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preface

format of my notes

These notes were prepared with LATEX. You’ll notice a number of standard conventions in my notes:

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.

4. proofs start with a Proof: and are concluded with a □. However, we also use the discuss...
theorem format where a calculation/discussion leads to a theorem and the formal proof is left
to the reader.

The purpose of these notes is to organize a large part of the theory for this course. Your text
has much additional discussion about how to calculate given problems and, more importantly, the
detailed analysis of many applied problems. I include some applications in these notes, but my
focus is much more on the topic of computation and, where possible, the extent of our knowledge.
There are some comments in the text and in my notes which are not central to the course. To learn
what is most important you should come to class every time we meet.

sources and philosophy of my notes

I draw from a number of excellent sources to create these notes. Naturally, having taught from the
text for about a dozen courses, Nagle Saff and Snider has had great influence in my thinking on
DEqns, however, more recently I have been reading: the classic Introduction to Differential Equa-
tions by Albert Rabenstein. I reccomend that text for further reading. In particular, Rabenstein’s
treatment of existence and convergence is far deeper than I attempt in these notes. In addition, the
text Differential Equations with Applications by Ritger and Rose is a classic text with many details
that are lost in the more recent generation of texts. I am also planning to consult the texts by Rice
& Strange, Zill, Edwards & Penny , Finney and Ostberg, Coddington, Arnold, Zachmanoglou and
Thoe, Hille, Ince, Martin, Campbell as well as others I’ll add to this list once these notes are more
complete (some year).

Additional examples are also posted. My website has several hundred pages of solutions from prob-
lems in Nagle Saff and Snider. I hope you will read these notes and the required text as you study
differential equations this semester. My old lecture notes are sometimes useful, but I hope the the-
ory in these notes is superior in clarity and extent. My primary goal is the algebraic justification
of the computational essentials for differential equations. The organization of the required text is
doubtless not quite the same as these notes. I have recommended certain homeworks to help you
grow past the central theme of my teaching.

I should mention, topics which are very incomplete in this current version of my notes are:

1. theory of ODEs, Picard iteration (here is the most offensive offense as it regards math majors
taking this course)
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2. the special case of Frobenius method (Nagle Saff and Snider pick up the slack in what is left
out here)

3. the magic formulas of Ritger and Rose on constant coefficient case (these appear in the older
texts like Ince, but have been lost in many of the newer more expensive but less useful texts)

4. theory of orthogonal functions, Fourier techniques

5. separation of variables to solve PDEs (this could be another half course if expanded properly)

6. linear system analysis via Greens functions and the transfer function (this is another course
if expanded properly)

I have several hundred pages of handwritten notes and solutions posted on the course webpage.
There are discussions and calculations in some of those notes which extend past what I provide here.
Naturally, the best way to know what is important in your course is to attend class, attempt all the
assignments and do your best on the tests. The only way to really learn DEqns is to calculate on
your own. Remember, watching me solve DEqns is not the same is doing them yourself. Practice
is key.

Last semester I spent many hours collecting all the homework I have assigned in Differential Equa-
tions over the years. I called these Practice Problems. I’ve place these at the end of chapters in this
version of the notes. If you look over the course website http://www.supermath.info/DEqns.html
then you’ll find many such problems solved.

James Cook, July 13, 2025.

version 4.01

In the Spring 2026 Semester I am working on reformulating the notes. I’ll try to announce my
progress as the semester unfolds.

James Cook, January 19, 2026

version 5.01

http://www.supermath.info/DEqns.html
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Chapter 1

terminology and goals

If you are not interested in terminology, scope and general philosophy then you may skip ahead to
Chapter 2 where we begin our study of how to solve differential equations. The current chapter
is primarily concerned with explaining the big picture of differential equations. In particular, we
briefly introduce terminology here and we attempt to give a good set of examples which show what
it means to solve a differential eqaution. However, we do not explain here (for the most part) how
to find such solutions. Examples of techinques on how to find solutions are given in later chapters.

1.1 terms and conditions

A differential equation (or DEqn) is simply an equation which involves derivatives. The order
of a differential equation is the highest derivative which appears nontrivially in the DEqn. The
domain of definition is the set of points for which the expression defining the DEqn exists. We
consider real independent variables and for the most part real dependent variables, however we will
have occasion to consider complex-valued objects. The complexity will occur in the range but not
in the domain. We continue to use the usual notations for derivatives and integrals in this course.
I will not define these here, but we should all understand the meaning of the symbols below: the
following are examples of ordinary dervatives

dy

dx
= y′

d2y

dt2
= y′′

dny

dtn
= y(n)

dr⃗

dt
=

〈
dx

dt
,
dy

dt

〉
because the dependent variables depend on only one independent variable. Notation is not
reserved globally in this course. Sometimes x is an independent variable whereas other times it
is used as a dependent variable, context is key; dy

dx suggests x is independent and y is dependent

whereas dx
dt has independent variable t and dependent variable x. A DEqn which involves only

ordinary derivatives is called an Ordinary Differential Equation or as is often customary an
”ODE”. The majority of this course we focus our efforts on solving and analyzing ODEs. However,
even in the most basic first order differential equations the concept of partial differentiation and
functions of several variables play a key and notable role. For example, an n-th order ODE is an
equation of the form F (y(n), y(n−1), . . . , y′′, y′, y, x) = 0. For example,

y′′ + 3y′ + 4y2 = 0 (n = 2) y(k)(x)− y2 − xy = 0 (n = k)

7



8 CHAPTER 1. TERMINOLOGY AND GOALS

When n = 1 we say we have a first-order ODE, often it is convenient to write such an ODE in
the form dy

dx = f(x, y). For example,

dy

dx
= x2 + y2 has f(x, y) = x2 + y2

dr

dθ
= rθ + 7 has f(r, θ) = rθ + 7 + 7

A system of ODEs is a set of ODEs which share a common independent variable and a set of
several dependent variables. For example, the following system has dependent variables x, y, z and
independent variable t:

dx

dt
= x2 + y + sin(t)z,

d2y

dt2
= xyz + et,

dz

dt
=
√
x2 + y2 + z2.

The examples given up to this point were all nonlinear ODEs because the dependent variable or
it’s derivatives appeared in a nonlinear manner. Such equations are actually quite challenging to
solve and the general theory is not found in introductory textbooks. It turns out that we can solve
many nonlinear first order ODEs. In contrast, solvable higher-order nonlinear problems are for the
most part beyond the reach of this course.

A n-th order linear ODE in standard form is a DEqn of the form:

any
(n) + an−1y

(n−1) + · · ·+ a1y + aoy = g

where an, an−1, . . . , a1, ao are the coefficients which are generally functions and g is the forcing
function or inhomogenous term. Continuing, if an n-th order ODE has g = 0 then we say it
is a homogenous DEqn. When the coefficients are simply constants then the DEqn is said to be
a constant coefficient DEqn. It turns out that we can solve any constant coefficient n-th order
ODE. A system of ODEs for which each DEqn is linear is called a system of linear DEqns. For
example:

x′′ = x+ y + z + t y′′ = x− y + 2z, z′′ = z + t3.

If each linear DEqn in the system has constant coefficients then the system is also said to be a
constant coefficient system of linear ODEs. We will see how to solve any constant coefficient
linear system. Linear differential equations with nonconstant coefficients are not as simple to solve,
however, we will solve a number of interesting problems via the series technique.

Partial derivatives are defined for functions or variables which depend on multiple independent
variables. For example,

ux =
∂u

∂x
Txy =

∂2T

∂y∂x
∇2Φ = ∂2

xΦ+ ∂2
yΦ+ ∂2

zΦ ∇ • E⃗ ∇× B⃗.

You should have studied the divergence ∇ • E⃗ and curl ∇ × B⃗ in multivariable calculus. The ex-
pression ∇2Φ is called the Laplacian of Φ. A DEqn which involves partial derivatives is called a
Partial Differential Equation or as is often customary a ”PDE”. We study PDEs towards the
conclusion of this course. It turns out that solving PDEs is naturally accomplished by a mixture
of ODE and general series techniques.
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1.2 philosophy and goals

What is our primary goal in this course? In a nutshell; to find the solution of a differential equation.
Obviously this begs a question: ”what is the solution to a DEqn?” I would answer that as follows:

a solution to a DEqn is a function or level set for which the given differential
equation is a differential consequence of the solution.1

In other words, a solution to a given DEqn is some object that satifies the DEqn when you ”plug
it in”. I mean differential consequence to mean equation(s) produced through differentiation of the
given function(s) or level set(s). I’ve added (s) to reflect the fact that some differential equations
require multiple functions or level sets and some also require more than one differentiation.

Example 1.2.1. y = cos(x) is a solution of y′′+y = 0 since y = cos(x) implies y′′ = − cos(x) = −y
thus y′′+y = 0. By the same token, if x′ = dx

dt then x′′+x = 0 has solution x = cos t. This solution
models the motion of a mass moved by a spring without friction.

In the example above we saw the solution is a function. This is not always possible in practice.

Example 1.2.2. If you implicitly differentiate xy3 + y2 = sin(x) + 3 then it is easy to see the
equation xy3+y2 = sin(x)+3 defines a solution of y3+3xy2 dy

dx +2y dy
dx − cos(x) = 0. I would rather

not find the solution as a function of x in this example.

Example 1.2.3. If F (x, y) = x2+y3 = 10 then dF = 2xdx+3y2dy = 0 is a differential consequence
of the equation F (x, y) = 10.

Example 1.2.4. Let F⃗ (x, y, z) = ⟨x, 2y, 3z⟩ and consider r⃗(t) = ⟨xoet, yoe2t, zoe3t⟩ which is to
say parametrically, x = xoe

t, y = yoe
2t and z = zoe

3t. Calculate dr⃗
dt = ⟨xoet, 2yoe2t, 3zoe3t⟩ =

F⃗ (r⃗(t)). Thus r⃗(t) = ⟨xoet, yoe2t, zoe3t⟩ solves dr⃗
dt = F⃗ (r⃗(t)) with initial condition r⃗(0) = (xo, yo, zo).

Geometrically, r⃗ gives the integral curve or flowline of the vector field F⃗ .

In every example I gave thus far I found a differential equation by differentiating a given object. I
have yet to show any method for how we can find the solution when given a differential equation.
These examples merely intend to illustrate what is meant by the term solution. Let’s give a precise
definition for a particular type of differential equation:

Definition 1.2.5. explicit solution for an n-th order ODE:

It is convenient to define an explicit solution on I ⊆ R for an n-
th order ODE F (y(n), y(n−1), . . . , y′′, y′, y, x) = 0 is a function ϕ such that
F (ϕ(n)(x), ϕ(n−1)(x), . . . , ϕ′′(x), ϕ′(x), ϕ(x), x) = 0 for all x ∈ I.

In many problems we do not discuss I since I = R and it is obvious (for instance, Example 1.2.1),
however, when we discuss singular points in the later portion of the course the domain of definition
plays an interesting and non-trivial role.

Very well, the concept of a solution is not too difficult. Let’s ask a harder question: how do we find
solutions? Begin with a simple problem:

dy

dx
= 0 ⇒

∫
dy

dx
dx =

∫
0 dx ⇒ y = co.

1in some semesters of Math 332 we study differential equations in differential forms, you can picture differential
equations as exterior differential systems where the solutions are submanifolds which correspond naturally to the
vanishing of a differential form. It gives you a coordinate free formulation of differential equations.
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Integrating revealed that solutions of y′ = 0 are simply constant functions. Notice each distinct
value for co yields a distinct solution. What about y′′ = 0?

d2y

dx2
= 0 ⇒

∫
d

dx

[
dy

dx

]
dx =

∫
0 dx ⇒ dy

dx
= c1.

Integrate indefinitely once more,∫
dy

dx
dx =

∫
c1 dx ⇒ y = c1x+ co.

Therefore, we find a whole family of solutions for y′′ = 0; the solution set of y′′ = 0 is

{f | f(x) = c1x+ co for co, c1 ∈ R} = span{1, x}

where I use the notation span to indicate the set of all linear combinations. Students of linear
algebra will recognize the solution set is a two-dimensional subspace of function space. Continuing
in this pattern, to solve y(n)(x) = 0 we can integrate n-times to derive

y =
1

(n− 1)!
cn−1x

n−1 + · · ·+ 1

2
c2x

2 + c1x+ co.

The solution set here can be written as span{1, x, . . . , xn−1} and we note it forms an n-dimensional
subspace of function space2 We should know from Taylor’s Theorem in second semester calculus
the constants are given by y(n)(0) = cn since the solution is a Taylor polynomial centered at x = 0.
Hence we can write the solution in terms of the value of y, y′, y′′ etc... at x = 0: suppose y(n)(0) = yn
are given initial conditions then

y(x) =
1

(n− 1)!
ynx

n−1 + · · ·+ 1

2
y2x

2 + y1x+ yo.

We see that the arbitary constants we derived allow for different initial conditions which are possible.
In calculus we add C to the indefinite integral to allow for all possible antiderivatives. In truth,∫
f(x) dx = {F | F ′(x) = f(x)}, it is a set of antiderivatives of the integrand f . However, almost

nobody writes the set-notation because it is quite cumbersome. Likewise, in our current context
we will be looking for the solution set of a DEqn, but we will call it the general solution. The
general solution is usually many solutions which are indexed by a few arbitrary constants.

Example 1.2.6. For example, the general solution to y′′′ − 4y′′ + 3y′ = 0 is y = c1 + c2e
t + c3e

3t.

Example 1.2.7. Or the general solution to x′ = −y and y′ = x is given by x = c1 cos(t)+ c2 sin(t)
and y = c1 sin(t)− c2 cos(t).

To be careful, it is not always the case there is a whole family of solutions (as in the two previous
examples), there are curious DEqns which have just one solution or even none. Consider the
following example showcasing two nonlinear ODEs:

2This sentence is here for those students who have taken Linear Algebra and know what I mean by basis and
dimension of a vector space. Linear differential ODEs are greatly aided by linear algebra since the homogeneous
solution set is a finite dimensional subspace of function space. In short, this means the algebra of linear ODEs is
actually pretty easy.
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Example 1.2.8. Notice that y = 0 is the only solution of

(y′)2 + y2 = 0

whereas

(y′)2 + y2 = −1

has no solutions.

There are other nonlinear examples where the constants index over most of the solution set, but
miss a few special solutions.

We just saw that integration can sometimes solve a problem. However, can we always integrate?
I mentioned that y′′ + y = 0 has solution y = cos(x). In fact, you can show that y = c1 cos(x) +
c2 sin(x) is the general solution. Does integration reveal this directly?

y′′ = −y ⇒
∫

y′′ dx =

∫
−y dx ⇒ y′ = C +

∫
−y dx

at this point we’re stuck. In order to integrate we need to know the formula for y. But, that is
what we are trying to find! DEqns that allow for solution by direct integration are somewhat rare.

Example 1.2.9. Suppose y′′(x) = g(x) for some continuous function g has a solution which is
obtained from twice integrating the DEQn: I’ll find a solution in terms of the initial condtions at
x = 0:

y′′ = g ⇒
∫ x

0
y′(t) dt =

∫ x

0
g(t) dt ⇒ y′(x) = y′(0) +

∫ x

0
g(t) dt

integrate once more, this time use s as the dummy variable of integration,
note y′(s) = y′(0) +

∫ s
0 g(t) dt hence∫ x

0
y′(s) ds =

∫ x

0

[
y′(0) +

∫ s

0
g(t) dt

]
ds ⇒ y(x) = y(0) + y′(0)x+

∫ x

0

∫ s

0
g(t) dt ds.

Note that the integral above does not involve y itself, if we were give a nice enough function g then
we might be able to find an simple form of the solution in terms of elementary functions.

If direct integration is not how to solve all DEqns then what should we do? Well, that’s what we
intend to learn this semester. Overall it is very similar to second semester calculus and integration.
We make educated guesses then we differentiate to check if it worked. Once we find something
that works then we look for ways to reformulate a broader class of problems back into those basic
templates. But, the key here is guessing. Not blind guessing though. Often we make a general
guess that has flexibility built-in via a few parameters. If the guess or ansatz is wise then the
parameters are naturally chosen through some condition derived from the given DEqn.

If we make a guess then how do we know we didn’t miss some possibility? I suppose we don’t
know. Unless we discuss some of the theory of differential equations. Fortunately there are deep
and broad existence theorems which not only say the problems we are trying to solve are solvable,
even more, the theory tells us how many linearly independent solutions we must find. The theory
has the most to say about the linear case. However, as you can see from the nonlinear examples
(y′)2 + y2 = 0 and (y′)2 + y2 = −1, there is not much we can easily say in general about the
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structure of solutions for nonlinear ODEs.

We say a set of conditions are initial conditions (IC) if they are all given at the same value of an
independent variable. In contrast, boundary conditions or BCs are given at two or more values
of the independent variables. If pair a DEqn with a set of initial conditions then the problem of
solving the DEqn subject to the intial conditions is called an initial value problem or IVP. If
pair a DEqn with a set of boundary conditions then the problem of solving the DEqn subject to
the boundary conditions is called a boundary value problem or BVP. For example,

y′′ + y = 0 with y(0) = 0 and y′(0) = 1

is an IVP. The unique solution is simply y(x) = sin(x). On the other hand,

y′′ + y = 0 with y(0) = 0 and y(π) = 0

is a BVP which has a family of solutions y(x) = sin(nx) indexed by n ∈ N. Other BVPs may have
no solutions at all. We study BVPs in our analysis of PDEs towards the end of this course. Given
a linear ODE with continuous coefficient and forcing functions on I ⊆ R the IVP has a unique
solution which extends to all of I. In particular, the constant coefficient linear ODE has solutions
on R. This is a very nice result which is physically natural; given a DEqn which models some
phenomenon we find that the same thing happens every time we start the system with a particular
initial condition. In contrast, nonlinear DEqns sometime allow for the same initial condition to
yield infinitely many possible solutions.

The majority of our efforts are placed on finding functions or equations which give solutions to
DEqns. These are quantitative results. There is also much that can be said qualitatively or
even graphically. In particular, we can study autonomous systems of the form dx/dt = f(x, y)
and dy/dt = g(x, y) by plotting the direction field of the system. The solutions can be seen by
tracing out curves which line-up with the arrows in the direction field. Software3 will plot direction
fields for autonomous systems and you can easily see what types of behaviour are possible. All of
this is possible when explicit quantitative solutions are intractable.

Numerical solutions to DEqns is one topic these notes neglect. If you are interested in numerical
methods then you should try to take the numerical methods course. That course very useful to
those who go on to business and industry, probably linear algebra is the only other course we offer
which has as wide an applicability. The other topic which is neglected in these notes is rigor in the
sense of mathematical analysis. I have no intention of belaboring issues of existence and conver-
gence for most discussions and I tend to be very terse about domains except where they matter.

I should mention, we use the concept of a differential in this course. Recall that if F is a function
of x1, x2, . . . , xn then we defined

dF =
∂F

∂x1
dx1 +

∂F

∂x2
dx2 + · · ·+ ∂F

∂xn
dxn =

n∑
i=1

∂F

∂xi
dxi.

When the symbol d acts on an equation it is understood we are taking the total differential. I
assume that is reasonable to either write

dy

dx
= f(x, y) or dy = f(x, y)dx or f(x, y)dx− dy = 0.

3such as pplane of Matlab which is built-in to an applet linked on the course page
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These expressions are meaningful and I explain in great detail in the advanced calculus course
how the method of differentials enjoys its sucess on the back of the implicit and inverse function
theorems. However, this is not advanced calculus so I will not prove or deeply discuss those things
here. I am just going to use them, formally if you wish. More serious is our lack of focus on
existence and convergence, those analytical discussions tend to beg questions from real analysis
and are a bit beyond the level of these notes and this course. That said let us say a little bit about
a nuanced issue of the domain of definition for a differential equation.

Example 1.2.10. Consider the differential equation dy
dx = x

y . Clearly y = 0 is not a solution since
we cannot divide by zero. In contrast, ydy = xdx has solution y = 0. This should not be surprising,
we know from algebra that changing the form of an expression may change its domain. In some
sense, the differential equation ydy − xdx = 0 is more general than dy

dx = x
y (which misses the

solution y = 0) or dx
dy = y

x (which misses the solution x = 0).

1.3 a short overview of differential equations in basic physics

I’ll speak to what I know a little about. These comments are for the reductionists in the audience.

� Newtonian Mechanics is based on Newton’s Second Law which is stated in terms of a time
derivative of three functions. We use vector notation to say it succinctly as

dP⃗

dt
= F⃗net

where P⃗ is the momentum and F⃗net is the force applied.

� Lagrangian Mechanics is the proper way of stating Newtonian mechanics. It centers its
focus on energy and conserved quantities. It is mathematically equivalent to Newtonian Me-
chanics for some systems. The fundamental equations are called the Euler Lagrange equations
they follow from Hamilton’s principle of least action δS = δ

∫
L dt = 0,

d

dt

[
∂L

∂ẏj

]
=

∂L

∂yj

where yj is a generalized coordinate. We can write down Euler Lagrange equation for one or
many generalized coordinates are appropriate to the problem. Lagrangian mechanics allows
you to derive equations of physics in all sorts of curvy geometries. Geometric constraints are
easily implemented by Lagrange multipliers. In any event, the mathematics here is integra-
tion, differentiation and to see the big picture variational calculus4

� Electricity and Magnetism boils down to solving Maxwell’s equations subject to various
boundary conditions:

∇ · B⃗ = 0, ∇ · E⃗ =
ρ

ϵo
, ∇× B⃗ = µoJ⃗ − µoϵo

∂E⃗

∂t
∇× E⃗ = −∂B⃗

∂t
.

Again, the mathematics here is calculus of several variables and vector notations. In other
words, the mathematics of electromagnetism is vector calculus.

4I sometimes cover variational calculus in the Advanced Calculus course Math 332.
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� Special Relativity also uses vector calculus. However, linear algebra is really needed to
properly understand the general structure of Lorentz transformations. Mathematically this is
actually not so far removed from electromagnetism. In fact, electromagnetism as discovered by
Maxwell5 around 1860 naturally included Einstein’s special relativity. In relativitic coordinate
free differential form language Maxwell’s equations are simply stated as

dF = 0, d ∗ F = ∗J.

Newtonian mechanics is inconsistent with these equations thus Einstein’s theory was in-
evitable. I should mention, we can also derive Maxwell’s Equations from a variational calculus
approach where the Euler Lagrange equations are given for the 4-potential on spacetime.

� General Relativity uses calculus on manifolds. A manifold is a curved surface which allows
for calculus in local coordinates. The geometry of the manifold encodes the influence of
gravity and conversely the presence of mass curves space and time. Einstein’s field equations
are nonlinear partial differential equations for which only a few special cases have well-known
solutions. For example, the blackhole solution stemming from Schwarzchild’s treatment of
the spherically symmetric case is actually not too difficult to derive. Many more realistic
scenarios require sophisticated computer simulation. Indeed, much of current astrophysics is
more or less a game of minecraft which is taken far more seriously than perhaps we ought6.

� Quantum Mechanics based on Schrodinger’s equation which is a partial differential equa-
tion (much like Maxwell’s equations) governing a complex wave function. Alternatively,
quantum mechanics can be formulated through the path integral formalism as championed
by Richard Feynman.

� Quantum Field Theory is used to frame modern physics. The mathematics is not entirely
understood. However, Lie groups, Lie algebras, supermanifolds, jet-bundles, algebraic geom-
etry are likely to be part of the correct mathematical context. Physicists will say this is done,
but mathematicians do not in general agree. To understand quantum field theory one needs
to master calculus, differential equations and more generally develop an ability to conquer
very long calculations.

In fact, all modern technical fields in one way or another have differential equations at their core.
This is why you are expected to take this course.

If a system has variables where the change in one variable or a parameter causes a
change in one or more of the variables then it is likely that a differential equation can
be used to express the rule(s) governing the change.

Differential equations are also used to model phenomenon which are not basic; population models,
radioactive decay, chemical reactions, mixing tank problems, heating and cooling, financial markets,
fluid flow, a snowball which gathers snow as it falls, a bus stopping as it rolls through a giant vat
of peanut butter, a rope falling off a table etc... the list is endless. If you think about the course
you took in physics you’ll realize that you were asked about specific times and events, but there is

5It should be mentioned, that Maxwell did not use vector calculus notation, instead his equations were initially
expressed in quaternionic terms. Oliver Heaviside reformulated Maxwell’s Equations into a notation more like the
usual vector calculus if I understand the history correctly, although, I have not checked too deeply on this claim

6although, my children do take minecraft very seriously at times
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also the question of how the objects move once the forces start to act. The step-by-step continuous
picture of the motion is going to be the solution to the differential equation called Newton’s Second
Law. Beyond the specific examples we look at in this course, it is my hope you gain a more general
appreciation of the method. In a nutshell, the leap in concept is to use derivatives to model things.

