators is deeply satisfying, but sadly most function escape its reach. For example, if
the forcing function was sec(x) or tan(x) or ln(x) then we would be unable to annihilate these functions with
some polynomial in D. Moreover, if the DEqn L[y] = f has nonconstant coefficients then the problem of
factoring L into linear factors L1, L2, . . . , Ln is notoriously difficult8. If we had a factorization and a way to
annihilate the forcing function we might be able to extend the method of the last section, but, this is not a
particularly easy path to implement in any generality. In contrast, the technique of variation of parameters
is both general and amazingly simple.

We begin by assuming the existence of a fundamental solution set for L[y] = f ; assume {y1, y2, . . . , yn} is a
linearly independent set of solutions for L[y] = 0. We propose the particular solution yp can be written as
a linear combination of the fundmental solutions with coefficients of functions v1, v2, . . . , vn (these are the
”parameters”)

yp = v1y1 + v2y2 + · · ·+ vnyn

Differentiate,

y′p = v′1y1 + v′2y2 + · · ·+ v′nyn + v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n

Let constraint 1 state that v′1y1+v′2y2+ · · ·+v′nyn = 0 and differentiate y′p in view of this added constraint,
once more we apply the product-rule n-fold times:

y′′p = v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n + v1y

′′
1 + v2y

′′
2 + · · ·+ vny

′′
n

Let constraint 2 state that v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n = 0 and differentiate y′′p in view of contraints 1 and 2,

y′′′p = v′1y
′′
1 + v′2y

′′
2 + · · ·+ v′ny

′′
n + v1y

′′′
1 + v2y

′′′
2 + · · ·+ vny

′′′
n

Let constraint 3 state that v′1y
′′
1 + v′2y

′′
2 + · · ·+ v′ny

′′
n = 0. We continue in this fashion adding constraints

after each differentiation of the form v′1y1
(j) + v′2y2

(j) + · · · + v′nyn
(j) = 0 for j = 3, 4, . . . , n − 2. Note this

brings us to

y(n−1)p = v1y
(n−1)
1 + v2y

(n−1)
2 + · · ·+ vny

(n−1)
n .

Thus far we have given (n−1)-constraints on [v′1, v
′
2, . . . , v

′
n]. We need one more constraint to fix the solution.

Remember we need L[yp] = f ; aoy
(n)
p + a1y

(n−1)
p + · · ·+ an−1y

′
p + anyp = f thus:

y(n)p =
f

ao
− a1
ao
y(n−1)p − · · · − an−1

ao
y′p −

an
ao
yp. (?)

Differentiating yp = v1y1 + v2y2 + · · ·+ vnyn and apply the previous contraints to obtain:

y(n)p = v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n + v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n . (?2)

8we’ll tackle the problem for the Cauchy Euler problem later this chapter, see Rabenstein for some more exotic
examples of factorization of operators
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Equate ? and ?2 to obtain:

f

ao
=
a1
ao
y(n−1)p + · · ·+ an−1

ao
y′p +

an
ao
yp+

v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n + v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n

= v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n

+
ao
ao

(
v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n

)
+

+
a1
ao

(
v1y

(n−1)
1 + v2y

(n−1)
2 + · · ·+ vny

(n−1)
n

)
+

+ · · ·+

+
an−1
ao

(
v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n

)
+

+
an
ao

(
v1y1 + v2y2 + · · ·+ vnyn

)

= v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n

+
v1
ao

(
aoy

(n)
1 + a1y

(n−1)
1 + · · ·+ an−1y

′
1 + any1

)
+

+
v2
ao

(
aoy

(n)
2 + a1y

(n−1)
2 + · · ·+ an−1y

′
2 + any2

)
+

+ · · ·+

+
vn
ao

(
aoy

(n)
n + a1y

(n−1)
n + · · ·+ an−1y

′
n + anyn

)
= v′1y

(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n .

In the step before the last we used the fact that L[yj ] = 0 for each yj in the given fundamental solution set.
With this calculation we obtain our n-th condition on the derivatives of the parameters. In total, we seek
to impose 

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



v′1
v′2
...
v′n

 =


0
0
...

f/ao

 . (?3)

Observe that the coefficient matrix of the system above is the Wronskian Matrix. Since we assumed
{y1, y2, . . . , yn} is a fundamental solution set we know that the Wronskian is nonzero which means the equa-
tion above has a unique solution. Therefore, the constraints we proposed are consistent and attainable for
any n-th order linear ODE.
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Let us pause to learn a little matrix theory convenient to our current endeavors. Nonsingular system of
linear equations by Cramer’s rule. To solve A~v = ~b you can follow the procedure below: to solve for vk of
~v = (v1, v2, . . . , vk, . . . , vn) we

1. take the matrix A and replace the k-th column with the vector ~b call this matrix Sk

2. calculate det(Sk) and det(A)

3. the solution is simply vk = det(Sk)
det(A) .

Cramer’s rule is a horrible method for specific numerical systems of linear equations9. But, it has for us the
advantage of giving a nice, neat formula for the matrices of functions we consider here.

Example 3.5.1. Suppose you want to solve x+ y + z = 6, x+ z = 4 and y − z = −1 simultaneously. Note
in matrix notation we have:  1 1 1

1 0 1
0 1 −1

 x
y
z

 =

 6
4
−1

 .
We can swap out columns 1, 2 and 3 to obtain S1, S2 and S3

S1 =

 6 1 1
4 0 1
−1 1 −1

 S2 =

 1 6 1
1 4 1
0 −1 −1

 S3 =

 1 1 6
1 0 4
0 1 −1


You can calculate det(S1) = 1, det(S1) = 2 and det(S3) = 3. Likewise det(A) = 1. Cramer’s Rule states the

solution is x = det(S1)
det(A) = 1, y = det(S2)

det(A) = 2 and z = det(S3)
det(A) = 3.

In the notation introduced above we see ?3 has

A =


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 & ~b =


0
0
...

f/ao

 .
Once more define Sk as the matrix obtained by swapping the k-th column of A for the column vector ~b
and let W be the Wronskian which is det(A) in our current notation. We obtain the following solutions for
v′1, v

′
2, . . . , v

′
n by Cramer’s Rule:

v′1 =
det(S1)

W
, v′2 =

det(S2)

W
, . . . , v′n =

det(Sn)

W

Finally, we can integrate to find the formulas for the parameters. Taking x as the independent parameter
we note v′k = dvk

dx hence:

v1 =

∫
det(S1)

W
dx, v2 =

∫
det(S2)

W
dx, . . . , vn =

∫
det(Sn)

W
dx.

The matrix Sk has a rather special form and we can simplify the determinants above in terms of the so-called
sub-Wronskian determinants. Define Wk = W (y1, . . . , yk−1, yk+1, . . . , yn;x) then it follows by Laplace’s
Expansion by minors formula that det(Sk) = (−1)n+k f

ao
Wk. Thus,

v1 =

∫
(−1)n+1 fW1

aoW
dx, v2 =

∫
(−1)n+2 fW2

aoW
dx, . . . , vn =

∫
fWn

aoW
dx .

9Gaussian elimination is faster and more general, see my linear algebra notes or any text on the subject!
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Of course, you don’t have to think about subWronskians, we could just use the formula in terms of det(Sk).
Include the subWronskain comment in part to connect with formulas given in Nagel Saff and Snider (Ritger
& Rose does not have detailed plug-and-chug formulas on this problem, see page 154). In any event, we
should now enjoy the spoils of this conquest. Let us examine how to calculate yp = v1y1 + · · · + vnyn for
particular n.

1. (n=1) ao
dy
dx + a1y = f has W (y1;x) = y1 and W1 = 1. It follows that the solution y = y1v1 has

v1 =
∫

f
aoy1

dx where y1 is the solution of ao
dy
dx + a1y = 0 which is given by y1 = exp(

∫ −a1
ao

dx). In

other words, variation of parameters reduces to the integrating factor method10 for n = 1.

2. (n=2) Suppose aoy
′′ + a1y

′ + a2y = f has fundamental solution set {y1, y2} then

W = det

[
y1 y2
y′1 y′2

]
= y1y

′
2 − y2y′1

furthermore, calculate:

det(S1) = det

[
0 y2

f/ao y′2

]
= −fy2

ao
& det(S2) = det

[
y1 0
y′1 f/ao

]
=
fy1
ao

Therefore,

v1 =

∫
−fy2

ao(y1y′2 − y2y′1)
dx & v2 =

∫
fy1

ao(y1y′2 − y2y′1)
dx

give the particular solution yp = v1y1 + v2y2. Note that if the integrals above are indefinite then the
general solution is given by:

y = y1

∫
−fy2
ao

dx+ y2

∫
fy1
ao

dx .

Formulas for n = 3, 4 are tedious to derive and I leave them to the reader in the general case. Most
applications involve n = 2.

10note dy
dx

+ a1
ao

y = 0 implies I = exp(
∫
a1
ao

dx) hence d
dx

(Iy) = 0 and so y = C/I and taking C = 1 derives y1.
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Example 3.5.2. Solve y′′ + y = sec(x). The characteristic equation λ2 + 1 = 0 yields λ = ±i hence
y1 = cos(x), y2 = sin(x). Observe the Wronskian simplifies nicely in this case: W = y1y

′
2− y2y′1 = cos2(x) +

sin2(x) = 1. Hence,

v1 =

∫
−fy2
W

dx =

∫
− sec(x) sin(x) dx = −

∫
sin(x)

cos(x)
dx = − ln | cos(x)|+ c1 = ln | sec(x)|+ c1.

and,

v2 =

∫
fy1
W

dx =

∫
sec(x) cos(x) dx =

∫
dx = x+ c2.

we find the general solution y = y1v1 + y2v2 is simply:

y = c1 cos(x) + c2 sin(x) + cos(x) ln | sec(x)|+ x sin(x) .

Sometimes variation of parameters does not include the c1, c2 in the formulas for v1 and v2. In that case
the particular solution truly is yp = y1v1 + y2v2 and the general solution is found by y = yh + yp where
yh = c1y1 + c2y2. Whatever system of notation you choose, please understand that in the end there must
be a term c1y1 + c2y2 in the general solution.

Example 3.5.3. Solve y′′ − 2y′ + y = f . The characteristic equation λ2 − 2λ + 1 = (λ − 1)2 = 0 yields
λ1 = λ2 = 1 hence y1 = ex, y2 = xex. Observe the Wronskian simplifies nicely in this case: W = y1y

′
2 −

y2y
′
1 = ex(ex + xex)− exxex = e2x. Hence,

v1 =

∫
−f(x)xex

e2x
dx & v2 =

∫
f(x)ex

e2x
dx.

we find the general solution y = y1v1 + y2v2 is simply:

y = c1e
x + c2xe

x − ex
∫
f(x)xex

e2x
dx+ xex

∫
f(x)ex

e2x
dx .

In particular, if f(x) = ex sin(x) then

v1 =

∫
−x sin(x) dx = x cos(x)− sin(x) & v2 =

∫
sin(x) dx = − cos(x).

Hence, yp = (x cos(x)− sin(x))ex + xex(− cos(x)) = −ex sin(x). The general solution is

y = c1e
x + c2xe

x − ex sin(x) .

Notice that we could also solve y′′ − 2y′ + y = ex sin(x) via the method of undetermined coefficients. In
fact, any problem we can solve by undetermined coefficients we can also solve by variation of parameters.
However, given the choice, it is usually easier to use undetermined coefficients.
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Example 3.5.4. Solve y′′′ + y′ = x ln(x). The characteristic equation has λ3 + λ = λ(λ2 + 1) = 0 hence
λ = 0 and λ = ±i. The fundmental solutions are y1 = 1, y2 = cos(x), y3 = sin(x). Calculate,

W (1, cos(x), sin(x);x) = det

 1 cos(x) sin(x)
0 − sin(x) cos(x)
0 − cos(x) − sin(x)

 = 1(sin2(x) + cos2(x)) = 1.

Swapping the first column of the Wronskian matrix with (0, 0, x ln(x)) gives us S1 and we find

det(S1) = det

 0 cos(x) sin(x)
0 − sin(x) cos(x)

x ln(x) − cos(x) − sin(x)

 = x ln(x).

Swapping the second column of the Wronskian matrix with (0, 0, x ln(x)) gives us S2 and we find

det(S2) = det

 1 0 sin(x)
0 0 cos(x)
0 x ln(x) − sin(x)

 = −x ln(x) cos(x).

Swapping the third column of the Wronskian matrix with (0, 0, x ln(x)) gives us S3 and we find

det(S3) = det

 1 cos(x) 0
0 − sin(x) 0
0 − cos(x) x ln(x)

 = −x ln(x) sin(x).

Note, integration by parts yields11 v1 =
∫
x ln(x) dx = 1

2x
2 ln(x)− 1

4x
2. The integrals of v2 =

∫
−x ln(x) cos(x) dx

and v3 = −x ln(x) sin(x) dx are not elementary. However, we can express the general solution as:

y = c1 + c2 cos(x) + c3 sin(x) +
1

2
x2 ln(x)− 1

4
x2 − cos(x)

∫
x ln(x) cos(x) dx− sin(x)

∫
x ln(x) sin(x) dx .

If you use Mathematica directly, or Wolfram Alpha or other such software then some of the integrals will be
given in terms of unusual functions such as hypergeometric functions or polylogarithms or the cosine integral
function or the exponential integral function or the sine integral function, or Bessel functions and so forth...
the list of nonstandard, but known, functions is very lenghthy at this point. What this means is that when
you find an integral you cannot perform as part of an answer it may well be that the values of that integral
are known, tabulated and often even automated as a built-in command. Moreover, if you randomly try other
nonhomogeneous ODEs then you’ll often find solutions appear in this larger class of named functions. More
generally, the solutions appear as series of orthogonal functions. But, I suppose I’m getting a little ahead of
the story here. In the next section we explore substitutions of a particular sort for the n-th order problem.

11I’m just calculating an antiderivative here since the homogeneous solution will account for the neccessary constants
in the general solution



3.6. REDUCTION OF ORDER 89

3.6 reduction of order

We return to the question of the homogeneous linear ODE L[y] = 0. Suppose we are given a solution y1
with

aoy
(n)
1 + a1y

(n−1)
1 + · · ·+ an−1y

′
1 + any1 = 0

on an interval I. To find a second solution we propose there exists v such that y2 = vy1 is a solution of
L[y] = 0. I invite the reader to verify the following:

y′2 = v′y1 + vy′1

y′′2 = v′′y1 + 2v′y′1 + vy′′1

y′′′2 = v′′′y1 + 3v′′y′1 + 3v′y′′1 + vy′′′1

and, by an inductive argument, we arrive at

y
(n)
2 = v(n)y1 + nv(n−1)y′1 + · · ·+ nv′y

(n−1)
1 + vy

(n)
1

where the other coefficients are the binomial coefficients. I suppose it’s worth mentioning the formula below
is known as Leibniz’ product formula:

dn

dxb

[
F (x)G(x)

]
=

n∑
k=0

(
n

k

)
F (n−k)(x)G(k)(x)

Returning to the substitution y2 = vy1 we find that the condition L[y2] = 0 gives

ao(vy1)(n) + · · ·+ an−1(vy1)′ + anvy1 = 0

Thus,

ao
[
v(n)y1 + nv(n−1)y′1 + · · ·+ nv′y

(n−1)
1 + vy

(n)
1

]
+ · · ·+ +an−1

[
v′y1 + vy′1

]
+ anvy1 = 0

Notice how all the terms with v collect together to give v
[
y
(n)
1 + · · ·+ an−1y

′
1 + any1

]
which vanishes since

y1 is a solution. Therefore, the equation L[y2] = 0 reduces to:

ao
[
v(n)y1 + nv(n−1)y′1 + · · ·+ nv′y

(n−1)
1

]
+ · · ·+ +an−1v

′y1 = 0

If we substitute z = v′ then the equation is clearly an (n− 1)-th order linear ODE for z;

ao
[
z(n−1)y1 + nz(n−2)y′1 + · · ·+ nzy

(n−1)
1

]
+ · · ·+ +an−1zy1 = 0.

I include this derivation to show you that the method extends to the n-th order problem. However, we are
primarily interested in the n = 2 case. In that particular case we can derive a nice formula for y2.



90 CHAPTER 3. ORDINARY N -TH ORDER PROBLEM

Let a, b, c be functions and suppose ay′′ + by′ + cy = 0 has solution y1. Let y2 = vy1 and seek a formula for
v for which y2 is a solution of the ay′′ + by′ + cy = 0. Substitute y2 = vy1 and differentiate the product,

a(v′′y1 + 2v′y′1 + vy′′1 ) + b(v′y1 + vy′1) + cvy1 = 0

Apply ay′′1 + by′1 + cy1 = 0 to obtain:

a(v′′y1 + 2v′y′1) + bv′y1 = 0

Now let z = v′ thus z′ = v′′

ay1z
′ + 2ay′1z + by1z = 0 ⇒ dz

dx
+

[
2ay′1 + by1

ay1

]
z = 0.

Apply the integrating factor method with I = exp(
∫ 2ay′1+by1

ay1
dx) we find

d

dx

[
Iz

]
= 0 ⇒ Iz = C ⇒ z =

C

I
= Cexp

(
−
∫

2ay′1 + by1
ay1

dx

)

Recall z = dv
dx thus we integrate to find v =

∫
Cexp

(
−
∫ 2ay′1+by1

ay1
dx

)
dx thus

y2 = y1

∫
Cexp

(
−
∫

2ay′1 + by1
ay1

dx

)
dx

It is convenient to take C = 1 since we are just seeking a particular function to construct the solution set.
Moreover, notice that the integral

∫ −2
y1

dy1
dx dx = −2 ln |y1| = ln(1/y21) thus it follows

y2 = y1

∫
1

y21
exp

(
−
∫

b

a
dx

)
dx

Example 3.6.1. Consider y′′ − 2y′ + y = 0. We found y1 = ex by making a simple guess of y = eλx and
working out the algebra. Let us now find how to derive y2 in view of the derivation preceding this example.
Identify a = 1, b = −2, c = 1. Suppose y2 = vy1. We found that

y2 = y1

∫
1

y21
exp

(
−
∫

b

a
dx

)
dx = ex

∫
1

e2x
exp

(∫
2 dx

)
dx = ex

∫
e2x

e2x
dx = ex

∫
dx

Thus y2 = xex.

This example should suffice for the moment. We will use this formula in a couple other places. Notice if we
have some method to find at least one solution for ay′′ + by′ + cy = 0 then this formula allows us to find a
second, linearly independent12 solution.

12no, I have not proved this, perhaps you could try
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3.7 operator factorizations

In this section we consider a method to solve L[y] = f given that L = L1L2 · · ·Ln and Lj are all first order
differential operators. Without loss of generality this means Lj = ajD + bj for j = 1, 2, . . . , n. We do not
suppose these operators commute. Let z1 = (L2L3 · · ·Ln)[y] and note that in z1 the n-th order ODE for y
simplifies to

L1[z1] = f ⇒ dz1
dx

+
b1
a1
z1 = f ⇒ exp

[∫
b1
a1
dx

]
dz1
dx

+ exp

[∫
b1
a1
dx

]
b1
a1
z1 =

f

a1
exp

[∫
b1
a1
dx

]
Consequently,

d

dx

[
z1 exp

[∫
b1
a1
dx

]]
=

f

a1
exp

[∫
b1
a1
dx

]
integrating and solving for z1 yields:

z1 = exp

[
−
∫

b1
a1
dx

][
c1 +

∫
f

a1
exp

[∫
b1
a1
dx

]
dx

]
Next let z2 = (L3 · · ·Ln)[y] observe that L1(L2[z2]) = f implies z1 = L2[z2] hence we should solve

a2
dz

dx
+ b2z2 = z1

By the calculation for z1 we find, letting z1 play the role f did in the previous calculation,

z2 = exp

[
−
∫

b2
a2
dx

][
c2 +

∫
z1
a2
exp

[∫
b2
a2
dx

]
dx

]
Well, I guess you see where this is going, let z3 = (L4 · · ·Ln)[y] and observe (L1L2)[L3[z3]] = f hence
L3[z3] = z2. We must solve a3z

′
3 + b3z3 = z2 hence

z3 = exp

[
−
∫

b3
a3
dx

][
c3 +

∫
z2
a3
exp

[∫
b3
a3
dx

]
dx

]
.

Eventually we reach y = zn where (L1L2 · · ·Ln)[zn] = f and anz
′
n + bnzn = zn−1 will yield

y = exp

[
−
∫

bn
an
dx

][
cn +

∫
zn−1
an

exp

[∫
bn
an
dx

]
dx

]
.

If we expand zn−1, zn−2, . . . , z2, z1 we find the formula for the general solution of L[y] = f .

The trouble with this method is that its starting point is a factored differential operator. Many problems
do not enjoy this structure from the outset. We have to do some nontrivial work to massage an arbitrary
problem into this factored form. Rabenstein13 claims that it is always possible to write L in factored form,
but even in the n = 2 case the problem of factoring L is as difficult, if not more, then solving the differential
equation!

13page 70, ok technically he only claims n = 2, I haven’t found a general reference at this time
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Example 3.7.1. Let L1 = x d
dx and suppose L2 = 1 + d

dx . Solve (L1L2)[y] = 3. We want to solve

x
d

dx

[
y +

dy

dx

]
= 3

Let z = y + dy
dx and consider

x
dz

dx
= 3 ⇒

∫
dz =

∫
3dx

x
⇒ z = 3 ln |x|+ c1.

Hence solve,

y +
dy

dx
= 3 ln |x|+ c1

Multiply by integrating factor ex and after a short calculation we find

y = e−x
∫ [

3 ln |x|ex + c1e
x
]
dx

Therefore,

y = c2e
−x + c1 + e−x

∫ [
3 ln |x|ex

]
dx

Identify the fundamental solution set of y1 = e−x and y2 = 1. Note that L2[e−x] = 0 and L1[1] = 0.

Curious, we just saw a non-constant coefficient differential equation which has the same fundamental solution
set as y′′ + y′ = 0. I’m curious how the solution will differ if we reverse the order of L1 and L2

Example 3.7.2. Let L1, L2 be as before and solve (L2L1)[y] = 3. We want to solve[
1 +

d

dx

][
x
dy

dx

]
= 3

Let z = x dydx and seek to solve z + dz
dx = 3. This is a constant coefficient ODE with λ = −1 and it is easy to

see that z = 3 + c1e
−x. Thus consider, x dydx = 3 + c1e

−x yields dy =
(
3
x + c1

e−x

x

)
dx and integration yields:

y = c2 + c1

∫
e−x

x
dx+ 3 ln |x|.

The fundamental solution set has y1 = 1 and y2 =
∫
e−x

x dx.

You can calculate that L1L2 6= L2L1. This is part of what makes the last pair of examples interesting. On
the other hand, perhaps you can start to appreciate the constant coefficient problem. In the next section
we consider the next best thing; the equidimensional or Cauchy Euler problem. It turns out we can factor
the differential operator for a Cauchy -Euler problem into commuting differential operators. This makes the
structure of the solution set easy to catalogue.
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3.8 cauchy euler problems

The general Cauchy-Euler problem is specified by n-constants a1, a2, . . . , an. If L is given by

L = xnDn + a1x
n−1Dn−1 + · · ·+ an−1xD + an

then L[y] = 0 is a Cauchy-Euler problem. Suppose the solution is of the form y = xR for some constant R.
Note that

xD[xR] = xRxR−1 = RxR

x2D2[xR] = x2R(R− 1)xR−2 = R(R− 1)xR

x3D3[xR] = x3R(R− 1)(R− 2)xR−3 = R(R− 1)(R− 2)xR

xnDn[xR] = xnR(R− 1)(R− 2) · · · (R− n)xR−n = R(R− 1)(R− 2) · · · (R− n)xR

Substitute into L[y] = 0 and obtain:(
R(R− 1)(R− 2) · · · (R− n) + a1R(R− 1)(R− 2) · · · (R− n+ 1) + · · ·+ an−1R+ an

)
xR = 0

It follows that R must satisfy the characteristic equation

R(R− 1)(R− 2) · · · (R− n) + a1R(R− 1)(R− 2) · · · (R− n+ 1) + · · ·+ an−1R+ an = 0.

Notice that it is not simply obtained by placing powers of R next to the coefficients a1, a2, . . . , an. However,
we do obtain an n-th order polynomial equation for R and it follows that we generally have n-solutions,
some repeated, some complex. Rather than attempting to say anything further on the general problem I
now pause to consider three interesting second order problems.

Example 3.8.1. Solve x2y′′ + xy′ + y = 0. Let y = xR then we must have

R(R− 1) +R+ 1 = 0 ⇒ R2 + 1 = 0 ⇒ R = ±i

Hence y = xi is a complex solution. We defined, for x > 0, the complex power function xc = ec ln(x) hence

xi = ei ln(x) = cos(ln(x)) + i sin(ln(x))

The real and imaginary parts of xi give real solutions for x2y′′ + xy′ + y = 0. We find

y = c1 cos(ln(x)) + c2 sin(ln(x))

Example 3.8.2. Solve x2y′′ + 4xy′ + 2y = 0. Let y = xR then we must have

R(R− 1) + 4R+ 2 = 0 ⇒ R2 + 3R+ 2 = (R+ 1)(R+ 2) ⇒ R = −1,−2.

We find fundamental solutions y1 = 1/x and y2 = 1/x2 hence the general solution is

y = c1
1

x
+ c2

1

x2
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Example 3.8.3. Solve x2y′′ − 3xy′ + 4y = 0 for x > 0. Let y = xR then we must have

R(R− 1)− 3R+ 4 = 0 ⇒ R2 − 4R+ 4 = (R− 2)2 ⇒ R = 2, 2.

We find fundamental solution y1 = x2. To find y2 we must use another method. We derived that the second
solution of ay′′ + by′ + cy = 0 can be found from the first via:

y2 = y1

∫
1

y21
exp

(∫
−b
a
dx

)
dx.

In this problem identify that a = x2 and b = −3x whereas y1 = x2 and y′1 = 2x thus:

y2 = x2
∫

1

x4
exp

(∫
3x

x2
dx

)
dx = x2

∫
1

x4
exp

(
3 ln(x)

)
dx = x2

∫
dx

x
= x2 ln(x).