1.4 course overview

� Chapter 1: you’ve almost read the whole thing. By now you should realize it is to be read
once now and once again at the end of the semester.

� Chapter 2: we study first order ODEs. One way or another it usually comes back to some
sort of integration.

� Chapter 3: we study n-th order linear ODEs. I’ll lecture on a method presented in Ritger and
Rose which appears magical, however, we don’t just want answers. We want understanding
and this is brought to us from a powerful new way of thinking called the operator method.
We’ll see how many nontrivial problems are reduced to algebra. Variation of parameters takes
care of the rest.

� Chapter 4: we study systems of linear ODEs, we’ll need matrices and vectors to properly
treat this topic. The concept of eigenvectors and eigenvalues plays an important role, however
the operator method shines bright once more here.

� Chapter 5: energy analysis and the phase plane approach. In other chapters our goal has
almost always to find a solution , but here we study properties of the solution without actually
finding it. This qualitative approach can reveal much without too much effort. When paired
with the convenient pplane software we can ascertain many things with a minimum of effort.

� Chapter 6: the method of Laplace transforms is shown to solve problems with discontinuous,
even infinite, forcing functions with ease.

� Chapter 7: some problems are too tricky for the method of Chapter 3. We are forced to
resort to power series techniques. Moreover, some problems escape power series as well. The
method of Frobenius helps us capture behaviour near regular singular points. The functions
discovered here have tremendous application across the sciences.

� Chapter 8: homogeneous boundary value problems are studied. We study heat, wave and
Laplace’s equations via a mixture of our the BVP solutions and the Fourier technique.
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Chapter 2

ordinary first order problem

We wish to solve problems of the form dy
dx = f(x, y). An explicit solution is a function ϕ : I ⊂

R → R such that dϕ
dx = f(x, ϕ(x)) for all x ∈ I. There are several common techniques to solve

such problems, although, in general the solution may be impossible to find in terms of elementary
functions. You should already anticipate this fact from second semester calculus. Performing an
indefinite integration is equivalent to solving a differential equation; observe that∫

ex
2
dx = y ⇔ dy

dx
= ex

2
.

you may recall that the integration above is not amenable to elementary techniques1. However, it
is simple enough to solve the problem with series techniques. Using term-by-term integration,∫

ex
2
dx =

∫ ∞∑
n=0

(x2)n

n!
dx =

∞∑
n=0

1

n!

∫
x2n dx =

∞∑
n=0

1

n!(2n+ 1)
x2n+1 + c.

This simple calculation shows that y = x+ 1
6x

3 + 1
10x

5 + · · · will solve dy
dx = ex

2
. We will return to

the application of series techniques to find analytic solutions later in this course. For this chapter,
we wish to discuss those techniques which allow us to solve first order problems via algebra and
integrals of elementary functions. There are really three2 main techniques:

1. separation of variables

2. integrating factor method

3. identification of problem as an exact equation

Beyond that we study substitutions which bring the problem back to one of the three problems above
in a new set of variables. The methods of this chapter are by no means complete or algorithmic.
Solving arbitrary first order problems is an art, not unlike the problem of parametrizing a level
curve. That said, it is not a hidden art, it is one we all must master.

1the proof of that is not elementary!
2you could divide these differently, it is true that the integrating factor technique is just a special substitution

17
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2.1 separation of variables

Suppose you are faced with the problem dy
dx = f(x, y). If it happens that f can be factored into

a product of functions f(x, y) = g(x)h(y) then the problem is said to be separable. Proceed
formally for now, suppose h(y) ̸= 0,

dy

dx
= g(x)h(y) ⇒ dy

h(y)
= g(x) dx ⇒

∫
dy

h(y)
=

∫
g(x) dx

Ideally, we can perform the integrations above and solve for y to find an explicit solution. However,
it may even be preferrable to not solve for y and capture the solution in an implicit form. Let me
provide a couple examples before I prove the method at the end of this section.

Example 2.1.1. Problem: Solve dy
dx = 2xy.

Solution: Separate variables to find
∫ dy

y =
∫
2x dx hence ln |y| = x2 + c. Exponentiate to obtain

|y| = ex
2+c = ecex

2
. The constant ec ̸= 0 however, the absolute value allows for either ±. Moreover,

we can also observe directly that y = 0 solves the problem. We find y = kex
2

is the general solution
to the problem.

An explicit solution of the differential equation is like an antiderivative of a given integrand. The
general solution is like the indefinite integral of a given integrand. The general solution and the
indefinite integral are not functions, instead, they are a family of functions of which each is an
explicit solution or an antiderivative. Notice that for the problem of indefinite integration the
constant can always just be thoughtlessly tacked on at the end and that will nicely index over
all the possible antiderivatives. On the other hand, for a differential equation the constant could
appear in many other ways.

Example 2.1.2. Problem: Solve dy
dx = −2x

2y .

Solution: separate variables and find
∫
2y dy = −

∫
2x dx hence y2 = −x2+c. We find x2+y2 = c.

It is clear that c < 0 give no interesting solutions. Therefore, without loss of generality, we assume

c ≥ 0 and denote c = R2 where R ≥ 0. Altogether we find x2 + y2 = R2 is the general implicit
solution to the problem. To find an explicit solution we need to focus our efforts, there are two
cases:

1. if (a, b) is a point on the solution and b > 0 then y =
√
a2 + b2 − x2.

2. if (a, b) is a point on the solution and b < 0 then y = −
√
a2 + b2 − x2.

Notice here the constant appeared inside the square-root. I find the implicit formulation of the
solution the most natural for the example above, it is obvious we have circles of radius R. To
capture a single circle we need two function graphs. Generally, given an implicit solution we can
solve for an explicit solution locally. The implicit function theorems of advanced calculus give
explicit conditions on when this is possible.

Example 2.1.3. Problem: Solve dy
dx = ex+2 ln |y|.

Solution: recall ex+ln |y|2 = exeln |y|2 = ex|y|2 = exy2. Separate variables in view of this algebra:

dy

y2
= ex dx ⇒ −1

y
= ex + C ⇒ y =

−1

ex + C
.
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When I began this section I mentioned the justification was formal. I meant that to indicate the
calculation seems plausible, but it is not justified. We now show that the method is in fact justified.
In short, I show that the notation works.

Proposition 2.1.4. separation of variables:

The differential equation dy
dx = g(x)h(y) has an implicit solution given by∫

dy

h(y)
=

∫
g(x) dx

for (x, y) such that h(y) ̸= 0.

Proof: to say the integrals above are an implicit solution to dy
dx = g(x)h(y) means that the

differential equation is a differential consequence of the integral equation. In other words, if we
differentiate the integral equation we should hope to recover the given DEqn. Let’s see how this
happens, differentiate implicitly,

d

dx

∫
dy

h(y)
=

d

dx

∫
g(x) dx ⇒ 1

h(y)

dy

dx
= g(x) ⇒ dy

dx
= h(y)g(x). □

Remark 2.1.5.

Technically, there is a gap in the proof above. How did I know implicit differentiation was
possible? Is it clear that the integral equation defines y as a function of x at least locally? We
could use the implicit function theorem on the level curve F (x, y) =

∫ dy
h(y) −

∫
g(x) dx = 0.

Observe that ∂F
∂y = 1

h(y) ̸= 0 hence the implicit function theorem provides the existence of

a function ϕ which has F (x, ϕ(x)) = 0 at points near the given point with h(y) ̸= 0. This
comment comes to you from the advanced calculus course.

2.1.1 geometric applications

Let us take a break from introducing new methods for a moment and study a pair of applications.
To be clear, in general the problems I introduce here require other techniques to solve. I merely
focus on examples here where the math works out nice and easy.

Differential equations make quick work of certain geometry problems. We introduce two such
problems in this section:

� Integral Curves of ⟨P,Q⟩: If r⃗ = ⟨x, y⟩ is an integral curve of F⃗ then we have that
F⃗ (r⃗(t)) = dr⃗

dt . This is what we mean by an integral curve; it is a curve whose tangent field
aligns with the given vector field. In other words, the integral curve is a streamline of the

vector field. Notice dr⃗
dt =

〈
dx
dt ,

dy
dt

〉
thus we must solve

dx

dt
= P &

dy

dt
= Q

This is a system of first order ODEs and depending on the details of P and Q we may or
may not be able to explicitly solve such a problem. Later in the course we learn how to solve
linear systems of ODEs. That said, we can use a little calculus trick to eliminate time t:

dy

dx
=

dy/dt

dx/dt
=

Q

P
.
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Therefore, to find the Cartesian equation of the integral curves to F⃗ = ⟨P,Q⟩ we simply must
solve dy

dx = Q
P .

� Orthogonal Trajectories: To find the orthogonal trajectory of F (x, y) = c we use calculus
to determine dy

dx = S(x, y) for the given curve(s) then solve dy
dx = −1/S(x, y). The resulting

family of solutions will intersect F (x, y) = c orthogonally.

Let’s expand these bullet points with explicit examples.

Example 2.1.6. Problem: Find the Cartesian equation of the integral curves of F⃗ = ⟨x, y⟩.

Solution: Identify Q = y and P = x thus integral curves are solutions of dy
dx = y

x . We can solve
via separation of variables:

dy

dx
=

y

x
⇒

∫
dy

y
=

∫
dx

x
⇒ ln |y| = ln |x|+ c ⇒ |y| = eln |x|+c = ec|x| ⇒ y = mx.

This makes sense, the given vector field points radially out from the origin.

Example 2.1.7. Problem: Find the Cartesian equation of the integral curves of F⃗ = ⟨−y, x⟩.

Solution: Identify Q = x and P = −y thus integral curves are solutions of dy
dx = x

−y . We can solve
via separation of variables:

dy

dx
=

x

−y
⇒

∫
ydy = −

∫
xdx ⇒ y2/2 = −x2/2 + c ⇒ x2 + y2 = −2c ⇒ x2 + y2 = R2 .

I set −2c = R2 since it is clear we need −2c ≥ 0 for the equation to have a non-empty solution.
Of course, the integral curves here are concentric circles about the origin. If you sketch the vector
field it becomes clear this solution is to be expected.

Example 2.1.8. Problem: Find the orthogonal trajectories to the curve x2 + y3 = 8.

Solution: if x2 + y3 = 8 then 2x + 3y2 dy
dx = 0 hence dy

dx = −2x
3y2

. Identify S(x, y) = −2x
3y2

hence

−1
S = 3y2

2x . To find orthogonal trajectories we must solve dy
dx = 3y2

2x . We use separation of variables
once more:

dy

dx
=

3y2

2x
⇒

∫
dy

y2
=

3

2

∫
dx

x
⇒ −1

y
=

3

2
ln |x|+ c ⇒ y =

−1

ln |x|3/2 + c
.

Example 2.1.9. Problem: Find the orthogonal trajectories to the curve y = k/x where k is
constant.

Solution: if y = k/x then xy = k thus y + x dy
dx = 0 hence dy

dx = −y
x . Identify S(x, y) = −y

x

hence −1
S = −1

−y
x

= x
y . To find orthogonal trajectories we must solve dy

dx = x
y . We use separation of

variables:
dy

dx
=

x

y
⇒

∫
ydy =

∫
xdx ⇒ y2/2 = x2/2 + c ⇒ y2 − x2 = 2c.

The orthogonal trajectories to y = k/x are the family of hyperbolas given by y2 − x2 = 2c.
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2.2 integrating factor method

Let p and q be continuous functions. The following differential equation is called a linear differ-
ential equation in standard form:

dy

dx
+ py = q (⋆)

Our goal in this section is to solve equations of this type. Fortunately, linear differential equations
are very nice and the solution exists and is not too hard to find in general, well, at least up-to a
few integrations.

Notice, we cannot directly separate variables because of the py term. A natural thing to notice is
that it sort of looks like a product, maybe if we multiplied by some new function I then we could
separate and integrate: multiply ⋆ by I,

I
dy

dx
+ pIy = qI

Now, if we choose I such that dI
dx = pI then the equation above separates by the product rule:

dI

dx
= pI ⇒ I

dy

dx
+

dI

dx
y = qI ⇒ d

dx

[
Iy
]
= qI ⇒ Iy =

∫
qI dx ⇒ y =

1

I

∫
qI dx.

Very well, but, is it possible to find such a function I? Can we solve dI
dx = pI? Yes. Separate

variables,
dI

dx
= pI ⇒ dI

I
= p dx ⇒ ln(I) =

∫
p dx ⇒ I = e

∫
p dx.

Proposition 2.2.1. integrating factor method:

Suppose p, q are continuous functions which define the linear differential equation dy
dx+py = q

(label this ⋆). We can solve ⋆ by the following algorithm:

(1.) define I = exp(
∫
p dx),

(2.) multiply ⋆ by I,

(3.) apply the product rule to write I⋆ as d
dx

[
Iy
]
= Iq.

(4.) integrate both sides,

(5.) find general solution y = 1
I

∫
Iq dx.

Proof: Define I = e
∫
p dx, note that p is continuous thus the antiderivative of p exists by the FTC.

Calculate,
dI

dx
=

d

dx
e
∫
p dx = e

∫
p dx d

dx

∫
p dx = pe

∫
p dx = pI.

Multiply ⋆ by I, use calculation above, and apply the product rule:

I
dy

dx
+ Ipy = Iq ⇒ I

dy

dx
+

dI

dx
y = Iq ⇒ d

dx

[
Iy
]
= Iq.
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Integrate both sides,∫
d

dx

[
Iy
]
dx =

∫
Iq dx ⇒ Iy =

∫
Iq dx ⇒ y =

1

I

∫
Iq dx. □

The integration in y = 1
I

∫
Iq dx is indefinite. It follows that we could write y = C

I + 1
I

∫
Iq dx.

Note once more that the constant is not simply added to the solution.

Example 2.2.2. Problem: find the general solution of dy
dx + 2

xy = 3

Solution: Identify that p = 2/x for this linear DE. Calculate, for x ̸= 0,

I = exp

(∫
2dx

x

)
= exp(2 ln |x|) = exp(ln |x|2) = |x|2 = x2

Multiply the DEqn by I = x2 and then apply the reverse product rule;

x2
dy

dx
+ 2xy = 3x2 ⇒ d

dx

[
x2y

]
= 3x2

Integrate both sides to obtain x2y = x3 + c therefore y = x+ c/x2 .

We could also write y(x) = x+ c/x2 to emphasize that we have determined y as a function of x.

Example 2.2.3. Problem: let r be a real constant and suppose g is a continuous function, find
the general solution of dy

dt − ry = g

Solution: Identify that p = r for this linear DE with independent variable t. Calculate,

I = exp

(∫
r dt

)
= ert

Multiply the DEqn by I = ert and then apply the reverse product rule;

ert
dy

dt
+ rerty = gert ⇒ d

dt

[
erty

]
= gert

Integrate both sides to obtain erty =
∫
g(t)ert dt+c therefore y(t) = ce−rt + e−rt

∫
g(t)ert dt . Now

that we worked this in general it’s fun to look at a few special cases:

1. if g = 0 then y(t) = ce−rt .

2. if g(t) = e−rt then y(t) = ce−rt + e−rt
∫
e−rtert dt hence y(t) = ce−rt + te−rt .

3. if r ̸= s and g(t) = e−st then y(t) = ce−rt + e−rt
∫
e−stert dt = ce−rt + e−rt

∫
e(r−s)t dt

consqeuently we find that y(t) = ce−rt + 1
r−se

−rte(r−s)t and thus y(t) = ce−rt +
1

r − s
e−st .
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2.3 exact equations

Before we discuss the theory I need to introduce some new notation:

Definition 2.3.1. Pffafian form of a differential equation

Let M,N be functions of x, y then Mdx + Ndy = 0 is a differential equation in Pfaffian
form.

For example, if dy
dx = f(x, y) then dy−f(x, y)dx = 0 is the differential equation in its Pfaffian form.

One advantage of the Pfaffian form is that it puts x, y on an equal footing. There is no artificial
requirement that y be a function of x implicit within the set-up, instead x and y appear in the
same way. The natural solution to a differential equation in Pfaffian form is a level curve.

Example 2.3.2. Consider the circle x2 + y2 = R2 note that 2xdx+ 2ydy = 0 hence the circle is a
solution curve of 2xdx+ 2ydy = 0

Recall the total differential3 of a function F : D ⊆ R2 → R was defined by:

dF =
∂F

∂x
dx+

∂F

∂y
dy.

Let k be a constant and observe that F (x, y) = k has dF = 0dx + 0dy = 0. Conversely, if we are
given ∂F

∂x dx + ∂F
∂y dy = 0 then we find natural solutions of the form F (x, y) = k for appropriate

constants k. Let us summarize the technique:

Proposition 2.3.3. exact equations:

If differential equation Mdx + Ndy = 0 has M = ∂F
∂x and N = ∂F

∂y for some differentiable
function F then the solutions to the differential equation are given by the level-curves of F .

A level-curve of F is simply the collection of points (x, y) which solve F (x, y) = k for a constant
k. You could also call the solution set of F (x, y) = k the k-level curve of F or the fiber F−1{k}.

Remark 2.3.4.

Consider vector field ⟨M,N⟩ and consider the solution ofMdx+Ndy = 0 given by F (x, y) =
c. Suppose t 7→ r⃗(t) parametrizes the solution F (x, y) = c then F (r⃗(t)) = c. Observe
∇F = ⟨∂xF, ∂yF ⟩ = ⟨M,N⟩. Notice the chain-rule gives:

d

dt
(c) =

d

dt
[F (r⃗(t))] = ∇F •

dr⃗

dt
= ⟨M,N⟩ •

〈
dx

dt
,
dy

dt

〉
Of course, d

dt(c) = 0 hence we find the tangent vector
〈
dx
dt ,

dy
dt

〉
to the level curve F (x, y) = c

is perpendicular to the vector ⟨M,N⟩ if we study a particular point on the level curve
F (x, y) = c. Geometrically, we should expect the solutions of Mdx + Ndy = 0 gives us a
family of level curves which perpendicularly intercept the streamlines of ⟨M,N⟩.

3You might wonder what precisely dx and dy mean in such a context. If you want to really know then take
advanced calculus. For our purposes here is suffices to inform you that you can multiply and divide by differentials,
these formal algebraic operations are in fact a short-hand for deeper arguments justified by the implicit and/or inverse
function theorems. But, again, that’s advanced calculus.
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Example 2.3.5. Problem: find the solutions of y2dx+ 2xydy = 0.

Solution: we wish to find F such that

∂F

∂x
= y2 &

∂F

∂y
= 2xy

You can integrate these equations holding the non-integrated variable fixed,

∂F

∂x
= y2 ⇒ F (x, y) =

∫
y2 dx = xy2 + C1(y)

∂F

∂y
= 2xy ⇒ F (x, y) =

∫
2xy dy = xy2 + C2(x)

It follows that F (x, y) = xy2 should suffice. Indeed a short calculation shows that the given differ-
ential equation in just dF = 0 hence the solutions have the form xy2 = k. One special solution
is x = 0 and y free, this is allowed by the given differential equation, but sometimes you might
not count this a solution. You can also find the explicit solutions here without too much trouble:
y2 = k/x hence y = ±

√
k/x . These solutions foliate the plane into disjoint families in the four

quadrants:

k > 0 and + in I, k < 0 and + in II, k < 0 and − in III, k > 0 and − in IV

The coordinate axes separate these cases and are themselves rather special solutions for the given
DEqn.

The explicit integration to find F is not really necessary if you can make an educated guess. That
is the approach I adopt for most problems.

Example 2.3.6. Problem: find the solutions of 2xy2dx+ (2x2y − sin(y))dy = 0

Solution: observe that the function F (x, y) = x2y2 + cos(y) has

∂F

∂x
= 2xy2 &

∂F

∂y
= 2x2y − sin(y)

Consequently, the given differential equation is nothing more than dF = 0 which has obvious solu-
tions of the form x2y2 + cos(y) = k.

I invite the reader to find explicit local solutions for this problem. I think I’ll stick with the level
curve view-point for examples like this one.

Example 2.3.7. Problem: find the solutions of xdx+ydy
x2+y2

= 0

Solution: observe that the function F (x, y) = 1
2 ln(x

2 + y2) has

∂F

∂x
=

x

x2 + y2
&

∂F

∂y
=

y

x2 + y2

Consequently, the given differential equation is nothing more than dF = 0 which has curious solu-
tions of the form 1

2 ln(x
2 + y2) = k. If you expoentiate this equation it yields

√
x2 + y2 = ek. We

can see that the unit-circle corresponds to k = 0 whereas generally the k-level curve has radius ek.
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Notice that 2x+ 2y = 0 and xdx+ydy
x2+y2

= 0 share nearly the same set of solutions. The origin is the
only thing which distinguishes these examples. This raises a question we should think about. When
are two differential equations equivalent? I would offer this definition: two differential equations
are equivalent if they share the same solution set. This is the natural extension of the concept
we already know from algebra. Naturally the next question to ask is: how can we modify a given
differential equation to obtain an equivalent differential equation? This is something we have
to think about as the course progresses. Whenever we perform some operation to a differential
equation we ought to ask, did I just change the solution set?. For example, multiplying 2x+2y = 0
by 1

2(x2+y2)
removed the origin from the solution set of xdx+ydy

x2+y2
= 0.

2.3.1 conservative vector fields and exact equations

You should recognize the search for F in the examples above from an analgous problem in multi-
variable calculus4 Suppose G⃗ = ⟨M,N⟩ is conservative on U with potential function F such that
G⃗ = ∇F . Pick a point (xo, yo) and let C be the level curve of F which starts at (xo, yo)

6. Recall
that the tangent vector field of the level curve F (x, y) = k is perpendicular to the gradient vector
field ∇F along C. It follows that

∫
C ∇F • dr⃗ = 0. Or, in the differential notation for line-integrals,∫

C Mdx+Ndy = 0.

Continuing our discussion, suppose (x1, y1) is the endpoint of C. Let us define the line-segment
L1 from (xo, yo) to (xo, y1) and the line-segment L2 from (xo, y1) to (x1, y1). The curve L1 ∪ L2

connects (xo, yo) to (x1, y1). By path-independence of conservative vector fields we know that∫
L1∪L2

G⃗ • dr⃗ =
∫
C G⃗ • dr⃗. It follows that7:

0 =

∫
L1∪L2

G⃗ • dr⃗ =

∫
L1

N dy +

∫
L2

M dx

=

∫ y1

yo

N(xo, t) dt+

∫ x1

xo

M(t, y1) dt

Let x1 = x and y1 = y and observe that the equation

0 =

∫ y

yo

N(xo, t) dt+

∫ x

xo

M(t, y) dt

ought to provide the level-curve solution of the exact equation Mdx + Ndy = 0 which passes
through the point (xo, yo). For future reference let me summarize our discussion here:

4Let us briefly review the results we derived for conservative vector fields in multivariable calculus. Recall that
G⃗ = ⟨M,N⟩ is conservative iff there exists a potential function5 F such that G⃗ = ∇F = ⟨∂xF, ∂yF ⟩ on dom(G⃗).
Furthermore, it is known that G⃗ = ⟨M,N⟩ is conservative on a simply connected domain iff ∂M

∂y
= ∂N

∂x
for all points

in the domain. The Fundamental Theorem of Calculus for line-integrals states if C is a curve from P to Q then∫
C
∇F • dr⃗ = F (Q) − F (P ). It follows that conservative vector fields have the property of path-independence. In

particular, if G⃗ is conservative on U and C1, C2 are paths beginning and ending at the same points then
∫
C1

G⃗ • dr⃗ =∫
C1

G⃗ • dr⃗.
6the level curve extends past C, we just want to make (xo, yo) the starting point
7Recall that if C is parametrized by r⃗(t) = ⟨x(t), y(t)⟩ for t1 ≤ t ≤ t2 then the line-integral of G⃗ = ⟨M,N⟩ is by

definition: ∫
C

Mdx+Ndy =

∫ t2

t1

[
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

]
dt

I implicitly make use of this definition in the derivation that follows.
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Proposition 2.3.8. solution by line-integral for exact equations:

Suppose the differential equation Mdx+Ndy = 0 is exact on a simply connected region U
then the solution through (xo, yo) ∈ U is given implicitly by∫ x

xo

M(t, y) dt+

∫ y

yo

N(xo, t) dt = 0.

Perhaps you doubt this result. We can check it by taking the total differential of the proposed
solution:

d

[∫ x

xo

M(t, y) dt

]
=

∂

∂x

[∫ x

xo

M(t, y) dt

]
dx+

∂

∂y

[∫ x

xo

M(t, y) dt

]
dy

= M(x, y)dx+

[∫ x

xo

∂M

∂y
(t, y) dt

]
dy

= M(x, y)dx+

[∫ x

xo

∂N

∂x
(t, y) dt

]
dy since ∂xN = ∂yM

= M(x, y)dx+
[
N(x, y)−N(xo, y)

]
dy

On the other hand,

d

[∫ y

yo

N(xo, t) dt

]
=

∂

∂x

[∫ y

yo

N(xo, t) dt

]
dx+

∂

∂y

[∫ y

yo

N(xo, t) dt

]
dy = N(xo, y)dy

Add the above results together to see that M(x, y)dx+N(x, y)dy = 0 is a differential consequence
of the proposed solution. In other words, it works.

Example 2.3.9. Problem: find the solutions of (2xy+ey)dx+(2y+x2+ey)dy = 0 through (0, 0).

Solution: note M(x, y) = 2xy+ey and N(x, y) = 2y+x2+ey has ∂yM = ∂xN . Apply Proposition
2.3.8 ∫ x

0
M(t, y) dt+

∫ y

0
N(0, t) dt = 0 ⇒

∫ x

0
(2ty + ey) dt+

∫ y

0
(2t+ et) dt = 0

⇒
(
t2y + tey

)∣∣∣∣x
0

+

(
t2 + et

)∣∣∣∣y
0

= 0

⇒ x2y + xey + y2 + ey − 1 = 0.

You can easily verify that (0, 0) is a point on the curve boxed above.

The technique illustrated in the example above is missing from many differential equations texts,
I happened to discover it in the excellent text by Ritger and Rose Differential Equations with
Applications. I suppose the real power of Proposition 2.3.8 is to capture formulas for an arbitrary
point with a minimum of calculation:
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Example 2.3.10. Problem: find the solutions of 2x dx+ 2y dy = 0 through (xo, yo).

Solution: note M(x, y) = 2x and N(x, y) = 2y has ∂yM = ∂xN . Apply Proposition 2.3.8∫ x

0
M(t, y) dt+

∫ y

0
N(0, t) dt = 0 ⇒

∫ x

xo

2t dt+

∫ y

yo

2t dt = 0

⇒ t2
∣∣x
xo

+ t2
∣∣y
yo

= 0

⇒ x2 − x2o + y2 − y2o = 0.

⇒ x2 + y2 = x2o + y2o .

The solutions are circles with radius
√
x2o + y2o .

You can solve exact equations without Proposition 2.3.8, but I like how this result ties the math
back to multivariable calculus.

Example 2.3.11. Problem: find the solutions of E1 dx + E2 dy = 0 through (xo, yo). Assume
∂xE2 = ∂yE1.

Solution: the derivatiion of Proposition 2.3.8 showed that the solution of E1 dx + E2 dy = 0 is
given by level curves of the potential function for E⃗ = ⟨E1, E2⟩. In particular, if E⃗ = −∇V ,
where the minus is customary in physics, then the solution is simply given by the equipotential
curve V (x, y) = V (xo, yo). In other words, we could interpret the examples in terms of voltage and
electric fields. That is an important, real-world, application of this mathematics.

Remark 2.3.12.

In physics we sometimes define the electric potential by V (r⃗) = −
∫ r⃗

O
E⃗ • dr⃗ this formulation

of the potential implies −∇V = E⃗. On the other hand, if we think of this two-dimensionally
then E⃗ • dr⃗ = E1dx+ E2dy and so E1dx+ E2dy = −dV hence V (r⃗) = c defines a solution
of E1dx+ E2dy = 0. We call such a level curve an equipotential.

Likewise, a conservative vector field F⃗ = ⟨F1, F2⟩ = −∇U where U is the potential energy.

We could define U(r⃗) = −
∫ r⃗
O F⃗ • dr⃗ (here O defines the zero for the potential energy). If U is

defined by this integral then −∇U = F⃗ . In terms of differential equations, F1dx+F2dy = 0
has solution U(x, y) = c, a curve is a curve of constant potential energy.

2.3.2 Green’s Theorem and the closed condition

Given a differential equation in Pfaffian form Pdx+Qdy = 0 if we are given that ∂Q
∂x = ∂P

∂y over a
simply connected subset U of the plane then Green’s Theorem applies to D ⊆ U and we find:∫

∂D
Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA = 0

Thus ⟨P,Q⟩ is a conservative vector field on U since ∂D constitutes an arbitrary loop within U . You
might thing this means ∂D is a solution of Pdx+Qdy = 0, but notice we only know the integral of
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Pdx+Qdy is zero around all of ∂D. In particular, Pdx+Qdy can be both positive and negative
on ∂D in such a way that it cancels out in the continuous sum around ∂D. That said, since ⟨P,Q⟩
is conservative on U we know there exists F : U → R for which ∇F = ⟨∂xF, ∂yF ⟩ = ⟨P,Q⟩ hence

dF = Pdx+Qdy

and it becomes clear that F (x, y) = c serves to define the solution since dF = dc = 0 for the points
on the level curve defined by F (x, y) = c.

Suppose Mdx+Ndy = 0 is a differential equation which may or may not be exact. Suppose there
exists F for which dF = Mdx+Ndy then

∂F

∂x
= M &

∂F

∂y
= N ⇒ ∂M

∂y
=

∂

∂y

[
∂F

∂x

]
=

∂

∂x

[
∂F

∂y

]
=

∂N

∂x

We say ∂M
∂y = ∂N

∂x is the closed condition for the differential equation Mdx + Ndy = 0. The
calculation here shows that if the differential equation Mdx+Ndy = 0 is exact then the coefficient
functions M,N must solve the closed condition My = Nx. Conversely, if the closed condition
My = Nx holds for some subset U ⊆ R2 then it is not generally true that Mdx+Ndy = 0 is exact.
However, if we add the stipulation that the closed condition holds on a simply connected subset
of R2 then it is true that the closed condition implies the differential equation is exact. The proof
of this assertion is given at the start of this section. Let me collect the claims of this section for
future reference:

Proposition 2.3.13. closed condition for Mdx+Ndy = 0:

If ∂M
∂y ̸= ∂N

∂x for some point p ∈ U ⊆ R2 then Mdx+Ndy = 0 is not an exact equation on

U . However, if U is a simply connected subset of R2 for which ∂M
∂y = ∂N

∂x for each point in
U then Mdx+Ndy = 0 is an exact equation.

Remember, to say Mdx + Ndy = 0 is an exact equations means that we can solve M = ∂F
∂x and

N = ∂F
∂y simultaneously. Forgive me if I repeat myself a bit in the next section.

2.3.3 inexact equations and integrating factors

Consider once more the Pfaffian form Mdx+Ndy = 0. If ∂M
∂y ̸= ∂N

∂x at some point P then we cannot
find a potential function for a set which contains P . It follows that we can state the following no-go
proposition for the problem of exact equations.

Proposition 2.3.14. inexact equations:

If differential equation Mdx+Ndy = 0 has ∂M
∂y ̸= ∂N

∂x then Mdx+Ndy = 0 is inexact. In

other words, if ∂M
∂y ̸= ∂N

∂x then there does not exist F such that dF = Mdx+Ndy.

Pfaff was one of Gauss’ teachers at the beginning of the nineteenth century. He was one of the first
mathematicians to pursue solutions to exact equations. One of the theorems he discovered is that
almost any first order differential equation Mdx + Ndy = 0 can be multiplied by an integrating
factor I to make the equation IMdx+ INdy = 0 an exact equation. In other words, we can find I
such that there exists F with dF = IMdx+ INdy. I have not found a simple proof of this claim8

8this result of Pfaff‘s Theorem is a basic example of Frobenius Theorem, an important general PDE result.
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Given the proposition above, it is clear we must seek an integrating factor I such that

∂

∂y

[
IM

]
=

∂

∂x

[
IN

]
.

Often for a particular problem we add some restriction to make the search for I less daunting. In
each of the examples below I add a restriction on the search for I which helps us narrow the search9

Example 2.3.15. Problem: find the solutions of(
3x+

2

y

)
dx+

(
x2

y

)
dy = 0 (⋆)

by finding an integrating factor to make the equation exact.

Solution: Since the problem only involves simple polynomials and rational functions the factor
I = xAyB may suffice. Let us give it a try and see if we can choose a particular value for A,B to
make I a proper integrating factor for the given problem. Multiply ⋆ by I = xAyB,(

3xA+1yB + 2xAyB−1

)
dx+

(
xA+2yB−1

)
dy = 0 (I⋆)

Let M = 3xA+1yB + 2xAyB−1 and N = xA+2yB−1. We need ∂yM = ∂xN , this yields:

3BxA+1yB−1 + 2(B − 1)xAyB−2 = (A+ 2)xA+1yB−1

It follows that 3B = A+ 2 and 2(B − 1) = 0. Thus B = 1 and A = 1. We propose I = xy serves
as an integrating factor for ⋆. Multiply by ⋆ by xy to obtain(

3x2y + 2x

)
dx+

(
x3
)
dy = 0 (xy⋆)

note that F (x, y) = x3y+x2 = k has ∂xF = 3x2y+2x and ∂yF = x3 therefore F (x, y) = x3y+x2 = k
yield solutions to xy⋆. These are also solutions for ⋆. However, we may have removed several
solutions from the solution set when we multiplied by I. If I = 0 or if I is undefined for some
points in the plane then we must consider those points separately and directly with ⋆. Note that
I = xy is zero for x = 0 or y = 0. Clearly y = 0 is not a solution for ⋆ since it is outside the
domain of definition for ⋆. On the other hand, x = 0 does solve ⋆ and is an extraneous solution.
Let us summarize: ⋆ has solutions of the form x3y + x2 = k or x ≡ 0.

Example 2.3.16. Problem: find the solutions of dy
dx + Py = Q by the method of exact equations.

Assume that P,Q are differentiable functions of x.

Solution: in Pfaffian form this DEqn takes the form dy + Pydx = Qdx or (Py −Q)dx+ dy = 0.
Generally, P,Q are not given such that this equation is exact. We seek an integrating factor I such
that I(Py −Q)dx+ Idy = 0 is exact. We need:

∂

∂y

[
I(Py −Q)

]
=

∂

∂x

[
I
]

9It turns out that there are infinitely many integrating factors for a given inexact equation and we just need to
find one that works. We find a few more helpful formulas towards the end of this section which show how to calculate
an integrating factor in special cases.
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Assume that I is not a function of y for the sake of discovery, and it follows that IP = dI
dx . This

is solved by separation of variables: dI
I = Pdx implies ln |I| =

∫
P dx yielding I = exp(

∫
P dx).

This means the integrating factor is an integrating factor. We gave several examples in the previous
section.

The nice feature of the integrating factor I = exp(
∫
P dx) is that when we multiply the linear dif-

ferential equation dy
dx +Py = Q we lose no solutions since I ̸= 0. There are no extraneous solutions

in this linear case.

There is deeper math to discover here. The problem of how to find a wise substitution is a fascinating
topic that we could easily spend a semester developing better tools to solve such problems. In
particular, if you wish to do further reading I recommend the text by Peter Hydon on symmetries
and differential equations. Or, if you want a deeper discussion which is still primarily computational
you might look at the text by Brian Cantwell. The basic idea is that if you know a symmetry of the
differential equation it allows you to find special coordinates where the equation is easy to solve.
Ignoring the symmetry part, this is what we did in this section, we found an integrating factor
which transforms the given inexact equation to the simple exact equation dF = 0.

2.3.4 special integrating factors

Given M(x, y)dx+N(x, y)dy = 0 we say µ(x, y) is an

Definition 2.3.17. Pffafian form of a differential equation

Given ω = M(x, y)dx + N(x, y)dy we say I(x, y) is an integrating factor for ω if Iω is
an exact one-form. In other words, if I(x, y)M(x, y)dx + I(x, y)N(x, y)dy = 0 is an exact
equation then I is an integrating factor for Mdx+Ndy = 0.

We say α = Pdx + Qdy is an exact one-form on U ⊆ R2 if there exists F : U → R for which
dF = ∂xFdx + ∂yFdy = α. We can derive necessary conditions on the integrating factor. I will
omit the (x, y) dependence in what follows for brevity. If

IMdx+ INdy = 0

is an exact equation then we require the closed condition holds for IM and IN :

∂

∂y
[IM ] =

∂

∂x
[IN ] ⇒ ∂I

∂y
M + I

∂M

∂y
=

∂I

∂x
N + I

∂N

∂x

Consequently, the integrating factor I must solve:

∂I

∂y
M − ∂I

∂x
N = I

(
∂N

∂x
− ∂M

∂y

)
.

It follows that we can solve for I provided certain conditions are met:

(1.) I = I(x) then by assumption ∂I
∂y = 0 and we face − ∂I

∂xN = I
(
∂N
∂x − ∂M

∂y

)
. However, since I

only has x-dependence we find ∂I
∂x = dI

dx and hence

−dI

dx
N = I

(
∂N

∂x
− ∂M

∂y

)
⇒ dI

I
=

−1

N

(
∂N

∂x
− ∂M

∂y

)
dx
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Therefore,

ln |I| =
∫

−1

N

(
∂N

∂x
− ∂M

∂y

)
dx ⇒ I = exp

[∫
−1

N

(
∂N

∂x
− ∂M

∂y

)
dx

]
.

This choice of integrating factor requires that ∂
∂y

[
−1
N

(
∂N
∂x − ∂M

∂y

)]
= 0 since we required

I = I(x) as our initial assumption.

(2.) I = I(y) then by assumption ∂I
∂x = 0 and we face ∂I

∂yM = I
(
∂N
∂x − ∂M

∂y

)
. However, since I

only has y-dependence we find ∂I
∂y = dI

dy and hence

dI

dy
M = I

(
∂N

∂x
− ∂M

∂y

)
⇒ dI

I
=

1

M

(
∂N

∂x
− ∂M

∂y

)
dy

Therefore,

ln |I| =
∫

1

M

(
∂N

∂x
− ∂M

∂y

)
dy ⇒ I = exp

[∫
1

M

(
∂N

∂x
− ∂M

∂y

)
dy

]
.

This choice of integrating factor requires that ∂
∂x

[
1
M

(
∂N
∂x − ∂M

∂y

)]
= 0 since we need I = I(y)

as our starting assumption.

Example 2.3.18. Problem: Solve (xy + y)dx+ xdy = 0

Solution: identify M = xy + y and N = x thus

∂N

∂x
− ∂M

∂y
= 1− (x+ 1) = −x ⇒ −1

N

(
∂N

∂x
− ∂M

∂y

)
=

−1

x
(−x) = 1.

Following case (1.) we propose I = exp(
∫
dx) = ex. Multiplying (xy+ y)dx+xdy = 0 by ex yields:

(xy + y)exdx+ xexdy = 0 ⇒ d(yxex) = 0 ⇒ yxex = c ⇒ y =
c

xex
.

Example 2.3.19. Problem: Solve (xy + x)dx+ (y2 + y)dy = 0.

Solution: identify M = xy + x and N = y2 + y then

∂N

∂x
− ∂M

∂y
= 0− x ⇒ 1

M

(
∂N

∂x
− ∂M

∂y

)
=

1

xy + x
(−x) =

−1

y + 1
.

Therefore, following case (2.), we propose I = exp
[∫ ( −1

y+1

)
dy
]
= exp [− ln |y + 1|] = 1

|y+1| . As a

general point of calculational ease, we can drop the absolute value bars and the resulting function
will still serve as an integrating factor. Hence multiply (xy+x)dx+(y2+y)dy = 0 by 1

y+1 to obtain(
xy + x

y + 1

)
dx+

(
y2 + y

y + 1

)
dy = 0 ⇒ xdx+ ydy = 0 ⇒ d

(
1

2
x2 +

1

2
y2
)

= 0

thus we find the solution x2 + y2 = c .
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The theorem below is borrowed from Ritger and Rose page 53 of §2.5:

Theorem 2.3.20. integrating factors are not unique

If u(x, y) is an integrating factor of M dx + N dy = 0 and if dv = uM dx + uN dy then
u(x, y)F (v(x, y)) is also an integrating factor for any continuous function F

To see how this is true, integrate F to obtain G such that G′(v) = F (v). Observe dG = G′(v)dv =
F (v)dv. However, we know dv = uM dx+ uN dy hence dG = F (v)[uM dx+ uN dy] = uFM dx+
uFN dy which shows the DEqn M dx+N dy = 0 is made exact upon multiplication by uF . This
makes uF and integrating factor as the theorem claims.

2.4 substitutions

In this section we discuss a few common substitutions. The idea of substitution is simply to
transform a given problem to one we already know how to solve. Let me sketch the general idea
before we get into examples: we are given

dy

dx
= f(x, y)

We propose a new dependent variable v which is defined by y = h(x, v) for some function h.
Observe, by the multivariate chain-rule,

dy

dx
=

d

dx
h(x, v) =

∂h

∂x

dx

dx
+

∂h

∂v

dv

dx

Hence, the substitution yields:
∂h

∂x
+

∂h

∂v

dv

dx
= f(x, h(x, v))

which, if we choose wisely, is simpler to solve.

Example 2.4.1. Problem: solve dy
dx = (x+ y − 6)2. (call this ⋆)

Solution: the substitution v = x+y−6 looks promising. We obtain y = v−x+6 hence dy
dx = dv

dx−1
thus the DEQn ⋆ transforms to

dv

dx
− 1 = v2 ⇒ dv

dx
= v2 + 1 ⇒ dv

1 + v2
= dx ⇒ tan−1(v) = x+ C

Hence, tan−1(x + y − 6) = x + C is the general, implicit, solution to ⋆. In this case we can solve
for y to find the explicit solution y = 6 + tan(x+ C)− x.

Remark 2.4.2.

Generally the example above gives us hope that a DEqn of the form dy
dx = F (ax + by + c)

is solved through the substitution v = ax+ by + c.
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Example 2.4.3. Problem: solve dy
dx = y/x+1

y/x−1 . (call this ⋆)

Solution: the substitution v = y/x looks promising. Note that y = xv hence dy
dx = v + x dv

dx by the
product rule. We find ⋆ transforms to:

v + x
dv

dx
=

v + 1

v − 1
⇒ x

dv

dx
=

v + 1

v − 1
− v =

v + 1− v(v − 1)

v − 1
=

−v2 + 2v + 1

v − 1

Hence, separating variables,

(v − 1) dv

−v2 + 2v + 1
=

dx

x
⇒ −1

2
ln |v2 − 2v − 1| = ln |x|+ C̃

Thus, ln |v2 − 2v− 1| = ln(1/x2) +C and after exponentiation and multiplication by x2 we find the

implicit solution y2 − 2xy − x2 = K.

A differential equation of the form dy
dx = F (y/x) is called homogeneous10 . If we change coordi-

nates by rescaling both x and y by the same scale then the ratio y/x remains invariant; x̄ = λx
and ȳ = λy gives ȳ

x̄ = λy
λx = y

x . It turns out this is the reason the example above worked out so
nicely, the coordinate v = y/x is invariant under the rescaling symmetry.

Remark 2.4.4.

Generally the example above gives us hope that a DEqn of the form dy
dx = F (y/x) is solved

through the substitution v = y/x.

Example 2.4.5. Problem: Solve y′ + xy = xy3. (call this ⋆)

Solution: multiply by y−3 to obtain y−3y′+xy−2 = x. Let z = y−2 and observe z′ = −2y−3y′ thus
y−3y′ = −1

2 z′. It follows that:

−1

2

dz

dx
+ xz = x ⇒ dz

dx
− 2xz = −2x

Identify this is a linear ODE and calculate the integrating factor is e−x2
hence

e−x2 dz

dx
− 2xe−x2

z = −2xe−x2 ⇒ d(e−x2
z) = −2xe−x2

dx

Conquently, e−x2
z = e−x2

+ C which gives z = y−2 = 1 + Cex
2
. Finally, solve for y

y =
±1√

1 + Cex2
.

Given an initial condition we would need to select either + or − as appropriate.

10this term is used several times in this course with differing meanings. The more common use arises in the
discussion of linear differential equations.
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Remark 2.4.6.

This type of differential equation actually has a name; a differential equation of the type
dy
dx + P (x)y = Q(x)yn is called a Bernoulli DEqn. The procedure to solve such problems
is as follows:

1. multiply dy
dx + P (x)y = Q(x)yn by y−n to obtain y−n dy

dx + P (x)y−n+1 = Q(x),

2. make the substitution z = y−n+1 and observe z′ = (1−n)y−ny′ hence y−ny′ = 1
1−nz

′,

3. solve the linear ODE in z; 1
1−n

dz
dx + P (x)z = Q(x),

4. replace z with y−n+1 and solve if worthile for y.

Substututions which change both the dependent and independent variable are naturally handled
in the differential notation. If we replace x = f(s, t) and y = g(s, t) then dx = fsds + ftdt and
dy = gsds + gtdt. If we wish to transform M(x, y)dx + N(x, y)dy into s, t coordinates we simply
substitute the natural expressions:

M(x, y)dx+N(x, y)dy = M(f(s, t), g(s, t))

[
∂f

∂s
ds+

∂f

∂t
dt

]
+N(f(s, t), g(s, t))

[
∂g

∂s
ds+

∂g

∂t
dt

]
.

Let us see how this works in a particular example:

Example 2.4.7. Problem: solve (x+ y + 2)dx+ (x− y)dy = 0. (call this ⋆)

Solution: the substitution s = x+y+2 and t = x−y looks promising. Algebra yields x = 1
2(s+t−2)

and y = 1
2(s− t− 2) hence dx = 1

2(ds+ dt) and dy = 1
2(ds− dt) thus ⋆ transforms to:

s
1

2
(ds+ dt) + t

1

2
(ds− dt) = 0 ⇒ (t+ s)ds+ (s− t)dt = 0 ⇒ dt

ds
=

t+ s

t− s
.

It follows, for s ̸= 0,
dt

ds
=

t/s+ 1

t/s− 1

Recall we solved this in Example 2.4.3 hence:

t2 − 2st− s2 = K ⇒ (x− y)2 − 2(x+ y + 2)(x− y)− (x+ y + 2)2 = K.

You can simplify that to −2x2− 4xy− 8x+2y2− 4 = K. On the other hand, this DEqn is exact so

it is considerably easier to see that 2x+ x2−y2

2 + xy = C is the solution. Multiply by −4 to obtain
−8x − 2x2 + 2y2 − 4xy = −4C. It is the same solution as we just found through a much more
laborious method. I include this example here to illustrate the method, naturally the exact equation
approach is the better solution. Most of these problems do not admit the exact equation short-cut.

In retrospect, we were fortunate the transformed ⋆ was homogeneous. In Nagel Saff and Snider on
pages 77-78 of the 5-th ed. a method for choosing s and t to insure homogeneity of the transformed
DEqn is given.
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Example 2.4.8. Problem: solve

[
x√

x2+y2
+ y2

]
dx+

[
y√

x2+y2
− xy

]
dy = 0. (call this ⋆)

Solution: polar coordinates look promising here. Let x = r cos(θ) and y = r sin(θ),

dx = cos(θ)dr − r sin(θ)dθ, dy = sin(θ)dr + r cos(θ)dθ

Furthermore, r =
√
x2 + y2. We find ⋆ in polar coordinates,[

cos(θ) + r2 sin2(θ)
][
cos(θ)dr − r sin(θ)dθ

]
+
[
sin(θ)− r2 cos(θ) sin(θ)

][
sin(θ)dr + r cos(θ)dθ

]
= 0

Multiply, collect terms, a few things cancel and we obtain:

dr +
[
−r3 sin3(θ)− r3 sin(θ) cos2(θ)

]
dθ = 0

Hence,

dr − r3 sin(θ)dθ = 0 ⇒ dr

r3
= sin(θ)dθ ⇒ −1

2r2
= − cos(θ) + C.

Returning to Cartesian coordinates we find the implicit solution:

1

2(x2 + y2)
=

x√
x2 + y2

− C.

Sometimes a second-order differential equation is easily reduced to a first-order problem. The
examples below illustrate a technique called reduction of order.

Example 2.4.9. Problem: solve y′′ + y′ = x2. (call this ⋆)

Solution: Let y′ = v and observe y′′ = v′ hence ⋆ transforms to

dv

dx
− v = e−x

multiply the DEqn above by the integrating factor ex:

ex
dv

dx
− vex = 1 ⇒ d

dx

[
exv

]
= 1

thus exv = x + c1 and we find v = xe−x + c1e
−x. Then as v = dy

dx we can integrate once more to
find the solution:

y =

∫ [
xe−x + c1e

−x
]
dx = −xe−x − e−x − c1e

−x + c2

cleaning it up a bit,

y = −e−x(x− 1 + c1) + c2.

Remark 2.4.10.