The general solution is y = c1x
2 + c2x

2 ln(x) .

The first order case is also interesting:

Example 3.8.4. Solve x dydx −ay = 0. Let y = xR and find R−a = 0 hence y = c1x
a . The operator xD−a

has characteristic equation R− a = 0 hence the characteristic value is R = a.

Let us take two first order problems and construct a second order problem. Notice the operator in the last
example is given by xD − a. We compose two such operators to construct,

(xD − a)(xD − b)[y] = 0

We can calculate,

(xD − a)[xy′ − by] = xD[xy′ − by]− axy′ + aby = xy′ + x2y′′ − bxy′ − axy′ + aby

In operator notation we find

(xD − a)(xD − b) = x2D2 + (1− a− b)xD + ab

from which it is clear that (xD − a)(xD − b) = (xD − b)(xD − a). Moreover,

(xD − a)(xD − b)[y] = 0 ⇔ (x2D2 + (1− a− b)xD + ab)[y] = 0

Example 3.8.5. To construct an cauchy-euler equation with characteristic values of a = 2+3i and b = 2−3i
we simply note that 1 − a − b = −3 and ab = 4 + 9 = 13. We can check that the cauchy-euler problem
x2y′′ − 3xy′ + 13y = 0 has complex solutions y = x2±3i, suppose y = xR then it follows that R must solve
the characteristic equation:

R(R− 1)− 3R+ 13 = R2 − 4R+ 13 = (R− 2)3 + 9 = 0 ⇒ R = 2± 3i.

Note x2+3i = e(2+3i) ln(x) = eln(x
2)e3i ln(x) = x2(cos(3 ln(x)) + i sin(3 ln(x))) (you can just memorize it as I

defined it, but these steps help me remember how this works) Thus, the DEqn x2y′′ − 3xy′ + 13y = 0 has
general solution

y = c1x
2 cos(3 ln(x)) + c2x

2 sin(3 ln(x))
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We saw that noncommuting operators are tricky to work with in a previous section. Define [L1, L2] =
L1L2−L2L1 and note that L2L1 = L1L2− [L1, L2]. The [L1, L2] is called the commutator, when it is zero
then the inputs to [, ] are said to commute. If you think about the homogeneous problem (L1L2)[y] = 0 then
contrast with (L2L1)[y] = 0 we can understand why these are not the same in terms of the commutator. For
example, suppose L2[y] = 0 then it is clearly a solution of (L1L2)[y] = 0 since L1[L2[y]] = L1[0] = 0. On the
other hand,

(L2L1)[y] = (L1L2 − [L1, L2])[y] = L1[L2[y]]− [L1, L2][y] = −[L1, L2][y]

and there is no reason in general for the solution to vanish on the commutator above. If we could factor a
given differential operator into commuting operators L1, L2, . . . , Ln then the problem L[y] = 0 nicely splits
into n-separate problems L1[y] = 0, L2[y] = 0, . . . , Ln[y] = 0.

With these comments in mind return to the question of solving L[y] = 0 for

L = xnDn + a1x
n−1Dn−1 + · · ·+ an−1xD + an

note in the case n = 2 we can solve R(R− 1) + aR + ao = 0 for solutions a, b and it follows that

x2D2 + a1xD + a2 = (xD − a)(xD − b)[y] = 0

The algebra to state a, b as functions of a1, a2 is a quadratic equation. Notice that for the third order
operator it starts to get ugly, the fourth unpleasant, and the fifth, impossible in closed form for an arbitrary
equidimensional quintic operator.

All of this said, I think it is at least possible to explicitly14 factor the operator whenever we can factor
the characteristic equation. Suppose R1 is a solution to the characteristic equation hence y1 = xR1 is a
solution of L[y] = 0. I claim you can argue that L1 = (xD−a1) is a factor of L. Likewise, for the other zeros
a2, a3, . . . , an the linear differential operators Lj = (xD−aj) must somehow appear as a factor of L. Hence we
have n-first order differential operators and since I wrote L = xnDn+· · ·+an it follows that L = L1L2 · · ·Ln.
From a DEqns perspective this discussion is not terribly useful as the process of factoring L into a polynomial
in xD is not so intutive. Even the n = 2 case is tricky: (xD−a)(xD−b)[f ] = (x2D2+(1−a−b)xD+ab)[f ] =

= (xD − a)(xD − b)[f ] = xD(xD[f ]− b[f ])− axD[f ] + ab[f ] = (xD)2 − (a+ b)(xD) + ab)[f ]

Notice the polynomials in xD behave nicely but the x2D2 term does not translate simply into the xD
formulas. Let’s see if we can derive some general formula to transform xnDn into some polynomial in xD.

14theoretically it is always possible by the fundamental theorem of algebra applied to the characteristic equation
and the scheme I’m about to outline
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Calculate, for f a suitably differentiable function,

(xD)2[f ] = xD[xD[f ]] = xD[xf ′] = xf ′ + x2f ′′ = (xD + x2D2)[f ] ⇒ x2D2 = (xD)2 − xD

Next, order three, using Leibniz’ product rule for second derivative of a product,

(xD)3[f ] = (xD + x2D2)[xf ′] = xf ′ + x2f ′′ + x2(x′′f ′ + 2x′f ′′ + xf ′′′)

= (xD + x2D2 + 2x2D2 + x3D3)[f ]

= (xD + 3x2D2 + x3D3)[f ]

= (xD + 3(xD)2 − 3xD + x3D3)[f ]

= (3(xD)2 − 2xD + x3D3)[f ]

⇒ x3D3 = (xD)3 − 3(xD)2 + 2xD .

It should be fairly clear how to continue this to higher orders. Let’s see how this might be useful15 in the
context of a particular third order cauchy-euler problem.

Example 3.8.6. Solve (x3D3 + 3x2D2 + 2xD)[y] = 0. I’ll use operator massage. By the calculations
preceding this example:

x3D3 + 3x2D2 + 2xD = (xD)3 − 3(xD)2 + 2xD + 3(xD)2 − 3xD + 2xD = (xD)3 + (xD)

Now I can do algebra since xD commutes with itself,

(xD)3 + (xD) = xD((xD)2 + 1) = xD(xD − i)(xD + i)

Hence R = 0, R = ±i are evidentally the characteristic values and we find real solution

y = c1 + c2 cos(ln(x)) + c3 sin(ln(x))

Let’s check this operator-based calculation against our characteristic equation method:

R(R− 1)(R− 2) + 3R(R− 1) + 2R = R3 − 3R2 + 2R+ 3R2 − 3R+ 2R = R3 +R.

Which would then lead us to the same solution as we uncovered from the xD factorization.

There are a few loose ends here, I might ask a homework question to explore some ideas here further.

15my point in these calculations is not to find an optimal method to solve the cauchy euler problem, probably
the characteristic equation is best, my point here is to explore the structure of operators and test our ability to
differentiate and think!
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3.9 applications

We explore two interesting applications in this section:

1. springs with friction

2. RLC circuits

We begin by studying the homogeneous case and then add external forces (1.) or a voltage source (2.). The
mathematics is nearly the same for both applications. Finally we study resonance.

3.9.1 springs with and without damping

Suppose a mass m undergoes one-dimensional motion under the influence of a spring force Fs = −kx and a
velocity dependent friction force Ff = −βẋ. Newton’s Second Law states mẍ = −kx− βẋ. We find

mẍ+ βẋ+ kx = 0

The constants m,β, k are non-negative and we assume m 6= 0 in all cases. Technically the value of m should
be assigned kg, that of β should be assigned kg/s and the spring constant k should have a value with units of
the form N/m. Please understand these are omitted in this section. When faced with a particular problem
make sure you use quantities which have compatible units.

Example 3.9.1. Problem: the over-damped spring: Suppose m = 1, β = 3 and k = 2. If the mass has
velocity v = −2 and position x = 1 when t = 0 then what is the resulting equaiton of motion?

Solution: We are faced with ẍ + 3ẋ + 2x = 0. This gives chararcteristic equation λ2 + 3λ + 2 = 0 hence
(λ+ 1)(λ+ 2) = 0 thus λ1 = −1 and λ2 = −2 and the general solution is

x(t) = c1e
−t + c2e

−2t

Note that ẋ(t) = −c1e−t − 2c2e
−2t. Apply the given initial conditions,

x(0) = c1 + c2 = 1 & ẋ(0) = −c1 − 2c2 = −2

You can solve these equations to obtain c2 = 1 and c1 = 0. Therefore, x(t) = e−2t .

Example 3.9.2. Problem: the critically-damped spring: Suppose m = 1, β = 4 and k = 4. If the
mass has velocity v = 1 and position x = 3 when t = 0 then what is the resulting equaiton of motion?

Solution: We are faced with ẍ + 4ẋ + 4x = 0. This gives chararcteristic equation λ2 + 4λ + 4 = 0 hence
(λ+ 2)2 = 0 thus λ1 = λ2 = −2 and the general solution is

x(t) = c1e
−2t + c2te

−2t

Note that ẋ(t) = −2c1e
−t + c2(e−2t − 2te−2t). Apply the given initial conditions,

x(0) = c1 = 3 & ẋ(0) = −2c1 + c2 = 1

You can solve these equations to obtain c1 = 3 and c2 = 7. Therefore, x(t) = 3e−2t + 7te−2t .
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Example 3.9.3. Problem: the under-damped spring: Suppose m = 1, β = 2 and k = 6. If the mass
has velocity v = 1 and position x = 1 when t = 0 then what is the resulting equaiton of motion?

Solution: We are faced with ẍ + 2ẋ + 6x = 0. This gives chararcteristic equation λ2 + 2λ + 6 = 0 hence
(λ+ 1)2 + 5 = 0 thus λ = −1± i

√
5 and the general solution is

x(t) = c1e
−t cos(

√
5 t) + c2e

−t sin(
√

5 t)

Note that ẋ(t) = c1e
−t(− cos(

√
5 t)−

√
5 sin(

√
5 t) + c2e

−t(− sin(
√

5 t) +
√

5 cos(
√

5 t). Apply the given initial
conditions,

x(0) = c1 = 1 & ẋ(0) = −c1 +
√

5c2 = 1

You can solve these equations to obtain c1 = 1 and c2 = 2/
√

5. Therefore,

x(t) = e−t cos(
√

5 t) +
2√
5
e−t sin(

√
5 t) .

Example 3.9.4. Problem: spring without damping; simple harmonic oscillator: Suppose β = 0
and m, k are nonzero. If the mass has velocity v(0) = vo and position x(0) = xo then find the resulting
equaiton of motion.

Solution: We are faced with mẍ+kx = 0. This gives chararcteristic equation mλ2+k = 0 hence λ = ±i
√

k
m

and the general solution is, using ω = k
m ,

x(t) = c1 cos(ωt) + c2 sin(ω t)

Note that
ẋ(t) = −c1ω sin(ω t) + c2ω cos(ω t).

Apply the given initial conditions,

x(0) = c1 = xo & ẋ(0) = c2ω = vo

Therefore,

x(t) = xo cos(ωt) +
vo
ω

sin(ω t) .
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3.9.2 the RLC-circuit

Now we turn to circuits. Suppose a resistor R, an inductor L and a capacitor C are placed in series then
the we know that VR = IR by Ohm’s Law for the resistor, whereas the voltage dropped on an inductor is
proportional to the change in the current according to the definition of inductance paired with Faraday’s
Law: VL = LdIdt for the inductor, the capacitor C has charge ±Q on its plates when VC = Q/C. We also

know I = dQ
dt since the capacitor is in series with R and L. Finally, we apply Kirchoff’s voltage law around

the circuit to obtain VR + VL + VC = 0, this yields:

IR+ L
dI

dt
+
Q

C
= 0 ⇒ L

d2Q

dt2
+R

dQ

dt
+

1

C
Q = 0 .

Obviously there is an analogy to be made here:

m� L β � R k �
1

C

I will exploit this analogy to construct the following examples.

Example 3.9.5. Problem: the over-damped RLC circuit: Suppose L = 1, R = 3 and C = 1/2. If
the circuit has current I = −2 and charge Q = 1 when t = 0 then what is the charge as a function of time?
What is the current at a function of time?

Solution: We are faced with Q̈ + 3Q̇ + 2Q = 0. This gives chararcteristic equation λ2 + 3λ + 2 = 0 hence
(λ+ 1)(λ+ 2) = 0 thus λ1 = −1 and λ2 = −2 and the general solution is

Q(t) = c1e
−t + c2e

−2t

Note that Q̇(t) = −c1e−t − 2c2e
−2t. Apply the given initial conditions,

Q(0) = c1 + c2 = 1 & Q̇(0) = −c1 − 2c2 = −2

You can solve these equations to obtain c2 = 1 and c1 = 0. Therefore, Q(t) = e−2t . Differentiate to obtain

the current I(t) = −2e−2t .

Example 3.9.6. Problem: the critically-damped RLC circuit: Suppose L = 1, R = 4 and C = 1/4.
If the circuit has current I = 1 and charge Q = 3 when t = 0 then what is the charge as a function of time?
What is the current at a function of time?

Solution: We are faced with Q̈ + 4Q̇ + 4Q = 0. This gives chararcteristic equation λ2 + 4λ + 4 = 0 hence
(λ+ 2)2 = 0 thus λ1 = λ2 = −2 and the general solution is

Q(t) = c1e
−2t + c2te

−2t

Note that Q̇(t) = −2c1e
−t + c2(e−2t − 2te−2t). Apply the given initial conditions,

Q(0) = c1 = 3 & Q̇(0) = −2c1 + c2 = 1

You can solve these equations to obtain c1 = 3 and c2 = 7. Therefore, Q(t) = 3e−2t + 7te−2t . Differentiate

the charge to find the current I(t) = e−2t − 14te−2t .
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Example 3.9.7. Problem: the under-damped RLC circuit: Suppose L = 1, R = 2 and C = 1/6. If
the circuit has current I = 1 and charge x = 1 when t = 0 then what is the charge as a function of time?
What is the current at a function of time?

Solution: We are faced with Q̈ + 2Q̇ + 6Q = 0. This gives chararcteristic equation λ2 + 2λ + 6 = 0 hence
(λ+ 1)2 + 5 = 0 thus λ = −1± i

√
5 and the general solution is

Q(t) = c1e
−t cos(

√
5 t) + c2e

−t sin(
√

5 t)

Note that Q̇(t) = c1e
−t(− cos(

√
5 t)−

√
5 sin(

√
5 t)+c2e

−t(− sin(
√

5 t)+
√

5 cos(
√

5 t). Apply the given initial
conditions,

Q(0) = c1 = 1 & Q̇(0) = −c1 +
√

5c2 = 1

You can solve these equations to obtain c1 = 1 and c2 = 2/
√

5. Therefore,

Q(t) = e−t cos(
√

5 t) +
2√
5
e−t sin(

√
5 t) .

Differentiate to find the current,

I(t) = e−t
(
− cos(

√
5 t)−

√
5 sin(

√
5 t)

)
+

2√
5
e−t
(
− sin(

√
5 t) +

√
5 cos(

√
5 t)

)
.

Example 3.9.8. Problem: the LC circuit or simple harmonic oscillator: Suppose R = 0 and L,C
are nonzero. If the circuit has current I(0) = Io and charge Q(0) = Qo then find the resulting equaitons for
charge and current at time t.

Solution: We are faced with LQ̈ + 1
CQ = 0. This gives chararcteristic equation λ2 + 1

LC = 0 hence

λ = ±i
√

1
LC and the general solution is, using ω =

√
1
LC ,

Q(t) = c1 cos(ωt) + c2 sin(ω t)

Note that

Q̇(t) = −c1ω sin(ω t) + c2ω cos(ω t).

Apply the given initial conditions,

Q(0) = c1 = Qo & Q̇(0) = c2ω = Io

Therefore,

Q(t) = Qo cos(ωt) +
Io
ω

sin(ω t) .

Differentiate to find the current,

I(t) = −ωQo sin(ωt) + Io cos(ω t) .
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3.9.3 springs with external force

Suppose a mass m undergoes one-dimensional motion under the influence of a spring force Fs = −kx and
a velocity dependent friction force Ff = −βẋ and some external force f . Newton’s Second Law states
mẍ = −kx− βẋ+ f . We find

mẍ+ βẋ+ kx = f

We have tools to solve this problem for many interesting forces.

Example 3.9.9. Problem: constant force: Suppose m 6= 0 and β, k > 0. Suppose a constant force
f = Fo is placed on the spring. Describe the resulting motion.

Solution: We are faced with mẍ + βẋ + kx = Fo. Notice that we can find xh to solve the homogeneous,
force-free equation; mẍh + βẋh + kxh = 0. The particular solution is simply xp = Fo/k and it follows the
general solution has the form:

x(t) = xh(t) + Fo/k

We find motion that is almost identical to the problem with Fo removed. If we change coordinates to y =
x−Fo/k then clearly ẋ = ẏ and ẍ = ÿ hence mÿ+βẏ+ky = 0. An important example of a constant force is
that of gravity on a srping hanging vertically. The net-effect of gravity is to reset the equilbrium position of
the spring from x = 0 to x = mg/k. The frequency of any oscillations is not effected by gravity, moreover,
the spring returns to the new equilbrium x = mg/k in the same manner as it would with matching damping,
mass and stiffness in a horizontal set-up. For example, to find the frequency of oscillation for shocks on a
car is determined from the viscosity of the oil in the shock assembly, the stiffness of the springs and the mass
of the car. Gravity doesn’t enter the picture.

Example 3.9.10. Problem: sinusoidal, nonresonant, force on a simple harmonic oscillator Sup-
pose m = 1 and β = 0 and k = 1. Suppose a sinusoidal force f = Fo cos(2t) is placed on the spring. Find
the equations of motion given that x(0) = 0 and ẋ(0) = 0.

Solution: observe that ẍ + x = Fo cos(2t) has homogeneous solution xh(t) = c1 cos(t) + c2 sin(t) and the
method of annihilators can be used to indicate xp = A cos(2t) +B sin(2t). Calculate ẍp = −4xp thus

ẍp + xp = Fo cos(2t) ⇒ −3A cos(2t)− 3B sin(2t) = Fo cos(2t)

Thus A = −Fo/3 and B = 0 which gives us the general solution,

x(t) = c1 cos(t) + c2 sin(t)− Fo
3

cos(2t)

We calculate ẋ(t) = −c1 sin(t) + c2 cos(t) + 2Fo
3 sin(2t). Apply initial conditions to the solution,

c1 −
Fo
3

= 0 &c2 = 0 ⇒ x(t) = Fo
3

[
cos(t)− cos(2t)

]
.

Example 3.9.11. Problem: sinsoidal, resonant, force on a simple harmonic oscillator: Suppose
m = 1 and β = 0 and k = 1. Suppose a sinusoidal force f = 2 cos(t) is placed on the spring. Find the
equations of motion given that x(0) = 1 and ẋ(0) = 0.

Solution: observe that ẍ+x = 2 cos(t) has homogeneous solution xh(t) = c1 cos(t)+c2 sin(t) and the method
of annihilators can be used to indicate xp = At cos(t) +Bt sin(t). We calculate,

ẋp = (A+Bt) cos(t) + (B −At) sin(t)
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ẍp = B cos(t)− (A+Bt) sin(t)−A sin(t) + (B −At) cos(t) = (2B −At) cos(t)− (2A+Bt) sin(t)

Now plug these into ẍp + xp = 2 cos(t) to obtain:

At cos(t) +Bt sin(t) + (2B −At) cos(t)− (2A+Bt) sin(t) = 2 cos(t)

notice the terms with coefficients t cancel and we deduce 2B = 2 and −2A = 0 thus A = 0 and B = 1. We
find the general solution

x(t) = c1 cos(t) + c2 sin(t) + t sin(t)

Note ẋ(t) = −c1 sin(t) + c2 cos(t) + sin(t) + t cos(t). Apply the initial conditions, x(0) = c1 = 1 and
ẋ(0) = c2 = 0. Therefore, the equation of motion is

x(t) = cos(t) + t sin(t) .

Note that as t → ∞ the equation above ceases to be physically reasonable. In the absence of damping it
is possible for the energy injected from the external force to just build and build leading to infinite energy.
Of course the spring cannot store infinite energy and it breaks. In this case without damping it is simple
enough to judge the absence or presence of resonance. Resonance occurs iff the forcing function has the

same frequency as the natural frequency ω =
√

k
m . In the case that there is damping we say resonance

is reached if for a givenm,β, k the applied force Fo cos(γt) produces a particular solution of largest magnitude.

To keep it simple let us consider a damped spring in the arbitrary underdamped case where
β2 − 4mk < 0 with an external force Fo cos(γt). We seek to study solutions of

mẍ+ βẋ+ kx = Fo cos(γt)

Observe the characteristic equation is mλ2 + βλ + k = 0 gives λ2 + β
mλ + k

m = 0. Complete the square, or
use the quadratic formula, whichever you prefer:

λ =
−β ±

√
β2 − 4mk

2m
=
−β ± i

√
4mk − β2

2m

It follows that the homogeneous (also called the transient solution since it goes away for t >> 0) is

xh(t) = e
−βt
2m

(
c1 cos(ωt) + c2 sin(ωt)

)
where I defined ω =

√
4mk−β2

2m for convenience. The particular solution is also called the steady-state
solution since it tends to dominate for t >> 0. Suppose xp = A cos(γt) +B sin(γt) calculate,

ẋp = −γA sin(γt) + γB cos(γt) & ẍp = −γ2A cos(γt)− γ2B sin(γt)

Subtitute into mẍp + βẋp + kxp = Fo cos(γt) and find

−mγ2A cos(γt)−mγ2B sin(γt)− βγA sin(γt) + βγB cos(γt) + kA cos(γt) + kB sin(γt) = Fo cos(γt)

Hence, [
−mγ2A+ βγB + kA

]
cos(γt) +

[
−mγ2B − βγA+ kB

]
sin(γt) = Fo cos(γt)

Equating coefficients yield the conditions:

(k −mγ2)A+ βγB = Fo & (k −mγ2)B − βγA = 0
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We solve the second equation for B = βγ
k−mγ2A and substitute this into the other equation,

(k −mγ2)A+
β2γ2

k −mγ2
A = Fo

Now make a common denominator,
(k −mγ2)2 + β2γ2

k −mγ2
A = Fo

We find,

A =
(k −mγ2)Fo

(k −mγ2)2 + β2γ2
& B =

βγFo
(k −mγ2)2 + β2γ2

It follows that the particular solution has the form

xp =
Fo

(k −mγ2)2 + β2γ2

[
(k −mγ2) cos(γt) + βγ sin(γt)

]
You can show16 that the amplitude of A1 cos(γt) +A2 sin(γt) is given by A =

√
A2

1 +A2
2. Apply this lemma

to the formula above to write the particular solution in the simplified form

xp =
Fo√

(k −mγ2)2 + β2γ2
sin(γt+ φ)

where φ is a particular angle. We’re mostly interested in the magnitude so let us focus our attention on the
amplitude of the steady state solution17.

Suppose k,m, β are fixed and let us study M(γ) = 1√
(k−mγ2)2+β2γ2

. What choice of γ maximizes this factor

thus producing the resonant motion? Differentiate and seek the critical value:

dM

dγ
= −1

2
· 2(k −mγ2)(−2mγ) + 2β2γ

[(k −mγ2)2 + β2γ2]3/2
= 0

The critical value must arise from the vanishing of the numerator since the denominator is nonzero,

(k −mγ2)(−2mγ) + β2γ = 0 ⇒ (−2mk + 2m2γ2 + β2)γ = 0

But, we already know γ = 0 is not the frequency we’re looking for, thus

−2mk + 2m2γ2 + β2 = 0 ⇒ γ = ±
√

2mk − β2

2m2

Nothing is lost by choosing the + here and we can simplify to find

γc =

√
k

m
− β2

2m2

It is nice to see that β = 0 returns us to the natural frequency ω =
√
km as we studied initially. Section

4.10 of Nagel Saff and Snider, or 6-3 of Ritger & Rose if you would like to see further analysis.

16the precalculus chapter in my calculus I notes has some of the ideas needed for this derivation
17see page 240-241 of Nagel Saff and Snider for a few comments beyond mine and a nice picture to see the difference

between the transient and steady state solutions
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3.10 RLC circuit with a voltage source

Suppose a resistor R, an inductor L and a capacitor C are placed in series with a voltage source E . Kirchoff’s
Voltage Law reads

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E

We can solve these problems in the same way as we have just explored for the spring force problem. I will
jump straight to the resonance problem and change gears a bit to once more promote complex notation.

Suppose we have an underdamped R,L,C circuit driven by a voltage source E(t) = Vo cos(γt). I propose we
solve the related complex problem

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = Voe

iγt

We propose a complex particular solution: Qp = Aeiγt hence

Q′p = iγAeiγt & Q′′p = −γ2Aeiγt

Subtitute into LQ′′p +RQ′p + 1
CQp = Voe

iγt and factor out the imaginary exponential

[
−γ2L+ iγR+

1

C

]
Aeiγt = Voe

iγt

Hence,

−γ2L+ iγR+
1

C
=
Vo
A

Hence,

A =
Vo

1/C − γ2L+ iγR
· 1/C − γ2L− iγR

1/C − γ2L− iγR
=
Vo[1/C − γ2L− iγR]

(1/C − γ2L)2 + γ2R2

Thus, using eiγt = cos(γt) + i sin(γt), the complex particular solution is given by

Qp(t) =

[
Vo[1/C − γ2L]

(1/C − γ2L)2 + γ2R2
− i VoγR

(1/C − γ2L)2 + γ2R2

][
cos(γt) + i sin(γt)

]
.

We can read solutions for particular solutions of any real linear combination of Vo cos(γt) and Vo sin(γt). For

example, for Ld
2Q
dt2 +R dQ

dt + 1
CQ = Vo cos(γt) we derive the particular solution

Qp1(t) =
Vo[1/C − γ2L]

(1/C − γ2L)2 + γ2R2
cos(γt) +

VoγR

(1/C − γ2L)2 + γ2R2
sin(γt)

Likewise, as Im(eiγt) = sin(γt) the solution of Ld
2Q
dt2 +R dQ

dt + 1
CQ = Vo sin(γt) is given by the Im(Qp) = Qp2 .

Qp2(t) =
Vo[1/C − γ2L]

(1/C − γ2L)2 + γ2R2
sin(γt) +

VoγR

(1/C − γ2L)2 + γ2R2
cos(γt)

To solve Ld
2Q
dt2 + R dQ

dt + 1
CQ = B1Vo cos(γt) + B2Vo sin(γt) we use superposition to form the particular

solution Qp3 = B1Qp1 +B2Qp2 .
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Remark 3.10.1.

Notice that Qp1 is analagous to the solution we found studying resonance for the underdamped
spring. If we use the dictionary m� L, β � R, k � 1/C, Fo � Vo then it ought to be obvious the
solution above was already derived in real notation. However, the complex solution is quicker and
cleaner. We also can deduce that resonance is reached at

γr =

√
k

m
− β2

2m2
�

√
1

LC
− R2

2L2

and note how R = 0 reduces the problem to the pure harmonic oscillation of the LC-tank.



106 CHAPTER 3. ORDINARY N -TH ORDER PROBLEM



Chapter 4

the series solution technique

Series techniques have been with us a long time now. Founders of calculus worked with series in a somewhat
careless fashion and we will do the same here. The wisdom of nineteenth century analysis is more or less
ignored in this work. In short, I’m not too worried about the interval of convergence in these notes. This is of
course a dangerous game, but the density of math majors permits no other. I’ll just make this comment: the
series we find generally represent a function of interest only locally. Singularities prevent us from continuing
the expansion past some particular point.

It doesn’t concern this course too much, but perhaps it’s worth mentioning: much of the work we see here
arose from studying complex differential equations. The results for ordinary points were probably known
by Euler and Lagrange even took analyticity as a starting point for what he thought of as a ”function”.
The word ”analytic” should be understood to mean that there exists a power series expansion representing
the function near the point in question. There are functions which are not analytic and yet are smooth
(f(f(x) = sin(x) defines such a function, see the math stack for more). Logically, functions need not be
analytic. However, most nice formulas do impart analyticity at least locally.

Fuchs studied complex differential equations as did Weierstrauss, Cauchy, Riemann and most of the research
math community of the nineteenth century. Fuchasian theory of DEqns dealt with the problem of singulari-
ties and there was (is) a theory of majorants due to Weierstrauss which was concerned with how singularities
appear in solutions. In particular, the study of moveable singularities, the process of what we call analytic
continuation was largely solved by Fuchs. However, his approach was more complicated than the methods
we study. Frobenous proposed a method which clarified Fuch’s work and we use it to this day. Read Hille’s
masterful text about differential equations in the complex plane for a more complete history. My point to
you here is simply this: what we do here did not arise from the study of the real-valued problems we study
alone. To really understand the genesis of this material you must study complex differential equations. We
don’t do this since complex variables are not a prequisite for this course.

The calculations in this chapter can be challenging. However, the power series approximation is one of our
most flexible tools for mathematical modelling and it is most certainly worth understanding. If you compare
these notes with Ritger & Rose then you’ll notice that I have not covered too deeply the sections towards
the end of Chapter 7; Bessel, Legendre, and the hypergeometric equations are interesting problems, but it
would take several class periods to absorb the material and I think it better to spend our time on breadth.
My philosophy is that once you’ve taken this course you ought to be ready to do further study on those
sections.

107
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4.1 calculus of series

I begin with a brief overview of terminology and general concepts about sequences and series. We will not
need all of this, but I think it is best to at least review the terms as to recover as much as we can from your
previous course work.
A sequence in S is a function a : {no, no+1, no+2, . . . } → S where we usually denote a(n) = an for all n ∈ Z
with n ≥ no. Typically no = 0 or no = 1, but certainly it is interesting to consider other initial points for
the domain. If an ∈ R for all n then we say {an} is a sequence of real numbers. If an ∈ C for all n then we
say {an} is a complex sequence. If F is a set of functions and an ∈ F for all n then we say {an} is sequence
of functions. If the codomain for a sequence has an operation such as addition or multiplication then we can
add or multiply such sequences by the usual pointwise defined rules; (ab)n = anbn and (a + b)n = an + bn.
In addition, we can define a series s = ano + an1

+ · · · in S as follows:

s = lim
n→∞

n∑
k=no

ak

provided the limit above exists. In other words, the series above exists iff the sequence of partial sums
{ano , ano +an1 , ano +an1 +an2 , . . . } converges. When the sequence of partial sums converges then the series
is likewise said to converge and we can denote this by s =

∑∞
k=no

ak. You should remember studying the
convergence of such series for a few weeks in your second calculus course. Perhaps you will be happy to hear
that convergence is not the focus of our study in this chapter.

A power function is a function with formula f(x) = xn for some n ∈ R. A power series is a series
formed from adding together power functions. However, traditionally the term power series is reserved for
series constructed with powers from N ∪ {0}. Equivalently we can say a power series is a function which
is defined at each point by a series;

f(x) =

∞∑
k=0

ck(x− a)k = co + c1(x− a) + c2(x− a)2 + · · ·

The constants co, c1, c2, . . . are fixed and essentially define f uniquely once the center point a is given. The
domain of f is understood to be the set of all real x such that the series converges. Given that f(x) is a
power series it is a simple matter to compute that

co = f(a), c1 = f ′(a), c2 =
1

2
f ′′(a), . . . , ck =

1

k!
f (k)(a).

Incidentially, the result above shows that if
∑∞
k=0 bk(x − a)k =

∑∞
k=0 ck(x − a)k then bk = ck for all k ≥ 0

since both power series define the same derivatives and we know derivatives are single-valued when they
exist. This result is called equating coefficients of power series, we will use it many times.

The domain of a power series is somewhat boring. Recall that there are three possibilities:

1. dom(f) = {a}

2. dom(f) = {x ∈ R | |x− a| ≤ R} for some radius R > 0.

3. dom(f) = (−∞,∞)

The constant R is called the radius of convergence and traditionally we extend it to all three cases above
with the convention that for case (1.) R = 0 whereas for case (3.) R =∞.



4.1. CALCULUS OF SERIES 109

Given a function on R we can sometimes replace the given formula of the function with a power series. If it
is possible to write the formula for the function f as a power series centered at xo in some open set around
xo then we say f is analytic at xo. When it is possible to write f(x) as a single power series for all x ∈ R
then we say f is entire. A function is called smooth at xo if derivatives of arbitrary order exist for f at xo.

Whenever a function is smooth at xo we can calculate T (x) =
∑∞
n=0

f(n)(xo)
n! (x − xo)n which is called the

Taylor series of f centered at xo. However, there are functions for which the series T (x) 6= f(x) near xo.
Such a function is said to be non-analytic. If f(x) = T (x) for all x close to xo then we say f is analytic at
xo. This question is not treated in too much depth in most calculus II courses. It is much harder to prove
a function is analytic than it is to simply compute a Taylor series. We again set-aside the issue of analytic-
ity for a later course where analysis is the focus. We now turn our focus to the computational aspects of series.

If f : U ⊆ R→ R is analytic at xo ∈ U then we can write

f(x) = f(xo) + f ′(xo)(x− xo) +
1

2
f ′′(xo)(x− xo)2 + · · · =

∞∑
n=0

f (n)(xo)

n!
(x− xo)n

We could write this in terms of the operator D = d
dt and the evaluation of t = xo

f(x) =

[ ∞∑
n=0

1

n!
(x− t)nDnf(t)

]
t=xo

=

I remind the reader that a function is called entire if it is analytic on all of R, for example ex, cos(x) and
sin(x) are all entire. In particular, you should know that:

ex = 1 + x+
1

2
x2 + · · · =

∞∑
n=0

1

n!
xn

cos(x) = 1− 1

2
x2 +

1

4!
x4 · · · =

∞∑
n=0

(−1)n

(2n)!
x2n

sin(x) = x− 1

3!
x3 +

1

5!
x5 · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

Since ex = cosh(x) + sinh(x) it also follows that

cosh(x) = 1 +
1

2
x2 +

1

4!
x4 · · · =

∞∑
n=0

1

(2n)!
x2n

sinh(x) = x+
1

3!
x3 +

1

5!
x5 · · · =

∞∑
n=0

1

(2n+ 1)!
x2n+1

The geometric series is often useful, for a, r ∈ R with |r| < 1 it is known

a+ ar + ar2 + · · · =
∞∑
n=0

arn =
a

1− r

This generates a whole host of examples, for instance:

1

1 + x2
= 1− x2 + x4 − x6 + · · ·
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1

1− x3
= 1 + x3 + x6 + x9 + · · ·

x3

1− 2x
= x3(1 + 2x+ (2x)2 + · · · ) = x3 + 2x4 + 4x5 + · · ·

Moreover, the term-by-term integration and differentiation theorems yield additional results in conjuction
with the geometric series:

tan−1(x) =

∫
dx

1 + x2
=

∫ ∞∑
n=0

(−1)nx2ndx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− 1

3
x3 +

1

5
x5 + · · ·

ln(1− x) =

∫
d

dx
ln(1− x)dx =

∫
−1

1− x
dx = −

∫ ∞∑
n=0

xndx =

∞∑
n=0

−1

n+ 1
xn+1

Of course, these are just the basic building blocks. We also can twist things and make the student use
algebra,

ex+2 = exe2 = e2(1 + x+
1

2
x2 + · · · )

or trigonmetric identities,

sin(x) = sin(x− 2 + 2) = sin(x− 2) cos(2) + cos(x− 2) sin(2)

⇒ sin(x) = cos(2)

∞∑
n=0

(−1)n

(2n+ 1)!
(x− 2)2n+1 + sin(2)

∞∑
n=0

(−1)n

(2n)!
(x− 2)2n.

Feel free to peruse my most recent calculus II materials to see a host of similarly sneaky calculations.

4.2 solutions at an ordinary point

An ordinary point for a differential equation is simply a point at which an analytic solution exists. I’ll
explain more carefully how to discern the nature of a given ODE in the next section. In this section we make
the unfounded assumption that a power series solution exists in each example.

Example 4.2.1. Problem: find the first four nontrivial terms in a series solution centered at a = 0 for
y′ − y = 0

Solution: propose that y = co + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 · · · . Differentiating,

y′ = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + 5c5x
4 · · ·

We desire y be a solution, therefore:

y′ − y = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + 5c5x
4 · · · − (co + c1x+ c2x

2 + c3x
3 + c4x

4 + c5x
5 · · · ) = 0.

Collect like terms:

c1 − co + x(2c2 − c1) + x2(3c3 − c2) + x3(4c4 − c3) + x4(5c5 − c4) + · · · = 0

We find, by equating coefficients, that every coefficient on the l.h.s. of the expression above is zero thus:

c1 = co, c2 =
1

2
c1, c3 =

1

3
c2, c4 =

1

4
c3
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Hence,

c1 = co, c2 =
1

2
co, c3 =

1

3

1

2
co, c4 =

1

4

1

3

1

2
co

Note that 2 = 2!, 3 · 2 = 3!, 4 · 3 · 2 = 4! hence,

y = co + cox+
1

2
cox

2 +
1

3!
cox

3 +
1

4!
cox

4 + · · ·

Consequently, y = co(1 + x+
1

2
x2 +

1

6
x3 + · · · ) is the desired solution.

Of course the example above is not surprising; y′ − y = 0 has λ− 1 = 0 hence y = coe
x is the solution. We

just derived the first few terms in the power series expansion for ex centered at a = 0.

Example 4.2.2. Problem: find the complete series solution centered at a = 0 for y′′ + x2y = 0.

Solution: Suppose the solution is a power series and calculate,

y =

∞∑
k=0

ckx
k, y′ =

∞∑
k=0

kckx
k−1, y′′ =

∞∑
k=0

k(k − 1)ckx
k−2

Of course, the summations can be taken from k = 1 for y′ and k = 2 for y′′ as the lower order terms vanish.
Suppose y′′ + x2y = 0 to find:

∞∑
k=2

k(k − 1)ckx
k−2 + x2

∞∑
k=0

ckx
k = 0

Notice,

x2
∞∑
k=0

ckx
k =

∞∑
k=0

ckx
2xk =

∞∑
k=0

ckx
k+2 =

∞∑
j=2

cj−2x
j

where in the last step we set j = k + 2 hence k = 0 gives j = 2. Likewise, consider:

∞∑
k=2

k(k − 1)ckx
k−2 =

∞∑
j=0

(j + 2)(j + 1)cj+2x
j .

where we set k − 2 = j hence k = 2 gives j = 0. Hence,

∞∑
j=0

(j + 2)(j + 1)cj+2x
j +

∞∑
j=2

cj−2x
j = 0.

Sometimes we have to separate a few low order terms to clarify a pattern:

2c2 + 6c3x+

∞∑
j=2

[
(j + 2)(j + 1)cj+2 + cj−2

]
xj = 0

It follows that c2 = 0 and c3 = 0. Moreover, for j = 2, 3, . . . we have the recursive rule:

cj+2 =
−1

(j + 2)(j + 1)
cj−2
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Let us study the relations above to find a pattern if possible,

c4 =
−1

20
co, c5 =

−1

20
c1, c6 =

−1

42
c2, c7 =

−1

56
c3, c8 =

−1

72
c4, ...

Notice that c2 = 0 clearly implies c4k+2 = 0 for k ∈ N. Likewise, c3 = 0 clearly implies c4k+3 = 0 for k ∈ N.
However, the coefficients co, c4, c8, . . . are linked as are c1, c5, c9, . . . . In particular,

c12 =
−1

(12)(11)
c8 =

−1

(12)(11)
· −1

(8)(7)
c4 =

−1

(12)(11)
· −1

(8)(7)
· −1

(4)(3)
co = c3(4)

c16 =
−1

(16)(15)
· −1

(12)(11)
· −1

(8)(7)
· −1

(4)(3)
co = c4(4)

We find,

c4k =
(−1)k

k!4k(4k − 1)(4k − 5) · · · 11 · 7 · 3
co

Next, study c1, c5, c9, ...

c9 =
−1

(9)(8)
c5 =

−1

(9)(8)
· −1

(5)(4)
c1 = c2(4)+1

c13 =
−1

(13)(12)
· −1

(9)(8)
· −1

(5)(4)
c1 = c3(4)+1

We find,

c4k+1 =
(−1)k

k!4k(4k + 1)(4k − 3) · · · 13 · 9 · 5
c1

We find the solution has two coefficients co, c1 as we ought to expect for the general solution to a second
order ODE.

y = co

∞∑
k=0

(−1)k

k!4k(4k − 1)(4k − 5) · · · 11 · 7 · 3
x4k + c1

∞∑
k=0

(−1)k

k!4k(4k + 1)(4k − 3) · · · 13 · 9 · 5
x4k+1

If we just want the the solution up to 11-th order in x then the following would have sufficed:

y = co(1− 1
12x

4 + 1
672x

8 + · · · ) + c1(x− 1
20x

5 + 1
1440x

9 + · · · ).

Remark 4.2.3.

The formulas we derived for c4k and c4k+1 are what entitle me to claim the solution is the complete
solution. It is not always possible to find nice formulas for the general term in the solution. Usually
if no ”nice” formula can be found you might just be asked to find the first 6 nontrvial terms since
this typically gives 3 terms in each fundamental solution to a second order problem. We tend to
focus on second order problems in this chapter, but most of the techniques here apply equally well
to arbitrary order.
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Example 4.2.4. Problem: find the complete series solution centered at a = 0 for y′′ + xy′ + 3y = 0.

Solution: Suppose the solution is a power series and calculate,

y =

∞∑
k=0

ckx
k, y′ =

∞∑
k=0

kckx
k−1, y′′ =

∞∑
k=0

k(k − 1)ckx
k−2

Suppose y′′ + xy′ + 3y = 0 to find:

∞∑
k=0

k(k − 1)ckx
k−2 + x

∞∑
k=0

kckx
k−1 + 3

∞∑
k=0

ckx
k = 0.

Hence, noting some terms vanish and xxk−1 = xk:

∞∑
k=2

k(k − 1)ckx
k−2 +

∞∑
k=1

kckx
k +

∞∑
k=0

3ckx
k = 0

Let k − 2 = j to relable k(k − 1)ckx
k−2 = (j + 2)(j + 1)cj+2x

j. It follows that:

∞∑
j=0

(j + 2)(j + 1)cj+2x
j +

∞∑
j=1

jcjx
j +

∞∑
j=0

3cjx
j = 0

We can combine all three sums for j ≥ 1 however the constant terms break the pattern so list them seperately,

2c2 + 3co +

∞∑
j=1

[
(j + 2)(j + 1)cj+2 + (3 + j)cj

]
xj = 0

Equating coefficients yields, for j = 1, 2, 3 . . . :

2c2 + 3co = 0, (j + 2)(j + 1)cj+2 + (3 + j)cj = 0 ⇒ c2 =
−2

3
co, cj+2 =

−(j + 3)

(j + 2)(j + 1)
cj .

In this example the even and odd coefficients are linked. Let us study the recurrence relation above to find a
general formula if possible.

(j = 1) : c3 =
−4

(3)(2)
c1 =

(−1)1(21)(2!)

3!
c1

(j = 3) : c5 =
−6

(5)(4)
c3 =

−6

(5)(4)
· −4

(3)(2)
c1 =

(−1)2(22)(3!)

5!
c1

(j = 5) : c7 =
−8

(7)(6)
c5 =

−8

(7)(6)
· −6

(5)(4)
· −4

(3)(2)
c1 =

(−1)3(23)(4!)

7!
c1

(j = 2k + 1) : c2k+1 =
(−1)k(2k + 2)(2k)(2k − 2) · · · (6)(4)(2)

(2k + 1)!
c1.
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Next, study the to even coefficients: we found c2 = −2
3 co

(j = 2) : c4 =
−5

(4)(3)
c2 =

−5

(4)(3)
· −3

2
co

(j = 4) : c6 =
−7

(6)(5)
· −5

(4)(3)
· −3

2
co

(j = 6) : c8 =
−9

(8)(7)
· −7

(6)(5)
· −5

(4)(3)
· −3

2
co

(j = 2k + 1) : c2k =
(−1)k(2k + 1)(2k − 1)(2k − 3) · · · (7)(5)(3)

(2k)!
co.

Therefore, the general solution is given by:

y = co

∞∑
k=0

(−1)k(2k + 1)(2k − 1) · · · (7)(5)(3)

(2k)!
x2k + c1

∞∑
k=0

(−1)k(2k + 2)(2k) · · · (6)(4)(2)

(2k + 1)!
x2k+1 .

The first few terms in the solution are given by y = co(1− 3
2x

2 + 5
8x

4 + · · · ) + c1(x− 2
3x

3 + 1
5x

5 + · · · ).

Example 4.2.5. Problem: find the first few nontrivial terms in the series solution centered at a = 0 for
y′′ + 1

1−xy
′ + exy = 0. Given that y(0) = 0 and y′(0) = 1.

Solution: Notice that 1
1−x = 1 + x+ x2 + · · · and ex = 1 + x+ 1

2x
2 + · · · hence:

y′′ + (1 + x+ x2 + · · · )y′ + (1 + x+ 1
2x

2 + · · · )y = 0

Suppose y = co + c1x+ c2x
2 + · · · hence y′ = c1 + 2c2x+ 3c3x

2 + · · · and y′′ = 2c2 + 6c3x+ 12c4x
2 + · · · .

Put these into the differential equation, keep only terms up to quadratic order,

2c2 + 6c3x+ 12c4x
2 + (1 + x+ x2)(c1 + 2c2x+ 3c3x

2) + (1 + x+ 1
2x

2)(co + c1x+ c2x
2) + · · · = 0

The coefficients of 1 in the equation above are

2c2 + c1 + co = 0

The coefficients of x in the equation above are

6c3 + c1 + 2c2 + c1 + co = 0

The coefficients of x2 in the equation above are

12c4 + c1 + 2c2 + 3c3 +
1

2
co + c1 + c2 = 0

I find these problems very challenging when no additional information is given. However, we were given
y(0) = 0 and y′(0) = 1 hence1 co = 0 whereas c1 = 1. Thus c2 = −1/2 and c3 = −1

6 (−2c2 − 2c1) = 1
6 and

c4 = 1
12 (−2c1 − 3c2 − 3c3) = 1

12 (−2 + 3/2− 3/6) = −1
12 hence

y = x− 1
2x

2 + 1
6x

3 − 1
12x

4 + · · · .

1think about Taylor’s theorem centered at zero
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Remark 4.2.6.

When faced with a differential equation with variable coefficients we must expand the coefficient
functions as power series when we seek a power series solution. Moreover, the center of the expansion
ought to match the center of the desired solution. In this section we have only so far consider series
centered at zero. Next we consider a nonzero center.

Example 4.2.7. Problem: find the first few nontrivial terms in the series solution centered at a = 1 for

y′ = sin(x)
1−(x−1)2 .

Solution: note that we can integrate to find an integral solution: y =
∫ sin(x) dx

1−(x−1)2 . To derive the series

solution we simply expand the integrand in powers of (x− 1). Note,

1

1− (x− 1)2
= 1 + (x− 1)2 + (x− 1)4 + (x− 1)6 + · · ·

On the other hand, to expand sine, we should use the adding angles formula on sin(x) = sin(x− 1 + 1) to see

sin(x) = cos(1) sin(x− 1) + sin(1) cos(x− 1) = sin(1) + cos(1)(x− 1)− sin(1)
2 (x− 1)2 + · · ·

Consider the product of the power series above, up to quadratic order we find:

sin(x)

1− (x− 1)2
= sin(1) + cos(1)(x− 1) + sin(1)

2 (x− 1)2 + · · ·

Therefore, integrating term-by-term, we find

y = c1 + sin(1)(x− 1) + cos(1)
2 (x− 1)2 + sin(1)

6 (x− 1)3 + · · · .

Remark 4.2.8.

Taylor’s formula f(x) = f(a) + f ′(a)(x − a) + 1
2f
′′(a)(x − a)2 + 1

6f
′′′(a)(x − a)3 + · · · is one way

we could compute the power series expansions for given functions, however, it is much faster to use
algebra and known results when possible.
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4.3 classification of singular points

We are primarily interested in real solutions to linear ODEs of first or second order in this chapter, however,
the theory of singular points and the Frobenius method necessarily require us to consider singularities as
having their residence in the complex plane. It would appear that our solutions are restrictions of complex
solutions to the real axis in C.

Definition 4.3.1. singular points and ordinary points

We say xo is a ordinary point of y′′ + Py′ + Qy = 0 iff P and Q are analytic at xo. A point xo
is a singular point of y′′ + Py′ + Qy = 0 if xo is not an ordinary point. A point xo is a regular
singular point of y′′+Py′+Qy = 0 if xo is a singular point however (x−xo)P (x) and (x−xo)2Q(x)
are analytic at xo.

In the definition above we mean to consider the functions (x−xo)P (x) and (x−xo)2Q(x) with any removable
discontinuities removed. For example, while f(x) = 1

x has xf(x) undefined at x = 0, we still insist that
xf(x) is an analytic function at x = 0. Another example, technically the expression sin(x)/x is not defined
at x = 0, but it is an analytic expression 1− 1

3!x
2 + 1

5!x
4 + · · · which is defined at x = 0. To be more careful,

we could insist that the limit as x → xo of (x − xo)P (x) and (x − xo)2Q(x) exist. That would just be a
careful way of insisting that the only divergence faced by (x− xo)P (x) and (x− xo)2Q(x) are simple holes
in the graph a.k.a removable discontinuities.

In addition, the singular point xo may be complex. This is of particular interest as we seek to determine the
domain of solutions in the Frobenius method. I will illustrate by example:

Example 4.3.2. For b, c ∈ R, every point is an ordinary point for y′′ + by′ + cy = 0.

Example 4.3.3. Since ex and cos(x) are analytic it follows that the differential equation
y′′ + exy′ + cos(x)y = 0 has no singular point. Every point is an ordinary point.

Example 4.3.4. Consider (x2 + 1)y′′ + y = 0. We divide by x2 + 1 and find y′′ + 1
x2+1y = 0. Note:

Q(x) =
1

x2 + 1
=

1

(x+ i)(x− i)
It follows that every x ∈ R is an ordinary point and the only singular points are found at xo = ±i. It turns
out that the existence of these imaginary singular points limits the largest open domain of a solution centered
at the ordinary point xo = 0 to (−1, 1).

Example 4.3.5. Consider y′′ + 1
x2(x−1)y

′ + 1
(x−1)2(x2+4x+5)y = 0. Consider,

P (x) =
1

x2(x− 1)
& Q(x) = 1

(x−1)2(x−2+i)(x−2−i)

Observe that,

xP (x) =
x

x2(x− 1)
=

1

x(x− 1)

therefore xP (x) is not analytic at x = 0 hence x = 0 is a singular point which is not regular; this is also
called an irregular singular point. On the other hand, note:

(x− 1)P (x) =
x− 1

x2(x− 1)
=

1

x2
& (x− 1)2Q(x) =

(x− 1)2

(x− 1)2(x2 + 4x+ 5)
=

1

x2 + 4x+ 5

are both analytic at x = 1 hence x = 1 is a regular singular point. Finally, note that the quadratic
x2 + 4x+ 5 = (x+ 2− i)(x+ 2 + i) hence x = −2± i are singular points.
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It is true that x = −2 ± i are regular singular points, but this point does not interest us as we only seek
solutions based at some real point.

Theorem 4.3.6. ordinary points and frobenius’ theorem

A solution of y′′ + Py′ +Qy = 0 centered at an ordinary point xo can be extended to an open disk
in the complex plane which reaches the closest singularity. A solution of y′′ + Py′ + Qy = 0 based
at a regular singular point xo extends to an open interval with xo at one edge and xo ± R on the
other edge where R is the distance to the next nearest singularity (besides xo of course)

See pages 477 and 494 for corresponding theorems in Nagel, Saff and Snider. It is also important to note
that the series technique and the full method of Frobenius will provide a fundamental solution set on the
domains indicated by the theorem above.