Generally, given a differential equation of the form y′′ = F (y′, x) we can solve it by a
two-step process:

1. substitute v = y′ to obtain the first-order problem v′ = F (v, x). Solve for v.

2. recall v = y′, integrate to find y.

There will be two constants of integration. This is a typical feature of second-order ODE.
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Example 2.4.11. Problem: solve d2y
dt2

+ y = 0. (call this ⋆)

Solution: once more let v = dy
dt . Notice that

d2y

dt2
=

dv

dt
=

dy

dt

dv

dy
= v

dv

dy

thus ⋆ transforms to the first-order problem:

v
dv

dy
+ y = 0 ⇒ vdv + ydy = 0 ⇒ 1

2
v2 +

1

2
y2 =

1

2
C2.

assume the constant C > 0, note nothing is lost in doing this except the point solution y = 0, v = 0.
Solving for v we obtain v = ±

√
C − y2. However, v = dy

dt so we find:

dy√
C2 − y2

= ±dt ⇒ sin−1(y/C) = ±t+ ϕ

Thus, y = C sin(±t + ϕ). We can just as well write y = A sin(t + ϕ). Moreover, by trigonometry,
this is the same as y = B cos(t + γ), it’s just a matter of relabeling the constants in the general
solution.

Remark 2.4.12.

Generally, given a differential equation of the form y′′ = F (y) we can solve it by a two-step
process:

1. substitute v = y′ and use the identity dv
dt = v dv

dy to obtain the first-order problem

v dv
dy = F (y). Solve for v.

2. recall v = y′, integrate to find y.

There may be several cases possible as we solve for v, but in the end there will be two
constants of integration.

I would like to also solve d2y
dt2

− y = 0 and d2y
dt2

− 2ady
dt + a2y = 0 where a > 0 via arguments similar

to those given above. In fact, it would be nice to solve

ay′′ + by′ + cy = 0

for a ̸= 0 and arbitrary b, c ∈ R. We solve this later, but our method involves guessing in contrast to
method above which I would call derivation. Deriving something from base principles is generally
more difficult than simply finding a solution through some educated guessing. Much of what we
do in this course falls under the general category of educated guessing.

2.5 physics and applications

I’ve broken this section into two parts. The initial subsection examines how we can use differential-
equations techniques to better understand Newton’s Laws and energy in classical mechanics. This
sort of discussion is found in many of the older classic texts on differential equations. The second
portion of this section is a collection of isolated application examples which are focused on a
particular problems from a variety of fields.
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2.5.1 physics

In physics we learn that F⃗net = ma⃗ or, in terms of momentum F⃗net =
dp⃗
dt . We consider the one-

dimensional problem hence we have no need of the vector notation and we generally are faced with
the problem:

Fnet = m
dv

dt
or Fnet =

dp

dt

where the momentum p for a body with mass m is given by p = mv where v is the velocity as
defined by v = dx

dt . The acceleration a is defined by a = dv
dt . It is also customary to use the dot and

double dot notation for problems of classical mechanics. In particular: v = ẋ, a = v̇ = ẍ. Generally
the net-force can be a function of position, velocity and time; Fnet = F (x, v, t). For example,

1. the spring force is given by F = −kx

2. the force of gravity near the surface of the earth is given by F = ±mg (± depends on
interpretation of x)

3. force of gravity distance x from center of mass M given by F = −GmM
x2

4. thrust force on a rocket depends on speed and rate at which mass is ejected

5. friction forces which depend on velocity F = ±bvn (± needed to insure friction force is
opposite the direction of motion)

6. an external force, could be sinusoidal F = A cos(ωt), ...

Suppose that the force only depends on x; F = F (x) consider Newton’s Second Law:

m
dv

dt
= F (x)

Notice that we can use the identity dv
dt = dx

dt
dv
dx = v dv

dx hence

mv
dv

dx
= F (x) ⇒

∫ vf

vo

mv dv =

∫ xf

xo

F (x) dx ⇒ 1
2mv2f − 1

2mv2o =

∫ xf

xo

F (x) dx.

The equation boxed above is the work-energy theorem, it says the change in the kinetic energy
K = 1

2mv2 is given by
∫ xf

xo
F (x) dx. which is the work done by the force F . This result holds for

any net-force, however, in the case of a conservative force we have F = −dU
dx for the potential

energy function U hence the work done by F simplifies nicely∫ xf

xo

F (x) dx = −
∫ xf

xo

dU

dx
dx = −U(xf ) + U(xo)

and we obtain the conservation of total mechanical energy 1
2mv2f −

1
2mv2o = −U(xf ) +U(xo)

which is better written in terms of energy E(x, v) = 1
2mv2 + U(x) as E(xo, vo) = E(xf , vf ). The

total energy of a conservative system is constant. We can also see this by a direct-argument on the
differential equation below:

m
dv

dt
= −dU

dx
⇒ m

dv

dt
+

dU

dx
= 0
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multiply by dx
dt and use the identity d

dt

[
1
2v

2

]
= v dv

dt :

m
dx

dt

dv

dt
+

dx

dt

dU

dx
= 0 ⇒ d

dt

[
1

2
mv2

]
+

dU

dt
= 0 ⇒ d

dt

[
1

2
mv2 + U

]
= 0 ⇒ dE

dt
= 0.

Once more we have derived that the energy is constant for a system with a net-force which is
conservative. Note that as time evolves the expression E(x, v) = 1

2mv2 + U(x) is invariant. It
follows that the motion of the system is in described by an energy-level curve in the xv-plane.
This plane is commonly called the phase plane in physics literature. Much information can be
gleaned about the possible motions of a system by studying the energy level curves in the phase
plane. We discuss this qualitative technique in Chapter 5.

We now turn to a mass m for which the net-force is of the form F (x, v) = −dU
dx ∓ b|v|n. Here we

insist that − is given for v > 0 whereas the + is given for the case v < 0 since we assume b > 0 and
this friction force ought to point opposite the direction of motion. Once more consider Newton’s
Second Law:

m
dv

dt
= −dU

dx
∓ bvn ⇒ m

dv

dt
− dU

dx
= ∓b|v|n

multiply by the velocity and use the identity as we did in the conservative case:

m
dx

dt

dv

dt
− dx

dt

dU

dx
= ∓bv|v|n ⇒ d

dt

[
1

2
mv2 + U

]
= ∓bv|v|n ⇒ dE

dt
= ∓bv|v|n.

The friction force reduces the energy. For example, if n = 1 then we have dE
dt = −bv2.

Remark 2.5.1.

The concept of energy is implicit within Example 2.4.11. I should also mention that the
trick of multiplying by the velocity to reveal a conservation law is used again and again in
the junior-level classical mechanics course.

2.5.2 applications

Example 2.5.2. Problem: Suppose x is the position of a mass undergoing one-dimensional, con-
stant acceleration motion. You are given that initially we have velocity vo at position xo and later
we have velocity vf at position xf . Find how the initial and final velocities and positions are related.

Solution: recall that a = dv
dt but, by the chain-rule we can write a = dx

dt
dv
dx = v dv

dx . We are given
that a is a constant. Separate variables, and integrate with respect to the given data

a =
dx

dt

dv

dx
= v

dv

dx
⇒ a dx = v dv ⇒

∫ xf

xo

a dx =

∫ vf

vo

v dv ⇒ a(xf − xo) =
1

2

(
v2f − v2o

)
.

Therefore, v2f = v2o + 2a(xf − xo) . I hope you recognize this equation from physics.

Example 2.5.3. Problem: suppose the population P grows at a rate which is directly proportional
to the population. Let k be the proportionality constant. Find the population at time t in terms of
the initial population Po.
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Solution: the given problem translates into the differential equation dP
dt = kP with P (0) = Po.

Seperate variables and integrate, note P > 0 so I drop the absolute value bars in the integral,

dP

dt
= kP ⇒

∫
dP

P
=

∫
k dt ⇒ ln(P (t)) = kt+ C

Apply the initial condition; ln(P (0)) = k(0) + C hence C = ln(Po). Consequently ln(P (t)) =

ln(Po) + kt. Exponentiate to derive P (t) = Poe
kt .

In the example above I have in mind k > 0, but if we allow k < 0 that models exponential population
decline. Or, if we think of P as the number of radioactive particles then the same mathematics for
k < 0 models radioactive decay.

Example 2.5.4. Problem: the voltage dropped across a resistor R is given by the product of R
and the current I through R. The voltage dropped across a capacitor C depends on the charge
Q according to C = Q/V (this is actually the definition of capacitance). If we connect R and C
end-to-end making a loop then they are in parallel hence share the same voltage: IR = Q

C . As time

goes on the charge on C flows off the capacitor and through the resistor. It follows that I = −dQ
dt .

If the capacitor initially has charge Qo then find Q(t) and I(t) for the discharging capacitor

Solution: We must solve

−R
dQ

dt
=

Q

C

Separate variables, integrate, apply Q(0) = Qo:

dQ

Q
= − dt

RC
⇒ ln |Q| = − t

RC
+ c1 ⇒ Q(t) = ±ec1e

−t/RC ⇒ Q(t) = Qoe
−t/RC

Another application of first order differential equations is simply to search for curves with particular
properties. The next example illustrates that concept.

Example 2.5.5. Problem: find a family of curves which are increasing whenever y < −2 or
y > 2 and are decreasing whenever −2 < y < 2.

Solution: while many examples exist, the simplest example is one for which the derivative is
quadratic in y. Think about the quadratic (y+2)(y− 2). This expression is positive for |y| > 2 and
negative for |y| < 2. It follows that solutions to the differential equation dy

dx = (y + 2)(y − 2) will
have the desired properties. Note that y = ±2 are exceptional solutions for the give DEqn. Proceed
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by separation of variables, recall the technique of partial fractions,

dy

(y + 2)(y − 2)
= dx ⇒

∫ [
1

4(y − 2)
− 1

4(y + 2)

]
dy =

∫
dx ⋆

⇒ ln |y − 2| − ln |y + 2| = 4x+ C

⇒ ln

∣∣∣∣y − 2

y + 2

∣∣∣∣ = 4x+ C

⇒ ln

∣∣∣∣y + 2

y + 2
− 4

y + 2

∣∣∣∣ = 4x+ C

⇒ ln

∣∣∣∣1− 4

y + 2

∣∣∣∣ = 4x+ C

⇒
∣∣∣∣1− 4

y + 2

∣∣∣∣ = e4x+C = eCe4x

⇒ 1− 4

y + 2
= ±eCe4x = Ke4x

⇒ 1

y + 2
=

1−Ke4x

4

⇒ y = −2 +
4

1−Ke4x
, for K ̸= 0.

It is neat that K = 0 returns the exceptional solution y = 2 whereas the other exceptional solution
is lost since we have division by y + 2 in the calculation above. If we had multiplied ⋆ by −1 then
the tables would turn and we would recover y = −2 in the general formula.

The plot of the solutions below was prepared with pplane which is a feature of Matlab. To plot
solutions to dy

dx = f(x, y) you can put x′ = 1 and y′ = f(x, y). This is an under-use of pplane. We
discuss some of the deeper features towards the end of this chapter. Doubtless Mathematica will
do these things, however, I don’t have 10 hours to code it so, here it is:
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If you study the solutions in the previous example you’ll find that all solutions tend to either y = 2
or y = −2 in some limit. You can also show that all the solutions which cross the x-axis have
inflection points at their x-intercept. We can derive that from the differential equation directly:

dy

dx
= (y + 2)(y − 2) = y2 − 4 ⇒ d2y

dx2
= 2y

dy

dx
= 2y(y + 2)(y − 2).

We can easily reason when solutions have y > 2 or −2 < y < 0 they are concave up whereas
solutions with 0 < y < 2 or y < −2 are concave down. It follows that a solution crossing y = 0,−2
or 2 is at a point of inflection. Careful study of the solutions show that solutions do not cross
y = −2 or y = 2 thus only y = 0 has solutions with genuine points of inflection.

Example 2.5.6. Problem: suppose you are given a family S of curves which satisfy dy
dx = f(x, y).

Find a differential equation for a family of curves which are orthogonal to the given set of curves.
In other words, find a differential equation whose solution consists of curves S⊥ whose tangent
vectors are perpendicular to the tangent vectors of curves in S at points of intersection.

Solution: Consider a point (xo, yo), note that the solution to dy
dx = f(x, y) has slope f(xo, yo)

at that point. The perpendicular to the tangent has slope −1/f(xo, yo). Thus, we should use the
differential equation dy

dx = − 1
f(x,y) to obtain orthogonal trajectories.

Let me give a concrete example of orthogonal trajectories:

Example 2.5.7. Problem: find orthogonal trajectories of xdx+ ydy = 0.

Solution: we find dy
dx = −x

y hence the orthogonal trajectories are found in the solution set of dy
dx = y

x .
Separate variables to obtain:

dy

y
=

dx

x
⇒ ln |y| = ln |x|+ C ⇒ y = ±eCx.

In other words, the orthogonal trajectories are lines through the origin y = kx. Technically, by our
derivation, we ought not allow k = 0 but when you understand the solutions of xdx+ ydy = 0 are
simply circles x2 + y2 = R2 it is clear that y = 0 is indeed an orthogonal trajectory.

Example 2.5.8. Problem: find orthogonal trajectories of x2 − y2 = 1.

Solution: observe that the hyperbola above is a solution of the differential equation 2x− 2y dy
dx = 0

hence dy
dx = x

y . Orthogonal trajectories are found from dy
dx = −y

x . Separate variables,

dy

y
=

−dx

x
⇒ ln |y| = − ln |x|+ C ⇒ y = k/x.

Once more, the case k = 0 is exceptional, but it is clear that y = 0 is an orthogonal trajectory of
the given hyperbola.
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Orthogonal trajectories are important to the theory of electrostatics. The field lines which are
integral curves of the electric field form orthogonal trajectories to the equpotential curves. Or, in
the study of heatflow, the isothermal curves are orthgonal to the curves which line-up with the flow
of heat.

Example 2.5.9. Problem: Suppose the force of friction on a speeding car is given by Ff = −bv2.
If the car has mass m and initial speed vo and position xo then find the velocity and position as a
function of t as the car glides to a stop. Assume that the net-force is the friction force since the
normal force and gravity cancel.

Solution: by Newton’s second law we have mdv
dt = −bv2. Separate variables, integrate. apply

initital condition,

dv

v2
= −bdt

m
⇒ −1

v
=

−bt

m
+ c1 ⇒ −1

vo
=

−b(0)

m
+ c1 ⇒ c1 =

−1

vo

Thus,
1

v(t)
=

bt

m
+

1

vo
⇒ v(t) =

1
bt
m + 1

vo

⇒ v(t) =
vo

btvo
m + 1

.

Since v = dx
dt we can integrate the velocity to find the position

x(t) = c1 +
m

b
ln

∣∣∣∣1 + bvot

m

∣∣∣∣ ⇒ x(0) = c1 + ln(1) = xo ⇒ x(t) = xo +
m

b
ln

∣∣∣∣1 + bvot

m

∣∣∣∣ .
Notice the slightly counter-intuitive nature of this solution, the position is unbounded even though
the velocity tends to zero. Common sense might tell you that if the car slows to zero for large time
then the total distance covered must be finite. Well, common sense fails, math wins. The point is
that the velocity actually goes too zero too slowly to give bounded motion.
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Example 2.5.10. Problem: Newton’s Law of Cooling states that the change in temperature T for
an object is proportional to the difference between the ambient temperature R and T ; in particular:
dT
dt = −k(T − R) for some constant k and R is the room-temperature. Suppose that T (0) = 150
and T (1) = 120 if R = 70, find T (t)

Solution: To begin let us examine the differential equation for arbitrary k and R,

dT

dt
= −k(T −R) ⇒ dT

dt
+ kT = kR

Identify that p = k hence I = ekt and we find

ekt
dT

dt
+ kektT = kektR ⇒ d

dt

[
ektT

]
= kektR ⇒ ektT = Rekt +C ⇒ T (t) = R+ Ce−kt.

Now we may apply the given data to find both C and k, we already know R = 70 from the problem
statement;

T (0) = 70 + C = 150 & T (1) = 70 + Ce−k = 120

Hence C = 80 which implies e−k = 5/8 thus ek = 8/5 and k = ln(8/5). Therefore,

T (t) = 70 + 80et ln(5/8) . To understand this solution note that ln(5/8) < 0 hence the term

80et ln(5/8) → 0 as t → ∞ hence T (t) → 70 as t → ∞. After a long time, Newton’s Law of Cooling
predicts objects will assume room temperature.

Example 2.5.11. Suppose you decide to have coffee with a friend and you both get your coffee
ten minutes before the end of a serious presentation by your petty boss who will be offended if you
start drinking during his fascinating talk on maximal efficiencies for production of widgets. You
both desire to drink your coffee with the same amount of cream and you both like the coffee as hot
as possible. Your friend puts the creamer in immediately and waits quitely for the talk to end. You
on the other hand think you wait to put the cream in at the end of talk. Who has hotter coffee and
why? Discuss.

Example 2.5.12. Problem: the voltage dropped across a resistor R is given by the product of R
and the current I through R. The voltage dropped across an inductor L depends on the change in
the current according to LdI

dt . An inductor resists a change in current whereas a resistor just resists
current. If we connect R and L in series with a voltage source E then the Kirchoff’s voltage law
yields the differential equation

E − IR− L
dI

dt
= 0

Given that I(0) = Io find I(t) for the circuit.

Solution: Identify that this is a linear DE with independent variable t,

dI

dt
+

R

L
I =

E
L

The integrating factor is simply µ = e
Rt
L (using I here would be a poor notation). Multiplying the

DEqn above by µ to obtain,

e
Rt
L
dI

dt
+

R

L
e

Rt
L I =

E
L
e

Rt
L ⇒ d

dt

[
e

Rt
L I
]
=

E
L
e

Rt
L
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Introduce a dummy variable of integration τ and integrate from τ = 0 to τ = t,∫ t

0

d

dτ

[
e

Rτ
L I
]
dτ =

∫ t

0

E
L
e

Rτ
L dτ ⇒ e

Rt
L I(t)− Io =

∫ t

0

E
L
e

Rτ
L dτ.

Therefore, I(t) = Ioe
−Rt
L + e

−Rt
L

∫ t
0

E
Le

Rτ
L dτ . If the voltage source is constant then E(t) = Eo for all

t and the solution yields to I(t) = Ioe
−Rt
L + e

−Rt
L

Eo
L

L
R

(
e

Rt
L − 1

)
which simplifies to

I(t) =

[
Io −

Eo
R

]
e

−Rt
L +

Eo
R

.

The steady-state current found from letting t → ∞ where we find I(t) → Eo
R . After a long time

it is approximately correct to say the inductor is just a short-circuit. What happens is that as the
current changes in the inductor a magnetic field is built up. The magnetic field contains energy
and the maximum energy that can be stored in the field is governed by the voltage source. So,
after a while, the field is approximately maximal and all the voltage is dropped across the resistor.
You could think of it like saving money in a piggy-bank which cannot fit more than Eo dollars. If
every week you get an allowance then eventually you have no choice but to spend the money if the
piggy-bank is full and there is no other way to save.

Example 2.5.13. Problem: Suppose a tank of salty water has 15kg of salt disolved in 1000L of
water at time t = 0. Furthermore, assume pure water enters the tank at a rate of 10L/min and salty
water drains out at a rate of 10L/min. If y(t) is the number of kg of salt at time t then find y(t)
for t > 0. Also, how much salt is left in the tank when t = 20 (minutes). We suppose that this tank
is arranged such that the concentration of salt is constant throughout the liquid in this mixing tank.

Solution: Generally when we work such a problem we are interested in the rate of salt enetering
the tank and the rate of salt exiting the tank ; dy

dt = Rin − Rout. However, this problem only has a
nonzero out-rate: Rout =

10L
min

y
1000L = y

100min . We omit the ”min” in the math below as we assume
t is in minutes,

dy

dt
= − y

100
⇒ dy

y
= − dt

100
⇒ ln |y| = − t

100
+ C ⇒ y(t) = ke−

t
100 .

However, we are given that y(0) = 15 hence k = 15 and we find11:

y(t) = 15e−0.01t.

Evaluating at t = 20min yields y(20) = 12.28 kg.

11to be physically explicit, y(t) = (15kg)exp(−0.01t
min

), but the units clutter the math here so we omit them
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Example 2.5.14. Problem: Suppose a water tank has 100L of pure water at time t = 0. Suppose
salty water with a concentration of 1.5kg of salt per L enters the tank at a rate of 8L/min and gets
quickly mixed with the initially pure water. There is a drain in the tank where water drains out
at a rate of 6L/min. If y(t) is the number of kg of salt at time t then find y(t) for t > 0. If the
water tank has a maximum capacity of 1000L then what are the physically reasonable values for the
solution? For what t does your solution cease to be reasonable?

Solution: Generally when we work such a problem we are interested in the rate of salt enetering
the tank and the rate of salt exiting the tank ; dy

dt = Rin − Rout. The input-rate is constant and is
easily found from multiplying the given concentration by the flow-rate:

Rin =
1.5 kg

L

8L

min
=

12 kg

min

notice how the units help us verify we are setting-up the model wisely. That said, I omit them in
what follows to reduce clutter for the math. The output-rate is given by the product of the flow-rate
6L/min and the salt-concentration y(t)/V (t) where V (t) is the volume of water in L at time t.
Notice that the V (t) is given by V (t) = 100 + 2t for the given flow-rates, each minute the volume
increases by 2L. We find (in units of kg and min):

Rout =
6y

100 + 2t

Therefore, we must solve:

dy

dt
= 12− 6y

100 + 2t
⇒ dy

dt
+

3dt

50 + t
y = 12.

This is a linear ODE, we can solve it by the integrating factor method.

I(t) = exp

(∫
3dt

50 + t

)
= exp

(
3 ln(50 + t)

)
= (50 + t)3.

Multiplying by I yields:

(50 + t)3
dy

dt
+ 3(50 + t)2y = 12(50 + t)3 ⇒ d

dt

[
(50 + t)3y

]
= 12(50 + t)3

Integrating yields (50 + t)3y(t) = 3(50 + t)4 + C hence y(t) = 3(50 + t) + C
(50+t)3

. The water is

initially pure thus y(0) = 0 thus 0 = 150 + C/503 which gives C = −150(50)3. The solution is12

y(t) = 3(50 + t)− 150

(
50

50 + t

)3

Observe that V (t) ≤ 1000L thus we need 100+2t ≤ 1000 which gives t ≤ 450. The solution is only
appropriate physically for 0 ≤ t ≤ 450.

12following the formatting of Example 7 of § 2.7 of Rice & Strange’s Ordinary Differential Equations with Appli-
cations
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Example 2.5.15. Problem: suppose the population P grows at a rate which is directly propor-
tional to the population. Let k1 be the proportionality constant for the growth rate. Suppose further
that as the population grows the death-rate is proportional to the square of the population. Suppose
k2 is the proportionality constant for the death-rate. Find the population at time t in terms of the
initial population Po.

Solution: the given problem translates into the IVP of dP
dt = k1P −k2P

2 with P (0) = Po. Observe
that k1P − k2P

2 = k1P (1− k2P/k1). Introduce C = k1/k2). Separate variables:

dP

P (1− P/C)
= k1dt

Recall the technique of partial fractions:

1

P (1− P/C)
=

−C

P (P − C)
=

A

P
+

B

P − C
⇒ −C = A(P − C) +BP

Set P = 0 to obtain −C = −AC hence A = 1 and set P = C to obtain −C = BC hence B = −1
and we find: ∫ [

1

P
− 1

P − C

]
dP = k1dt ⇒ ln |P | − ln |P − C| = k1t+ c1

It follows that letting c2 = ec1 and c3 = ±c2∣∣∣∣ P

P − C

∣∣∣∣ = c2e
k1t ⇒ P = (P − C)c3e

k1t

hence, P [1− c3e
k1t] = −c3Cek1t

P (t) =
c3Cek1t

c3ek1t − 1
⇒ P (t) =

C

1− c4e−k1t

where I let c4 = 1/c3 for convenience. Let us work on writing this general solution in-terms of the
initial population P (0) = Po:

Po =
C

1− c4
⇒ Po(1− c4) = C ⇒ Po − C = Poc4 ⇒ c4 =

Po − C

Po
.

This yields,

P (t) =
C

1− Po−C
Po

e−k1t
⇒ P (t) = C

[
Po

Po − [Po − C]e−k1t

]
The quantity C is called the carrying capacity for the system. As we defined it here it is given
by the quotient of the birth-rate and death-rate constants C = k1/k2. Notice that as t → ∞ we
find P (t) → C. If Po > C then the population decreases towards C whereas if Po < C then the
population increases towards C. If Po = C then we have a special solution where dP

dt = 0 for all t,
the equilbrium solution. A a bit of fun trivia, these models are notoriously incorrect for human
populations. For example, in 1920 a paper by R. Pearl and L. J. Reed found P (t) = 210

1+51.5e−0.03t .
The time t is the number of years past 1790 (t = 60 for 1850 for example). As discussed in Ritger
and Rose page 85 this formula does quite well for 1950 where is well-approximates the population
as 151 million. However, the carrying capacity of 210 million people is not even close to correct.
Why? Because there are many factors which influence population which are simply not known.
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The same problem exists for economic models. You can’t model game-changing events such as
an interfering government. It doesn’t flow from logic or optimal principles, political convenience
whether it benefits or hurts a given market cannot be factored in over a long-term. Natural disasters
also spoil our efforts to model populations and markets. That said, the exponential and logarthmic
population models are important to a wide-swath of reasonably isolated populations which are free
of chaotic events.

Example 2.5.16. Problem: Suppose a raindrop falls through a cloud and gathers water from the
cloud as it drops towards the ground. Suppose the mass of the raindrop is m and the suppose the
rate at which the mass increases is proportional to the mass; dm

dt = km for some constant k > 0.
Find the equation of the velocity for the drop.

Solution: Newton’s equation is −mg = dp
dt . This follows from the assumption that, on average,

there is no net-momentum of the water vapor which adheres to the raindrop thus the momentum
change is all from the gravitational force. Since p = mv the product rule gives:

−mg =
dm

dt
v +m

dv

dt
⇒ −mg = kmv +m

dv

dt

Consequently, dividing by m and applying the integrating factor method gives:

dv

dt
+ kv = −g ⇒ ekt

dv

dt
+ kektv = −gekt ⇒ d

dt

[
ektv

]
= −gekt

Integrate to obtain ektv = −g
k ekt+C from which it follows v(t) = −g

k
+ Ce−kt. Consider the limit

t → ∞, we find v∞(t) = − g
k . This is called the terminal velocity. Physically this is a very

natural result; the velocity is constant when the forces balance. There are two forces at work here
(1.) gravity −mg and (2.) water friction −kmv and we look at

m
dv

dt
= −mg − kmv

If v = − g
k then you obtain ma = 0. You might question if we should call the term −kmv a ”force”.

Is it really a force? In any event, you might note we can find the terminal velocity without solving
the DEqn, we just have to look for an equilbrium of the forces.

Not all falling objects have a terminal velocity... well, at least if you believe the following example.
To be honest, I am not so sure it is very physical. I would be interested in your thoughts on the
analysis if your thoughts happen to differ from my own.

Example 2.5.17. Problem: Suppose a raindrop falls through a cloud and gathers water from the
cloud as it drops towards the ground. Suppose the mass of the raindrop is m and the suppose the
drop is spherical and the rate at which the mass adheres to the drop is proportional to the cross-
sectional area relative the vertical drop (dmdt = kπR2). Find the equation of the velocity for the drop.

Solution: we should assume the water in the could is motionless hence the water collected from
cloud does not impart momentum directly to the raindrop. It follows that Newton’s Law is −mg = dp

dt
where the momentum is given by p = mv and v = ẏ and y is the distance from the ground. The
mass m is a function of time. However, the density of water is constant at ρ = 1000kg/m3 hence
we can relate the mass m to the volume V = 4

3πR
3 we have

ρ =
4πR3

3m
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Solve for R2,

R2 =

[
3ρm

4π

]2/3
As the drop falls the rate of water collected should be proportional to the cross-sectional area πR2

the drop presents to cloud. It follows that:

dm

dt
= km2/3

Newton’s Second Law for varying mass,

−mg =
d

dt

[
mv
]
=

dm

dt
v +m

dv

dt
= km2/3v +m

dv

dt

This is a linear ODE in velocity,
dv

dt
+

(
k

m1/3

)
v = −g

We should find the mass as a function of time,

dm

dt
= km2/3 ⇒ dm

m2/3
= kdt ⇒ 3m1/3 = kt+ C1 ⇒ m =

1

27

[
kt+ C1

]3
where mo is the initial mass of the droplet.

dv

dt
+

3kv

kt+ C1
= −g

The integrating factor is found from integrating the coefficient of v,

I = exp

[∫
3kdt

kt+ C1

]
= exp

[
3 ln(kt+ C1)

]
= (kt+ C1)

3

Hence,

(kt+ C1)
3dv

dt
+ 3(kt+ C1)

2v = −g(kt+ C1)
3 ⇒ d

dt

[
(kt+ C1)

3v

]
= −g(kt+ C1)

3

Hence v(t) = −gt

4
− C3 + C2/(kt+ C1)

3. The constants C1, C2, C3 have to do with the geometry

of the drop, its initial mass and its initial velocity. Suppose t = 0 marks the intiial formation of
the raindrop, it is interesting to consider the case t → ∞, we find

v∞(t) = −gt

4
− C3

which says that the drop accelerates at approximately constant acceleration −g/4 as it falls through
the cloud. There is no terminal velocity in contrast to the previous example. You can integrate
v(t) = dy

dt to find the equation of motion for y.
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Example 2.5.18. Problem: Rocket flight. Rockets fly by ejecting mass with momentum to form
thrust. We analyze the upward motion of a vertically launched rocket in this example. In this case
Netwon’s Second Law takes the form:

d

dt

[
mv

]
= Fexternal + Fthrust

the external force could include gravity as well as friction and the thrust arises from conservation
of momentum. Suppose the rocket expells gas downward at speed u relative the rocket. Suppose that
the rocket burns mass at a uniform rate m(t) = mo − αt and find the resulting equation of motion.
Assume air friction is neglible.

Solution: If the rocket has velocity v then the expelled gas has velocity v − u relative the ground’s
frame of reference. It follows that:

Fthrust = (v − u)
dm

dt

Since Fexternal = −mg and dm
dt = −α we must solve

d

dt

[
mv

]
= −mg + (v − u)

dm

dt
⇒ dm

dt
v +m

dv

dt
= −mg + v

dm

dt
− u

dm

dt

Thus,

m
dv

dt
= −u

dm

dt
−mg

Suppose, as was given, that m(t) = mo − αt hence dm
dt = −α

(mo − αt)
dv

dt
= αu− (mo − αt)g ⇒ dv

dt
=

αu

mo − αt
− g

We can solve by integration: assume v(0) = 0 as is physically reasonable,

v(t) = −u ln(mo − αt) + u ln(mo)− gt = −u ln

(
1− αt

mo

)
− gt.

The initial mass mo consists of fuel and the rocket itself: mo = mf + mr. This model is only
physical for time t such that mr ≤ mf +mr − αt hence 0 ≤ t ≤ mf/α. Once the fuel is finished
the empty rocket completes the flight by projectile motion. You can integrate v = dy/dt to find the
equation of motion. In particular:

y(t) =

∫ t

0

[
−u ln(mo − ατ) + u ln(mo)− gτ

]
dτ (2.1)

=

(
−u

α

[
(ατ −mo) ln(mo − ατ)− ατ

]
+ uτ ln(mo)−

1

2
gτ2
)∣∣∣∣t

0

= −u

α

[
(αt−mo) ln(mo − αt)− αt

]
+ ut ln(mo)−

1

2
gt2 − mou

α
ln(mo)

= ut− 1

2
gt2 − u

mo

α

(
1− αt

mo

)
ln

(
1− αt

mo

)

Suppose −
∫ mf

α
0 u ln

(
1− αt

mo

)
dt = A then y(t) = A− 1

2g

(
t− mf

α

)2

for t >
mf

α as the rocket freefalls

back to earth having exhausted its fuel.
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Technically, if the rocket flies more than a few miles vertically then we ought to use the variable
force of gravity which correctly accounts for the weaking of the gravitational force with increasing
altitude. Mostly this example is included to show how variable mass with momentum transfer is
handled.

Other interesting applications include chemical reactions, radioactive decay, blood-flow, other pop-
ulation models, dozens if not hundreds of modifications of the physics examples we’ve considered,
rumor propogation, etc... the math here is likely found in any discipline which uses math to quantia-
tively describe variables. I’ll conclude this section with an interesting example I found in Edwards
and Penny’s Elementary Differential Equations with Boundary Value Problems, the 3rd Ed.

Example 2.5.19. Problem: Suppose a flexiible rope of length 4ft has 3ft coiled on the edge of
a balcony and 1ft hangs over the edge. If at t = 0 the rope begins to uncoil further then find the
velocity of the rope as it falls. Also, how long does it take for the rope to fall completely off the
balcony. Suppose that the force of friction is neglible.

Solution: let x be the length of rope hanging off and suppose v = dx/dt. It follows that x(0) = 1
and v(0) = 0. The force of gravity is mg, note that if λ is the mass per unit length of the rope then
m = λx, thus:

d

dt

[
mv

]
= mg ⇒ d

dt

[
λxv

]
= λxg ⇒ λ

dx

dt
v + λx

dv

dt
= λxg

The mass-density λ cancels and since v = dx
dt and dv

dt = dx
dt

dv
dx = v dv

dx we find:

v2 + xv
dv

dx
= xg ⇒

(
v2

x
− g

)
dx+ v dv = 0

In your text, in the discussion of special integrating factors, it is indicated that when
∂yM−∂xN

N =

A(x) then I =
∫
Adx is an integrating factor. Observe M(x, v) = v2

x − g and N(x, v) = v hence
∂yM−∂xN

N = 2/x hence we calculate I = exp(
∫

2dx
x ) = exp(2 ln |x|) = x2. Don’t believe it? Well,

believe this: (
xv2 − gx2

)
dx+ x2v dv = 0 ⇒ 1

2
x2v2 − 1

3
gx3 = C.

Apply the intiial condtions x(0) = 1 and v(0) = 0 gives −1
3g = C thus 1

2x
2v2 − 1

3gx
3 = −1

3g. and
we solve for v > 0,

v =

√
2g

3

(
x3 − 1

x2

)
However, v = dx

dt consequently, separating and integrating:

T =

√
3

2g

∫ 4

1

xdx√
x3 − 1

≊ 2.5

√
3

2g
= 0.541 s

by Wolfram Alpha. See Section 1.7 Example 6 of Edwards and Penny’s Elementary Differential
Equations with Boundary Value Problems, the 3rd Ed. for another approach involving Simpson’s
rule with 100 steps.
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2.6 visualizations, existence and uniqueness

Given a curve in the R2 we have two general methods to describe the curve:

(1.) F (x, y) = k as a level curve (2.) r⃗(t) = ⟨x(t), y(t)⟩ as a parametrized curve

As an example, we can either write x2 + y2 = 1 or x = cos(t), y = sin(t). The parametric view
has the advantage of capturing the direction or orientation of the curve. We have studied solu-
tions of Mdx + Ndy = 0 in terms of cartesian coordinates and naturally our solutions were level
curves. We now turn to ask what conditions ought to hold for the parametrization of the solution
to Mdx+Ndy = 0.

Given a differentiable function of two variables F : D ⊆ R2 → R we may subsitute a differentiable
path r⃗ : I ⊆ R → D to form the composite function F ◦ r⃗ : I ⊆ R → R. If we denote r⃗(t) =
⟨x(t), y(t)⟩ then the multivariate chain-rule says:

d

dt
F (x(t), y(t)) =

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
.

Suppose we have a level curve C which is the solution set of F (x, y) = k and suppose C is the
solution of Mdx + Ndy = 0 (call this (⋆xy). It follows that the level-function F must have
∂xF = M and ∂yF = N . Continuing, suppose a parametrization of C is given by the set of
functions x, y : I ⊆ R → R where F (x(t), y(t)) = k for all t ∈ I. Notice that when we differentiate
k with respect to t we obtain zero hence, applying the general chain rule to our context,

∂F

∂x
(x(t), y(t))

dx

dt
+

∂F

∂y
(x(t), y(t))

dy

dt
= 0

for any parametrization of C. But, ∂xF = M and ∂yF = N hence

M(x(t), y(t))
dx

dt
+N(x(t), y(t))

dy

dt
= 0 (⋆t)

I probably cheated in class and just ”divided by dt” to derive this from Mdx+Ndy = 0. However,
that is just an abbreviation of the argument I present here. How should we solve (⋆t)? Observe
that the conditions

dx

dt
= −N(x(t), y(t)) &

dy

dt
= M(x(t), y(t))

will suffice. Moreover, these conditions show that the solution of Mdx+Ndy = 0 is an streamline
(or integral curve) of the vector field G⃗ = ⟨−N,M⟩. Naturally, we see that F⃗ = ⟨M,N⟩ is orthogo-
nal to G⃗ as F⃗ • G⃗ = 0. The solutions ofMdx+Ndy = 0 are perpendicular to the vector field ⟨M,N⟩.

There is an ambiguity we should face. Given Mdx + Ndy = 0 we can either view solutions as
streamlines to the vector field ⟨−N,M⟩ or we could use ⟨N,−M⟩. The solutions of Mdx+Ndy = 0
do not have a natural direction unless we make some other convention or have some larger context.
Therefore, as we seek to visualize the solutions of Mdx + Ndy = 0 we should either ignore the
direction of the vector field ⟨−N,M⟩ or simply not plot the arrowheads. A plot of ⟨−N,M⟩ with
directionless vectors is called an isocline plot for Mdx + Ndy = 0. Perhaps you looked at some
isoclines in your second semester calculus course.
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Example 2.6.1. Problem: plot the isocline field for xdx+ ydy = 0 and a few solutions.
Solution: use pplane with x′ = −y and y′ = x for the reasons we just derived in general.

Example 2.6.2. Problem: plot the isocline field for dy
dx = (x+ y − 6)2 and a few solutions.

Solution: in Pfaffian form we face (x + y − 6)2dx − dy hence we use pplane with x′ = −1 and
y′ = (x+ y − 6)2.

Recall that we found solutions y = 6 + tan(x+ C)− x in Example 2.4.1. This is the plot of that.

Example 2.6.3. Problem: plot the isocline field for (x + y + 2)dx + (x − y)dy = 0 and a few
solutions.
Solution: in Pfaffian form we face (x + y − 6)2dx − dy hence we use pplane with x′ = −1 and
y′ = (x+ y − 6)2.

Recall that we found solutions 2x+ x2−y2

2 + xy = C in Example 2.4.7. This is the plot of that.
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Example 2.6.4. Problem: plot the isocline field for dy
dx = y3+x2y−y−x

xy2+x3+y−x
and a few solutions.

Solution: in Pfaffian form we face (y3+x2y−y−x)dx− (xy2+x3+y−x)dy hence we use pplane
with x′ = xy2 + x3 + y − x and y′ = y3 + x2y − y − x.

See my handwritten notes (38-40) for the solution of this by algebraic methods. It is a beautiful
example of how polar coordinate change naturally solves a first order ODE with a rotational sym-
metry. Also, notice that all solutions asymptotically are drawn to the unit circle. If the solution
begins inside the circle it is drawn outwards to the circle whereas all solutions outside the circle
spiral inward.

If you study the plots I just gave you will notice that at most points there is just one solution the
flows through. However, at certain points there are multiple solutions that intersect. When there
is just one solution at a given point (xo, yo) then we say that the solution is unique. It turns out
there are simple theorems that capture when the solution is unique for a general first order ODE
of the form dy

dx = f(x, y). I will not prove these here13

Theorem 2.6.5. existence of solution(s)

Suppose f is continuous on a rectangle R ⊂ R2 then at least one solution exists for
dy
dx = f(x, y) at each point in R. Moreover, these solutions exist on all of R in the sense
that they reach the edge of R.

This is a dumbed-down version of the theorem given in the older texts like Rabenstein or Ritger &
Rose. See pages 374-378 of Rabenstein or Chapter 4 of Ritger & Rose. You can read those if you
wish to see the man behind the curtain here.

Theorem 2.6.6. uniqueness of solution

Suppose f is continuous on a rectangle R ⊂ R2 and ∂f
∂y (xo, yo) ̸= 0 then there exists a

unique solution near (xo, yo).

Uniqueness can be lost as we get too far away from the point where ∂f
∂y (xo, yo) ̸= 0. The solution is

separated from other solutions near (xo, yo), but it may intersect other solutions as we travel away
from the given point.

13see Rosenlicht’s Introduction to Analysis for a proof of this theorem, you need ideas from advanced calculus and
real analysis to properly understand the proof.
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Example 2.6.7. Solve dy
dx = y2 and analyze how the uniqueness and existence theorems are

validated. This nonlinear DEqn is easily solved by separation of variables: dy/y2 = dx hence
−1/y = x+ C or y = −1

x+C . We also have the solution y = 0. Consider,

∂f

∂y
=

∂

∂y
[y2] = 2y

Thus all points off the y = 0 (aka x-axis) should have locally unique solutions. In fact, it turns
out that the solution y = 0 is also unique in this case. Notice that the theorem does not forbid
this. The theorem on uniqueness only indicates that it is possible for multiple solutions to exist
at a point where ∂f

∂y (xo, yo) = 0. It is important to not over-extend the theorem. On the other

hand, the existence theorem says that solutions should extend to the edge of R2 and that is clearly
accomplished by the solutions we found. You can think of y = 0 as reaching the horizontal infinities
of the plane whereas the curves y = −1

x+C have vertical asymptotes which naturally extend to the
vertical infinities of the plane. (these comments are heuristic !)

Example 2.6.8. Solve dy
dx = 2

√
y and analyze how the uniqueness and existence theorems are

validated. Observe that dy
2
√
y = dx hence

√
y = x + C and we find y = (x + C)2. Note that the

solutions reach points on R×[0,∞) however the solutions do not have y < 0. The existence theorem
suggests solutions should exist on R× [0,∞) and this is precisely what we found. On the other hand,
for uniqueness, consider: f(x, y) = 2

√
y

∂f

∂y
=

1
√
y

We can expect unique solutions at points with y ̸= 0, however, we may find mutiple solutions at
points with y = 0. Indeed, note that y = 0 is a solution and at any point (a, 0) we also have the
solution y = (x − a)2. At each point along the x-axis we find two solutions intersect the point.
Moreover, if you look at an open interval centered at (a, 0) you’ll find infinitely many solutions
which flow off the special solution y = 0. Note, in the plot below, the pplane tool illustrates the
points outside the domain of defintion by the red dots:

Example 2.6.9. Consider the first order linear ODE dy
dx + P (x)y = Q(x). Identify that dy

dx =

Q(x) − P (x)y = f(x, y). Therefore, ∂f
∂y = P (x). We might find there are multiple solutions for

points with P (x) = 0. However, will we? Discuss.
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If a first order ODE does not have the form14 dy
dx + P (x)y = Q(x) then it is said to be nonlinear.

Often the nonlinear ODEs we have studied have possessed unique solutions at most points. However,
the unique solutions flow into some exceptional solution like y = 0 in Example 2.6.8 or the unit circle
x2 + y2 = 1 or origin (0, 0) in Example 2.6.4. These exceptional solutions for nonlinear problems
are called singular solutions and a point like the origin in Example 2.6.4 is naturally called a
singular point. That said, we will discuss a more precise idea of singular point for systems of
ODEs later in this course. The study of nonlinear problems is a deep an interesting subject which
we have only scratched the surface of here. I hope you see by now that the resource of pplane allows
you to see things that would be very hard to see with more naive tools like a TI-83 or uncoded
Mathematica.

2.7 practice problems

PP 1 (Separation of Variables) Solve the differential equations below. If possible, find the explicit
solution, otherwise find an implicit general solution.

(a.)
dy

dx
= (x+ 1)2

(b.) dx− x2dy = 0

(c.) ex
dy

dx
= 2x

(d.)
dy

dt
+ 2xt = 0

(e.)
dy

dx
=

y + 1

x

(f.)
dx

dy
=

1 + 2y2

y sinx

(g.) x2y2dy = (y + 1)dx

(h.)
dy

dx
=

(
2y + 3

4x+ 5

)2

(i.) secxdy = x cot ydx

(j.) x
√
1− z2dx = dz

(k.) sec y
dy

dx
+ sin(x− y) = sin(x+ y)

(l.)
dy

dx
=

xy + 3x− y − 3

xy − 2x+ 4y − 8

(m.) (ex + e−x)
dw

dx
= w2

(n.) (x+
√
x)

dy

dx
= y +

√
y.

14could also write dy
dx

= Q(x)− P (x)y or dy = (Q(x)− P (x)y)dx etc... the key is that the expression has y and y′

appearing linearly when the DEqn is written in dy
dx

notation
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PP 2 (Initial Value Problems) Use separation of variables to solve the IVPs below:

(a.)
dy

dt
+ ty = y with y(1) = 3.

(b.)
dx

dy
= 4(x2 + 1) with x(π/4) = 1.

(c.)
dy

dx
=

y2 − 1

x2 − 1
with y(2) = 2

(d.) y′ + 2y = 1 with y(0) = 5/2.

PP 3 (substitution of form u = ax+ by+ c) Solve the following by making an appropriate substi-
tution and using separation of variables,

(a.)
dy

dx
= (x+ y + 1)2

(b.)
dy

dx
= tan2(x+ y)

(c.)
dy

dx
=

1− x− y

x+ y

(d.)
dy

dx
= 1 + ey−x+5

PP 4 (homogeneous equations, try y = ux or x = vy on M(x, y)dx+N(x, y)dy = 0 where M and
N are homogeneous functions of same degree)

(a.) (x− y)dx+ xdy = 0

(b.)
dy

dx
=

y − x

y + x

(c.) y
dx

dy
= x+ 4ye−2x/y

(d.) (x2 + xy − y2)dx+ xydy = 0

PP 5 (exact equations) If the DEqn below is exact then solve it, otherwise explain why the given
DEqn is not exact.

(a.) (2x+ y)dx− (x+ 6y)dy = 0

(b.) (2xz2 − 3)dx+ (2zx2 + 4)dz = 0

(c.) (sin y − y sinx)dx+ (cosx+ x cos y − y)dy = 0

(d.)

(
2y − 1

x
+ cos 3x

)
dy

dx
+

y

x2
− 4x3 + 3y sin 3x = 0

(e.)
(
1 + lnx+ y

x

)
dx = (1− lnx)dy

(f.) (θ3 + β3)dθ + 3θβ2dβ = 0

(g.) (3x2y + ey)dx+ (x3 + xey − 2y)dy = 0

(h.) (ey + 2xy coshx)y′ + xy2 sinhx+ y2 coshx = 0

(i.) (2y sinx cosx− y + 2y2exy
2
)dx = (x− sin2 x− 4xyexy

2
)dy

(j.)

(
1

x
+

1

x2
− t

x2 + t2

)
dx+

(
tet +

x

x2 + t2

)
dt = 0
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PP 6 (exact equations with integrating factor) A general form of an integrating factor is suggested.
Find the specific form I which serves as an integrating factor and solve the DEqn Mdx +
Ndy = 0 by solving the exact equation IMdx+ INdy = 0)

(a.) 6xydx+ (4y + 9x2)dy = 0 given I = yA

(b.) y(x+ y + 1)dx+ (x+ 2y)dy = 0 given I = eAx

(c.) (x2 + 2xy − y2)dx+ (y2 + 2xy − x2)dy = 0 given I = (x+ y)A

(d.) y(4xy5 + 3)dx− x(2xy5 + 7)dy = 0 given I = xAyB

PP 7 (linear first order DEqn) Solve the linear first order ODEqn given below and state the
interval on which the solution is defined. If given an initial value, then fit the given data to
the explicit solution.

(a.)
dy

dx
+ y = e3x

(b.) y′ + 3x2y = x2

(c.)
dx

dy
= x+ y

(d.) x
dy

dx
+ 2y = 3

(e.) xdy = x sinx− y)dx

(f.) x
dy

dx
+ 4y = x3 − x

(g.) x2y′ + x(x+ 2)y = ex

(h.) cos2 x sinxdy + (y cos3 x− 1)dx = 0

(i.)
dr

dθ
+ r sec θ = cos θ

(j.) L
di

dt
+Ri = E where L,R,E are nonzero constants and i(0) = io

PP 8 (Bernoulli’s Equation). If the DEqn has form dy
dx + P (x)y = f(x)yn for some real n then it

is called a Bernoulli Equation. These can be solved by a w = y1−n substitution, we assume
n ̸= 0, 1. Solve the following:

(a.)
dy

dx
− y = exy2

(b.) x
dy

dx
− (1 + x)y = xy2

(c.) 3(1 + x2)
dy

dx
= 2xy(y3 − 1)

PP 9 (Ricatti’s Equation). If dy
dx = P (x) + Q(x)y + R(x)y2 then the given DEqn is a Ricatti

Equation. If y1 is a known solution then the substitution v = y1 + u turns the problem into
a Bernoulli Equation with n = 2. Given the Ricatti Equation below with known solution
y1, solve it. Or, if no y1 is given then figure one out then solve it.