Example 4.3.7. Consider y′′ + 1
x2(x−1)y

′ + 1
(x−1)2(x2+4x+5)y = 0. Recall we found singular points x =

0, 1,−2 + i,−2 − i. The point x = 0 is an irregular singular point hence we have nothing much to say. On
the other hand, if we consider solutions on (1, 1 + R) we can make R at most R = 1 the distance from 1
to 0. Likewise, we could find a solution on (0, 1) which puts the regular singular point on the right edge. A
solution

∑∞
n=0 cn(x + 2)n centered at x = −2 will extend to the open interval (−3,−1) at most since the

singularities −2 ± i are one-unit away from −2 in the complex plane. On the other hand, if we consider a
solution of the form

∑∞
n=0 cn(x+ 3)n which is centered at x = −3 then the singularities −2± i are distance√

2 away and we can be confident the domain of the series solution will extend to at least the open interval
(−3−

√
2,−3 +

√
2).

You might notice I was intentionally vague about the regular singular point solutions in the example above.
We extend our series techniques to the case of a regular singular point in the next section.
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4.4 frobenius method

We consider the problem y′′ +Py′ +Qy = 0 with a regular singular point xo. We can study the case xo = 0
without loss of generality since the subsitution x = t − a moves the regular singular point to t = a. For
example:

x2
d2y

dx2
+ x

dy

dx
+ y = 0 ⇔ (t− a)2

d2z

dt2
+ (t− a)

dz

dt
+ z = 0

Where z(t) = y(x+ a) and y(x) = z(t− a). Therefore, we focus our efforts on the problem

y′′ + Py′ +Qy = 0 a singular DEqn at x = 0 with xP (x), x2Q(x) analytic at x = 0

Let us make some standard notation for the taylor expansions of xP (x) and x2Q(x). Suppose

P (x) =
Po
x

+ P1 + P2x
2 + · · · & Q(x) =

Qo
x2

+
Q1

x
+Q2 +Q3x+ · · ·

The extended Talyor series above are called Laurent series, they contain finitely many nontrivial reciprocal
power terms. In the langauge of complex variables the pole x = 0 is removeable for P and Q where it is of
order 1 and 2 respectively. Note we remove the singularity by multiplying by x and x2:

xP (x) = Po + P1x+ xP2x
3 + · · · & x2Q(x) = Qo +Q1x+Q2x

2 +Q3x
3 + · · · .

This must happen by the definition of a regular singular point.

Theorem 4.4.1. frobenius solution at regular singular point

There exists a number r and coefficients an such that y′′ + Py′ +Qy = 0 has solution

y =

∞∑
n=0

anx
n+r.

See Rabenstein for greater detail as to why this solution exists. We can denote y(r, x) =
∑∞
n=0 anx

n+r if we
wish to emphasize the dependence on r. Formally2 it is clear that

y =

∞∑
n=0

anx
n+r & y′ =

∞∑
n=0

an(n+ r)xn+r−1 & y′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

Notice that we make no assumption that r = 0, 1, 2, . . . hence y(r, x) is not necessarily a power series. The
frobenius solution is more general than a simple power series. Let us continue to plug in the formulas for
y, y′, y′′ into x2y′′ + x2Py′ + x2Qy = 0:

0 = x2
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2

+

(
Po + P1x+ xP2x

3 + · · ·
)
x

∞∑
n=0

an(n+ r)xn+r−1

+

(
Qo +Q1x+Q2x

2 +Q3x
3 + · · ·

) ∞∑
n=0

anx
n+r

2formal in the sense that we ignore questions of convergence
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Hence, (call this ? for future reference)

0 =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r

+

(
Po + P1x+ xP2x

3 + · · ·
) ∞∑
n=0

an(n+ r)xn+r

+

(
Qo +Q1x+Q2x

2 +Q3x
3 + · · ·

) ∞∑
n=0

anx
n+r

You can prove that {xr, xr+1, xr+2, . . . } is a linearly independent set of functions on appropriate intervals.
Therefore, y(r, x) is a solution iff we make each coefficient vanish in the equation above. We begin by
examining the n = 0 terms which are the coefficient of xr:

ao(0 + r)(0 + r − 1) + Poao(0 + r) +Qoao = 0

This gives no condition on ao, but we see that r must be chosen such that

r(r − 1) + rPo +Qo = 0 the indicial equation

We find that we must begin the Frobenius problem by solving this equation. We are not free to just use
any r, a particular pair of choices will be dictated from the zeroth coefficients of the xP and x2Q Taylor
expansions. Keeping in mind that r is not free, let us go on to describe the next set of equations from the
coefficient of xr+1 of ? (n = 1),

a1(1 + r)r + (1 + r)Poa1 + rP1ao +Qoa1 +Q1ao = 0

The equation above links ao to a1. Next, for xr+2 in ? we need

a2(2 + r)(r + 1) + (2 + r)Poa2 + (1 + r)P1a1 + rP2ao +Qoa2 +Q1a1 +Qoa2 = 0

The equation above links a2 to a1 and ao. In practice, for a given problem, the recurrence relations which
define ak are best derived directly from ?. I merely wish to indicate the general pattern3 with the remarks
above.

Example 4.4.2. Problem: solve 3xy′′ + y′ − y = 0.

Solution: Observe that xo = 0 is a regular singular point. Calculate,

y =

∞∑
n=0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

and

y′ =

∞∑
n=0

an(n+ r)xn+r−1 & 3xy′′ =

∞∑
n=0

3an(n+ r)(n+ r − 1)xn+r−1

3if one wishes to gain a deeper calculational dexterity with this method I highly reccommend the sections in
Rabenstein, he has a few techniques which are superior to the clumsy calculations I perform here
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Therefore, 3xy′′ + y′ − y = 0 yields

ao[3r(r − 1) + r]xr +

∞∑
n=1

(
3an(n+ r)(n+ r − 1) + an(n+ r)− an−1

)
xn+r−1

Hence, for n = 1, 2, 3, . . . we find:

3r(r − 1) + r = 0 & an =
an−1

(n+ r)(3n+ 3r − 2)
. ?

The indicial equation 3r(r− 1) + r = 3r2 − 2r = r(3r− 2) = 0 gives r1 = 2/3 and r2 = 0. Suppose r1 = 2/3
and work out the recurrence relation ? in this context: an = an−1

n(3n+2) thus:

a1 =
ao
5
, a2 =

a1
8 · 2

=
ao

8 · 5 · 2
, a3 =

a2
11 · 3

=
ao

11 · 8 · 5 · 3 · 2

a4 =
a3

14 · 4
=

ao
14 · 11 · 8 · 5 · 4 · 3 · 2

⇒ an =
ao

5 · 8 · 11 · 14 · · · (3n+ 2)n!
(n = 1, 2, . . . )

Therefore, y(2/3, x) = ao
(
x2/3+

∑∞
n=1

xn+2/3

5·8·11·14···(3n+2)n!

)
is a solution. Next, work out the recurrence relation

? in the r2 = 0 case: an = an−1

n(3n−2) thus:

a1 =
ao
1
, a2 =

a1
2 · 4

=
ao

2 · 4
, a3 =

a2
3 · 7

=
ao

7 · 4 · 3 · 2

a4 =
a3

4 · 10
=

ao
10 · 7 · 4 · 4 · 3 · 2

⇒ an =
ao

4 · 7 · 10 · · · (3n− 2)n!
(n = 2, 3, . . . )

Consequently, y(0, x) = ao
(
1 + x+

∑∞
n=2

xn

4·7·10···(3n−2)n!
)
. We find the general solution

y = c1

(
x2/3 +

∞∑
n=1

xn+2/3

5 · 8 · 11 · 14 · · · (3n+ 2)n!

)
+ c2

(
1 + x+

∞∑
n=2

xn

4 · 7 · 10 · · · (3n− 2)n!

)
.

Remark 4.4.3.

Before we try another proper example I let us apply the method of Frobenius to a Cauchy Euler
problem. The Cauchy Euler problem x2y′′+Pxy′+Qy = 0 has Po = P and Qo = Q. Moreover, the
characteristic equation r(r− 1) + rPo +Qo = 0 is the indicial equation. In other words, the regular
singular point problem is a generalization of the Cauchy Euler problem. In view of this you can see
our discussion thus far is missing a couple cases: (1.) the repeated root case needs a natural log,
(2.) the complex case needs the usual technique. It turns out there is another complication. When
r1, r2 are the exponents with Re(r1) > Re(r2) and r1 − r2 is a positive integer we sometimes need
a natural log term.
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Example 4.4.4. Problem: solve x2y′′ + 3xy′ + y = 0.

Solution: Observe that y′′ + 3
xy
′ + 1

x2 y = 0 has regular singular point xo = 0 and Po = 3 whereas Qo = 1.
The indicial equation r(r − 1) + 3r + 1 = r2 + 2r + 1 = (r + 1)2 = 0 gives r1 = r2 = −1. Suppose
y = y(−1, x) =

∑∞
n=0 anx

n−1. Plugging y(−1, x) into x2y′′ + 3xy′ + y = 0 yields:

∞∑
n=0

(n− 1)(n− 2)anx
n−1 +

∞∑
n=0

3(n− 1)anx
n−1 +

∞∑
n=0

anx
n−1 = 0

Collecting like powers is simple for the expression above, we find:

∞∑
n=0

(
(n− 1)(n− 2)an + 3(n− 1)an + an

)
xn−1 = 0

Hence [(n − 1)(n − 2) + 3(n − 1) + 1]an = 0 for n = 0, 1, 2, . . . . Put n = 0 to obtain 0ao = 0 hence no
condition for ao is found. In contrast, for n ≥ 1 the condition yields an = 0. Thus y(−1, x) = aox

−1. Of
course, you should have expected this from the outset! This is a Cauchy Euler problem, we expect the general

solution y = c1
1
x + c2

ln(x)
x .

We examine a solution with imaginary exponents.

Example 4.4.5. Problem: solve x2y′′ + xy′ + (4− x)y = 0.

Solution: Observe that xo = 0 is a regular singular point. Calculate, if y =
∑∞
n=0 anx

n+r then

(4− x)y =

∞∑
n=0

4anx
n+r −

∞∑
n=0

anx
n+r+1 =

∞∑
n=0

4anx
n+r −

∞∑
j=1

aj−1x
j+r

and

xy′ =

∞∑
n=0

an(n+ r)xn+r & x2y′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r

Therefore, x2y′′ + xy′ + (4− x)y = 0 yields

ao[r(r − 1) + r + 4]xr +

∞∑
n=1

(
an(n+ r)(n+ r − 1) + an(n+ r) + 4an − an−1

)
xn+r

Hence, for n = 1, 2, 3, . . . we find:

r2 + 4 = 0 & an =
an−1

(n+ r)2 + 4
. ?

The indicial equation r2 + 4 = 0 gives r1 = 2i and r2 = −2i. We study ? in a few cases. Let me begin by
choosing r = 2i. Let’s reformulate ? into a cartesian form:

an =
an−1

(n+ 2i)2 + 4
=

an−1
n2 + 4ni− 4 + 4

=
an−1

n2 + 4ni
· n

2 − 4ni

n2 − 4ni
=
an−1(n2 − 4ni)

n2(n2 + 16)
?2

Consider then, by ?2

a1 =
ao(1− 4i)

17
, a2 =

a1(4− 8i)

4(4 + 16)
=
ao(1− 4i)

17
· 4− 8i

80
=
−ao(28 + 12i)

(17)(80)
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Consequently, we find the complex solution are

y = ao

(
x2i +

1− 4i

17
x1+2i − 28 + 12i

(17)(80)
x2+2i + · · ·

)
= aox

2i

(
1 +

1

17
x− 28

(17)(80)
x2 + · · ·︸ ︷︷ ︸

a(x)

+i

[
−4

17
x− 12

(17)(80)
x2 + · · ·︸ ︷︷ ︸

b(x)

])

Recall, for x > 0 we defined xn+2i = xn[cos(2 ln(x)) + i sin(2 ln(x))]. Therefore,

y = ao

[
cos(2 ln(x))a(x)− sin(2 ln(x))b(x)

]
+ iao

[
sin(2 ln(x))a(x) + cos(2 ln(x))b(x)

]
forms the general complex solution. Set ao = 1 to select the real fundmental solutions y1 = Re(y) and
y2 = Im(y). The general real solution is y = c1y1 + c2y2. In particular,

y = c1

[
cos(2 ln(x))a(x)− sin(2 ln(x))b(x)

]
+ c2

[
sin(2 ln(x))a(x) + cos(2 ln(x))b(x)

]
We have made manifest the first few terms in a and b, it should be clear how to find higher order terms
through additional iteration on ?2. The proof that these series converge can be found in more advanced
sources (often Ince is cited by standard texts).

Remark 4.4.6.

The calculation that follows differs from our initial example in one main aspect. I put in the
exponents before I look for the recurrence relation. It turns out that the method of Example 4.4.2
is far more efficient a method of calculation. I leave this slightly clumsy calculation to show you the
difference. You should use the approach of Example 4.4.2 for brevity’s sake..

Example 4.4.7. Problem: solve xy′′ + (3 + x2)y′ + 2xy = 0.

Solution: Observe y′′+(3/x+x)y′+2y = 0 thus identify that Po = 3 whereas Qo = 0. The indicial equation
r(r−1)+3r = 0 yields r(r+2) = 0 thus the exponents are r1 = 0, r2 = −2. In order to find the coefficients
of y(0, x) = y =

∑∞
n=0 anx

n we must plug this into xy′′ + 3y′ + x2y′ + 2xy = 0,

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

3nanx
n−1 +

∞∑
n=1

nanx
n+1 +

∞∑
n=0

2anx
n+1 = 0

Examine these summations and note that x1, x0, x2, x1 are the lowest order terms respectively from left to
right. To combine these we will need to start with x2-terms.

0 = 2a2x+ 3a1 + 6a2x+ 2aox

+

∞∑
n=3

n(n− 1)anx
n−1 +

∞∑
n=3

3nanx
n−1 +

∞∑
n=1

nanx
n+1 +

∞∑
n=1

2anx
n+1 = 0

Let j = n− 1 for the first two sums and let j = n+ 1 for the next two sums.

0 = 3a1 + (2a2 + 6a2 + 2ao)x+

∞∑
j=2

(
(j + 1)jaj+1 + 3(j + 1)aj+1 + (j − 1)aj−1 + 2aj−1

)
xj
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Collecting like terms we find:

0 = 3a1 + (8a2 + 2ao)x+

∞∑
j=2

(
(j + 3)(j + 1)aj+1 + (j + 1)aj−1

)
xj .

Each power’s coefficient must separately vanish, therefore:

a1 = 0, a2 = −1

4
ao, aj+1 =

−1

j + 3
aj−1, ⇒ an =

−1

n+ 2
an−2 for n ≥ 2.

It follows that a2k+1 = 0 for k = 0, 1, 2, 3, . . . . However, the even coefficients are determined by the recurrence
relation given above.

a2 =
−1

4
ao

a4 =
−1

6
a2 =

−1

6
· −1

4
ao

a6 =
−1

8
a4 =

−1

8
· −1

6
· −1

4
ao

a2k =
−1

2k + 2
· −1

2k
· · · −1

6
· −1

4
ao =

(−1)k

2kk!
ao

Therefore, we find the solution:

y(0, x) = ao

∞∑
k=0

(−1)k

2k(k + 1)!
x2k

We know from the theory we discussed in previous chapters the general solution should have the form
y = c1y1 + c2y2 where {y1, y2} is the fundamental solution set. We have found half of the solution at
this point; identify y1 = y(0, x). In contrast to the series method, we found just one of the fundamental
solutions.

To find y2 we must turn our attention to the second solution of the indicial equation r2 = −2. We find the
coefficients of y(−2, x) = y =

∑∞
n=0 anx

n−2 by plugging it into xy′′ + 3y′ + x2y′ + 2xy = 0,

∞∑
n=0

(n− 2)(n− 3)anx
n−3 +

∞∑
n=0

3(n− 2)anx
n−3 +

∞∑
n=0

(n− 2)anx
n−1 +

∞∑
n=0

2anx
n−1 = 0

1. x−3 has coefficient (−2)(−3)ao + 3(−2)ao = 0 (no condtion found)

2. x−2 has coefficient (1− 2)(1− 3)a1 + 3(1− 2)a1 = −a1 hence a1 = 0

3. x−1 has coefficient (2− 2)(2− 3)a2 + 3(2− 2)a2 + (0− 2)ao + 2ao = 0 (no condtion found)

4. x0 has coefficient (3− 2)(3− 3)a3 + 3(3− 2)a3 + (1− 2)a1 + 2a1 = 3a3. Thus a3 = 0

5. x1 has coefficient (4− 2)(4− 3)a4 + 3(4− 2)a4 + (2− 2)a2 + 2a2 = 8a4 + 2a2. Thus a4 = −1
4 a2.

6. x2 has coefficient (5− 2)(5− 3)a5 + 3(5− 2)a5 + (3− 2)a3 + 2a3 = 15a5 + 3a3. Thus a5 = −1
5 a3. We

find a2k−1 = 0 for all k ∈ N.

7. x3 has coefficient (6− 2)(6− 3)a6 + 3(6− 2)a6 + (4− 2)a4 + 2a4 = 24a6 + 4a4. Thus a6 = −1
6 a4.
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This pattern should be recongnized from earlier in this problem. For a2, a4, a6, . . . we find terms

a2 − a2 1
4x

2 + a2
1
4 ·

1
6x

4 + · · · = a2(1− 1
212!x

2 + 1
223!x

4 + · · · )

recognize this is simply a relabeled version of y(0, x) hence we may set a2 = 0 without loss of generality in
the general solution. This means only ao remains nontrivial. Thus,

y(−2, x) = aox
−2

The general solution follows,

y = c1

∞∑
k=0

(−1)k

2k(k + 1)!
x2k +

c2
x2

Remark 4.4.8.

In the example above the exponents r1 = 0 and r2 = −2 have r1 − r2 = 2. It turns out that
generally the solution y(r2, x) will not be a solution. A modification involving a logarithm is needed
sometimes (but not in the example above!).

4.4.1 the repeated root technique

In the case that a characteristic root is repeated we have seen the need for special techniques to derive a
second LI solution. I present a new idea, yet another way to search for such double-root solutions. Begin
by observing that the double root solutions are connected to the first solution by differentiation of the
characteristic value:

∂

∂r
erx = terx, &

∂

∂r
xr = ln(x)xr.

Rabenstein gives a formal derivation of why ∂xr

∂r

∣∣
r=r1

solves a Cauchy Euler problem with repeated root r1.

I’ll examine the corresponding argument for the repeated root case (D2−2λ1D+λ21)[y] = L[y] = 0. Suppose
y(λ, x) = eλx. Note that:

L[eλx] = (λ2 − 2λ1λ+ λ21)eλx = (λ− λ1)2eλx

Obviously y1 = y(λ1, x) solves L[y] = 0. Consider y2 = ∂
∂λy(λ, x)

∣∣
λ=λ1

L[y2] = L

[
∂

∂λ
y(λ, x)

∣∣∣∣
λ=λ1

]
=

∂

∂λ

[
L[y(λ, x)

]∣∣∣∣
λ=λ1

=
∂

∂λ

[
(λ− λ1)2eλx

]∣∣∣∣
λ=λ1

=

[
2(λ− λ1)eλx + (λ− λ1)2xeλx

]∣∣∣∣
λ=λ1

= 0.

Suppose that we face x2y′′+Px2y′+x2Q = 0 which has an indicial equation with repeated root r1. Suppose4

y(r, x) = xr
∑∞
n=0 an(r)xn is a solution x2y′′ + Px2y′ + x2Q = 0 when we set r = r1. It can be shown5 that

4I write the xr in front and emphasize the r-dependence of the an coefficients as these are crucial to what follows,
if you examine the previous calculations you will discover that an does dependend on the choice of exponent

5see Rabenstein page 120
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y2 = ∂y(r,x)
∂r

∣∣
r=r1

solves x2y′′ + Px2y′ + x2Q = 0. Consider,

∂y(r, x)

∂r
=

∂

∂r

[
xr
∞∑
n=0

an(r)xn
]

= ln(x)xr
∞∑
n=0

an(r)xn + xr
∞∑
n=0

a′n(r)xn

Setting r = r1 and denoting y1(x) = y(r1, x) = xr1
∑∞
n=0 an(r1)xn we find the second solution

y2(x) = ln(x)y1(x) + xr1
∞∑
n=0

a′n(r1)xn.

Compare this result to Theorem 7 of section 8.7 in Nagel Saff and Snider to appreciate the beauty of this
formula. If we calculate the first solution then we find the second by a little differentiation and evaluation
at r1.

Example 4.4.9. include example showing differentiation of an(r) (to be given in lecture most likely)

Turn now to the case x2y′′ + Px2y′ + x2Q = 0 has exponents r1, r2 such that r1 − r2 = N ∈ N. Following
Rabenstein once more I examine the general form of the recurrence relation that formulates the coefficients
in the Frobenius solution. We will find that for r1 the coefficients exist, however for r2 there exist P,Q such
that the recurrence relation is insolvable. We seek to understand these features.

Remark 4.4.10.

Sorry these notes are incomplete. I will likely add comments based on Rabenstein in lecture, his
treatment of Frobenius was more generous than most texts at this level. In any event, you should
remember these notes are a work in progress and you are welcome to ask questions about things
which are not clear.
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Chapter 5

systems of ordinary differential
equations

A system of ordinary differential equations is precisely what is sounds like; a system of ODEs is several ODEs
which share dependent variables and a single independent variable. In this chapter we learn the standard
terminology for such problems and we study two strategies to solve such problems quantitatively. In a later
chapter we will study the phase plane method which gives us a qualitative method which is readily tenable
for the n = 2 problem.

The operator method has a natural implementation for systems with constant coefficients. We’ll see how this
approach allows us to extend the spring/mass problem to problems with several springs coupled together,
or for RLC-circuits with several loops which likewise couple. Some of these examples are not in the typed
notes, but I will present them in lecture.

The operator method is hard to beat in many respects, however, linear algebra offers another approach which
is equally general and allows generalization to other fields of study. Focusing on the constant coefficient case
it turns out the system of ODEs d~x

dt = A~x has solution ~x = etA~c. In the case the matrix A is diagonalizable
the method simplifies greatly and we begin in that simple case by discussing the e-vector-type solutions. As
usual the solution is sometimes complex and in the event of that complex algebra we have to select real and
imaginary parts to derive the real solution.

In the case A is not diagonalizable we need a deeper magic. The chains of generalized e-vectors bind the
solutions and force them to do our bidding via the magic formula.

Finally the nonhomogeneous case is once more solved by variation of parameters. On the other hand, we do
not attempt to say much about systems with variable coefficients.

127
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5.1 operator methods for systems

The method of this section applies primarily to systems of constant coefficient ODEs1. Generally the
approach is as follows:

1. consider writing the given ODEs in operator notation

2. add, operate, substract in whatever combination will reduce the problem to one-dependent variable

3. solve by the usual characteristic equation method

4. find other dependent variable solutions as the algebra or operators demand.

5. resolve any excess constants by making use of the given differential relations and/or applying initial
conditions.

It’s best to illustrate this method by example.

Example 5.1.1. Problem: Solve x′ = −y and y′ = x.

Solution: note Dx = −y and Dy = x thus D2x = −Dy = −x. Therefore, (D2+1)[x] = 0 and we find the so-

lution x(t) = c1 cos(t) + c2 sin(t) . Note that y = −Dx thus the remaining solution is y = c1 sin(t)− c2 cos(t) .

Example 5.1.2. Problem: Solve x′ = x− y and y′ = x+ y.

Solution: note Dx = x− y and Dy = x+ y. Notice this gives

(D − 1)x = −y & (D − 1)y = x

Operate by D − 1 to obtain (D − 1)2x = −(D − 1)y = −x. Thus,

(D2 − 2D + 1)[x] = −x ⇒ (D2 − 2D + 2)[x] = 0 ⇒ ((D − 1)2 + 1)[x] = 0

Therefore, x(t) = c1e
t cos(t) + c2e

t sin(t) . Calculate,

Dx = c1e
t(cos(t)− sin(t)) + c2e

t(sin(t) + cos(t))

Consqeuently, y = −(D − 1)x = x−Dx yields

y(t) = c1e
t sin(t)− c2et cos(t).

Example 5.1.3. Problem: Solve ẍ+ 5x− 4y = 0 and ÿ + 4y − x = 0.

Solution: As operator equations we face

(D2 + 3)x− 2y = 0

(D2 + 2)y − x = 0

1if you could express the system as a polynomials in a particular smooth differential operator then the idea would
generalize to that case
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Operate by D2 + 3 on the second equation to derive (D2 + 3)x = (D2 + 3)(D2 + 2)y. Substituting into the
first equation gives a fourth order ODE for y,

(D2 + 3)(D2 + 2)y − 2y = 0.

Hence, (D4 + 5D2 + 4)y = 0 which gives

(D2 + 1)(D2 + 4)y = 0

Therefore,

y(t) = c1 cos(t) + c2 sin(t) + c3 cos(2t) + c4 sin(2t)

Note that D2y = −c1 cos(t)− c2 sin(t)− 4c3 cos(2t)− 4c4 sin(2t). Note x = (D2 + 2)y thus we find

x(t) = c1 cos(t) + c2 sin(t)− 2c3 cos(2t)− 2c4 sin(2t).

We can also cast the solutions above in a more physically useful notation:

y(t) = A1 cos(t+ φ1) +A2 cos(2t+ φ2) & x(t) = A1 cos(t+ φ1)− 2A2 cos(2t+ φ2)

You can see there are two modes in the solution above. One mode has angular frequency ω1 = 1 whereas
the second has angular frequency ω2 = 2. Motions of either frequency are possible (A1 6= 0 and A2 = 0 or
vice-versa) however, more generally the motion is a superposition of those two motions. This type of system
can arise from a system of coupled springs without damping or in a coupled pair of LC circuits. Naturally,
those are just the examples we’ve already discussed, the reader is invited to find other applications.

Example 5.1.4. Problem: Solve x′ + y′ = 2t and y′′ − x′ = 0.

Solution: We have Dx+Dy = 2t and D2y −Dx = 0. Operate by D2 to obtain:

D3x+D3y = D2[2t] = 0.

Note that Dx = D2y hence we find by substitution:

D2D2y +D3y = 0 ⇒ D3(D + 1)[y] = 0.