(a.)
dy

dx
= 1− x− y + xy2, y1 = 1
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(b.)
dy

dx
= 2x2 + y/x− 2y2, y1 = x

(c.)
dy

dx
= sec2 x− (tanx)y + y2, y1 = tanx

(d.)
dy

dx
= 9 + 6y + y2

PP 10 (Clauiraut Equation) Let f be a smooth function. The differential equation y = xy′ + f(y′)
is known as a Clairaut Equation. Show that y = cx + f(c) serves as a solution to Clairaut
Equation for any c ∈ R. Furthermore, show

x = −f ′(t), & y = f(t)− tf ′(t)

give a parametric solution to Clairaut Equation. If f ′′(t) ̸= 0 then the parametric solution
describes a solution not found in the linear family and as such it is known as the singular
solution. Solve the Clairaut Equations below by finding both their linear solutions and the
singular solution.

(a.) y = xy′ + (y′)−2

(b.) y = (x+ 4)y′ + (y′)2

(c.) y − xy′ = ln y′

PP 11 Solve 2xy
dy

dx
+ 2y3 = 3x− 6 by making a substitution of v = y2.

PP 12 Solve y′′ = 2x(y′)2 by making a v = y′ substitution.

PP 13 Solve
dy

dx
= ex−y coshx

PP 14 Solve
dy

dx
=

y2 + 4y + 5

x2 − 3x− 4

PP 15 Solve (y + sin−1(x))dx+

(
x+

1

1 + y2

)
dy = 0

PP 16 Solve
dy

dx
=

y2 + 2xy

x2
. Hint: write as

dy

dx
= F (y/x).

PP 17 Find the explicit solution of
dy

dx
=

ex

y
for which y(0) = −2.

PP 18 Find the explicit general solution of
dy

dx
+ (tanx)y = secx.

PP 19 Find a continuous solution of dy
dx = |x− 3| which contains the origin.

PP 20 Find a continuous solution of dy
dx =

√
(x− 3)2 −

√
(x− 4)2 which contains the origin.

PP 21 Find the explicit solution of dy
dx − 3y

x =
√
x.
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PP 22 Note that µ = 1/(yx2) is an integrating factor for the following differential equation:

(3x2y+y2)dx+(x2y2−xy)dy = 0, .

Find the general solution to the differential equation. If there are any exceptional solutions
be sure to point them out.

PP 23 Find the solution of (2+ yexy) dx+(y+xexy) dy = 0 through (xo, yo). Hint: this is an exact
DEqn thus you can use the theorem involving line integrals to build the desired solution

PP 24 Solve (2y sec2(x2y))dx+ (x sec2(x2y) + 1
xe

y)dy = 0.
Hint: µ = x is an integrating factor for this inexact equation.

PP 25 Solve dy
dx = y2+2xy

x2 .

Hint: write as dy
dx = F (y/x))

PP 26 Solve

dy

dx
= y(xy3−1).

PP 27 Solve the following by making a subsitution which replaces x and y with polar coordinates
r and θ. Please give your answer in terms of r, θ.

[2x(x2 + y2) + y]dx+ [2y(x2 + y2)− x]dy = 0.

PP 28 Find the implicit solution of:(
1 + 2xy2 − 1

x2 + 4

)
dx+

(
2y + 2x2y − 1

1− y2

)
dy = 0.

PP 29 Find the potential energy function for the conservative vector field:

F⃗ (x, y) =

〈
1 + 2xy2 − 1

x2 + 4
, 2y + 2x2y − 1

1− y2

〉
PP 30 Consider the differential equation Pdx + Qdy = 0 where Py = Qx on a simply connected

region U ⊆ R2. Use Calculus III to prove there exists F : U → R for which dF = Pdx+Qdy
and explain why F (x, y) = C serves to solve Pdx+Qdy = 0.

PP 31 Consider the differential equation Pdx + Qdy = 0 where Py ̸= Qx on a simply connected
region U ⊆ R2. Use Calculus III to prove there cannot exist F : U → R for which dF =
Pdx+Qdy.

PP 32 Consider ω =
−ydx+ xdy

x2 + y2
.

(a.) Calculate
∫
C ω where C is the CCW unit-circle.

(b.) We say ω is closed if dω = 0. Show ω is closed.

(c.) We say ω is exact if there exists F for which dF = ω on U ⊆ R2. Is ω exact on R2 ?

(d.) On which simply connected subsets of R2 is ω exact ?
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PP 33 The wedge product follows the usual rules of algebra except it satisfies dx ∧ dx = 0 and
dx∧dy = −dy∧dx etc. Calculate (a1dx+a2dy+a3dz)∧ (b1dx+ b2dy+ b3dz) and comment
on the meaning of the constants c1, c2, c3 with

(a1dx+ a2dy + a3dz) ∧ (b1dx+ b2dy + b3dz) = c1dy ∧ dz + c2dz ∧ dx+ c3dx ∧ dy

can you recognize ⟨c1, c2, c3⟩ as it relates to ⟨a1, a2, a3⟩ and ⟨b1, b2, b3⟩ ?

PP 34 The exterior derivative of a one-form ω = Adx+Bdy+Cdz is given by dω = dA∧dx+dB∧
dy + dC ∧ dz where dA = (∂xA)dx + (∂yA)dy + (∂zA)dz is the total differential you know
and love from Calculus III. Let f be a smooth function of x, y, z. Show that d(df) = 0. To
which identity of vector calculus does your calculation correspond ?

PP 35 A differential equation Mdx+Ndy = 0 is exact if there exists F for which dF = Mdx+Ndy.
Since d(dF ) = 0 is an identity of the exterior calculus we can check on the exactness of a
given differential equation in Pfaffian form by taking its exterior derivative. Determine if
the differential equations below are exact by taking the exterior derivative of the differential
equation:

(a.) ydx+ x2dy = 0

(b.) y sin(xy)dx+ x sin(xy)dy = 0

(c.) −x2dy + y2dx = 0

PP 36 A level surface F (x, y, z) = 0 has gradient vector field ∇F = ⟨Fx, Fy, Fz⟩ which serves
as a normal to the tangent plane of the given surface. Since ω∇F = dF we need that
dω∇F = d(dF ) = 0. Determine if the vector fields below are normal vector fields to some
level surface in R3:

(a.) ⟨x, y, z⟩
(b.) ⟨y, 1, x⟩
(c.) ⟨xy2 + z, x2y,−x⟩

PP 37 Recall the vector field F⃗ = ⟨a, b, c⟩ corresponds to the work form ωF⃗ = adx + bdy + cdz.

Suppose F⃗ = ⟨yz, x, 3, z3⟩ then write the formula for ωF⃗ and calculate dωF⃗ . Is F⃗ conservative
on R3 ?

PP 38 Recall the vector field F⃗ = ⟨a, b, c⟩ corresponds to the flux form ΦF⃗ = ady ∧ dz + bdz ∧
dx+ cdx∧dy. Suppose F⃗ = ⟨x+ y, y+ z, z+x⟩ then write the formula for ΦF⃗ and calculate

dΦF⃗ . If we were to calculate the flux of F⃗ through the unit-sphere then what would the
result be ?



2.7. PRACTICE PROBLEMS 61

PP 39 (Orthogonal Trajectories) Find the orthogonal trajectories to the curve or family of curves
described below:

(a.) y = (x− c1)
2

(b.) y = ec1x

(c.) y = 1+c1x
1−c1x

(d.) sinh y = c1x

(e.) y2 − x2 = c1x
3

PP 40 (Polar Curves) Consider a curve with polar equation r = f(θ). Let Ψ be the counterclockwise
angle swept from the radial line to the tangent line along the curve. Show that r dθ

dr = tanΨ.
Then show that two polar curves are orthogonal if and only if tanΨ1 tanΨ2 = −1 at a point
of intersection between curve C1 and C2. Use r = f1(θ) for curve C1 whereas r = f2(θ) for
C2.

PP 41 (Orthogonal Trajectories to Polar Curves) Find the orthogonal trajectory for the curves
described below (please use polar coordinates to formulate the answer)

(a.) r = c1(1 + cos θ)

(b.) r = c1
1+cos θ

(c.) r = c1e
θ

PP 42 (Isogonal Families) A family of curves which intersects a given family of curves at an angle
α ̸= π/2 are said to be isogonal trajectories of each other. If dy

dx = f(x, y) describes a
given family of curves then show its isogonal family are solutions of

dy

dx
=

f(x, y)± tanα

1∓ f(x, y) tanα
.

Then, find the isogonal family to y = c1x at angle α = 30o.

PP 43 Find a Cartesian equation which is parametrized by the solution of the following system of
differential equations:

dx

dt
= −y &

dy

dt
= 2x.

PP 44 An integral curve to a vector field F⃗ = ⟨P,Q⟩ can be described parametrically as a path t 7→
γ⃗(t) = (x(t), y(t)) for which F⃗ (γ⃗(t)) = dγ⃗

dt . That is, ⟨P,Q⟩ = ⟨dx/dt, dy/dt⟩. Parametrically

we need to solve dx
dt = P and dy

dt = Q. However, if we are only interested in describing the
integral curve in Cartesian coordinates then we can eliminate t via the calculus

dy

dx
=

dy/dt

dx/dt
=

Q

P

thus finding an integral curve for a given vector field which depends only on x, y is as simple
as solving the above first order ODEqn.

(a.) Find integral curves to the vector field F⃗ (x, y) = ⟨x2, y3⟩.
(b.) Consider the vector field F⃗ (x, y) =

〈
y

(x−1)2+y2
, 1−x

(x−1)2+y2

〉
. Find the the level curve

which serves as an integral curve for F⃗ through Po = (xo, yo) ̸= (1, 0).

(c.) Find the integral curves of the vector field F⃗ = ⟨1, ex3 − 2y/x⟩. Please leave your
answer explicitly in terms of y as a function of x.
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PP 45 Suppose Ff = −αv3 is the net-force acting on a mass m in one-dimensional motion where
the coordinate is denoted x (here α is an appropriate dimensional constant). Suppose v = vo
and x = xo when t = 0 and calculate:

(a) velocity as function of time t

(b) velocity as a function of position x

PP 46 Let b be a positive constant. If a friction force of Ff = −bv4 is applied to a mass m with
initial position xo and initial velocity vo then find the velocity as a function of

(a.) time t,

(b.) position x.

PP 47 A net-force of F = αt−kv is placed on a mass m where k, α are constant. Find the velocity
as an explicit function of time t. Assume that the particle undergoes one-dimensional
motion with velocity vo when t = 0.

PP 48 A large tank initially has 20 lbs of Koolaid mix added to 1000 gallons of water. Studies
have shown that children will only drink the Koolaid when there is at least 0.005 lbs per
gallon of water. You work for an incredibly lazy camp director who insists on adding the
Koolaid to the 1000 gallon mixing tank only when the kids finally start rejecting the sadly
weak Koolaid. Given that 25 gallons of pure water are added to the tank every day to make
up for the 25 gallons of Koolaid drunk by the kids then when will you have to ask the camp
director to add more mix ?

PP 49 A tank initially contains 100 gallons of water with 10lb of lemon drink mix. Then at t = 0
fresh water is added to the tank at 3 gallons per minute and at the same time 3 gallons are
drained per minute from the tank. Assume the tank is well-mixed during this process. Find
the lb’s of lemon drink mix as a function of time. If you like your drink with a concentration
of 1lb per 20 gallons then at what time should you drink from the drain?

PP 50 Suppose a mixing tank is well-stirred and contains y kilograms of salt at time t. Suppose
pure water flows into the tank at a rate of 4 Liters per minute and salty water flows out at
a rate of 2 Liters per minute. If the tank has 300 Liters of liquid and 300kg at time zero
then write (but do not solve) the differential equation which describes the change in y.

PP 51 The radioactive lead isotope Pb-209 has a half-life of 3.3 hours. If 1 kilogram is initially
present then how long will it take for there to be only 0.1 kilograms of radioactive lead
remaining ?

PP 52 Show that the half-life of a radiactive substance is given by

t =
(t2 − t1) ln 2

ln(A1/A2)

where A1 = A(t1) and A2 = A(t2) where t1 < t2.

PP 53 When a vertical beam of light passes through a transparent substance the rate at which its
intensity I decreases is proportional to I(y) where y represents the thickness of the medium
in feet. In clear calm seawater the intensity 3 feet below the surface is 1/4 the initial intensity
of the incident beam at the surface. What is the intensity of the beam 15 feet below the
surface ?
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PP 54 A thermometer is removed from a room where the air temperature is 70o F to the outside
where the temperature is 10o F. After 0.5 minutes the thermometer reads 50o F. What is
the reading at t = 1.0 minutes ? How long will it take for the thermometer to reach 15o F ?

PP 55 When a resistor R and inductor L are in series with a voltage source E then circuit analysis
yields the differential equation:

L
di

dt
+Ri = E

where i is the current flowing in the circuit. Given E(t) = Vo sinωt and i(0) = io find the
current as a function of time t.

PP 56 Angular momentum of a body moving in some plane is given by L = mr2 dθdt where r, θ serve
as polar coordinates in the plane of motion. Assume the coordinates of the body are (r1, θ1)
at t = t1 and (r2, θ2) at t = t2 where t1 < t2. If L is constant then show that the
area swept out by r is A = L(t2 − t1)/2m. When the sun is taken to be at the origin
and m represents a planet’s mass then this proves Kepler’s second law of planetary motion:
the radius vector joining the sun sweeps out equal areas for equal intervals of time. Bonus:
prove L is constant in the context of the sun-planet system, you may assume
Msun >> Mplanet. See Physics 231 for further relevant definitions.

PP 57 Find the velocity of a mass m which is launched vertically with velocity vo from a planet
with mass M and radius R. Recall that the gravitational force is given by:

F = − GmM

(R+ y)2

if we assume the motion is directly vertical and y is the altitude of m. You may find the
velocity as a function of y.

PP 58 Suppose a rocket car has an initial speed of vo as it hurtles across a speedway in a remote
desert. Suppose the driver opens a parachute which developes a retarding force proportional
to the cube of the velocity; Ff = −kv3. Find the velocity as:

(a.) a function of time,

(b.) a function of position x taking xo as the initial position

PP 59 A ball is thrown verically and its motion is governed by the force of gravity −mg and a
friction force Ff = −cv where v = ẏ and c is a constant which is based on the size of the
ball. Note: Ff > 0 when v < 0 and Ff < 0 when v > 0 hence the friction force acts opposite
of the motion.

(a) find the velocity as a function of time and the initial velocity vo

(b) find the position y as a function of time and the initial position yo

(c) if c = 0 then what is the maximum height reached by the ball? Does it depend on the
m?

(d) if c ̸= 0 then what is the maximum height reached by the ball? Does it depend on the
m?
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PP 60 Suppose a 10kg block is pushed across a surface by a constant force of 10N . As the block
moves it gathers a gummy substance which results in a friction force of magnitude Foe

kt

where Fo = 1N and k = 1/s. Find the position x of the block as a function of time t.
Assume that at time t = 0 the block is at x = 0. (feel free to use technology to do the
numerical aspects here)

PP 61 A chain is coiled on the ground. One end is then lifted with constant force. Find the velocity.

PP 62 Suppose the RL-circuit has a voltage source which varies with time according to E(t) =
Vo cos(t). Find the current as a function of time and the initial current Io. hint: this is like an
example in the notes, just replace the constant E with the sinuisoidal source E(t) = Vo cos(t)

PP 63 Find a continuous function P such that P (x) = a+
∫ x
0 t2P (t) dt.

PP 64 Suppose f is a function such that f(x+ y) = f(x)f(y) for all x, y ∈ R. Show that either f
is the function which is identically zero on R orf is an exponential function.

PP 65 Let ⋆ be the DEqn y2 sin(x)dx+ yf(x)dy = 0. Find all functions f such that ⋆ is an exact
DEqn.

PP 66 Explicitly solve
dy

dx
=

2x+ 3x2

2y
given that the point (1,−2) is on the solution.

PP 67 Solve
dy

dx
− 3

x
y = x3ex

PP 68 Solve
(

1
x+1 + y cos(xy)

)
dx+ (e−y + x cos(xy)) dy = 0.

PP 69 Find orthogonal trajectories of dy
dx = −x

y .

PP 70 Find the velocity as a function of time t given that v = vo when t = to and Fnet = −βv2 for
a mass m.

PP 71 Solve dP
dt = kP (P − C). Describe the possible solutions. You should find three disjoint

types. Assume k > 0.
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PP 72 Consider the following four differential equations:

(I.) dy
dx = 1/2

(II.) dy
dx =

√
y + 1

(III.) dy
dx = (y − 2)2(x− 1)

(IV.) dy
dx = (x2 − 1) ∗ y2

I used https://aeb019.hosted.uark.edu/pplane.html to generate the following direction fields.
Match A,B,C,D with the corresponding I,II,III,IV.

Remark: the pplane tool is an easy way to explore the behavior of a given differential
equation without going to the trouble of solving it. To visualize dy

dx = f(x, y) I set dx/dt = 1
and dy/dt = f(x, y). I didn’t click on any points for the above plots, but if you do it traces
out solutions. This can also illustrate solutions to systems of two autonomous ODEs, we’ll
get to that a bit later in the course.

https://aeb019.hosted.uark.edu/pplane.html
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Chapter 3

ordinary n-th order problem

To be honest, we would more properly title this chapter ”the ordinary linear n-th order problem”. Our
focus is entirely in that direction here.

Our main approach in this chapter is to use operator techniques. In particular, we derive the operator
calculus in Section 3.1. We show that the algebra of polynomials applies naturally to operators which are
formed by polynomials in the derivative operator. Furthermore, we examine the complexification technique
and see how it allows us to extract a pair of real solutions from a given complex solution. Section 3.1 is
the computational machine which drives the rest of our work and at its heart is factoring. Many factoring
techniques are illustrated throughout Section 3.1.

Next we turn to the general theory of linear ODEs. We define linear ODEs, describe the initial value prob-
lem and present the fundamental existence and uniqueness theorems in Section 3.2. Linear independence is
justified with the help of the Wronskian and the insight of Abel’s formula and we find linear combinations
in the formulation of the general solution.

In Section 3.3 we solve the homogeneous constant coefficient problem. Then in Section 3.4 we see how to
convert certain nonhomogeneous problems into homogeneous constant coefficient problems. This justifies
the method of undetermined coefficients. Whenever the method of undetermined coefficients fails, we seek
the deeper magic of variation of parameters. Section 3.5 gives proof that , given a fundamental solution set
and an inhomogeneous term, variation of parameters can always solve the system up to a set of integrals
which we may or may not be able to calculate in closed-form.

The remaining sections deal with two important techniques which have general application to problems
which may not fall under the simple framework of earlier sections. In Section 3.6 we find that if we know one
solution to an n-th order problem then we can use reduction of order to replace the given problem with an
(n− 1)-th order problem. Most often, I use this idea as it applies to the n = 2 problem where we derive the
excellent formula given in Equation 3.2. Then, Section 3.7 examines how factored operators naturally allow
a repeated substitution solution. Unfortunately, it’s usually harder to factor an operator than to solve the
system so Section 3.7 is not always useful. Section 3.8 shows how the Cauchy Euler problem is equivalent
to solving differential equations which arise from polynomials in the operator T = xd/dx. Finally, we study
retarded springs and things in Section 3.9.1. We spend some effort to analyze when a force or source voltage
maximally couples to a system which is retarded by friction or resistance. Once more, the beauty of the
complexification technique shines bright.1

1Ideally I would like to add a subsection on the phasor technique, but my time is up for this term, my apologies,
perhaps we will see the topic in-class.

67
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3.1 operators and calculus

In this section we seek to establish the calculus of operators. All the results here are based on Calculus I,
but the notation is probably new. First, let us discuss what we mean by an operator.

If F is a set of functions then L is an operator on F if L is a mapping which sends y to L[y] for
each function y ∈ F . In other words, an operator is a function-valued mapping of functions.

The details of F are varied, it could be the set of polynomials R[x], or continuous functions on (C0(R)),
or continuously differentiable functions (C1(R)), or twice-continuously differentiable functions (C2(R)), or
k-times continuously differentiable functions (Ck(R)), or even infinitely-differentiable (smooth) functions
(C∞(R)). My examples thus far had real domain and codomain, they were functions on R. Generally, we
can also consider functions with real domain and complex codomain. We have need of both and I will explain
the calculus of both in this section.

You know several operators already from calculus. For instance, the definite integral with variable bounds
allow us to define an operator T by

T [f ](x) =

∫ x

0

f(t)dt

here we map the function f to the new function T [f ] and we write f 7→ T [f ] to express this process. Probably
the most important is the differentiation operator D = d/dx.

f 7→ D[f ] =
df

dx

Notice D takes in a function f and outputs a new function f ′. In the same way, iterated differentiation gives
an operator; Dk maps the function f to the function f (k):

f 7→ Dk[f ] =
dkf

dxk

There are easier operators as well, let L[f ](x) = cf(x) for each x in the domain of f we call this scalar
multiplication. It to defines an operator:

f 7→ cf

If we have a function g then we can also define an operator L[f ](x) = g(x)f(x) for each x in the common
domain of f and g. Once more, this defines an operator

f 7→ gf

we usually call this multiplication by g. The examples above all share the interesting and important
feature of linearity.

Definition 3.1.1. linear operators

We say T : F → F is a linear operator if

T (y1 + y2) = T (y1) + T (y2) & T (cy) = cT (y)

for all functions y1, y2, y and constants c. .

If you desire a non-linear operator those are easy enough to find:

Example 3.1.2. Let T [y] = y2 then T [y1+ y2] = (y1+ y2)
2 = y21 +2y1y2+ y22 = T [y1]+T [y2]+2y1y2. Thus

T is not additive as T [y1 + y2] ̸= T [y1] + T [y2]. Likewise, T [cy] = (cy)2 = c2y2 = c2T [y] hence T is not
homogeneous in that T [cy] ̸= cT [y].

Now that we have a few common operators in mind it is good for us to define how we add, subtract and
multiply operators. My apologies for this Machiavellian definition:
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Definition 3.1.3. operators, operator equality, new operators from old:

Suppose F is a set of functions then T : F → F is an operator on F . If T1, T2 are operators on F
then T1 = T2 if and only if T1[f ] = T2[f ] for all f ∈ F . In addition, T1 + T2, T1 − T2 and T1T2 are
defined by

(T1 + T2)[f ] = T1[f ] + T2[f ] & (T1 − T2)[f ] = T1[f ]− T2[f ] & (T1T2)[f ] = T1[T2[f ]]

If g ∈ F and T is an operator on F then gT and Tg are the operators defined by (gT )[f ] = gT [f ] and
(Tg)[f ] = T [f ]g for all f ∈ F . In addition, for n ∈ N ∪ {0} we define Tn by Tn−1T where T 0 = 1;
that is Tn[f ] = T [T [· · · [T [f ]] · · · ]] where that is an n-fold composition. We are often interested in
differentiation thus it is convenient to denote differentiation by D; D[f ] = f ′ for all f ∈ F .

We usually assume F is a set of smooth functions on an interval. In fact, sorry to be sloppy, but we will
not worry too much about what F is for most examples. Probably the most challenging aspect of the above
definition is the multiplication of operators. Let us study an example to better understand the nuance of
what is said above.

Example 3.1.4. Let T [f ](x) = f ′(x) and let S[f ](x) = xf ′(x) for each x ∈ R and smooth function f . In
other words, let T = D and S = xD. Consider,

(TS)[f ](x) = T (S(f(x))) = D[xD[f ]] =
d

dx

[
x
df

dx

]
=

dx

dx

df

dx
+ x

d2f

dx2
= D[f ] + xD2[f ] = (D + xD)[f ].

Since the calculation above holds for all f we find the operator equation TS = D + xD. In other words,
DxD = D + xD2. On the other hand, if we compose the operators in the other order the calculation is not
the same:

(ST )[f ](x) = S(T (f(x))) = xD[D[f ]] = (xD2)[f ])(x)

which reveals ST = xD2 or we could write xDD = xD2. Notice that ST ̸= TS.

We can study the commutator of two operators S, T defined by [S, T ] = ST − TS. Then the operators
commute if and only if the commutator of the operators is zero. This is of great importance to quantum
mechanics where we use operators to represent physically observable quantities like momentum and position.
The Heisenberg uncertainty principle famously says it is impossible to measure both position and momentum
with perfect precision. It turns out this is downstream of the fact that the operators of position and
momentum do not commute. A theorem of quantum mechanics states that for two observables to be
simultaneously observed their corresponding operators must have zero commutator.

Example 3.1.5. Let T = D + 3 and S = D − 2 where D = d/dx. Let f be a function of x,

(TS)[f ](x) = T (S(f(x))) = (D + 3)

[
df

dx
− 2f

]
=

d

dx

[
df

dx
− 2f

]
+ 3

[
df

dx
− 2f

]
which is easier to write using the D-notation, and we may omit x without danger of ambiguity in this context,

(TS)[f ] = D[D[f ]− 2f ] + 3(D[f ]− 2f) = D2[f ]− 2D[f ] + 3D[f ]− 6f = (D2 +D − 6)[f ].

Therefore, we find the operator equation TS = (D+3)(D−2) = D2+D−6. The reader will not be surprised
to learn an entirely similar calculation can be made to demonstrate that ST = (D− 2)(D+3) = D2+D− 6.
Hence ST = TS. These operators do commute.

The example above illustrates that polynomials in the differentiation operator are especially nice. We should
pause to give a general definition of what we mean by the polynomial of an operator. This will be important
for future work in this course.
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Definition 3.1.6. polynomial of an operator

Suppose F is a set of functions and T : F → F is an operator on F . Let P (x) = anx
n+an−1x

n−1+
· · ·+ a1x+ a0 be a polynomial then we define

P (T ) = anT
n + an−1T

n−1 + · · ·+ a1T + a0.

In Linear Algebra we prove that the sum, difference and composition of linear operators is once more a
linear operator. It follows that if T is a linear operator than so is P (T ). These claims are easy to verify in
particular examples.

Example 3.1.7. Let T [y] = y′′ + 3y′ + 2y that is T = D2 + 3D + 2. Observe,

T [y1 + y2] = (y1 + y2)
′′ + 3(y1 + y2)

′ + 2(y1 + y2) = y′′1 + y′′2 + 3y′1 + 3y′2 + 2y1 + 2y2 = T [y1] + T [y2].

Likewise,
T [cy] = (cy)′′ + 3(cy)′ + 2(cy) = c(y′′ + 3y′ + 2y) = cT [y].

So we have shown T is a linear operator. Consider also,

(D + 1)(D + 2)[y] = (D + 1)[y′ + 2y] = (y′ + 2y)′ + y′ + 2y = y′′ + 3y′ + 2y = (D2 + 3D + 2)[y]

Thus (D + 1)(D + 2) = D2 + 3D + 2.

This is not an accident.

Theorem 3.1.8. polynomials in the derivative operator factor

Suppose p(x) = f(x)g(x) where f(x), g(x) are polynomials. Then p(D) = f(D)g(D) and
f(D)g(D) = g(D)f(D).

Proof: Suppose p(x) = f(x)g(x) where g(x) = a0 + a1x+ · · ·+ akx
k and f(x) = b0 + b1x+ · · ·+ bmxm.

(f(D)g(D))[y] = f(D)(g(D)[y])

= (b0 + b1D + · · ·+ bmDm)(g(D)[y])

= b0g(D)[y] + b1D(g(D)[y]) + · · ·+ bmDm(g(D)[y])

= b0
(
a0y + a1D[y] + · · ·+ akD

k[y]
)
+ b1D

(
a0y + a1D[y] + · · ·+ akD

k[y]
)
+ · · ·

· · ·+ bmDm
(
a0y + a1D[y] + · · ·+ akD

k[y]
)

=
(
b0a0 + b0a1D + · · ·+ b0akD

k + b1a0D + b1a1D
2 + · · · b1akDk+1 + · · ·

· · ·+ bma0D
m + bma1D

m+1 + · · ·+ bmakD
m+k

)
[y]

= p(D)[y]

since p(x) = f(x)g(x) = (b0 + b1x + · · · + bmxm)(a0 + a1x + · · · + akx
k) which multiplies by the usual

polynomial algebra to give that:

p(x) = f(x)g(x) = b0a0 + b0a1x+ · · ·+ b0akx
k + b1a0x+ b1a1x

2 + · · · b1akxk+1 + · · ·
· · ·+ bma0x

m + bma1x
m+1 + · · ·+ bmakx

m+k.

Finally, if p(x) = f(x)g(x) then p(x) = g(x)f(x) as polynomial multiplication commutes and we likewise
find p(D) = f(D)g(D) = g(D)f(D). □

The calculation above equally well applies to a polynomial in a linear transformation T since T commutes
with itself just like D. For instance, the Cauchy Euler problem studied in Section 3.8 amounts to working
with polynomials in the operator T = x d

dx . It follows we can solve a Cauchy Euler problem in much the same
way as we solve a constant coefficient problem. The constant coefficient problem is based on a polynomial
in D = d/dx whereas the Cauchy Euler problem is based on the equidimensional operator T = xd/dx.
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3.1.1 on the derivation of real solutions for homogenous ODEs

In this subsection we study how to find real solutions of (D − λ)k[y] = 0 for k = 1, 2, . . . .

(1.) (k = 1) If (D − λ)[y] = 0 then we require dy
dx − λy = 0 hence

dy

dx
= λy ⇒ dy

y
= λx ⇒ ln |y| = λx+ c ⇒ y1 = c1e

λx

serves as a solution. For future reference in this section, we set k = 1 for convenience; y1 = eλx .

(2.) (k = 2) If (D − λ)2[y] = 0. Let z = (D − λ)[y] then we face (D − λ)[z] = 0 hence z = eλx from our
work in k = 1. Thus, using the integrating factor technique we find that:

(D − λ)[y] = eλx ⇒ dy

dx
− λy = eλx ⇒ e−λx dy

dx
− λe−λxy = e−λxeλx = 1 ⇒ d

dx

[
e−λxy

]
= 1.

Consequently, integrating yields e−λxy = x+ c and so y = xeλx + ceλx. Let us define y2 = xeλx and

notice that both y1 = eλx and y2 = xeλx serve as solutions of (D − λ)2[y] = 0.

(3.) (k = 3) If (D − λ)3[y] = 0. Let z = (D − λ)[y] then we face (D − λ)2[z] = 0 hence z = xeλx from our
work in k = 2. Thus, using the integrating factor technique we find that:

(D−λ)[y] = xeλx ⇒ dy

dx
−λy = xeλx ⇒ e−λx dy

dx
−λe−λxy = xe−λxeλx = x ⇒ d

dx

[
e−λxy

]
= x.

Integrating we find e−λxy = x2/2 and so y = 1
2x

2eλx. However, 0 = (D − λ)2
[
1
2x

2eλx
]
= 1

2 (D −
λ)2

[
x2eλx

]
thus we set y3 = x2eλx since we don’t need the fraction to solve the problem.

(4.) (k = 4). Very similar calculations reveal y4 = x3eλx solve (D − λ)4[y] = 0.

I hope the calculations above serve to convince the reader that the following theorem is plausible. For the
math majors, I’ll offer an explicit proof below.

Theorem 3.1.9. repeated real root solution set

Let λ ∈ R. Then eλx, xeλx, x2eλx, . . . , xn−1eλx are solutions of (D − λ)n[y] = 0.

Proof: Let λ ∈ R. We claim eλx, xeλx, x2eλx, . . . , xn−1eλx are solutions of (D− λ)n[y] = 0 for every n ∈ N.
Observe n = 1 holds true since

(D − λ)n[eλx] = D[eλx]− λeλx = λeλx − λeλx = 0.

Inductively suppose that eλx, xeλx, x2eλx, . . . , xn−1eλx are solutions of (D−λ)n[y] = 0. Since (D−λ)n[y] = 0
for y = eλx, xeλx, x2eλx, . . . , xn−1eλx we find

(D − λ)n+1[y] = (D − λ)((D − λ)n[y]) = (D − λ)(0) = 0.

It remains to show xneλx solves (D − λ)n+1[y] = 0. Consider,

(D − λ)n+1[xneλx] = (D − λ)n(D − λ)[xneλx]

= (D − λ)n(nxn−1eλx + λxneλx − λxneλx]

= n(D − λ)n[xn−1eλx]

= 0

by the induction hypothesis. Thus y = eλx, xeλx, x2eλx, . . . , xneλx solve (D − λ)n+1[y] = 0 and we conclude
the claim holds true for all n ∈ N by proof by mathematical induction. □
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Example 3.1.10. (D2 − 6D + 9D)[y] = (D − 3)2[y] = 0 has solutions y1 = e3x and y2 = xe3x.

Example 3.1.11. (D3 + 3D2 + 3D + 1)[y] = (D + 1)3[y] = 0 has solutions y = ex, xex, x2ex.

Example 3.1.12. (D4−4D3+6D2−4D+1)[y] = (D−1)4[y] = 0 has solutions y = e−x, xe−x, x2e−x, x3e−x.

I am using Pascal’s triangle and the binomial theorem to factor the rather special polynomials in the above
examples. We need a bit more theory to extend to more interesting examples.

Theorem 3.1.13.

Suppose L1, L2, . . . , Lk are linear transformations. If Lk[y] = 0 then (L1L2 · · ·Lk)[y] = 0.

Proof: notice linearity of L gives L[0] = L[0 + 0] = L[0] + L[0] hence L[0] = 0. Furthermore, the com-
position of linear transformations is once more a linear transformation hence L = L1L2 · · ·Lk−1 is a linear
transformation. Suppose Lk[y] = 0 and observe

(L1L2 · · ·Lk)[y] = L(Lk[y]) = L(0) = 0. □

Let me illustrate how the theorem above expands our analysis.

Example 3.1.14. (D2 − 3D+ 2)[y] = (D− 1)(D− 2)[y] = 0 has solution y1 = e2x. However, we could just
as well write (D2 − 3D + 2)[y] = (D − 2)(D − 1)[y] = 0 and hence find solution y2 = ex.

Corollary 3.1.15.

If L1, L2, . . . , Lk are commuting linear operators for which Lj [y] = 0 for some 1 ≤ j ≤ k then
(L1L2 · · ·Lk)[y] = 0.

Proof: Suppose the operators L1, . . . , Lk commute and Lj [y] = 0 for some 1 ≤ j ≤ k. Observe L1L2 · · ·Lk =
L1L2 · · ·Lj−1Lj+1 · · ·LkLj and apply Theorem 3.1.13. □
I hope you can forgive me for stating the theorem above in greater generality than our typical application.
For the most part we will focus on operators formed by polynomials in the derivative operator D = d/dx or
D = d/dt. Let us appreciate the depth of the above result.

Example 3.1.16. Here is a nice factoring technique when it’s possible:

D4 − 3D2 + 2 = (D2 − 1)(D2 − 2) = (D + 1)(D − 1)(D +
√
2)(D −

√
2)

Consequently,
(D4 − 3D2 + 2)[y] = (D + 1)(D − 1)(D +

√
2)(D −

√
2)[y] = 0

has solutions y1 = e−x, y2 = ex, y3 = e−x
√
2, y4 = ex

√
2.

Do you know how to complete the square for an expression ? It’s time to learn if you don’t.

Example 3.1.17. D2+4D+1 = (D+2)2−4+1 = (D+2)2−3 = (D+2+
√
3)(D+2−

√
3). Consequently,

(D2 + 4D + 1)[y] = (D + 2 +
√
3)(D + 2−

√
3)[y] = 0

thus we find solutions y1 = e(−2−
√
3)x and y2 = e(−2+

√
3)x

Example 3.1.18. Let me illustrate completing the square once more, but now with fractions:

D2 −D − 13 =

(
D − 1

2

)2

− 1

4
− 13 =

(
D − 1

2

)2

− 53

4
=

(
D − 1

2
+

√
53

4

)(
D − 1

2
−
√

53

4

)
Consequently,

(D2 −D − 13)[y] =

(
D − 1−

√
53

2

)(
D − 1 +

√
53

2

)
[y] = 0

thus we find solutions y1 = exp
([

1−
√
53

2

]
x
)
and y2 = exp

([
1+

√
53

2

]
x
)
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Example 3.1.19. Consider (D4 + 4D2 − 10)[y] = 0. Observe,

D4 − 10D2 + 24 = (D2 − 5)2 − 1

= (D2 − 5 + 1)(D2 − 5− 1)

= (D2 − 4)(D2 − 6)

= (D + 2)(D − 2)(D +
√
6)(D −

√
6).

Thus (D4 + 4D2 − 10)[y] = 0 has solutions y1 = e−2x, y2 = e2x, y3 = e−x
√
6, y4 = ex

√
6.

I have been careful to avoid polynomials which have irreducible quadratic factors in this section. Generally
we have no such freedom. We must face the difficulty. Hence we study complexification of operators next.

3.1.2 complex-valued functions of a real variable

Given a linear operator T on a set of real-valued functions of a real variable we form the complexification
of TC which acts on complex-valued functions of a real variable by the following rule:

TC[u+ iv] = T [u] + iT [v].

In practice, we just write T for the complexification and hence T [u+ iv] = T [u] + iT [v]. A good example of
this construction is given by the derivative introduced below. It is the complexification of the standard real
derivative:

Definition 3.1.20.

Suppose f is a function from an interval I ⊆ R to the complex numbers C. In particular, suppose
f(t) = u(t) + iv(t) where i2 = −1 we say Re(f) = u and Im(f) = v. Furthermore, define

df

dt
=

du

dt
+ i

dv

dt
&

∫
f(t) dt =

∫
u dt+ i

∫
v dt.

Higher derivatives are similarly defined.

Example 3.1.21. Let f(t) = cos(t) + iet. In this case Re(f) = cos(t) and Im(f) = et. Note,

df

dt
=

d

dt

(
cos(t) + iet

)
= − sin(t) + iet.

I invite the reader to verify the following properties for complex-valued functions f, g:

d

dt
(f + g) =

df

dt
+

dg

dt
&

d

dt
(cf) = c

df

dt
&

d

dt
(fg) =

df

dt
g + f

dg

dt

How to prove the product rule ? It’s just a calculation. If f = f1 + if2 and g = g1 + ig2 then

fg = (f1 + if2)(g1 + ig2) = f1g1 − f2g2 + i(f1g2 + f2g1)

Let df/dt = f ′ etc. There are four product rules, for the real component function products f1g1, f2g2, f1g2, f2g1

(fg)′ = f ′
1g1 + f1g

′
1 − f ′

2g2 − f2g
′
2 + i(f ′

1g2 + f1g
′
2 + f ′

2g1 + f2g
′
1)

= (f ′
1 + if ′

2)(g1 + ig2) + (f1 + if2)(g
′
1 + ig′2)

= f ′g + fg′.

The calculus of complex-valued functions of a real variable follows as a consequence of the corresponding
calculus for functions on R paired with the algebraically simple properties of complex multiplication and
addition. Note that the constant c can be complex in the property above and the multiplications between
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f and g are multiplications of complex values. It turns out we can extend all the polynomial algebra of the
derivative operator to the complexification of the derivatives. In short, all the arguments which we used in
the real case equally well apply here since the complexified derivative D has the properties

D[f + g] = D[f ] +D[f ] & D[cf ] = cD[f ] & D[fg] = D[f ]g + fD[g]

for complex-valued functions f, g. Each complex derivative contains two real derivatives. This means if we
solve a complex differential equation then we may be able to find a pair of real solutions. This is certainly
true in the context of the complexification of a real polynomial operator in D = d/dx. Let us record this as
a theorem:

Theorem 3.1.22.

Let f(x), g(x) ∈ R[x] define p(x) = f(x)g(x) and suppose T is a real linear operator then the
complexification of T has P (T ) = f(T )g(T ) and

P (T )[y + iz] = P (T )[y] + iP (T )[z]

for real functions y, z. In particular, P (T )[y + iz] = 0 ⇔ P (T )[y] = 0 & P (T )[z] = 0.

Now, in order to make good use of the theorem above we need to study the complex generalization of the
exponential function.

Definition 3.1.23. complex exponential function.

We define exp : C → C by the following formula: ex+iy = ex
(
cos y + i sin y

)
where x, y ∈ R.

We can show exp(z + w) = exp(z)exp(w). Suppose that z = x+ iy and w = a+ ib where x, y, a, b ∈ R,

exp(z + w) = exp(x+ iy + a+ ib)

= exp(x+ a+ i(y + b))

= ex+a
(
cos(y + b) + i sin(y + b)

)
defn. of complex exp.

= ex+a
(
cos y cos b− sin y sin b+ i[sin y cos b+ sin b cos y]

)
adding angles formulas

= ex+a
(
cos y + i sin y

)(
cos b+ i sin b

)
algebra

= exea
(
cos y + i sin y

)(
cos b+ i sin b

)
law of exponents

= ex+iyea+ib defn. of complex exp.

= exp(z)exp(w).

In Math 331 we spend considerable effort to deal with the fact that ez+2πik = ez for any k ∈ Z. We can only
define an inverse locally, this is why the complex logarithm is a fascinating object, far more nuanced that
the real natural log.

Proposition 3.1.24. Let λ = α+ iβ for real constants α, β. We have:

d

dt

[
eλt
]
= λeλt.

Proof: direct calculation.

d

dt

[
eαt+iβt

]
=

d

dt

[
eαt(cos(βt) + i sin(βt))

]
= αeαt cos(βt)− βeαt sin(βt) + iαeαt sin(βt) + iβeαt cos(βt)

= αeαt(cos(βt) + i sin(βt)) + iβeαt(cos(βt) + i sin(βt))

= (α+ iβ)eαt(cos(βt) + i sin(βt))

= λeλt. □

This is a beautiful result. Let’s examine how it works in an example.
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Example 3.1.25. Let f(t) = e(2+i)t. In this case f(t) = e2t(cos(t) + i sin(t)) thus Re(f) = e2t cos(t) and
Im(f) = e2t sin(t). Note,

df

dt
=

d

dt

(
e(2+i)t

)
= (2 + i)e(2+i)t.

Expanding (2+i)e2t(cos(t)+i sin(t)) = 2et cos(t)−et sin(t)+i(2e2t sin(t)+e2t cos(t)). Which is what we would
naturally obtain via direct differentiation of f(t) = e2t cos(t) + ie2t sin(t). Obviously the complex notation
hides many details.

Example 3.1.26. Note D2 + 1 = D2 − i2 = (D + i)(D − i) thus (D2 + 1)[y] = 0 has complex solutions
z1 = eix and z2 = e−ix. Notice eix = cosx+ i sinx thus

0 = (D2 + 1)[cosx+ i sinx] = (D2 + 1)[cosx] + i(D2 + 1)[sinx]

which indicates (D2 + 1)[y] = 0 has real solutions y1 = cosx and y2 = sinx. Note, the conjugate solution
e−ix = cosx− i sinx yields the real solutions y1 = cosx and −y2 = − sinx.

Evidentally, we need only study one complex root of each conjugate pair since the functions associated with
each root are the same up to a sign.

Example 3.1.27. Note D2 − 4D + 8 = (D − 2)2 + 9 = (D − 2− 3i)(D − 2 + 3i) thus (D2 + 1)[y] = 0 has
complex solutions z1 = e(2+3i)x and z2 = e(2−3i)x. Notice the complex solution

e(2+3i)x = e2x (cos(3x) + i sin(3x))

yields the real solutions y1 = e2x cos(3x) and y2 = e2x sin(3x) for (D2 − 4D + 8)[y] = 0.

Complex roots of real polynomials always come in conjugate pairs. We might as well treat such pairs jointly.
It will save us the trouble of factoring complex polynomials in many examples. Instead, we can just read off
the solution via the following theorem:

Theorem 3.1.28. complex conjugate pair solution set

Let λ = α+ iβ ∈ C where β ̸= 0. Then for n ∈ N,

eαx cos(βx), eαx sin(βx), xeαx cos(βx), xeαx sin(βx), . . . , xn−1eαx cos(βx), xn−1eαx sin(βx)

are real solutions of
(
(D − α)2 + β2

)n
[y] = 0.

Proof: observe that (D − α)2 + β2 = (D − α− iβ)(D − α+ iβ). Thus, using λ = α+ iβ and λ∗ = α− iβ,
(D − α)2 + β2 = (D − λ)(D − λ∗). Hence,(

(D − α)2 + β2
)n

= (D − λ)n(D − λ∗)n

and we find
(
(D − α)2 + β2

)n
[y] = 0 has complex solutions

z1 = eλx, z2 = xeλx, . . . , zn = xn−1eλx.

However, eλx = eαxe+iβx = eαx cos(βx) + ieαx sin(βx) thus

z1 = eαx cos(βx)+ieαx sin(βx), z2 = xeαx cos(βx)+ixeαx sin(βx), . . . , zn = xn−1eαx cos(βx)+ixn−1eαx sin(βx).

But, we know the real and imaginary parts of complex solutions of
(
(D − α)2 + β2

)n
[y] = 0 are separately

real solutions of
(
(D − α)2 + β2

)n
[y] = 0 hence the theorem follows. □

Example 3.1.29. D2 + 4D + 5 = (D + 2)2 + 1 thus identify α = −2 and β = 1 and (D2 + 4D + 5)[y] = 0
has solutions y1 = e−2x cosx and y2 = e−2x sinx.



76 CHAPTER 3. ORDINARY n-TH ORDER PROBLEM

Example 3.1.30. (D2 + 1)2[y] = 0 has solutions y1 = cosx, y2 = sinx, y3 = x cosx, y4 = x sinx stemming
from λ = i with n = 2 where we’ve identified α = 0 and β = 1.

Finally, to conclude, we may also face problems where there is a mixture of real and complex roots. Let’s
examine a pair of examples:

Example 3.1.31. D4−5D2−36 = (D2−9)(D2+4) = (D+3)(D−3)(D2+4) thus (D4−5D2−36)[y] = 0
has real solutions e−3x, e3x, cos(2x), sin(2x).

Example 3.1.32. D4 − 20151121 = (D2 − 4489)(D2 + 4489) = (D − 67)(D + 67)(D2 + 672) thus
(D4 − 20151121)[y] = 0 has real solutions e67x, e−67x, cos(67x), sin(67x).

We’ve simply combined our methods up to this point. Observe we’re always able to produce n-distinct
solutions of p(D)[y] = 0 for an n-th order polynomial p(D). The next section will show us how to take these
n-solutions and use them to formulate general solutions for linear ODEs of the form p(D)[y] = 0.

3.2 linear differential equations

We say I is an interval iff I = (a, b), [a, b), [a, b), [a, b], [a,∞), (a,∞), (−∞, a], (−∞, a), (−∞,∞).

Definition 3.2.1. n-th order linear differential equation

Let I be an interval of real numbers. Let a0, a1, . . . , an, f be real-valued functions on I such that
an(x) ̸= 0 for all x ∈ I. We say

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = f (3.1)

is an n-th order linear differential equation on I with coefficient functions a0, a1, . . . , an
and forcing function f . If f(x) = 0 for all x ∈ I then we say the differential equation is homo-
geneous. However, if f(x) ̸= 0 for at least one x ∈ I then the differential equation is said to be
nonhomogeneous.

In the prime notation Equation 3.1 is denoted:

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f

If the independent variable was denoted by t then we could emphasize that by writing

any
(n)(t) + an−1y

(n−1)(t) + · · ·+ a1y
′(t) + a0y(t) = f(t).

Typically we either use x or t as the independent variable in this course. We denote differentiation as an
operator D and, depending on the context, either D = d/dx or D = d/dt. In this operator notation we can
write Equation 3.1 as

anD
n[y] + an−1D

n−1[y] + · · ·+ a1D[y] + a0y = f

or, introducing
L = anD

n + an−1D
n−1 + · · ·+ a1D + a0

we can express Equation 3.1 concisely as L[y] = f . We can show L is a linear operator:

Definition 3.2.2. linear operator

We say L is a linear operator if for any pair of functions y1, y2 and constant c we have

L[y1 + y2] = L[y1] + L[y2] & L[cy1] = cL[y1].

A function is said to be smooth if you can take arbitarily many derivatives of the function. In fact, if all
the coefficient functions an, . . . , a1, a0 are smooth then L = anD

n + an−1D
n−1 + · · · + a1D + a0 defines a

smooth differential operator in the sense that L maps a smooth function y to a smooth function L[y].
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Theorem 3.2.3. linear combination of homogeneous solutions is a homogeneous solution.

Let L be a linear operator and suppose y1 and y2 solve L[y] = 0. If c1, c2 are constants then
y = c1y1 + c2y2 is a solution of L[y] = 0.

Proof: suppose L[y1] = 0 and L[y2] = 0 where L is a linear operator. Let c1, c2 be constants and calculate:

L[c1y1 + c2y2] = c1L[y1] + c2L[y2] = c1(0) + c2(0) = 0.

Thus y = c1y1 + c2y2 is a solution of L[y] = 0. □

The result above extends to the case of n-homogenous solutions. If L[yj ] = 0 for j = 1, 2, . . . , n then

L[c1y1 + c2y2 + · · ·+ cnyn] = 0.