Therefore, y = c1 + c2t+ c3t
2 + c4e

−t. To find x we should solve Dx = D2y:

Dx = 2c3 + c4e
−t ⇒ x(t) = 2c3t− c4e−t + c5

Let us apply the given nonhomogeneous DEqn to refine these solutions:

x′ + y′ = (c2 + 2c3t− c4et) + (2c3 + c4e
t) = 2t

Equating coefficients yield c2 + 2c3 = 0 and 2c3 = 2 thus c3 = 1 and c2 = −2. We find,

x(t) = 2t− c4e−t + c5, & y(t) = c1 − 2t+ t2 + c4e
−t.

Finally, we should check that y′′ − x′ = 0

(c1 − 2t+ t2 + c4e
−t)′′ − (2t− c4e−t + c5)′ = 2 + c4e

−t − 2− c4e−t = 0

Thus,

x(t) = 2t+ 2e−t + c5, & y(t) = c1 − 2t+ t2 − 2e−t .
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Example 5.1.5. Problem: Solve x′′ + y = cos(t) and y′′ + x = sin(t).

Solution: sometimes a problem allows immediate substitution. Here x = sin(t)− y′′ hence

(sin(t)− y′′)′′ + y = cos(t)

Twice differentiating sin(t) yields − sin(t) thus − sin(t)− y(4) + y = cos(t) hence

(D4 − 1)[y] = − sin(t)− cos(t)

Note that D4 − 1 = (D2 + 1)(D2 − 1) and the operator D2 + 1 also annihilates the forcing term above. We
find:

(D2 + 1)2(D2 − 1)[y] = 0

Hence, y(t) = (c1 + tc2) cos(t) + (c3 + tc4) sin(t) + c5 cosh(t) + c6 sinh(t). Calculate y′′;

y′′ = (c2 + c3 + tc4) cos(t) + (c4 − c1 − tc2) sin(t) + c5 cosh(t) + c6 sinh(t)

Consequently, x = sin(t)− y′′ gives

x(t) = (−c2 − c3 − tc4) cos(t) + (1− c4 + c1 + tc2) sin(t)− c5 cosh(t)− c6 sinh(t)

Differentiate this to find

x′ = (−2c4 + 1 + c1 + tc2) cos(t) + (2c2 + c3 + tc4) sin(t)− c5 sinh(t)− c6 cosh(t)

Differentiate once more,

x′′ = (3c2 + c3 + tc4) cos(t) + (3c4 − 1− c1 − tc2) sin(t)− c5 sinh(t)− c6 cosh(t)

Add y(t) = (c1 + tc2) cos(t) + (c3 + tc4) sin(t) + c5 cosh(t) + c6 sinh(t) and set x′′ + y = cos(t),

(3c2 + c3 + tc4 + c1 + tc2) cos(t) + (3c4 − 1− c1 − tc2 + c3 + tc4) sin(t) = cos(t)

It follows that 1 + 2c1 = 0 and c2 = c4 = c3 = 0 hence c1 = −1/2 and (ERROR HERE)

x(t) =
1

2
sin(t)− c5 cosh(t)− c6 sinh(t) & y(t) = −1

2
cos(t) + c5 cosh(t) + c6 sinh(t) .

I will not seek to offer general advice on this method. If you would like a little more structure on this topic
I invite the reader to consult Nagel Saff and Snider section 5.2 (pages 263-270 in the 5th edition).
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5.2 calculus and matrices

The construction of matrices and the operations thereof are designed to simplify arguments about algebraic
systems of linear equations. We will see that the matrix is also of great utitility for the solution of systems of
linear differential equations. We’ve already seen how matrix calculations unify and simplify with the theory
of the Wronskian and the technique of variation of parameters. I now pause to introduce and define explicitly
the algebra and construction of matrices and we also derive some important theorems about their calculus.

A p × q matrix over R is an ordered array of pq-objects from R which has p-rows and q-columns. The
objects in the matrix are called its components. In particular, if matrix A has components Aij ∈ R for i, j
with 1 ≤ i ≤ p and 1 ≤ j ≤ q then we denote the array by:

A =


A11 A12 · · · A1q

A21 A22 · · · A2q

...
... · · ·

...
Ap1 Ap2 · · · Apq

 = [Aij ]

We also view a matrix as columns or rows glued together:

A =
[
col1(A)|col2(A)| · · · |colq(A)

]
=


row1(A)
row2(A)
...
rowp(A)


where we define colj(A) = [A1j , A2j , . . . , Apj ]

T and rowi(A) = [Ai1, Ai2, . . . , Aiq]. The set of all p×q matrices
assembled from objects in R is denoted Rp×q. Notice that if A,B ∈ Rp×q then A = B iff Aij = Bij for all i, j
with 1 ≤ i ≤ p and 1 ≤ j ≤ q. In other words, two matrices are equal iff all the matching components are
equal. We use this principle in many definitions, for example: if A ∈ Rp×q then the transpose AT ∈ Rq×p
is defined by ATij = Aji for all i, j.

We are primarily interested in the cases R = R,C or some suitable set of functions. All of these spaces allow
for addition and multiplication of the components. It is therefore logical to define the sum, difference, scalar
multiple and product of matrices as follows:

Definition 5.2.1. If A,B ∈ Rp×q and C ∈ Rq×r and c ∈ R then define

(A+B)ij = Aij +Bij (A−B)ij = Aij −Bij (cA)ij = cAij (BC)ik =

q∑
j=1

BikCkj .

This means that (A + B), (A − B), cA ∈ Rp×q whereas BC ∈ Rp×r. The matrix product of a p × q and
q × r matrix is a p × r matrix. In order for the product BC to be defined we must have the rows in B be
the same size as the columns in C. We can express the product in terms of dot-products:

(BC)ik = rowi(B) • colk(C)

Let me give a few examples to help you understand these formulas.
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Example 5.2.2. The product of a 3× 2 and 2× 3 is a 3× 3 1 0
0 1
0 0

[ 4 5 6
7 8 9

]
=

 [1, 0] • [4, 7] [1, 0] • [5, 8] [1, 0] • [6, 9]
[0, 1] • [4, 7] [0, 1] • [5, 8] [0, 1] • [6, 9]
[0, 0] • [4, 7] [0, 0] • [5, 8] [0, 0] • [6, 9]

 =

 4 5 6
7 8 9
0 0 0


Example 5.2.3. The product of a 3× 1 and 1× 3 is a 3× 3 1

2
3

 [ 4 5 6
]

=

 4 · 1 5 · 1 6 · 1
4 · 2 5 · 2 6 · 2
4 · 3 5 · 3 6 · 3

 =

 4 5 6
8 10 12
12 15 18


Example 5.2.4. Let A = [ 1 2

3 4 ] and B = [ 5 6
7 8 ]. We calculate

AB =

[
1 2
3 4

] [
5 6
7 8

]

=

[
[1, 2] • [5, 7] [1, 2] • [6, 8]
[3, 4] • [5, 7] [3, 4] • [6, 8]

]

=

[
5 + 14 6 + 16
15 + 28 18 + 32

]

=

[
19 22
43 50

]
Notice the product of square matrices is square. For numbers a, b ∈ R it we know the product of a and b is
commutative (ab = ba). Let’s calculate the product of A and B in the opposite order,

BA =

[
5 6
7 8

] [
1 2
3 4

]

=

[
[5, 6] • [1, 3] [5, 6] • [2, 4]
[7, 8] • [1, 3] [7, 8] • [2, 4]

]

=

[
5 + 18 10 + 24
7 + 24 14 + 32

]

=

[
23 34
31 46

]
Clearly AB 6= BA thus matrix multiplication is noncommutative or nonabelian.

When we say that matrix multiplication is noncommuative that indicates that the product of two matrices
does not generally commute. However, there are special matrices which commute with other matrices.

Example 5.2.5. Let I = [ 1 0
0 1 ] and A =

[
a b
c d

]
. We calculate

IA =

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]
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Likewise calculate,

AI =

[
a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]
Since the matrix A was arbitrary we conclude that IA = AI for all A ∈ R2×2.

The Kronecker delta δij is defined to be zero if i 6= j and δii = 1. The identity matrix is the matrix I such
that Iij = δij . It is simple to show that AI = A and IA = A for all matrices.

Definition 5.2.6.

Let A ∈ R n×n. If there exists B ∈ R n×n such that AB = I and BA = I then we say that A
is invertible and A−1 = B. Invertible matrices are also called nonsingular. If a matrix has no
inverse then it is called a noninvertible or singular matrix.

Example 5.2.7. In the case of a 2 × 2 matrix A =

[
a b
c d

]
a nice formula to find the inverse is known

provided det(A) = ad− bc 6= 0: [
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
It’s not hard to show this formula works,

1
ad−bc

[
a b
c d

] [
d −b
−c a

]
= 1

ad−bc

[
ad− bc −ab+ ab
cd− dc −bc+ da

]
= 1

ad−bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
This formula is worth memorizing for future use.

The problem of inverting an n× n matrix for n > 0 is more challenging. However, it is generally true2 that
A−1 exists iff det(A) 6= 0. Recall our discussion of Cramer’s rule in the variation of parameters section, we
divided by the determinant for form the solution. If the determinant is zero then we cannot use Cramer’s
rule and we must seek other methods of solution. In particular, the methods of Gaussian elimination or back
subsitution are general and we will need to use those techniques to solve the eigenvector problem in the later
part of this chapter. But, don’t let me get too ahead of the story. Let’s finish our tour of matrix algebra.

Proposition 5.2.8.

If A,B are invertible square matrices and c is nonzero then

1. (AB)−1 = B−1A−1,

2. (cA)−1 = 1
cA
−1,

Proof: property (1.) is called the socks-shoes property because in the same way you first put on your
socks and then your shoes to invert the process you first take off your shoes then your socks. The proof is
just a calculation:

(AB)B−1A−1 = ABB−1A−1 = AIA−1 = AA−1 = I.

2 the formula is simply A−1 = 1
det(A)

ad(A)T where ad(A) is the adjoint of A, see my linear notes where I give the
explicit calculation for an arbitrary 3× 3 case
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The proof of (2.) is similar �

The power of a matrix is defined in the natural way. Notice we need for A to be square in order for the
product AA to be defined.

Definition 5.2.9.

Let A ∈ R n×n. We define A0 = I, A1 = A and Am = AAm−1 for all m ≥ 1. If A is invertible then
A−p = (A−1)p.

As you would expect, A3 = AA2 = AAA.

Proposition 5.2.10.

Let A,B ∈ R n×n and p, q ∈ N ∪ {0}

1. (Ap)q = Apq.

2. ApAq = Ap+q.

3. If A is invertible, (A−1)−1 = A.

You should notice that (AB)p 6= ApBp for matrices. Instead,

(AB)2 = ABAB, (AB)3 = ABABAB, etc...

This means the binomial theorem will not hold for matrices. For example,

(A+B)2 = (A+B)(A+B) = A(A+B) +B(A+B) = AA+AB +BA+BB

hence (A+B)2 6= A2 + 2AB +B2 as the matrix product is not generally commutative. If we have A and B
commute then AB = BA and we can prove that (AB)p = ApBp and the binomial theorem holds true.

Example 5.2.11. A square matrix A is said to be idempotent of order k if there exists k ∈ N such that
Ak−1 6= I and Ak = I. On the other hand, a square matrix B is said to be nilpotent of order k if there
exists k ∈ N such that Bk−1 6= 0 and Bk = 0. Suppose B is idempotent of order 2; B2 = 0 and B 6= 0. Let
X = I +B and calculate,

X2 = (I +B)(I +B) = II + IB +BI +B2 = I + 2B

X3 = (I +B)(I + 2B) = II + I2B +BI +B2B = I + 3B

You can show by induction that Xk = I + kB. (neat, that is all I have to say for now)

Example 5.2.12. A square matrix which only has zero entries in all components except possibly the diagonal
is called a diagonal matrix. We say D ∈ Rn×n is diagonal iff Dij = 0 for i 6= j. Consider, if X =[
x1 0
0 x2

]
and Y =

[
y1 0
0 y2

]
then we find

XY =

[
x1 0
0 x2

] [
y1 0
0 y2

]
=

[
x1y1 0

0 x2y2

]
=

[
y1x1 0

0 y2x2

]
= Y X.
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These results extend beyond the 2× 2 case. If X,Y are diagonal n× n matrices then XY = Y X. You can
also show that if X is diagonal and A is any other square matrix then AX = XA. We will later need the
formula below: 

D1 0 · · · 0
0 D2 · · · 0
...

... · · ·
...

0 0 · · · Dn


k

=


Dk

1 0 · · · 0
0 Dk

2 · · · 0
...

... · · ·
...

0 0 · · · Dk
n

 .

Example 5.2.13. The product of a 2× 2 and 2× 1 is a 2× 1. Let A = [ 1 2
3 4 ] and let v = [ 57 ],

Av =

[
1 2
3 4

] [
5
7

]
=

[
[1, 2] • [5, 7]
[3, 4] • [5, 7]

]
=

[
19
43

]
Likewise, define w = [ 68 ] and calculate

Aw =

[
1 2
3 4

] [
6
8

]
=

[
[1, 2] • [6, 8]
[3, 4] • [6, 8]

]
=

[
22
50

]
Something interesting to observe here, recall that in Example 5.2.4 we calculated

AB =

[
1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]
. But these are the same numbers we just found from the two

matrix-vector products calculated above. We identify that B is just the concatenation of the vectors v and

w; B = [v|w] =

[
5 6
7 8

]
. Observe that:

AB = A[v|w] = [Av|Aw].

The term concatenate is sometimes replaced with the word adjoin. I think of the process as gluing matrices
together. This is an important operation since it allows us to lump together many solutions into a single
matrix of solutions.

Proposition 5.2.14.

Let A ∈ R m×n and B ∈ R n×p then we can understand the matrix multiplication of A and B as
the concatenation of several matrix-vector products,

AB = A[col1(B)|col2(B)| · · · |colp(B)] = [Acol1(B)|Acol2(B)| · · · |Acolp(B)]

The proof is left to the reader. Finally, to conclude our brief tour of matrix algebra, I collect all my favorite
properties for matrix multiplication in the theorem below. To summarize, matrix math works as you would
expect with the exception that matrix multiplication is not commutative. We must be careful about the
order of letters in matrix expressions.

Example 5.2.15. Suppose Ax = b has solution x1 and Ax = c has solution x2 then note that Xo = [x1|x2]
is a solution matrix of the matrix equation AX = [b|c]. In particular, observe:

AXo = A[x1|x2] = [Ax2|Ax2] = [b|c].



136 CHAPTER 5. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

For the sake of completeness and perhaps to satisfy the curiousity of the inquisitive student I pause to give
a brief synopsis of how we solve systems of equations with matrix techniques. We will not need technology
to solve most problems we confront, but I think it is useful to be aware of just how you can use the ”rref”
command to solve any linear system.

Remark 5.2.16. summary of how to solve linear equations

(1.) Write the system of equations in matrix notation Au = b

(2.) Perform Gaussian eliminate to reduce the augmented coefficient matrx [A|b] to its reduced-row
echelon form rref [A|b] (usually I use a computer for complicated examples)

(3.) Read the solution from rref [A|b]. There are three cases:

(a.) there are no solutions

(b.) there is a unique solution

(c.) there are infinitely many solutions

The nuts and bolts of gaussian elimination is the process of adding, subtracting and multiplying equations
by a nonzero constant towards the goal of eliminating as many variables as possible.

Let us illustrate the remark above.

Example 5.2.17. Suppose u1+u2 = 3 and u1−u2 = −1. Then Au = b for coefficient matrix A =

[
1 1
1 −1

]
and b = [3,−1]T . By gaussian elimination,

rref

[
1 1 3
1 −1 −1

]
=

[
1 0 1
0 1 2

]
It follows that u1 = 1 and u2 = 2. This is the unique solution. The solution set {(1, 2)} contains a single
solution.

Set aside matrix techniques, you can solve the system above by adding equations to obtain 2u1 = 2 hence
u1 = 1 and u2 = 3− 1 = 2.

Example 5.2.18. Suppose u1 + u2 + u3 = 1 and 2u1 + 2u2 + 2u3 = 4. Then Au = b for coefficient matrix

A =

[
1 1 1
2 2 2

]
and b = [1, 2]T . By gaussian elimination,

rref

[
1 1 1 1
2 2 2 4

]
=

[
1 1 1 0
0 0 0 1

]
The second row suggests that 0u1 + 0u2 + 0u3 = 1 or 0 = 1 which is clearly false hence the system is
inconsistent and the solution set in this case is the empty set.

Set aside matrix techniques, you can solve the system above by dividing the second equation by 2 to reveal
u1 + u2 + u3 = 2. Thus insisting both equations are simultaneously true amounts to insisting that 1 = 2.
For this reason the system has no solutions.
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Example 5.2.19. Suppose u1 + u2 + u3 = 0 and 2u1 + 2u2 + 2u3 = 0. Then Au = b for coefficient matrix

A =

[
1 1 1
2 2 2

]
and b = [0, 0]T . By gaussian elimination,

rref

[
1 1 1 0
2 2 2 0

]
=

[
1 1 1 0
0 0 0 0

]
The second row suggests that 0u1 + 0u2 + 0u3 = 0 or 0 = 0 which is clearly true. This system is consistent
and the solutions have u1 + u2 + u3 = 0. It follows that the solution set is infinite

{[−u2 − u3, u2, u3]T | u2, u3 ∈ R}.

Any solution can be written as u2[−1, 1, 0]T + u3[−1, 0, 1]T for particular constants u2, u3.

It turns out that the last example is the type of matrix algebra problem we wil face with the eigenvector
method. The theorem that follows summarizes the algebra of matrices.

Theorem 5.2.20.

If A,B,C ∈ R m×n, X,Y ∈ R n×p, Z ∈ R p×q and c1, c2 ∈ R then

1. (A+B) + C = A+ (B + C),

2. (AX)Z = A(XZ),

3. A+B = B +A,

4. c1(A+B) = c1A+ c2B,

5. (c1 + c2)A = c1A+ c2A,

6. (c1c2)A = c1(c2A),

7. (c1A)X = c1(AX) = A(c1X) = (AX)c1,

8. 1A = A,

9. ImA = A = AIn,

10. A(X + Y ) = AX +AY ,

11. A(c1X + c2Y ) = c1AX + c2AY ,

12. (A+B)X = AX +BX,

The proof of the theorem above follows easily from the definitions of matrix operation. I give some explicit
proof in my linear algebra notes. In fact, all of the examples thus far are all taken from my linear algebra
notes where I discuss not just these formulas, but also their motivation from many avenues of logic. The
example that follows would not be something I would commonly include in the linear algebra course.

Example 5.2.21. Suppose R = C∞(R) be the set of all smooth functions on R. For example,

A =

[
cos(t) t3

3t ln(t2 + 1)

]
∈ R2×2.

We can multiply A above by 3−t by

3−tA =

[
3−t cos(t) t33−t

1 ln(t2 + 1)3−t

]
∈ R2×2.
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We can subtract the identity matrix to form A− I:

A− I =

[
cos(t) t3

3t ln(t2 + 1)

]
−
[

1 0
0 1

]
=

[
cos(t)− 1 t3

3t ln(t2 + 1)− 1

]
Another way of looking at A in the example above is that it is a matrix-valued function of a real variable
t. In other words, A : R→ R2×2; this means for each t ∈ R we assign a single matrix A(t) ∈ R2×2. We can
similarly consider p × q-matrix valued functions of a real variable3 . We now turn to the calculus of such
matrices.

Definition 5.2.22.

A matrix-valued function of a real variable is a function from I ⊆ R to R m×n. Suppose A : I ⊆
R→ R m×n is such that Aij : I ⊆ R→ R is differentiable for each i, j then we define

dA
dt =

[dAij
dt

]
which can also be denoted (A′)ij = A′ij . We likewise define

∫
Adt = [

∫
Aijdt] for A with integrable

components. Definite integrals and higher derivatives are also defined component-wise.

Example 5.2.23. Suppose A(t) =

[
2t 3t2

4t3 5t4

]
. I’ll calculate a few items just to illustrate the definition

above. calculate; to differentiate a matrix we differentiate each component one at a time:

A′(t) =

[
2 6t

12t2 20t3

]
A′′(t) =

[
0 6

24t 60t2

]
A′(0) =

[
2 0
0 0

]
Integrate by integrating each component:

∫
A(t)dt =

[
t2 + c1 t3 + c2
t4 + c3 t5 + c4

] ∫ 2

0

A(t)dt =

 t2
∣∣2
0

t3
∣∣2
0

t4
∣∣2
0

t5
∣∣2
0

 =

[
4 8
16 32

]

Example 5.2.24. Suppose A =

[
t 1
0 t2

]
. Calculate A2 =

[
t 1
0 t2

] [
t 1
0 t2

]
hence,

A2 =

[
t2 t+ t2

0 t4

]

Clearly d
dt [A

2] =

[
2t 1 + 2t
0 4t3

]
. On the other hand, calculate

2A
dA

dt
= 2

[
t 1
0 t2

] [
1 0
0 2t

]
= 2

[
t 2t
0 2t3

]
=

[
2t 4t
0 4t3

]
6= d

dt
[A2]

The naive chain-rule fails.

3for those of you who have (or are) taking linear algebra, the space Rp×q is not necessarily a vector space since R
is not a field in some examples. The space of smooth functions forms what is called a ring and the set of matrices
over a ring can be understood as a ”module”. A module is like a vector space where the scalar multiplication is taken
from a ring rather than a field. Every vector space is a module but some modules are not vector spaces.
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Theorem 5.2.25.

Suppose A,B are matrix-valued functions of a real variable, f is a function of a real variable, c is a
constant, and C is a constant matrix then

1. (AB)′ = A′B +AB′ (product rule for matrices)

2. (AC)′ = A′C

3. (CA)′ = CA′

4. (fA)′ = f ′A+ fA′

5. (cA)′ = cA′

6. (A+B)′ = A′ +B′

where each of the functions is evaluated at the same time t and I assume that the functions and
matrices are differentiable at that value of t and of course the matrices A,B,C are such that the
multiplications are well-defined.

Proof: Suppose A(t) ∈ R m×n and B(t) ∈ R n×p consider,

(AB)′ij = d
dt ((AB)ij) defn. derivative of matrix

= d
dt (
∑
k AikBkj) defn. of matrix multiplication

=
∑
k
d
dt (AikBkj) linearity of derivative

=
∑
k

[
dAik
dt Bkj +Aik

dBkj
dt

]
ordinary product rules

=
∑
k
dAik
dt Bkj +

∑
k Aik

dBkj
dt algebra

= (A′B)ij + (AB′)ij defn. of matrix multiplication
= (A′B +AB′)ij defn. matrix addition

this proves (1.) as i, j were arbitrary in the calculation above. The proof of (2.) and (3.) follow quickly
from (1.) since C constant means C ′ = 0. Proof of (4.) is similar to (1.):

(fA)′ij = d
dt ((fA)ij) defn. derivative of matrix

= d
dt (fAij) defn. of scalar multiplication

= df
dtAij + f

dAij
dt ordinary product rule

= (dfdtA+ f dAdt )ij defn. matrix addition

= (dfdtA+ f dAdt )ij defn. scalar multiplication.

The proof of (5.) follows from taking f(t) = c which has f ′ = 0. I leave the proof of (6.) as an exercise for
the reader. �.

To summarize: the calculus of matrices is the same as the calculus of functions with the small qualifier that
we must respect the rules of matrix algebra. The noncommutativity of matrix multiplication is the main
distinguishing feature.

Let’s investigate, just for the sake of some practice mostly, what the non-naive chain rule for the square of
matrix function.

Example 5.2.26. Let A : R→ R n×n be a square-matrix-valued differentiable function of a real variable t.
Calculate, use the product rule:

d

dt
[A2] =

d

dt
[AA] =

dA

dt
A+A

dA

dt
.
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In retrospect, it must be the case that the matrix A does not commute with dA
dt in Example 5.2.24. The

noncommutative nature of the matrix multiplication is the source of the naive chain-rule not working in the
current context. In contrast, we have seen that the chain-rule for complex-valued functions of a real variable
does often work. For example, d

dte
λt = λeλt or d

dxx
λ = λxλ−1. It is possible to show that if f(z) is analytic

and g(t) is differentiable from R to C then d
dtf(g(t)) = df

dz (g(t))dgdt where df
dz is the derivative of f with respect

to the complex variable z. However, you probably will not discuss this in complex variables since it’s not
terribly interesting in the big-scheme of that course. I find it interesting to contrast to the matrix case here.
You might wonder if there is a concept of differentiation with respect to a matrix, or differentiation with
respect to a vector. The answer is yes. However, I leave that for some other course.

Example 5.2.27. Another example for fun. The set of orthogonal matrices is denoted O(n) and is
defined to be the set of n × n matrices A such that ATA = I. These matrices correspond to changes of
coordinate which do not change the length of vectors; A~x •A~y = ~x • ~y. It turns out that O(n) is made from
rotations and relections.

Suppose we have a curve of orthogonal matrices; A : R → O(n) then we know that AT (t)A(t) = I for all
t ∈ R. If the component functions are differentiable then we can differentiate this equation to learn about the
structure that the tangent vector to an orthogonal matrix must possess. Observe:

d

dt
[AT (t)A(t)] =

d

dt
[I] ⇒ dA

dt

T

A(t) +AT (t)
dA

dt
= 0

Suppose the curve we considered passed through the identity matrix I (which is in O(n) as IT I = I) and
suppose this happened at t = 0 then we have

dA

dt

T

(0) +
dA

dt
(0) = 0

Let B = dA
dt (0) then we see that BT = −B is a necessary condition for tangent vectors to the orthogonal

matrices at the identity matrix. A matrix with BT = −B is said to be antisymmetric or skew-symmetric.
The space of all such skew matrices is called o(n). The set O(n) paired with matrix multiplication is called
a Lie Group whereas the set o(n) paired with the matrix commutator is called a Lie Algebra4. These are
concepts of considerable interest in modern studies of differential equations.

4it’s is pronounced ”Lee” not as you might expect
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5.3 the normal form and theory for systems

A system of ODEs in normal form is a finite collection of first order ODEs which share dependent variables
and a single independent variable.

1. (n = 1) dx
dt = A11x+ f

2. (n = 2) dx
dt = A11x + A12y + f1 and dy

dt = A21x + A22y + f2 we can express this in matrix normal
form as follows, use x = x1 and y = x2,[

dx1

dt
dx2

dt

]
=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
f1
f2

]
This is nicely abbreviated by writing d~x/dt = A~x+ ~f where ~x = (x1, x2) and ~f = (f1, f2) whereas the
2× 2 matrix A is called the coefficient matrix of ths system.

3. (n = 3) The matrix normal form is simply dx1

dt
dx2

dt
dx3

dt

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 x1
x2
x3

+

 f1
f2
f3


Expanded into scalar normal form we have dx1

dt = A11x1 +A12x2 +A13x3 + f1
and dx2

dt = A21x1 +A22x2 +A23x3 + f2 and dx3

dt = A31x1 +A32x2 +A33x3 + f3.

Generally an n-th order system of ODEs in normal form on an interval I ⊆ R can be written as dxi
dt =∑n

j=1Aijxj + fi for coefficient functions Aij : I ⊆ R → R and forcing functions fi : I ⊆ R → R. You
might consider the problem of solving a system of k-first order differential equations in n-dependent variables
where n 6= k, however, we do not discuss such over or underdetermined problems in these notes. That said,
the concept of a system of differential equations in normal form is perhaps more general than you expect.
Let me illustrate this by example. I’ll start with a single second order ODE:

Example 5.3.1. Consider ay′′ + by′ + cy = f . We define x1 = y and x2 = y′. Observe that

x′1 = x2 & x′2 = y′′ = −1

a
(f − by′ − cy) =

1

a
(f − bx2 − cx1)

Thus, [
x′1
x′2

]
=

[
0 1
−c/a −b/a

] [
x1
x2

]
+

[
0
f/a

]
The matrix

[
0 1
−c/a −b/a

]
is called the companion matrix of the second order ODE ay′′+ by′+ cy = f .

The example above nicely generalizes to the general n-th order linear ODE.

Example 5.3.2. Consider aoy
(n) + a1y

(n−1) + · · · + an−1y
′ + any = f . Introduce variables to reduce the

order:
x1 = y, x2 = y′, x3 = y′′, . . . xn = y(n−1)

From which is is clear that x′1 = x2 and x′2 = x3 continuing up to x′n−1 = xn and x′n = y(n). Hence,

x′n = −a1
ao
xn − · · · −

an−1
ao

x2 −
an
ao
x1 + f
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Once again the matrix below is called the companion matrix of the given n-th order ODE.
x′1
x′2
...

x′n−1
x′n

 =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
−anao −an−1

ao
−an−2

ao
· · · −a2ao −a1ao




x1
x2
...

xn−1
xn

+


0
0
...
0
f
ao


The problem of many higher order ODEs is likewise confronted by introducing variables to reduce the order.

Example 5.3.3. Consider y′′ + 3x′ = sin(t) and x′′ + 6y′ − x = et. We begin with a system of two second
order differential equations. Introduce new variables:

x1 = x, x2 = y, x3 = x′, x4 = y′

It follows that x′3 = x′′ and x′4 = y′′ whereas x′1 = x3 and x′2 = x4. We convert the given differential
equations to first order ODEs:

x′4 + 3x3 = sin(t) & x′3 + 6x4 − x1 = et

Let us collect these results as a matrix problem:
x′1
x′2
x′3
x′4

 =


0 0 1 0
0 0 0 1
1 0 0 6
0 0 −3 0



x1
x2
x3
x4

+


0
0
et

sin(t)


Generally speaking the order of the normal form corresponding to a system of higher order ODE will simply be
the sum of the orders of the systems (assuming the given system has no reundancies; for example x′′+y′′ = x
and x′′ − x = −y′′ are redundant). I will not prove the following assertion, however, it should be fairly clear
why it is true given the examples thus far discussed:

Proposition 5.3.4. linear systems have a normal form.

A given systems of linear ODEs may be converted to an equivalent system of first order ODEs in
normal form.

For this reason the first order problem will occupy the majority of our time. That said, the method of the
next section is applicable to any order.

Since normal forms are essentially general it is worthwhile to state the theory which will guide our work. I
do not offer all the proof here, but you can find proof in many texts. For example, in Nagel Saff and Snider
these theorems are given in §9.4 and are proved in Chapter 13.

Definition 5.3.5. linear independence of vector-valued functions

Suppose ~vj : I ⊆ R→ Rn is a function for j = 1, 2, . . . , k then we say that {~v1, ~v2, . . . , ~vk} is linearly

independent on I iff
∑k
j=1 cj~vj(t) = 0 for all t ∈ I implies cj = 0 for j = 1, 2, . . . , k.

We can use the determinant to test LI of a set of n-vectors which are all n-dimensional vectors. It is true
that {~v1, ~v2, . . . , ~vn} is LI on I iff det[~v1(t)|~v2(t)| · · · |~vn(t)| 6= 0 for all t ∈ I.
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Definition 5.3.6. wronskian for vector-valued functions of a real variable.

Suppose ~vj : I ⊆ R → Rn is differentiable for j = 1, 2, . . . , n. The Wronskian is defined by
W (~v1, ~v2, . . . , ~vn; t) = det[~v1|~v2| . . . |~vn] for each t ∈ I.

Theorems for wronskians of solutions sets mirror those already discussed for the n-th order problem.

Definition 5.3.7. solution and homogeneous solutions of d~x/dt = A~x+ ~f

Let A : I → Rn×n and ~f : I → Rn be continuous. A solution of d~v/dt = A~v + ~f on I ⊆ R is

a vector-valued function ~x : I → Rn such that d~x/dt = A~x + ~f for all t ∈ I. A homogeneous
solution on I ⊆ R is a solution of d~v/dt = A~v.

In the example below we see three LI homogeneous solutions and a single particular solution.

Example 5.3.8. Suppose x′ = x− 1, y′ = 2y − 2 and z′ = 3z − 3. In matrix normal form we face: x′

y′

z′

 =

 1 0 0
0 2 0
0 0 3

 x
y
z

+

 −1
−2
−3


It is easy to show by separately solving the the DEqns that x = c1e

t + 1, y = c2e
2t + 2 and z = c3e

3t + 3. In
vector notation the solution is

~x(t) =

 c1e
t + 1

c2e
2t + 2

c3e
3t + 3

 = c1

 et

0
0

 c2
 0
e2t

0

 c3
 0

0
e3t

+

 1
2
3


I invite the reader to show that S = {~x1, ~x2, ~x3} is LI on R where ~x1(t) = 〈et, 0, 0〉, ~x2(t) = 〈0, e2t, 0〉 and
~x3(t) = 〈0, 0, e3t〉. On the other hand, ~xp = 〈1, 2, 3〉 is a particular solution to the given problem.

In truth, any choice of c1, c2, c3 with at least one nonzero constant will produce a homogeneous solution.
To obtain the solutions I pointed out in the example you can choose c1 = 1, c2 = 0, c3 = 0 to obtain
~x1(t) = 〈et, 0, 0〉 or c1 = 0, c2 = 1, c3 = 0 to obtain ~x2(t) = 〈0, e2t, 0〉 or c1 = 0, c2 = 0, c3 = 1 to obtain
~x3(t) = 〈0, 0, e3t〉.

Definition 5.3.9. fundamental solution set of a linear system d~x/dt = A~x+ ~f

Let A : I → Rn×n and ~f : I → Rn be continuous. A fundmental solution set on I ⊆ R is a set of
n-homogeneous solutions of d~v/dt = A~v + ~f for which {~x1, ~x1, . . . , ~xn} is a LI set on I. A solution
matrix on I ⊆ R is a matrix X is a matrix for which each column is a homogeneous solution on I.
A fundamental matrix on I ⊆ R is an invertible solution matrix.

Example 5.3.10. Continue Example 5.3.8. Note that S = {~x1, ~x2, ~x3} is a fundamental solution set. The
fundamental solution matrix is found by concatenating ~x1, ~x2 and ~x3:

X = [~x1|~x2|~x3] =

 et 0 0
0 e2t 0
0 0 e3t


Observe det(X) = ete2te3t = e6t 6= 0 on R hence X is invertible on R.
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Example 5.3.11. Let A =

 0 0 −4
2 4 2
2 0 6

 define the system of DEqns d~x
dt = A~x. I claim that the matrix

X(t) =

 0 −e4t −2e2t

e4t 0 e2t

0 e4t e2t

 is a solution matrix. Calculate,

AX =

 0 0 −4
2 4 2
2 0 6

 0 −e4t −2e2t

e4t 0 e2t

0 e4t e2t

 =

 0 −4e4t −4e2t

4e4t 0 2e2t

0 4e4t 2e2t

 .

On the other hand, differentiation yields X ′ =

 0 −4e4t −4e2t

4e4t 0 2e2t

0 4e4t 2e2t

. Therefore X ′ = AX. Notice

that if we express X in terms of its columns X = [~x1|~x2|~x3] then it follows that X ′ = [~x1
′|~x2 ′|~x3 ′] and

AX = A[~x1|~x2|~x3] = [A~x1|A~x2|A~x3] hence

~x1
′ = A~x1 & ~x2

′ = A~x2 & ~x3
′ = A~x3

We find that ~x1(t) = 〈0, e4t, 0〉, ~x2(t) = 〈−e4t, 0, e4t〉 and ~x3(t) = 〈−2e2t, e2t, e2t〉 form a fundamental
solution set for the given system of DEqns.

Theorem 5.3.12. Let A : I → Rn×n and ~f : I → Rn be continuous.

1. there exists a fundamental solution set {~x1, ~x2, . . . , ~xn} on I

2. if to ∈ I and ~xo is a given initial condition vector then there exists a unique solution ~x on I
such that ~x(to) = ~xo

3. the general solution has the form ~x = ~xh + ~xp where ~xp is a particular solution and ~xh
is the homogeneous solution is formed by a real linear combination of the fundamental
solution set (~xh = c1~x1 + c1~x1 + · · ·+ cn~xn)

The term general solution is intended to indicate that the formula given includes all possible solutions to the
problem. Part (2.) of the theorem indicates that there must be some 1-1 correspondance between a given
initial condition and the choice of the constants c1, c2, . . . , cn with respect to a given fundamental solution
set. Observe that if we define ~c = [c1, c2, . . . , cn]T and the fundamental matrix X = [~x1|~x2| · · · |~xn] we can
express the homogeneous solution via a matrix-vector product:

~xh = X~c = c1~x1 + c1~x1 + · · ·+ cn~xn ⇒ ~x(t) = X(t)~c+ ~xp(t)

Further suppose that we wish to set ~x(to) = ~xo. We need to solve for ~c:

~xo = X(to)~c+ ~xp(to) ⇒ X(to)~c = ~xo − ~xp(to)

Since X−1(to) exists we can multiply by the inverse on the right and find

~c = X−1(to)
[
~xo − ~xp(to)

]
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Next, place the result above back in the general solution to derive

~x(t) = X(t)X−1(to)
[
~xo − ~xp(to)

]
+ ~xp(t)

We can further simplify this general formula in the constant coefficient case, or in the study of variation of
parameters for systems. Note that in the homogeneous case this gives us a clean formula to calculate the
constants to fit initial data:

~x(t) = X(t)X−1(to)~xo (homogeneous case)

Example 5.3.13. We found x′ = −y and y′ = x had solutions x(t) = c1 cos(t) + c2 sin(t) and y(t) =

c1 sin(t) − c2 cos(t). It follows that X(t) =

[
cos(t) sin(t)
sin(t) − cos(t)

]
. Calculate that det(X) = −1 to see that

X−1(t) =

[
cos(t) sin(t)
sin(t) − cos(t)

]
. Suppose we want the solution through (a, b) at time to then the solution is

given by

~x(t) = X(t)X−1(to)~xo =

[
cos(t) sin(t)
sin(t) − cos(t)

] [
cos(to) sin(to)
sin(to) − cos(to)

] [
a
b

]
.

This concludes our brief tour of the theory for systems of ODEs. Clearly we have two main goals past this
point (1.) find the fundamental solution set (2.) find the particular solution.
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5.4 solutions by eigenvector

We narrow our focus at this point: our goal is to find nontrivial5 solutions to the homogeneous constant
coefficient problem d~x

dt = A~x where A ∈ R n×n. A reasonable ansatz for this problem is that the solution
should have the form ~x = eλt~u for some constant scalar λ and some constant vector ~u. If such solutions
exist then what conditions must we place on λ and ~u? To begin clearly ~u 6= 0 since we are seeking nontrivial
solutions. Differentiate,

d

dt

[
eλt~u

]
=
[
eλt
]
~u = λeλt~u

Hence d~x
dt = A~x implies λeλt~u = Aeλt~u. However, eλt 6= 0 hence we find λ~u = A~u. We can write the vector

λ~u as a matrix product with identity matrix I; λ~u = λI~u. Therefore, we find

(A− λI)~u = 0

to be a necessary condition for the solution. Note that the system of linear equations defined by (A−λI)~u = 0
is consistent since 0 is a solution. It follows that for ~u 6= 0 to be a solution we must have that the matrix
(A− λI) is singular. It follows that we find

det(A− λI) = 0

a necessary condition for our solution. Moreover, for a given matrix A this is nothing more than an n-th
order polynomial in λ hence there are at most n-distinct solutions for λ. The equation det(A − λI) = 0 is
called the characteristic equation of A and the solutions are called eigenvalues. The nontrivial vector
~u such that (A − λI)~u = 0 is called the eigenvector with eigenvalue λ. We often abbreviate these by
referring to ”e-vectors” or ”e-values”. Many interesting theorems are known for eigenvectors, see a linear
algebra text or my linear notes for elaboration on this point.

Definition 5.4.1. eigenvalues and eigenvectors

Suppose A is an n × n matrix then we say λ ∈ C which is a solution of det(A − λI) = 0 is an
eigenvalue of A. Given such an eigenvalue λ a nonzero vector ~u such that (A− λI)~u = 0 is called
an eigenvector with eigenvalue λ.

Example 5.4.2. Problem: find the fundamental solutions of the system x′ = −4x− y and y′ = 5x+ 2y

Solution: we seek to solve d~x
dt = A~x where A =

[
−4 −1
5 2

]
. Consider the characteristic equation:

det(A− λI) = det

[
−4− λ −1

5 2− λ

]
= (−4− λ)(2− λ) + 5

= λ2 + 2λ− 3

= (λ+ 3)(λ− 1)

= 0

5nontrivial simply means the solution is not identically zero. The zero solution does exist, but it is not the solution
we are looking for...
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We find λ1 = 1 and λ2 = −3. Next calculate the e-vectors for each e-value. We seek ~u1 = [u, v]T such that
(A− I)~u1 = 0 thus solve:[

−5 −1
5 1

] [
u
v

]
=

[
0
0

]
⇒ −5u− v = 0 ⇒ v = −5u, u 6= 0 ⇒ ~u1 =

[
u
−5u

]
Naturally we can write ~u1 = u[1,−5]T and for convenience we set u = 1 and find ~u1 = [1,−5]T which gives

us the fundamental solution ~x1(t) = et[1,−5]T . Continue6 to the next e-value λ2 = −3 we seek ~u2 = [u, v]T

such that (A+ 3I)~u2 = 0.[
−1 −1
5 5

] [
u
v

]
=

[
0
0

]
⇒ −u− v = 0 ⇒ v = −u, u 6= 0 ⇒ ~u2 =

[
u
−u

]
Naturally we can write ~u2 = u[1,−1]T and for convenience we set u = 1 and find ~u2 = [1,−1]T which gives

us the fundamental solution ~x2(t) = e−3t[1,−1]T . The fundmental solution set is given by {~x1, ~x2} and the

domains of these solution clearly extend to all of R.

We can assemble the general solution as a linear combination of the fundamental solutions ~x(t) = c1~x1+c2~x2.
In particular this yields

~x(t) = c1~x1 + c2~x2 = c1e
t

[
1
−5

]
+ c2e

−3t
[

1
−1

]
=

[
c1e

t + c2e
−3t

−5c1e
t − c2e−3t

]
Thus the system x′ = −4x− y and y′ = 5x+ 2y has scalar solutions x(t)c1e

t + c2e
−3t and y(t) = −5c1e

t −
c2e
−3t. Finally, a fundamental matrix for this problem is given by

X = [~x1|~x2] =

[
et e−3t

−5et −e−3t
]
.

Example 5.4.3. Problem: find the fundamental solutions of the system x′ = −3x and y′ = −3y

Solution: we seek to solve d~x
dt = A~x where A =

[
−3 0
0 −3

]
. Consider the characteristic equation:

det(A− λI) = det

[
−3− λ 0

0 −3− λ

]
= (λ+ 3)2 = 0

We find λ1 = −3 and λ2 = −3. Finding the eigenvectors here offers an unusual algebra problem; to find ~u

with e-value λ = −3 we should find nontrivial solutions of (A + 3I)~u =

[
0 0
0 0

] [
u
v

]
= 0. We find no

condition on ~u. It follows that any nonzero vector is an eigenvector of A. Indeed, note that A = −3I and
A~u = −3I~u hence (A+ 3I)~u = 0. Convenient choices for ~u are [1, 0]T and [0, 1]T hence we find fundamental
solutions:

~x1(t) = e−3t
[

1
0

]
=

[
e−3t

0

]
& ~x2(t) = e−3t

[
0
1

]
=

[
0

e−3t

]
.

6the upcoming u, v are not the same as those I just worked out, I call these letters disposable variables because
I like to reuse them in several ways in a particular example where we repeat the e-vector calculation over several
e-values.
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We can assemble the general solution as a linear combination of the fundamental solutions

~x(t) = c1

[
e−3t

0

]
+ c2

[
0

e−3t

]
. Thus the system x′ = −3x and y′ = −3y has scalar solutions

x(t) = c1e
−3t and y(t) = c2e

−3t. Finally, a fundamental matrix for this problem is given by

X = [~x1|~x2] =

[
e−3t 0

0 e−3t

]
.

Example 5.4.4. Problem: find the fundamental solutions of the system x′ = 3x+ y and y′ = −4x− y

Solution: we seek to solve d~x
dt = A~x where A =

[
3 1
−4 −1

]
. Consider the characteristic equation:

det(A− λI) = det

[
3− λ 1
−4 −1− λ

]
= (λ− 3)(λ+ 1) + 4

= λ2 − 2λ+ 1

= (λ− 1)2

= 0

We find λ1 = 1 and λ2 = 1. Let us find the e-vector ~u1 = [u, v]T such that (A− I)~u1 = 0[
2 1
−4 −2

] [
u
v

]
=

[
0
0

]
⇒ 2u+ v = 0 ⇒ v = −2u, u 6= 0 ⇒ ~u1 =

[
u
−2u

]

We choose u = 1 for convenience and thus find the fundamental solution ~x1(t) = et
[

1
−2

]
.

Remark 5.4.5.

In the previous example the algebraic multiplicity of the e-value λ = 1 was 2. However, we found
only one LI e-vector. This means the geometric multiplicity for λ = 1 is only 1. This means we
are missing a vector and hence a fundamental solution. Where is ~x2 which is LI from the ~x1 we just
found? This question is ultimately answered via the matrix exponential.

Example 5.4.6. Problem: find the fundamental solutions of the system x′ = −y and y′ = 4x

Solution: we seek to solve d~x
dt = A~x where A =

[
0 −1
4 0

]
. Consider the characteristic equation:

det(A− λI) = det

[
−λ −1
4 −λ

]
= λ2 + 4 = 0 ⇒ λ = ±2i.

This e-value is a pure imaginary number which is a special type of complex number where there is no
real part. Careful review of the arguments that framed the e-vector solution reveal that the same calculations
apply when either λ or ~u are complex. With this in mind we seek the e-vector for λ = 2i: let us find the
e-vector ~u1 = [u, v]T such that (A− 2iI)~u1 = 0[

−2i −1
4 −2i

] [
u
v

]
=

[
0
0

]
⇒ 2iu− v = 0 ⇒ v = 2iu, u 6= 0 ⇒ ~u1 =

[
u

2iu

]
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Let u = 1 for convenience and find ~u1 = [1, 2i]T . We find the fundamental complex solution ~x:

~x = e2it
[

1
2i

]
=
(
cos(2t) + i sin(2t)

) [ 1
2i

]
=

[
cos(2t) + i sin(2t)

2i cos(2t)− 2 sin(2t)

]
Note: if ~x = Re(~x) + iIm(~x) then it follows that the real and imaginary parts of the complex solution are
themselves real solutions. Why? Because differentiation with respect to t is defined such that:

d~x

dt
=
dRe(~x)

dt
+ i

dIm(~x)

dt

and A~x = A[Re(~x)+ iIm(~x)] = ARe(~x)+ iA Im(~x). However, we know d~x/dt = A~x hence we find, equating
real parts and imaginary parts separately that:

dRe(~x)

dt
= ARe(~x) &

dIm(~x)

dt
= AIm(~x)

Hence ~x1 = Re(~x) and ~x2 = Im(~x) give a solution set for the given system. In particular we find the
fundamental solution set

~x1(t) =

[
cos(2t)
−2 sin(2t)

]
& ~x2(t) =

[
sin(2t)

2 cos(2t)

]
.

We can assemble the general solution as a linear combination of the fundamental solutions

~x(t) = c1

[
cos(2t)
−2 sin(2t)

]
+ c2

[
sin(2t)

2 cos(2t)

]
. Thus the system x′ = −y and y′ = 4x has scalar solutions

x(t) = c1 cos(2t) + c2 sin(2t) and y(t) = −2c1 sin(2t) + 2c2 cos(2t). Finally, a fundamental matrix for this
problem is given by

X = [~x1|~x2] =

[
cos(2t) sin(2t)
−2 sin(2t) 2 cos(2t)

]
.

Example 5.4.7. Problem: find the fundamental solutions of the system x′ = 2x− y and y′ = 9x+ 2y

Solution: we seek to solve d~x
dt = A~x where A =

[
2 −1
9 2

]
. Consider the characteristic equation:

det(A− λI) = det

[
2− λ −1

9 2− λ

]
= (λ− 2)2 + 9 = 0.

Thus λ = 2± 3i. Consider λ = 2 + 3i, we seek the e-vector subject to (A− (2 + 3i)I)~u = 0. Solve:[
−3i −1

9 −3i

] [
u
v

]
=

[
0
0

]
⇒ −3iu− v = 0 ⇒ v = −3iu, u 6= 0 ⇒ ~u1 =

[
u
−3iu

]
We choose u = 1 for convenience and thus find the fundamental complex solution

~x(t) = e(2+3i)t

[
1
−3i

]
= e2t(cos(3t) + i sin(3t))

[
1
−3i

]
= e2t

[
cos(3t) + i sin(3t)
−3i cos(3t) + 3 sin(3t)

]
Therefore, using the discussion of the last example, we find fundamental real solutions of the system by
selecting real and imaginary parts of the complex solution above:

~x1(t) =

[
e2t cos(3t)
3e2t sin(3t)

]
& ~x2(t) =

[
e2t sin(3t)
−3e2t cos(3t)

]
.
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We can assemble the general solution as a linear combination of the fundamental solutions

~x(t) = c1

[
e2t cos(3t)
3e2t sin(3t)

]
+ c2

[
e2t sin(3t)
−3e2t cos(3t)

]
. Thus the system x′ = 2x− y and y′ = 9x+ 2y has scalar

solutions x(t) = c1e
2t cos(3t) + c2e

2t sin(3t) and y(t) = 3c1e
2t sin(3t)− 3c2e

2t cos(3t). Finally, a fundamental
matrix for this problem is given by

X = [~x1|~x2] =

[
e2t cos(3t) e2t sin(3t)
3e2t sin(3t) −3e2t cos(3t)

]
.

Example 5.4.8. Problem: we seek to solve d~x
dt = A~x where A =

 2 0 0
−1 −4 −1
0 5 2

.

Solution: Begin by solving the characteristic equation:

0 = det(A− λI) = det

 2− λ 0 0
−1 −4− λ −1
0 5 2− λ


= (2− λ)

[
(λ− 2)(λ+ 4) + 5

]
= (2− λ)(λ− 1)(λ+ 3).

Thus λ1 = 1, λ2 = 2 and λ3 = −3. We seek ~u1 = [u, v, w]T such that (A− I)~u1 = 0: 1 0 0
−1 −5 −1
0 5 1

 u
v
w

 =

 0
0
0

 ⇒ u = 0
5v + w = 0

⇒ u = 0
w = −5v

⇒ ~u1 = v

 0
1
−5

 .
Choose v = 1 for convenience and find ~u1 = [0, 1,−5]T . Next, seek ~u2 = [u, v, w]T such that (A− 2I)~u2 = 0: 0 0 0

−1 −6 −1
0 5 0

 u
v
w

 =

 0
0
0

 ⇒ −u− 6v − w = 0
v = 0

⇒ v = 0
w = −u ⇒ ~u2 = u

 1
0
−1

 .
Choose u = 1 for convenience and find ~u2 = [1, 0,−1]T . Last, seek ~u3 = [u, v, w]T such that (A+ 3I)~u3 = 0: 5 0 0

−1 −1 −1
0 5 5

 u
v
w

 =

 0
0
0

 ⇒ 5u = 0
5v + 5w = 0

⇒ u = 0
w = −v ⇒ ~u3 = v

 0
1
−1

 .
Choose v = 1 for convenience and find ~u3 = [0, 1,−1]T . The general solution follows:

~x(t) = c1e
t

 0
1
−5

+ c2e
2t

 1
0
−1

+ c3e
−3t

 0
1
−1

 .
The fundamental solutions and the fundamental matrix for the system above are given as follows:

~x1(t) =

 0
et

−5et

 , ~x2(t) =

 e2t

0
−e2t

 , ~x3(t) =

 0
e−3t

−e−3t

 , X(t) =

 0 e2t 0
et 0 e−3t

−5et −e2t −e−3t

 .
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Example 5.4.9. we seek to solve d~x
dt = A~x where A =

 2 0 0
0 2 0
1 0 3

.

Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 2− λ 0 0
0 2− λ 0
1 0 3− λ

 = (2− λ)(2− λ)(3− λ) = 0.

Thus λ1 = 2, λ2 = 2 and λ3 = 3. We seek ~u1 = [u, v, w]T such that (A− 2I)~u1 = 0: 0 0 0
0 0 0
1 0 1

 u
v
w

 =

 0
0
0

 ⇒ u+ w = 0
v free

⇒ v free
w = −u ⇒ ~u1 =

 u
v
−u

 .
There are two free variables in the solution above and it follows we find two e-vectors. A convenient choice
is u = 1 and v = 0 or u = 0 and v = 1; ~u1 = [1, 0,−1]T and ~u2 = [0, 1, 0]T . Next, seek ~u3 = [u, v, w]T such
that (A− 3I)~u3 = 0 −1 0 0

0 −1 0
1 0 0

 u
v
w

 =

 0
0
0

 ⇒
u = 0
v = 0
w free

⇒ ~u3 = w

 0
0
1

 .
Choose w = 1 for convenience to find ~u3 = [0, 0, 1]T . The general solution follows:

~x(t) = c1e
2t

 1
0
−1

+ c2e
2t

 0
1
0

+ c3e
−3t

 0
0
1

 .
The fundamental solutions and the fundamental matrix for the system above are given as follows:

~x1(t) =

 e2t

0
−e2t

 , ~x2(t) =

 0
e2t

0

 , ~x3(t) =

 0
0

e−3t

 , X(t) =

 e2t 0 0
0 e2t 0
−e2t 0 e−3t

 .
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Example 5.4.10. we seek to solve d~x
dt = A~x where A =

 2 1 0
0 2 0
1 −1 3

.

Solution: Begin by solving the characteristic equation:

det

 2− λ 1 0
0 2− λ 0
1 −1 3− λ

 = (2− λ)2(3− λ) = 0.

Thus λ1 = 2, λ2 = 2 and λ3 = 3. We seek ~u1 = [u, v, w]T such that (A− 2I)~u1 = 0: 0 1 0
0 0 0
1 −1 1

 u
v
w

 =

 0
0
0

 ⇒ v = 0
u+ w = 0

⇒ v = 0
w = −u ⇒ ~u1 =

 u
0
−u

 .
Choose u = 1 to select ~u1 = [1, 0,−1]T . Next find ~u2 such that (A− 3I)~u2 = 0 −1 1 0

0 −1 0
1 −1 0

 u
v
w

 =

 0
0
0

 ⇒
−u+ v = 0
−v = 0
w free

⇒
u = 0
v = 0
w free

⇒ ~u2 =

 0
0
w

 .
Choose w = 1 to find ~u2 = [0, 0, 1]T . We find two fundamental solutions from the e-vector method:

~x1(t) = e2t

 1
0
−1

 & ~x1(t) = e3t

 0
0
1

 .
We cannot solve the system at this juncture since we are missing the third fundamental solution ~x3. In the
next section we will find the missing solution via the generalized e-vector/ matrix exponential method.

Example 5.4.11. we seek to solve d~x
dt = A~x where A =

 7 0 0
0 7 0
0 0 7

.

Solution: Begin by solving the characteristic equation:

det

 7− λ 0 0
0 7− λ 0
0 0 7− λ

 = (7− λ)3 = 0.

Thus λ1 = 7, λ2 = 7 and λ3 = 7. The e-vector equation in this case is easy to solve; since A−7I = 7I−7I = 0
it follows that (A− 7I)~u = 0 for all ~u ∈ R3. Therefore, any nontrivial vector is an eigenvector with e-value
7. A natural choice is ~u1 = [1, 0, 0]T , ~u2 = [0, 1, 0]T and ~u3 = [0, 0, 1]T . Thus,

~x(t) = c1e
7t

 1
0
0

+ c2e
7t

 0
1
0

+ c3e
7t

 0
0
1

 = e7t

 c1
c2
c3

 .
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Example 5.4.12. we seek to solve d~x
dt = A~x where A =

 −2 0 0
4 −2 0
1 0 −2

.

Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 −2− λ 0 0
4 −2− λ 0
1 0 −2− λ

 = −(λ+ 2)3 = 0.

Thus λ1 = −2, λ2 = −2 and λ3 = −2. We seek ~u1 = [u, v, w]T such that (A+ 2I)~u1 = 0: 0 0 0
4 0 0
1 0 0

 u
v
w

 =

 0
0
0

 ⇒
u = 0
v free
w free

⇒ ~u1 =

 0
v
w

 .
Choose v = 1, w = 0 to select ~u1 = [0, 1, 0]T and v = 0, w = 1 to select ~u2 = [0, 0, 1]T . Thus we find
fundamental solutions:

~x1(t) = e−2t

 0
1
0

 & ~x2(t) = e−2t

 0
0
1

 .
We cannot solve the system at this juncture since we are missing the third fundamental solution ~x3. In the
next section we will find the missing solution via the generalized e-vector/ matrix exponential method.

Example 5.4.13. we seek to solve d~x
dt = A~x where A =

 2 1 −1
−3 −1 1
9 3 −4

.

Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 2− λ 1 −1
−3 −1− λ 1
9 3 −4− λ


= (2− λ)[(λ+ 1)(λ+ 4)− 3]− [3(λ+ 4)− 9]− [−9 + 9(λ+ 1)]

= (2− λ)[λ2 + 5λ+ 1]− 3λ− 3− 9λ

= −λ3 − 5λ2 − λ+ 2λ2 + 10λ+ 2− 12λ− 3

= −λ3 − 3λ2 − 3λ− 1

= −(λ+ 1)3

Thus λ1 = −1, λ2 = −1 and λ3 = −1. We seek ~u1 = [u, v, w]T such that (A+ I)~u1 = 0: 3 1 −1
−3 0 1
9 3 −3

 u
v
w

 =

 0
0
0

 ⇒ 3u+ v − w = 0
−3u+ w = 0

⇒ w = 3u
v = w − 3u = 0

⇒ ~u1 =

 u
0

3u

 .
Choose u = 1 to select ~u1 = [1, 0, 3]T . We find just one fundamental solution: ~x1 = e−t[1, 0, 3]T . We

cannot solve the problem in it’s entirety with our current methods. In the section that follows we find the
missing pair of solutions.
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Example 5.4.14. we seek to solve d~x
dt = A~x where A =

 0 1 0
0 0 1
1 −1 1

.

Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 −λ 1 0
0 −λ 1
1 −1 1− λ


= −λ[λ(λ− 1) + 1] + 1

= −λ3 + λ2 − λ+ 1

= −λ2(λ− 1)− (λ− 1)

= (1− λ)(λ2 + 1)

Thus λ1 = 1, λ2 = i and λ3 = −i. We seek ~u1 = [u, v, w]T such that (A− I)~u1 = 0: −1 1 0
0 −1 1
1 −1 0

 u
v
w

 =

 0
0
0

 ⇒ −u+ v = 0
−v + w = 0

⇒ v = u
w = v

⇒ ~u1 =

 u
u
u

 .
Choose u = 1 thus select ~u1 = [1, 1, 1]T . Now seek ~u2 such that (A− iI)~u2 = 0 −i 1 0

0 −i 1
1 −1 1− i

 u
v
w

 =

 0
0
0

 ⇒
v = iu

w = iv = i(iu) = −u
(i− 1)w = u− v

⇒ ~u2 =

 u
iu
−u

 .
Set u = 1 to select the following complex solution:

~x(t) = eit

 1
i
−1

 =

 eit

ieit

−eit

 =

 cos(t) + i sin(t)
i cos(t)− sin(t)
− cos(t)− i sin(t)

 =

 cos(t)
− sin(t)
− cos(t)

+ i

 sin(t)
cos(t)
− sin(t)

 .
We select the second and third solutions by taking the real and imaginary parts of the above complex solution;
~x2(t) = Re(~x(t)) and ~x3(t) = Im(~x(t)). The general solution follows:

~x(t) = c1e
t

 1
1
1

+ c2

 cos(t)
− sin(t)
− cos(t)

+ c3

 sin(t)
cos(t)
− sin(t)

 .
The fundamental solution set and fundamental matrix of the example above are simply:

~x1 =

 et

et

et

 , ~x2 =

 cos(t)
− sin(t)
− cos(t)

 , ~x3 =

 sin(t)
cos(t)
− sin(t)

 & X =

 et cos(t) sin(t)
et − sin(t) cos(t)
et − cos(t) − sin(t)
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5.5 solutions by matrix exponential

Recall the Maclaurin series for the exponential is given by:

et =

∞∑
j=o

tj

j!
= 1 + t+

1

2
t2 +

1

6
t3 + · · ·

This provided the inspiration for the definition given below7

Definition 5.5.1. matrix exponential

Suppose A is an n× n matrix then we define the matrix exponential of A by:

eA =

∞∑
j=0

Aj

j!
= I +A+

1

2
A2 +

1

6
A3 + · · ·

Suppose A = 0 is the zero matrix. Note that

e0 = I + 0 +
1

2
02 + · · · = I.

Furthermore, as (−A)j = (−1)jAj it follows that e−A = I −A+ 1
2A

2 − 1
6A

3 + · · · . Hence,

eAe−A =

(
I +A+

1

2
A2 +

1

6
A3 + · · ·

)(
I −A+

1

2
A2 − 1

6
A3 + · · ·

)
= I −A+

1

2
A2 − 1

6
A3 + · · ·+A

(
I −A+

1

2
A2 + · · ·

)
+

1

2
A2

(
I −A+ · · ·

)
+

1

6
A3I + · · ·

= I +A−A+
1

2
A2 −A2 +

1

2
A2 − 1

6
A3 +

1

2
A3 − 1

2
A3 +

1

6
A3 + · · ·

= I.

I have only shown the result up to the third-order in A, but you can verify higher orders if you wish. We
find an interesting result:

(eA)−1 = e−A ⇒ det(eA) 6= 0 ⇒ columns of A are LI.

7the concept of an exponential actually extends in much more generality than this, we could derive this from more
basic and general principles, but that has little to do with this course so we behave. In addition, the reason the series
of matrices below converges is not immediately obvious, see my linear notes for a sketch of the analysis needed here
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Noncommutativity of matrix multiplication spoils the usual law of exponents. Let’s examine how this
happens. Suppose A,B are square matrices. Calculate eA+B to second order in A,B:

eA+B = I + (A+B) +
1

2
(A+B)2 + · · · = I +A+B +

1

2

(
A2 +AB +BA+B2

)
+ · · ·

On the other hand, calculate the product eAeB to second order in A,B,

eAeB = (I +A+
1

2
A2 + · · · )(I +B +

1

2
B2 + · · · ) = I +A+B +

1

2

(
A2 + 2AB +B2

)
+ · · ·

We find that, to second order, eAeB − eA+B = 1
2 (AB − BA). Define the commutator [A,B] = AB − BA

and note (after a short calculation)

eAeB = eA+B+ 1
2 [A,B]+···

When A,B are commuting matrices the commutator [A,B] = AB −BA = AB −AB = 0 hence the usual
algebra eAeB = eA+B applies. It turns out that the higher-order terms in the boxed formula above can be
written as nested-commutators of A and B. This formula is known as the Baker-Campbell-Hausdorff, it is
the essential calculation in the theory of matrix Lie groups (which is the math used to formulate important
symmetry aspects of modern physics).

Let me pause8 to give a better proof that AB = BA implies eAeB = eA+B . The heart of the argument follows
from the fact the binomial theorem holds for (A + B)k in this context. I seek to prove by mathematical

induction on k that (A + B)k =
∑k
n=0

(
k
n

)
Ak−nBn. Note k = 1 is clearly true as

(
1
0

)
=
(
1
1

)
= 1 and

(A+B)1 = A+B. Assume inductively the binomial theorem holds for k and seek to prove k + 1 true:

(A+B)k+1 = (A+B)k(A+B)

=

( k∑
n=0

(
k

n

)
Ak−nBn

)
(A+B) : by induction hypothesis

=

k∑
n=0

(
k

n

)
Ak−nBnA+

k∑
n=0

(
k

n

)
Ak−nBnB

=

k∑
n=0

(
k

n

)
Ak−nABn +

k∑
n=0

(
k

n

)
Ak−nBn+1 : AB = BA implies BnA = ABn

=

k∑
n=0

(
k

n

)
Ak+1−nBn +

k∑
n=0

(
k

n

)
Ak−nBn+1

8you may skip ahead if you are not interested in how to make arguments precise, in fact, even this argument has
gaps, but I include it to give the reader some idea about what is missing when we resort to + · · · -style induction
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Continuing,

(A+B)k+1 = Ak+1 +

k∑
n=1

(
k

n

)
Ak+1−nBn +

k−1∑
n=0

(
k

n

)
Ak−nBn+1 +Bk+1

= Ak+1 +

k∑
n=1

(
k

n

)
Ak+1−nBn +

k∑
n=1

(
k

n− 1

)
Ak+1−nBn +Bk+1

= Ak+1 +

k∑
n=1

[(
k

n

)
+

(
k

n− 1

)]
Ak+1−nBn +Bk+1

= Ak+1 +

k∑
n=1

(
k + 1

n

)
Ak+1−nBn +Bk+1 : by Pascal’s Triangle

=

k+1∑
n=0

(
k + 1

n

)
Ak+1−nBn

Which completes the induction step and we find by mathematical induction the binomial theorem for com-
muting matrices holds for all k ∈ N . Consider the matrix expontial formula in light of the binomial theorem,
also recall

(
k+1
n

)
= k!

n!(k−n)! ,

eA+B =

∞∑
k=0

1

k!
(A+B)k

=

∞∑
k=0

k∑
n=0

1

k!

k!

n!(k − n)!
Ak−nBn

=

∞∑
k=0

k∑
n=0

1

n!

1

(k − n)!
Ak−nBn

=

∞∑
k=0

k∑
n=0

1

n!

1

(k − n)!
Ak−nBn

On the other hand, if we compute the product of eA with eB we find:

eAeB =

∞∑
j=0

1

j!
Aj

∞∑
n=0

1

n!
Bn =

∞∑
j=0

∞∑
n=0

1

n!

1

j!
AjBn

It follows9 that eAeB = eA+B . We use this result implicitly in much of what follows in this section.

9after some analytical arguments beyond this course; what is missing is an explicit examination of the infinite
limits at play here, the doubly infinite limits seem to reach the same terms but the structure of the sums differs
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Suppose A is a constant n× n matrix. Calculate10

d
dt

[
exp(tA)

]
= d

dt

[ ∞∑
k=0

1
k! t

kAk
]

defn. of matrix exponential

=

∞∑
k=0

d
dt

[
1
k! t

kAk
]

since matrix exp. uniformly conv.

=

∞∑
k=0

k
k! t

k−1Ak Ak constant and d
dt (t

k) = ktk−1

= A

∞∑
k=1

1
(k−1)! t

k−1Ak−1 since k! = k(k − 1)! and Ak = AAk−1.

= Aexp(tA) defn. of matrix exponential.

I suspect the following argument is easier to follow:

d
dt (exp(tA)) = d

dt (I + tA+ 1
2 t

2A2 + 1
3! t

3A3 + · · · )
= d

dt (I) + d
dt (tA) + 1

2
d
dt (t

2A2) + 1
3·2

d
dt (t

3A3) + · · ·
= A+ tA2 + 1

2 t
2A3 + · · ·

= A(I + tA+ 1
2 t

2A2 + · · · )
= Aexp(tA). �

Whichever notation you prefer, the calculation above completes the proof of the following central theorem
for this section:

Theorem 5.5.2.

Suppose A ∈ Rn×n. The matrix exponential etA gives a fundamental matrix for d~x
dt = A~x.

Proof: we have already shown that (1.) etA is a solution matrix ( ddt [e
tA] = AetA) and (2.) (etA)−1 = e−tA

thus the columns of etA are LI. �

It follows that the general solution of d~x
dt = A~x is simply ~x(t) = etA~c where ~c = [c1, c2, . . . , cn]T determines

the initial conditions of the solution. In theory this is a great formula, we’ve solved most of the problems we
set-out to solve. However, more careful examination reveals this result is much like the result from calculus;
any continuous function is integrable. Ok, so f continuous on an interval I implies F exists on I and F ′ = f ,
but... how do you actually calculate the antiderivative F? It’s possible in principle, but in practice the
computation may fall outside the computation scope of the techniques covered in calculus11.

Example 5.5.3. Suppose x′ = x, y′ = 2y, z′ = 3z then in matrix form we have: x
y
z

′ =

 1 0 0
0 2 0
0 0 3

 x
y
z


10the term-by-term differentiation theorem for power series extends to a matrix power series, the proof of this

involves real analysis
11for example,

∫ sin(x)dx
x

or
∫
e−x

2

dx are known to by incalculable in terms of elementary functions
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The coefficient matrix is diagonal which makes the k-th power particularly easy to calculate,

Ak =

 1 0 0
0 2 0
0 0 3

k =

 1 0 0
0 2k 0
0 0 3k


⇒ exp(tA) =

∞∑
k=0

tk

k!

 1 0 0
0 2k 0
0 0 3k

 =


∑∞
k=0

tk

k! 1
k 0 0

0
∑∞
k=0

tk

k! 2
k 0

0 0
∑∞
k=0

tk

k! 3
k


⇒ exp(tA) =

 et 0 0
0 e2t 0
0 0 e3t


Thus we find three solutions to x′ = Ax,

x1(t) =

 et

0
0

 x2(t) =

 0
e2t

0

 x3(t) =

 0
0
e3t


In turn these vector solutions amount to the solutions x = et, y = 0, z = 0 or x = 0, y = e2t, z = 0 or
x = 0, y = 0, z = e3t. It is easy to check these solutions.

Of course the example above is very special. In order to unravel the mystery of just how to calculate the
matrix exponential for less trivial matrices we return to the construction of the previous section. Let’s see
what happens when we calculate etA~u for ~u and e-vector with e-value λ.

etA~u = et(A−λI+λI)~u : added zero anticipating use of (A− λI)~u = 0,

= etλI+t(A−λI)~u

= etλIet(A−λI)~u : noted that tλI commutes with t(A− λI),

= etλIet(A−λI)~u : a short exercise shows etλI = etλI.

= etλ
(
I + t(A− λI) +

t2

2
t(A− λI)2 + · · ·

)
~u

= etλ
(
I~u+ t(A− λI)~u+

t2

2
t(A− λI)2~u+ · · ·

)
= etλ~u : as it was given (A− λI)~u = 0 hence all but the first term vanishes.

The fact that this is a a solution of ~x ′ = A~x was already known to us, however, it is nice to see it arise
from the matrix exponential. Moreover the calculation above reveals the central formula that guides the
technique of this section. The magic formula. For any square matrix and possibly constant λ we find:

etA = etλ
(
I + t(A− λI) +

t2

2
(A− λI)2 + · · ·

)
= etλ

∞∑
k=0

tk

k!
(A− λI)k.

When we choose λ as an e-value and multiply this formula by the corresponding e-vector then this infinite
series truncates nicely to reveal eλt~u. It follows that we should define vectors which truncate the series at
higher order, this is the natural next step:
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Definition 5.5.4. generalized eigenvectors and chains of generalized e-vectors

Given an eigenvalue λ a nonzero vector ~u such that (A − λI)p~u = 0 is called an generalized
eigenvector of order p with eigenvalue λ. If ~u1, ~u2, . . . , ~up are nonzero vectors such that
(A−λI)~uj = ~uj−1 for j = 2, 3, . . . , p and ~u1 is an e-vector with e-value λ then we say {~u1, ~u2, . . . , ~up}
forms a chain of generalized e-vectors of length p.

In the notation of the definition above, it is true that ~uk is a generalized e-vector of order k with e-value λ.
Let’s examine k = 2,

(A− λI)~u2 = ~u1 ⇒ (A− λI)2~u2 = (A− λI)~u1 = 0.

Then suppose inductively the claim is true for k which means (A− λI)k~uk = 0, consider k + 1

(A− λI)~uk+1 = ~uk ⇒ (A− λI)k+1~uk+1 = (A− λI)k~uk = 0.

Hence, in terms of the notation in the definition above, we have shown by mathematical induction that ~uk
is a generalized e-vector of order k with e-value λ.

I do not mean to claim this is true for all k ∈ N. In practice for an n × n matrix we cannot find a chain
longer than length n. However, up to that bound such chains are possible for an arbitrary matrix.

Example 5.5.5. The matrices below are in Jordan form which means the vectors e1 = [1, 0, 0, 0, 0]T etc...
e5 = [0, 0, 0, 0, 1]T are (generalized)-e-vectors:

A =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 3 1
0 0 0 0 3

 & B =


4 1 0 0 0
0 4 0 0 0
0 0 5 0 0
0 0 0 6 0
0 0 0 0 6


You can easily calculate (A−2I)e1 = 0, (A−2I)e2 = e1, (A−2I)e3 = e2 or (A−3I)e4 = 0, (A−2I)e5 = e4.
On the other hand, (B−4I)e1 = 0, (B−4I)e2 = e1 and (A−5I)e3 = 0 and (A−6I)e4 = 0, (A−6I)e5 = 0.
The matrix B needs only one generalized e-vector whereas the matrix A has 3 generalized e-vectors.

Let’s examine why chains are nice for the magic formula:

Example 5.5.6. Problem: Suppose A is a 3× 3 matrix with a chain of generalized e-vector ~u1, ~u2, ~u3 with
respect to e-value λ = 2. Solve d~x

dt = A~x in view of these facts.

Solution: we are given (A− 2I)~u1 = 0 and (A− 2I)~u2 = ~u1 and (A− 2I)~u3 = ~u2. It is easily shown that
(A− 2I)2~u2 = 0 and (A− 2I)3~u3 = 0. It is also possible to prove {~u1, ~u2, ~u3} is a LI set. Apply the magic
formula with λ = 2 to derive the following results:

1. ~x1(t) = etA~u1 = e2t~u1 (we’ve already shown this in general earlier in this section)

2. ~x2(t) = etA~u2 = e2t
(
I~u2 + t(A− 2I)~u2 + t2

2 (A− 2I)2~u2 + · · ·
)

= e2t(~u2 + t~u1).

3. note that (A− 2I)2~u3 = (A− 2I)~u2 = ~u1 hence:

~x3(t) = etA~u3 = e2t
(
I~u3 + t(A− 2I)~u3 +

t2

2
(A− 2I)2~u3 + · · ·

)
= e2t(~u3 + t~u2 +

t2

2
~u1).
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Therefore, ~x(t) = c1e
2t~u1 + c2e

2t(~u2 + t~u1) + c3e
2t(~u3 + t~u2 +

t2

2
~u1) is the general solution.

Perhaps it is interesting to calculate etA[~u1|~u2|~u3] in view of the calculations in the example above. Observe:

etA[~u1|~u2|~u3] = [etA~u1|etA~u2|etA~u3] = e2t
[
~u1

∣∣∣∣~u2 + t~u1

∣∣∣∣~u3 + t~u2 +
t2

2
~u1

]
.

I suppose we could say more about this formula, but let’s get back on task: we seek to complete the solution
of the unsolved problems of the previous section. It is our hope that we can find generalized e-vector solutions
to complete the fundamental solution sets in Examples 5.4.4, 5.4.10,5.4.12 and 5.4.13.

Example 5.5.7. Problem: (returning to Example 5.4.4) solve d~x
dt = A~x where A =

[
3 1
−4 −1

]
Solution: we found λ1 = 1 and λ2 = 1 and a single e-vector ~u1 =

[
1
−2

]
. Now seek a generalized e-vector

~u2 = [u, v]T such that (A− I)~u2 = ~u1,[
2 1
−4 −2

] [
u
v

]
=

[
1
−2

]
⇒ 2u+ v = 1 ⇒ v = 1− 2u, u 6= 0 ⇒ ~u1 =

[
u

1− 2u

]
We choose u = 0 for convenience and thus find ~u2 = [0, 1]T hence the fundamental solution

~x2(t) = etA~u2 = et(I + t(A− I) + · · · ) ~u2 = et(~u2 + t ~u1) = et
[

t
1− 2t

]
.

Therefore, we find ~x(t) = c1e
t

[
1
−2

]
+ c2e

t

[
t

1− 2t

]
.

Example 5.5.8. Problem: (returning to Example 5.4.10) solve d~x
dt = A~x where

A =

 2 1 0
0 2 0
1 −1 3

.

Solution: we found λ1 = 2, λ2 = 2 and λ3 = 3 and we also found e-vector ~u1 = [1, 0,−1]T with e-value 2
and e-vector ~u2 = [0, 0, 1]T . Seek ~u3 such that (A − 2I) ~u3 = ~u1 since we are missing a solution paired with
λ2 = 2. 0 1 0

0 0 0
1 −1 1

 u
v
w

 =

 1
0
−1

 ⇒ v = 1
u− 1 + w = −1

⇒ v = 1
w = −u ⇒ ~u1 =

 u
1
−u

 .
Choose u = 0 to select ~u1 = [0, 1, 0]T . It follows from the magic formula that ~x3(t) = etA~u3 = e2t(~u3 + t~u1).
Hence, the general solution is

~x(t) = c1e
2t

 1
0
−1

+ c2e
3t

 0
0
1

+ c3e
2t

 t
1
−t

 .
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Once more we found a generalized e-vector of order two to complete the solution set and find ~x3 in the
example above. You might notice that had we replaced the choice u = 0 in both of the last examples
with some nonzero u then we would have added a copy of ~x1 to the generalized e-vector solution. This is
permissable since the sum of solutions to the system ~x ′ = A~x is once more a solution. This freedom works
hand-in-hand with the ambiguity of the generalized e-vector problem.

Example 5.5.9. Problem: (returning to Example 5.4.12) we seek to solve d~x
dt = A~x where A = −2 0 0

4 −2 0
1 0 −2

.

Solution: We already found λ1 = −2, λ2 = −2 and λ3 = −2 and a pair of e-vectors ~u1 = [0, 1, 0]T and
v = 0, w = 1 to select ~u2 = [0, 0, 1]T . We face a dilemma, should we look for a chain that ends with
~u1 = [0, 1, 0]T or ~u2 = [0, 0, 1]T ? Generally it may not be possible to do either. Thus, we set aside the chain
condition and instead look for directly for solutions of (A+ 2I)2~u3 = 0.

(A+ 2I)2 =

 0 0 0
4 0 0
1 0 0

 0 0 0
4 0 0
1 0 0

 =

 0 0 0
0 0 0
0 0 0


Since we seek ~u3 which forms a LI set with ~u1, ~u2 it is natural to choose ~u3 = [1, 0, 0]T . Calculate,

~x3(t) = etA~u3 = e−2t(I~u3 + t(A+ 2I)~u3 +
t2

2
(A+ 2I)2~u3 + · · · ) (5.1)

= e−2t

 1
0
0

+ t

 0 0 0
4 0 0
1 0 0

 1
0
0


= e−2t

 1
4t
t


Thus we find the general solution:

~x(t) = c1e
−2t

 0
1
0

+ c2e
−2t

 0
0
1

+ c3e
−2t

 1
4t
t

 .
I leave the complete discussion of the chains in the subtle case above for the second course on linear alge-
bra. See Insel Spence and Friedberg’s Linear Algebra text for an accessible treatment aimed at advanced
undergraduates.

Example 5.5.10. Problem: (returning to Example 5.4.13) we seek to solve d~x
dt = A~x where A = 2 1 −1

−3 −1 1
9 3 −4

.

Solution: we found λ1 = −1, λ2 = −1 and λ3 = −1 and a single e-vector ~u1 = [1, 0, 3]T . Seek ~u2 such that
(A+ I)~u2 = ~u1, 3 1 −1

−3 0 1
9 3 −3

 u
v
w

 =

 1
0
3

 ⇒ 3u+ v − w = 1
−3u+ w = 0

⇒ w = 3u
v = w − 3u+ 1

⇒ ~u2 =

 0
1
0

 .
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where we set u = 0 for convenience. Continuing, we seek ~u3 where (A+ I)~u3 = ~u2, 3 1 −1
−3 0 1
9 3 −3

 u
v
w

 =

 0
1
0

 ⇒ 3u+ v − w = 0
−3u+ w = 1

⇒ w = 1 + 3u
v = w − 3u

⇒ w = 1 + 3u
v = 1

Choose u = 0 to select ~u3 = [0, 1, 1]T . Given the algebra we’ve completed we know that

(A+ I)~u1 = (A+ I)2~u2 = (A+ I)3~u3 = 0, (A+ I)~u2 = ~u1, (A+ I)~u3 = ~u2, (A+ I)2~u3 = ~u1

These identities paired with the magic formula with λ = −1 yield:

etA~u1 = e−t~u1 & etA~u2 = e−t(~u2 + t~u1) & etA~u3 = e−t(~u3 + t~u2 +
t2

2
~u1)

Therefore, we find general solution:

~x(t) = c1e
−t

 1
0
3

+ c2e
−t

 t
1
3t

+ c3e
−t

 0

1 + t+ t2

2

1 + t2

2

 .
The method we’ve illustrated extends naturally to the case of repeated complex e-values where there are
insufficient e-vectors to form the general solution.

Example 5.5.11. Problem: Suppose A is a 6 × 6 matrix with a chain of generalized e-vector ~u1, ~u2, ~u3
with respect to e-value λ = 2 + i. Solve d~x

dt = A~x in view of these facts.

Solution: we are given (A − (2 + i)I)~u1 = 0 and (A − (2 + i)I)~u2 = ~u1 and (A − (2 + i)I)~u3 = ~u2. It is
easily shown that (A− (2 + i)I)2~u2 = 0 and (A− (2 + i)I)3~u3 = 0. It is also possible to prove {~u1, ~u2, ~u3} is
a LI set. Apply the magic formula with λ = (2 + i) to derive the following results:

1. ~x1(t) = etA~u1 = e(2+i)t~u1 (we’ve already shown this in general earlier in this section)

2. ~x2(t) = etA~u2 = e(2+i)t
(
I~u2 + t(A− (2 + i)I)~u2 + t2

2 (A− (2 + i)I)2~u2 + · · ·
)

= e(2+i)t(~u2 + t~u1).

3. note that (A− (2 + i)I)2~u3 = (A− (2 + i)I)~u2 = ~u1 hence:

~x3(t) = etA~u3 = e(2+i)t
(
I~u3 + t(A− (2 + i)I)~u3 +

t2

2
(A− (2 + i)I)2~u3 + · · ·

)
= e(2+i)t(~u3 + t~u2 +

t2

2
~u1).

The solutions ~x1(t), ~x2(t) and ~x3(t) are complex-valued solutions. To find the real solutions we select the
real and imaginary parts to form the fundamental solution set

{Re(~x1), Im(~x1), Re(~x2), Im(~x2), Re(~x3), Im(~x3)}

I leave the explicit formulas to the reader, it is very similar to the case we treated in the last section for the
complex e-vector problem.

Suppose A is idempotent or order k then Ak−1 6= I and Ak = I. In this case the matrix exponential
simplifies:

etA = I + tA+
t2

2
A2 + · · ·+ tk−1

(k − 1)!
Ak−1 +

(
tk

k!
+

tk+1

(k + 1)!
+ · · ·

)
I
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However, t
k

k! + tk+1

(k+1)! + · · · = et−1− t− t2

2 −· · ·−
tk−1

(k−1)! hence we can calculate etA nicely in such a case. On

the other hand, if the matrix A is nilpotent of order k then Ak−1 6= 0 and Ak = 0. Once again, the matrix
exponential simplifies:

etA = I + tA+
t2

2
A2 + · · ·+ tk−1

(k − 1)!
Ak−1

Therefore, if A is nilpotent then we can calculate the matrix exponential directly without too much trouble...
of course this means we can solve ~x ′ = A~x without use of the generalized e-vector method.

Finally, I conclude this section with a few comments about direct computation via the Cayley Hamilton
Theorem (this is proved in an advanced linear algebra course)

Theorem 5.5.12.

If A ∈ Rn×n and p(λ) = det(A− λI) = 0 is the characteristic equation then p(A) = 0.

Note that if p(x) = x2 + 3 then p(A) = A2 + 3I.

Example 5.5.13. Problem: solve the system given in Example 5.4.13) by applying the Cayley

Hamilton Theorem to A =

 2 1 −1
−3 −1 1
9 3 −4

.

Solution: we found p(λ) = −(λ− 1)3 = 0 hence −(A− I)3 = 0. Consider the magic formula:

etA = et(I + t(A− I) +
t2

2
(A− I)2 +

t3

3!
(A− I)3 + · · · ) = et(I + t(A− I) +

t2

2
(A− I)2)

Calculate,

A− I =

 1 1 −1
−3 −2 1
9 3 −5

 & (A− I)2 =

 −11 −4 5
12 2 −4
−45 −12 19


Therefore,

etA = et

 1 + t− 11t2

2 t− 2t2 −t+ 5t2

2
−3t+ 6t2 1− 2t+ t2 t− 2t2

9t− 45t2

2 3t− 6t2 1− 5t− 19t2

2


The general solution is given by ~x(t) = etA~c.

There are certainly additional short-cuts and deeper understanding that stem from a working knowledge
of full-fledged linear algebra, but, I hope I have shown you more than enough in these notes to solve any
constant-coefficient system ~x ′ = A~x. It turns out there are always enough generalized e-vectors to complete
the solution. The existence of the basis made of generalized e-vectors (called a Jordan basis) is a deep
theorem of linear algebra. It is often, sadly, omitted from undergraduate linear algebra texts. The pair of
examples below illustrate some of the geometry behind the calculations of this section.
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Example 5.5.14. Consider for example, the system

x′ = x+ y, y′ = 3x− y

We can write this as the matrix problem[
x′

y′

]
︸ ︷︷ ︸
d~x/dt

=

[
1 1
3 −1

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

~x

It is easily calculated that A has eigenvalue λ1 = −2 with e-vector ~u1 = (−1, 3) and λ2 = 2 with e-vectors
~u2 = (1, 1). The general solution of d~x/dt = A~x is thus

~x(t) = c1e
−2t
[
−1

3

]
+ c2e

t

[
1
1

]
=

[
−c1e−2t + c2e

2t

3c1e
−2t + c2e

2t

]
So, the scalar solutions are simply x(t) = −c1e−2t + c2e

2t and y(t) = 3c1e
−2t + c2e

2t .

Thus far I have simply told you how to solve the system d~x/dt = A~x with e-vectors, it is interesting to
see what this means geometrically. For the sake of simplicity we’ll continue to think about the preceding
example. In it’s given form the DEqn is coupled which means the equations for the derivatives of the
dependent variables x, y cannot be solved one at a time. We have to solve both at once. In the next example
I solve the same problem we just solved but this time using a change of variables approach.

Example 5.5.15. Suppose we change variables using the diagonalization idea: introduce new variables x̄, ȳ
by P (x̄, ȳ) = (x, y) where P = [~u1|~u2]. Note (x̄, ȳ) = P−1(x, y). We can diagonalize A by the similarity
transformation by P ; D = P−1AP where Diag(D) = (−2, 2). Note that A = PDP−1 hence d~x/dt = A~x =
PDP−1~x. Multiply both sides by P−1:

P−1
d~x

dt
= P−1PDP−1~x ⇒ d(P−1~x)

dt
= D(P−1~x).

You might not recognize it but the equation above is decoupled. In particular, using the notation (x̄, ȳ) =
P−1(x, y) we read from the matrix equation above that

dx̄

dt
= −2x̄,

dȳ

dt
= 2ȳ.

Separation of variables and a little algebra yields that x̄(t) = c1e
−2t and ȳ(t) = c2e

2t. Finally, to find the
solution back in the original coordinate system we multiply P−1~x = (c1e

−2t, c2e
2t) by P to isolate ~x,

~x(t) =

[
−1 1

3 1

] [
c1e
−2t

c2e
2t

]
=

[
−c1e−2t + c2e

2t

3c1e
−2t + c2e

2t

]
.

This is the same solution we found in the last example. Usually linear algebra texts present this solution
because it shows more interesting linear algebra, however, from a pragmatic viewpoint the first method is
clearly faster.
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Finally, we can better appreciate the solutions we found if we plot the direction field (x′, y′) = (x+y, 3x−y) via
the ”pplane” tool in Matlab. I have clicked on the plot to show a few representative trajectories (solutions):
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5.6 nonhomogeneous problem

Theorem 5.6.1.

The nonhomogeneous case ~x ′ = A~x + ~f the general solution is ~x(t) = X(t)~c + ~xp(t) where ~c is a
vector of constants, X is a fundamental matrix for the corresponding homogeneous system and ~xp
is a particular solution to the nonhomogeneous system. We can calculate ~xp(t) = X(t)

∫
X−1 ~fdt.

Proof: suppose that ~xp = X~v for X a fundamental matrix of ~x ′ = A~x and some vector of unknown functions

~v. We seek conditions on ~v which make ~xp satisfy ~xp
′ = A~xp + ~f . Consider,

(~xp)
′ = (X~v)′ = X ′~v +X~v′ = AX~v +X~v′

But, ~xp
′ = A ~Xp + ~f = AX~v + ~f hence

X d~v
dt = ~f ⇒ d~v

dt = X−1 ~f

Integrate to find ~v =
∫
X−1 ~fdt therefore xp(t) = X(t)

∫
X−1 ~fdt. �

If you ever work through variation of parameters for higher order ODEqns then you should appreciate the
calculation above. In fact, we can derive n-th order variation of parameters from converting the n-th order
ODE by reduction of order to a system of n first order linear ODEs. You can show that the so-called
Wronskian of the fundamental solution set is precisely the determinant of the fundamental matrix for the
system ~x ′ = A~x where A is the companion matrix.

Example 5.6.2. Problem: Suppose that A =

[
3 1
3 1

]
and ~f =

[
et

e−t

]
, find the general solution of the

nonhomogenous DEqn ~x ′ = A~x+ ~f .

Solution: you can easily show ~x ′ = A~x has fundamental matrix X =

[
1 e4t

−3 e4t

]
. Use variation of

parameters for systems of ODEs to constuct ~xp. First calculate the inverse of the fundamental matrix, for a
2× 2 we know a formula:

X−1(t) = 1
e4t−(−3)e4t

[
e4t −e4t
3 1

]
= 1

4

[
1 −1

3e−4t e−4t

]
Thus,

xp(t) = X(t)

∫
1
4

[
1 −1

3e−4t e−4t

] [
et

e−t

]
dt = 1

4X(t)

∫ [
et − e−t

3e−3t + e−5t

]
dt

= 1
4

[
1 e4t

−3 e4t

] [
et + e−t

−e−3t − 1
5e
−5t

]
= 1

4

[
1(et + e−t) + e4t(−e−3t − 1

5e
−5t)

−3(et + e−t) + e4t(−e−3t − 1
5e
−5t)

]
= 1

4

[
et + e−t − et − 1

5e
−t

−3et − 3e−t − et − 1
5e
−t

]
= 1

4

[
4
5e
−t

−4et − 16
5 e
−t

]
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Therefore, the general solution is

~x(t) = c1

[
1
−3

]
+ c2e

4t

[
1
1

]
+ 1

5

[
e−t

−et − 4e−t

]
.

The general scalar solutions implicit within the general vector solution ~x(t) = [x(t), y(t)]T are

x(t) = c1 + c2e
4t + 1

5e
−t y(t) = −3c1 + c2e

4t − 1
5e
t − 4

5e
−t.

I might ask you to solve a 3×3 system in the homework. The calculation is nearly the same as the preceding
example with the small inconvenience that finding the inverse of a 3× 3 requires some calculation.

Remark 5.6.3.

You might wonder how would you solve a system of ODEs x′ = Ax such that the coefficients Aij are
not constant. The theory we’ve discussed holds true with appropriate modification of the interval of
applicability. In the constant coefficient case I = R so we have had no need to discuss it. In order
to solve non-constant coefficient problems we will need to find a method to solve the homogeneous
problem to locate the fundamental matrix. Once that task is accomplished the technique of this
section applies to solve any associated nonhomogeneous problem.



Chapter 6

the Laplace transform technique

I roughly follow Chapter 9 of Ritger and Rose. The section on linear systems analysis is deeper than many
texts. For the most part the material can be found in any introductory DEqns text. I add discussion of
periodic functions, that seems to be missing from Ritger and Rose. It is somewhat unlikely for me to have
time to type these notes for the Spring 2013 semester. I will probably post some pdf’s and link to somewhich
are already posted on my website when we approach this material in lecture. It is important you take
complete notes in lecture.

6.1 history and overview

6.2 definition and existence

6.3 basic techniques

6.4 the inverse transform

6.5 discontinuous functions

6.6 transform of periodic functions

6.7 the dirac delta device

6.8 convolution

6.9 linear system theory
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Chapter 7

energy analysis and the phase plane
approach

This chapter collects our thoughts on how to use energy to study problems in Newtonian mechanics. In
particular we explain how to plot possible motions in the Poincare plane (x, ẋ plane, or the one-dimensional
tangent bundle if you’re interested). A simple method allows us to create plots in the Poincare plane from
corresponding data for the plot of the potential energy function. Nonconservative examples can be included
as modifications of corresponding conservative systems.

All of this said, there are mathematical techniques which extend past physical examples. We begin by dis-
cussing such generic features. In particular, the nature of critical points for autonomous linear ODEs have
structure which is revealed from the spectrum (list of eigenvalues from smallest to largest) of the coefficient
matrix. In fact, such observations are easily made for n-dimensional problems. Of course our graphical
methods are mainly of use for two-dimensional problems. We discuss almost linear systems and some of
the deeper results due to Poincare for breadth. We omit discussion of Liapunov exponents, however the
interested reader would be well-advised to study that topic along side what is discussed here (chapter 10 of
Ritger & Rose has much to add to these notes).

Time-permitting we may exhibit the linearization of a non-linear system of ODEs and study how successful
our approximation of the system is relative to the numerical data exhibited via the pplane tool. We also may
find time to study the method of characteristics as presented in Zachmanoglou and Thoe and some of the
deeper symmetry methods which are describe in Peter Hydon’s text or Brian Cantwell’s text on symmetries
in differerential equations.
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7.1 phase plane and stability

This section concerns largely qualitative analysis for systems of ODEs. We know from the existence theorems
the solutions to a system of ODEs can be unique and will exist given continuity of the coefficient matrix which
defines the system. However, certain points where the derivatives are all zero are places where interesting
things tend to happen to the solution set. Often many solutions merge at such a critical point.

Definition 7.1.1. critical point for a system of ODEs in normal form

If the system of ODEs d~x
dt = F (~x, t) has a solution ~x for which to has d~x

dt (to) = 0 then ~x(to) is called
a critical point of the system.

There are two major questions that concern us: (1.) where are the critical point(s) for a given system of
ODEs ? (2.) do solutions near a given critical point tend to stay near the point or flow far away ? Let us
begin by studying a system of two autonomous ODEs

dx

dt
= g(x, y) &

dy

dt
= f(x, y)

The location of critical points becomes an algebra problem: the system above has a critical point wherever
both f(xo, yo) = 0 and g(xo, yo) = 0.

Example 7.1.2. Problem: find critical points of the system dx
dt = x2 − 3x+ 2 , dy

dt = sin(xy).

Solution: a critical point must simultaneously solve x2 − 3x + 2 = 0 and sin(xy) = 0. The polynomial
equation factors to yield (x−1)(x−2) = 0 hence we require the point to have either x = 1 or x = 2. If x = 1
then sin(y) = 0 hence y = nπ for n ∈ Z. It follows that (1, nπ) is a critical point for each n ∈ Z. Likewise,
if x = 2 then sin(2y) = 0 hence 2y = kπ for k ∈ Z hence y = kπ/2. It follows that (2, kπ/2) is a critical
point for each k ∈ Z.
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The plot above was prepared with the pplane tool which you can find online. You can study the plot and
you’ll spot the critical points with ease. If you look more closely then you’ll see that some of the critical
points have solutions which flow into the point whereas others have solutions which flow out of the point. If
all the solutions flow into the point then we say the point is stable or asymptotically stable. Otherwise,
if some solutions flow away from the point without bound then the point is said to be unstable. I will
not attempt to give careful descriptions of these terms here. There is another type of stable point. Let me
illustrate it by example. The plot below shows sample solutions for the system dx

dt = y and dy
dt = sin(2x).

The points where y = 0 and x = nπ/2 for some n ∈ Z are critical points.

These critical points are stable centers. Obviously I used pplane to create the plot above, but another
method is known and has deep physical significance for problems such as the one illustrated above. The
method I discuss next is known as the energy method, I focus on a class of problems which directly stem
from a well-known physical problem.

Consider a mass m under the influence of a conservative force F = −dU/dx. Note:

ma = F ⇒ m
d2x

dt2
= −dU

dx
⇒ m

dx

dt

d2x

dt2
= −dx

dt

dU

dx
⇒ m

dx

dt

dv

dt
= −dx

dt

dU

dx

However, v dvdt = d
dt [

1
2v

2] and dx
dt
dU
dx = dU

dt hence,

m
d

dt
[
1

2
v2] = −dU

dt
⇒ d

dt

[
1

2
mv2 + U

]
= 0

In particular, we find that if x, v are solutions of ma = F then the associated energy function:

E(x, v) =
1

2
mv2 + U(x)

is constant along solutions of Newton’s Second Law. Furthermore, consider md2x
dt2 − F (x) = 0 as a second

order ODE. We can reduce it two a system of two ODEs in normal form by the standard substitution:
v = dx

dt . Using velocity as an independent coordinate gives:

dx

dt
= v &

dv

dt
=
F

m
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Critical points of this system occur wherever both v = 0 and F = 0 since m > 0 by physical assumptions.
Given our calculations concerning energy the solutions to this system must somehow parametrize the energy
level curves as they appear in the xv-plane. This xv-plane is called the phase plane or the Poincare plane
in honor of the mathematician who pioneered these concepts in the early 20-th century. Read Chapter 5
of Nagel Saff and Snider for a brief introduction to the concept of chaos and how the Poincare plane gave
examples which inspired many mathematicians to work on the problem over the century that followed (chaos
is still an active math research area).

Think further about the critical points of dx
dt = v & dv

dt = F
m . Recall we assumed F was conservative

hence there exists a potential energy function U such that F = −dUdx . This means the condition F = 0

gives dU
dx = 0. Ah HA ! this means that the critical points of the phase plane solutions must be on the

x-axis (where v = 0) at points where the potential energy U has critical points in the xU -plane. Here I am
contrasting the concept of critical point of a system with critical point ala calculus I. The xU -plane is called
the potential plane.

The analysis of the last paragraph means that we can use the potential energy diagram to create the phase
plane trajectories. This is closely tied to the specific mathematics of the energy function. Let us observe for
a particular energy Eo = 1

2mv
2 + U(x) we cannot have motions where U(x) < Eo since the kinetic energy

1
2mv

2 ≥ 0. Moreover, points where E = U are points where v = 0 and these correspond to points where the
motion either turns around or is resting.

In the plot above the top-graph is the potential plane plot whereas the lower plot is the corresponding
phase plane plot. The point (0, 0) is a stable center in the phase plane whereas (±1, 0) are unstable critical
points. The trajectories in the phase plane are constructed such that the critical points match-up and the
direction of all trajectories with v > 0 flow right whereas those with v < 0 flow left since dx

dt = v. Also, if

E > U at a critical point of U then the corresponding trajectory will have a horizontal tangent since dv
dt = 0

at such points. These rules force you to draw essentially the same pattern plotted above.
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All of the discussion above concerns the conservative case. In retrospect you should see the example dx
dt = y

and dy
dt = sin(2x) is the phase plane DEqn corresponding to m = 1 with F = sin(2x). If we add a friction

force Ff = −v then dv
dt = sin(2x) − v is Newton’s equation and we would study the system dx

dt = y and
dy
dt = sin(2x) − y. The energy E = 1

2v
2 − 1

2 cos(2x) is not conserved in this case. I will not work out the
explicit details of such analysis here, but perhaps you will find the constrast of the pplane plot below with
that previously given of interest:

This material is discussed in §12.4 of Nagel Saff and Snider. The method of Lyaponov as discussed in §12.5 is
a way of generalizing this energy method to autonomous ODEs which are not direct reductions of Newton’s
equation. That is a very interesting topic, but we don’t go too deep here. Let us conclude our brief study
of qualitative methods with a discussion of homogeneous constant coefficient linear systems. The
problem d~x

dt = A~x we solved explicitly by the generalized e-vector method and we can make some general
comments here without further work:

1. if all the e-values were both negative then the solutions will tend towards (0, 0) as t→∞ due to the
exponentials in the solution.

2. if any of the e-values were positive then the solutions will be unbounded as t→∞ since exponentials
in the solution.

3. if the e-value was pure imaginary then the motion is bounded since the formulas are just sines and
cosines which are bounded

4. if the e-value was complex with negative real part then the associated motion is stable and tends to
(0, 0) as the exponentials damp the sines and cosines in the t→∞ limit.

5. if the e-value was complex with positive real part then the associated motion is unstable and becomes
unbounded as the exponentials blow-up in the limit t→∞.

See the table in §12.2 on page 779 of Nagel Saff and Snider for a really nice summary. Note however, my
comments apply just as well to the n = 2 case as the n = 22 case. In short, the spectrum of the matrix A
determines the stability of the solutions for d~x

dt = A~x. The spectrum is the list of the e-values for A. We could
explicitly prove the claims I just made above, it ought not be too hard given all the previous calculations
we’ve made to solve the homoegeneous constant coefficient case. What follows is far less trivial.

Theorem 7.1.3.

If the almost linear system d~x
dt = A~x+ ~f(t, ~x) has a matrix A with e-values whose real parts are all

negative then the zero solution of the almost linear system is asymptotically stable. However, if A
has even one e-value with a positive real part then the zero solution is unstable.

This theorem is due to Poincare and Perron as is stated in section §12.7 page 824 of Nagel Saff and Snider.
Here is a sketch of the idea behind the theorem:
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1. when ~x is sufficiently small the term ~f(t, ~x) tends to zero hence the ODE is well-approximated by
d~x
dt = A~x

2. close to the origin the problem is essentially the same as that we have already solved thus the e-values
reveal the stability or instability of the origin.

In the pure imaginary case the theorem is silient because it is not generally known whether that pure cyclicity
of the localization of the ODE will be maintained globally or if it will be spoiled into spiral-type solutions.
Spirals can either go out or in and that is the trouble for the pure imaginary case.

This idea is just another appearance of the linearization concept from calculus. We can sometimes replace a
complicated, globally nonlinear ODE, with a simple almost linear system. The advantage is the usual one;
linear systems are easier to analyze.

In any event, to go deeper into these matters it would be wiser to think about manifolds and general
coordinate change since we are being driven to think about such issues like it or not. Have no fear, your
course ends here.



Chapter 8

orthogonal functions

This chapter roughly corresponds to Chapter 13 of Ritger & Rose. It is somewhat unlikely for me to have
time to type these notes for the Spring 2013 semester. I will probably post some pdf’s and link to somewhich
are already posted on my website when we approach this material in lecture. It is important you take
complete notes in lecture. That said, most of what I’ll do is just to disassemble fhe work of Ritger & Rose,
so reading your text is a good starting point.

8.1 boundary value problems

8.2 eigenvalue problems

8.3 a generalization of the dot-product for functions

8.4 series of orthogonal functions

8.5 Sturm-Lioville theorem

8.6 ordinary Fourier series
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Chapter 9

basic partial differential equations

This chapter roughly corresponds to Chapter 14 of Ritger & Rose. It is somewhat unlikely for me to have
time to type these notes for the Spring 2013 semester. I will probably post some pdf’s and link to somewhich
are already posted on my website when we approach this material in lecture. It is important you take
complete notes in lecture. That said, most of what I’ll do is just to disassemble fhe work of Ritger & Rose,
so reading your text is a good starting point. Moreover, Riger and Rose has some nice intutive explainations
of how the PDEs which we study are derived. I have numerous problems solved from Nagle Saff and Snider
and you’ll want to look at those once we get into the material a lecture or two. The solution of a PDE with
BV and initial conditions is fairly involved.

9.1 separation of variables

9.2 heat equations

9.3 wave equations

9.4 laplace’s equation

9.5 noncartesian problems
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