When solving a homogeneous differential equation L[y] = 0 we can always combine solutions by forming a
linear combination of solutions.

In contrast, if we have y1, y2 solutions of a non-homogeneous differential equation L[y] = f then y = y1 + y2
is not a solution since

L[y1 + y2] = L[y1] + L[y2] = f + f = 2f ̸= f

for f ̸= 0. Likewise, for c ̸= 1, if L[y] = f then L[cy] = cL[y] = cf ̸= f for f ̸= 0. We can say something
positive about non-homogeneous problems. In fact, the following theorem is at the heart of why linear
differential equations are simple to analyze:

Theorem 3.2.4. superposition principle.

Let L be a linear operator and suppose y1 has L[y1] = f1 whereas L[y2] = f2. If a, b are constants
then y = ay1 + by2 is a solution of L[y] = af2 + bf2.

Proof: suppose L[y1] = f1 and L[y2] = f2 where L is a linear operator. Let a, b be constants and calculate:

L[ay1 + by2] = aL[y1] + bL[y2] = af1 + bf2.

Thus y = ay1 + by2 is a solution of L[y] = af1 + bf2. □

Notice this means we can solve L[y] = f1 + f2 by solving L[y] = f1 and L[y] = f2 separately. Physically
speaking, we can think of L[y] = f as a physical system subject to force f . The principle of superposition
indicates that if the net-force is f1 + f2 then the motion y1 + y2 can be understood the sum of motion y1
due to force f1 and the motion y2 due to f2. We make this precise in our study of the retarded spring
problem towards the end of this Chapter. But, the method is far more general than our retarded springs
with external forces. Many physical systems enjoy linearity and the principle of superposition. But, not all,
for instance General Relativity and Einstein’s Equations are nonlinear and as such they are far more subtle
to analyze. The solution below is an existence theorem. It tells us what can be done, but on the other
hand, it doesn’t actually tell us how to accomplish the task of solving the differential equation.

Theorem 3.2.5. unique solutions to the initial value problem for L[y] = f .

Suppose a0, a1, . . . , an, f are continuous on an interval I with an(x) ̸= 0 for all x ∈ I. Suppose
x0 ∈ I and y0, y1, . . . , yn−1 ∈ R then there exists a unique function ϕ such that:

(1.) an(x)ϕ
(n)(x) + an−1(x)ϕ

(n−1)(x) + · · ·+ a1(x)ϕ
′(x) + a0(x)ϕ(x) = f(x)

for all x ∈ I and

(2.) ϕ(x0) = y0, ϕ′(x0) = y1, ϕ′′(x0) = y2, . . . , ϕ(n−1)(x0) = yn−1.



78 CHAPTER 3. ORDINARY n-TH ORDER PROBLEM

The linear differential equation L[y] = f on an interval I paired with the n-conditions y(x0) = y0, y′(x0) =
y1, y′′(x0) = y2, . . . , y(n−1)(x0) = yn−1 is called an initial value problem (IVP). The theorem above
simply says that there is a unique solution to the initial value problem for any linear n-th order ODE with
continuous coefficients. The proof of this theorem can be found in many advanced calculus or differential
equations texts. See Chapter 13 of Nagle Saff and Snider for some discussion. We can’t cover it here because
we need ideas about convergence of sequences of functions. If you are interested you should return to this
theorem after you have completed the real analysis course. Proof aside, we will see how this theorem works
dozens if not hundreds of times as the course continues.

I’ll illustrate the theorem with some examples.

Example 3.2.6. The solution of of y′ = y with y(0) = 1 is given by y = ex. Here L[y] = y′ − y and
the coefficient functions are a1 = 1 and a0 = −1. These constant coefficients are continuous on R and
a1 = 1 ̸= 0 on R as well. It follows from Theorem 3.2.5 that the unique solution with y(0) = 1 should exist
on R.

Example 3.2.7. The general solution of y′′ + y is given by

y = c1 cos(x) + c2 sin(x)

by the method of reduction of order shown in Example 2.4.11. Theorem 3.2.5 indicates that there is a unique
choice of c1, c2 to produce a particular set of initial conditions. For example: the solution of of y′′ + y = 0
with y(0) = 1, y′(0) = 1 is given by y = cos(x) + sin(x). Here L[y] = y′′ + y and the coefficient functions are
a2 = 1, a1 = 0 and a0 = 1. These constant coefficients are continuous on R and a2 = 1 ̸= 0 on R as well.
Once more we see from Theorem 3.2.5 that the unique solution with y(0) = 1, y′(0) = 1 should exist on R,
and it does!

Example 3.2.8. The general solution of x3y′′ + xy′ − y = 0 is given by

y = c1x+ c2xe
1/x

Observe that a2(x) = x3 and a1(x) = x and a0(x) = −1. These coefficient functions are continuous on R,
however, a2(0) = 0. We can only expect, from Theorem 3.2.5, that solutions to exist on (0,∞) or (−∞, 0).
This is precisely the structure of the general solution. I leave it to the reader to verify that the initial value
problem has a unique solution on either (0,∞) or (−∞, 0).

Example 3.2.9. Consider y(n)(t) = 0. If we integrate n-times then we find (absorbing any fractions of
integration into the constants for convenience)

y(t) = c1 + c2t+ c3t
2 + · · ·+ cnt

n−1

is the general solution. Is there a unique solution to the initial value problem here? Theorem 3.2.5 indicates
yes since an = 1 is nonzero on R and all the other coefficient functions are clearly continuous. Once more
I leave the proof to the reader2, but as an example y′′′ = 0 with y(0) = 1, y′(0) = 1 and y′′(0) = 2 is solved
uniquely by y(t) = t2 + t+ 1.

We see that there seem to be n-distinct functions forming the solution to an n-th order linear ODE. We
need to develop some additional theory to make this idea of distinct a bit more precise. For example, we
would like to count ex and 2ex as the same function since multiplication by 2 in our context could easily be
absorbed into the constant. On the other hand, e2x and e3x are distinct functions.

2this makes a nice linear algebra problem
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Definition 3.2.10. linear independence of functions on an interval I.

Let I be an interval of real numbers. We say the set of functions {f1, f2, f3, . . . , fm} are linearly
independent (LI) on I iff

c1f1(x) + c2f2(x) + · · ·+ cmfm(x) = 0

for all x ∈ I implies c1 = c2 = · · · = cm = 0. Conversely, if {f1, f2, f3, . . . , fm} are not linearly
independent on I then they are said to be linearly dependent on I.

It is not hard to show that if {f1, f2, f3, . . . , fm} is linearly dependent set of functions on I then there is at
least one function, say fj such that

fj = c1f1 + c2f2 + · · · cj−1fj−1 + cj+1fj+1 + · · ·+ cnfn.

This means that the function fj is redundant. If these functions are solutions to L[y] = 0 then we don’t
really need fj since the other n − 1 functions can produce the same solutions under linear combinations.
On the other hand, if the set of solutions is linearly independent then every function in the set is needed to
produce the general solution. As a point of conversational convenience let us adopt the following convention:
f1 and f2 are independent on I iff {f1, f2} are linearly independent on I.

I may discuss direct application of the defintion above in lecture, however it is better to think about the
construction to follow here. We seek a convenient computational characterization of linear independence of
functions. Suppose that {y1, y2, y3, . . . , ym} is linearly independent set of functions on I which are at least
(n− 1)-times differentiable. Furthermore, suppose for all x ∈ I

c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0.

Differentiate to obtain for all x ∈ I:

c1y
′
1(x) + c2y

′
2(x) + · · ·+ cmy′m(x) = 0.

Differentiate again to obtain for all x ∈ I:

c1y
′′
1 (x) + c2y

′′
2 (x) + · · ·+ cmy′′m(x) = 0.

Continue differentiating until we obtain for all x ∈ I:

c1y
(m−1)
1 (x) + c2y

(m−1)
2 (x) + · · ·+ cmy(m−1)

m (x) = 0.

Let us write these m-equations in matrix notation3
y1(x) y2(x) · · · ym(x)
y′1(x) y′2(x) · · · y′m(x)

...
... · · ·

...

y
(m−1)
1 (x) y

(m−1)
2 (x) · · · y

(m−1)
m (x)




c1
c2
...
cm

 =


0
0
...
0


In linear algebra we show that the linear equation Ax⃗ = b⃗ has a unique solution iff det(A) ̸= 0. Since we have
assumed linear independence of {y1, y2, y3, . . . , ym} on I we know c1 = c2 = · · · = cm = 0 is the only solution
of the system above for each x ∈ I. Therefore, the coefficient matrix must have nonzero determinant4 on all
of I. This determinant is called the Wronskian.

3don’t worry too much if you don’t know matrix math just yet, we will cover some of the most important matrix
computations a little later in this course, for now just think of it as a convenient notation

4have no fear, I will soon remind you how we calculate determinants, you saw the pattern before with cross
products in calculus III
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Definition 3.2.11. Wronskian of functions y1, y2, . . . , ym at x.

W (y1, y2, . . . , ym;x) = det


y1(x) y2(x) · · · ym(x)
y′1(x) y′2(x) · · · y′m(x)

...
... · · ·

...

y
(m−1)
1 (x) y

(m−1)
2 (x) · · · y

(m−1)
m (x)

 .

It is clear from the discussion preceding this definition that we have the following proposition:

Theorem 3.2.12. nonzero Wronskian on I implies linear independence on I.

If W (y1, y2, . . . , ym;x) ̸= 0 for each x ∈ I then {y1, y2, y3, . . . , ym} is linearly independent on I.

Let us pause to introduce the formulas for the determinant of a square matrix. We define,

det

(
a b
c d

)
= ad− bc.

Then the 3× 3 case is defined in terms of the 2× 2 formula as follows:

det

a b c
d e f
g h i

 = a · det
(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
and finally the 4× 4 determinant is given by

det


a b c d
e f g h
i j k l
m n o p

 = a · det

f g h
j k l
n o p

− b · det

 e g h
i k l
m o p



+ c · det

 e f h
i j l
m n p

− d · det

 e f g
i j k
m n o


Expanding the formula for the determinant in terms of lower order determinants is known as Laplace’s
expansion by minors. It can be shown, after considerable effort, this is the same as defining the deteminant
as the completely antisymmetric multilinear combination of the rows of A:

det(A) =
∑

i1,i2,...,in

ϵi1,i2,...,inA1i1A2i2 · · ·Anin .

See my linear algebra notes if you want to learn more. For the most part we just need the 2× 2 or 3× 3 for
examples.

Example 3.2.13. Consider y1 = eax and y2 = ebx for a, b ∈ R with a ̸= b. The Wronskian is

W (eax, ebx, x) = det

[
y1(x) y2(x)
y′1(x) y′2(x)

]
=

[
eax ebx

aeax bebx

]
= eaxbebx − ebxaeax = (a− b)e(a+b)x.

Since a− b ̸= 0 it follows W (eax, ebx, x) ̸= 0 on R and we find {eax, ebx} is LI on R.

Example 3.2.14. Consider y1(t) = 1 and y2(t) = t and y3(t) = t2. The Wronskian is

W (1, t, t2, t) = det

 1 t t2

0 1 2t
0 0 2

 = (1)(1)(2) = 2.

Clearly W (1, t, t2; t) ̸= 0 for all t ∈ R and we find {1, t, t2} is LI on R.
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Example 3.2.15. Consider y1(x) = x, y2(x) = sinh(x), y3(x) = cosh(x). Calculate W (x, cosh(x), sinh(x);x) =

= det

 x cosh(x) sinh(x)
1 sinh(x) cosh(x)
0 cosh(x) sinh(x)


= xdet

[
sinh(x) cosh(x)
cosh(x) sinh(x)

]
− cosh(x)det

[
1 cosh(x)
0 sinh(x)

]
+ sinh(x)det

[
1 sinh(x)
0 cosh(x)

]
= x

[
sinh2(x)− cosh2(x)

]
− cosh(x)

[
1 sinh(x)− 0 cosh(x)

]
+ sinh(x)

[
1 cosh(x)− 0 sinh(x)

]
= −x.

Clearly W (x, cosh(x), sinh(x);x) ̸= 0 for all x ̸= 0. It follows {x, cosh(x), sinh(x)} is LI on any interval
which does not contain zero.

The interested reader is apt to ask: is {x, cosh(x), sinh(x)} linearly dependent on an interval which does
contain zero? The answer is no. In fact:

Theorem 3.2.16. Wronskian trivia.

Suppose {y1, y2, . . . , ym} are (n−1)-times differentiable on an interval I. If {y1, y2, . . . , ym} is linearly
dependent on I then W (y1, y2, . . . , ym;x) = 0 for all x ∈ I. Conversely, if there exists x0 ∈ I such
that W (y1, y2, . . . , ym;x) ̸= 0 then {y1, y2, . . . , ym} is LI on I.

The still interested reader might ask: ”what if the Wronskian is zero at all points of some interval? Does that
force linear dependence?”. Again, no. Here’s a standard example that probably dates back to a discussion
by Peano and others in the late 19-th century:

Example 3.2.17. The functions y1(x) = x2 and y2(x) = x|x| are linearly independent on R. You can see
this from supposing c1x

2 + c2x|x| = 0 for all x ∈ R. Take x = 1 to obtain c1 + c2 = 0 and take x = −1 to
obtain c1 − c2 = 0 which solved simultaneously yield c1 = c2 = 0. However,

W (x, |x|;x) = det

[
x2 x|x|
2x 2|x|

]
= 0.

The Wronskian is useful for testing linear-dependence of complete solution sets of a linear ODE.

Theorem 3.2.18. Wronskian on a solution set of a linear ODE.

Suppose L[y] = 0 is an n-th order linear ODE on an interval I and y1, y2, . . . , yn are solutions on
I. If there exists x0 ∈ I such that W (y1, y2, . . . , yn;x0) ̸= 0 then {y1, y2, . . . , yn} is LI on I. On the
other hand, if there exists x0 ∈ I such that W (y1, y2, . . . , yn;x0) = 0 then {y1, y2, . . . , yn} is linearly
dependent on I

Notice that the number of solutions considered must match the order of the equation. It turns out the
theorem does not apply to smaller sets of functions. It is possible for the Wronskian of two solutions to a
third order ODE to vanish even though the functions are linearly independent. The most interesting proof
of the theorem above is given by Abel’s formula. I’ll show how to derive it in the n = 2 case to begin:

Let a0, a1, a2 be continuous functions on an interval I with a2(x) ̸= 0 for each x ∈ I. Suppose a2y
′′ + a1y

′ +
a0y = 0 has solutions y1, y2 on I. Consider the Wronskian W (x) = y1y

′
2 − y2y

′
1. Something a bit interesting

happens as we calculate the derivative of W ,

W ′ = y′1y
′
2 + y1y

′′
2 − y′2y

′
1 − y2y

′′
1 = y1y

′′
2 − y2y

′′
1 .

However, y1 and y2 are solutions of a2y
′′ + a1y

′ + a0y = 0 hence

y′′1 = −a1
a2

y′1 −
a0
a2

y1 & y′′2 = −a1
a2

y′2 −
a0
a2

y2
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Therefore,

W ′ = y1

(
−a1
a2

y′2 −
a0
a2

y2

)
− y2

(
−a1
a2

y′1 −
a0
a2

y1

)
= −a1

a2

(
y1y

′
2 − y2y

′
1

)
= −a1

a2
W

We can solve dW
dx = a1

a2
W by separation of variables:

W (x) = C exp

[
−
∫

a1
a2

dx

]
⇐ Abel’s Formula.

It follows that either C = 0 and W (x) = 0 for all x ∈ I or C ̸= 0 and W (x) ̸= 0 for all x ∈ I.

It is a bit surprising that Abel’s formula does not involve a0 directly. It is fascinating that this continues to be
true for the n-th order problem: if y1, y2, . . . , yn are solutions of any

(n)+an−1y
(n−1)+· · ·+a1y

′+a0y = 0 and
W is the Wronskian of the given n-functions then W is gvien by Abel’s formula W (x) = C exp

[∫ an−1

an
dx
]
.

You can skip the derivation that follows if you wish. What follows is an example of tensor calculus: let

Y = [y1, y2, . . . , yn] thus Y ′ = [y′1, y
′
2, . . . , y

′
n] and Y (n−1) = [y

(n−1)
1 , y

(n−1)
2 , . . . , y

(n−1)
n ]. The Wronskian is

given by

W =

n∑
i1,i2,...,in=1

ϵi1i2...inYi1Y
′
i2 · · ·Y

(n−1)
in

Apply the product rule for n-fold products on each summand in the above sum,

W ′ =

n∑
i1,i2,...,in=1

ϵi1i2...in

(
Y ′
i1Y

′
i2 · · ·Y

(n−1)
in

+ Yi1Y
′′
i2Y

′′
i3 · · ·Y

(n−1)
in

+ · · ·+ Yi1Y
′
i2 · · ·Y

(n−2)
in−1

Y
(n)
in

)

The term Y ′
i1
Y ′
i2
· · ·Y (n−1)

in
= Y ′

i2
Y ′
i1
· · ·Y (n−1)

in
hence is symmetric in the pair of indices i1, i2. Next, the

term Yi1Y
′′
i2
Y ′′
i3
· · ·Y (n−1)

in
is symmetric in the pair of indices i2, i3. This patterns continues up to the term

Yi1Y
′
i2
· · ·Y (n−1)

in−2
Y

(n−2)
in−1

Y
(n−1)
in

which is symmetric in the in−2, in−1 indices. In contrast, the completely
antisymmetric symbol ϵi1i2...in is antisymmetric in each possible pair of indices. Note that if Sij = Sji and
Aij = −Aji then∑

i

∑
j

SijAij =
∑
i

∑
j

−SjiAji = −
∑
j

∑
i

SjiAji = −
∑
i

∑
j

SijAij ⇒
∑
i

∑
j

SijAij = 0.

If we sum an antisymmetric object against a symetric object then the result is zero. It follows that only one
term remains in calculation of W ′:

W ′ =

n∑
i1,i2,...,in=1

ϵi1i2...inYi1Y
′
i2 · · ·Y

(n−2)
in−1

Y
(n)
in

(⋆)

Recall that y1, y2, . . . , yn are solutions of any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0 hence

y
(n)
j = −an−1

an
y
(n−1)
j − · · · − a1

an
y′j −

a0
an

yj = 0

for each j = 1, 2, . . . , n. But, this yields

Y (n) = −an−1

an
Y (n−1) − · · · − a1

an
Y ′ − a0

an
Y
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Substitute this into ⋆,

W ′ =

n∑
i1,i2,...,in=1

ϵi1i2...inYi1Y
′
i2 · · ·Y

(n−2)
in−1

[
−an−1

an
Y (n−1) − · · · − a1

an
Y ′ − a0

an
Y

]
in

=

n∑
i1,i2,...,in=1

ϵi1i2...in

(
−an−1

an
Yi1Y

′
i2 · · ·Y

(n−1)
in

− · · · − a1
an

Yi1Y
′
i2 · · ·Y

′
in − a0

an
Yi1Y

′
i2 · · ·Yin

)

= −an−1

an

n∑
i1,i2,...,in=1

ϵi1i2...inYi1Y
′
i2 · · ·Y

(n−1)
in

⋆ ⋆

= −an−1

an
W.

The ⋆⋆ step is based on the observation that the index pairs i1, in and i2, in etc... are symmetric in the
line above it hence as they are summed against the completely antisymmetric symbol those terms vanish.
Alternatively, and equivalently, you could apply the multilinearity of the determinant paired with the fact
that a determinant with any two repeated rows vanishes. Linear algebra aside, we find W ′ = −an−1

an
W thus

Abel’s formula W (x) = C exp
[∫ an−1

an
dx
]
follows immediately.

Solution sets of functions reside in function space. As a vector space, function space is infinite dimensional.
The matrix techniques you learn in the linear algebra course do not apply to the totallity of function space.
Appreciate the Wronskian says what it says. In any event, we should continue our study of DEqns at this
point since we have all the tools we need to understand LI in this course.

Definition 3.2.19. fundamental solutions sets of linear ODEs.

Suppose L[y] = f is an n-th order linear differential equation on an interval I. We say S =
{y1, y2, . . . , yn} is a fundamental solution set of L[y] = f iff S is linearly independent set of
solutions to the homogeneous equation; L[yj ] = 0 for j = 1, 2, . . . n.

Example 3.2.20. The differential equation y′′ + y = f has fundamental solution set {cos(x), sin(x)}. You
can easily verify that W (cos(x), sin(x);x) = 1 hence linear independence is established the given functions.
Moreover, it is simple to check y′′ + y = 0 has sine and cosine as solutions. The formula for f is irrelevant
to the fundamental solution set. Generally, the fundamental solution set is determined by the structure of L
when we consider the general problem L[y] = f .

Theorem 3.2.21. existence of a fundmental solution set.

If L[y] = f is an n-th order linear differential equation with continuous coefficient functions on an
interval I then there exists a fundamental solution set S = {y1, y2, . . . , yn} on I.

Proof: Theorem 3.2.5 applies. Pick x0 ∈ I and use the existence theorem to obtain the solution y1 subject
to

y1(x0) = 1, y′1(x0) = 0, y′′1 (x0) = 0, . . . , y
(n−1)
1 (x0) = 0.

Apply the theorem once more to select solution y2 with:

y2(x0) = 0, y′2(x0) = 1, y′′2 (x0) = 0, . . . , y
(n−1)
2 (x0) = 0.

Then continue in this fashion selecting solutions y3, y4, . . . , yn−1 and finally yn subject to

yn(x0) = 0, y′n(x0) = 0, y′′n(x0) = 0, . . . , y(n−1)
n (x0) = 1.
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It remains to show that the solution set {y1, y2, . . . , yn} is indeed linearly independent on I. Calculate the
Wronskian at x = x0 for the solution set {y1, y2, . . . , yn}: abbreviate W (y1, y2, . . . , yn;x) by W (x) for the
remainder of this proof:

W (x0) = det


y1(x0) y2(x0) · · · ym(x0)
y′1(x0) y′2(x0) · · · y′m(x0)

...
... · · ·

...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) · · · y

(n−1)
n (x0)

 = det


1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

 = 1.

Therefore, by Abel’s formula, the Wronskian is nonzero on the whole interval I and it follows the solution
set is LI. □

Theorem 3.2.22. general solution of the homogeneous linear n-th order problem.

If L[y] = f is an n-th order linear differential equation with continuous coefficient functions on an
interval I with fundamental solution set S = {y1, y2, . . . , yn} on I. Then any solution of L[y] = 0 can
be expressed as a linear combination of the fundamental solution set: that is, there exist constants
c1, c2, . . . , cn such that:

y = c1y1 + c2y2 + · · ·+ cnyn.

Proof: Suppose S = {y1, y2, . . . , yn} is a fundamental solution set of L[y] = 0 on I. Furthermore, suppose
y is a solution; L[y] = 0. We seek to find c1, c2, . . . , cn such that y = c1y1 + c2y2 + · · · cnyn. Consider a
particular point x0 ∈ I, we need that solution y and its derivatives (y′, y′′, ...) up to order (n−1) match with
the proposed linear combination of the solution set:

y(x0) = c1y1(x0) + c2y2(x0) + · · ·+ cnyn(x0).

y′(x0) = c1y
′
1(x0) + c2y

′
2(x0) + · · ·+ cny

′
n(x0).

continuing, up to the (n− 1)-th derivative

y(n−1)(x0) = c1y
(n−1)
1 (x0) + c2y

(n−1)
2 (x0) + · · ·+ cny

(n−1)
n (x0).

It is instructive to write this as a matrix problem:
y(x0)
y′(x0)

...
y(n−1)(x0)

 =


y1(x0) y2(x0) · · · yn(x0)
y′1(x0) y′2(x0) · · · y′n(x0)

...
... · · ·

...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) · · · y

(n−1)
n (x0)




c1
c2
...
cn


The coefficient matrix has nonzero determinant (it is the Wronskian at x = x0) hence this system of
equations has a unique solution. Therefore, we can select constants c1, c2, . . . , cn such that the solution
y = c1y1 + c2y2 + · · ·+ cnyn. □

In fact, the proof shows that these constants are unique for a given fundamental solution set. Each solution is
uniquely specified by the constants c1, c2, . . . , cn. When I think about the solution of a linear ODE, I always
think of the constants in the general solution as the reflection of the reality that a given DEqn can be assigned
many different initial conditions. However, once the initial condition is given the solution is specified uniquely.

Finally we turn to the nonhomogeneous problem. I present the theory here, however, the computational
schemes are given much later in this chapter.
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Theorem 3.2.23. general solution of the nonhomogeneous linear n-th order problem.

If L[y] = f is an n-th order linear differential equation with continuous coefficient functions on an
interval I with fundamental solution set S = {y1, y2, . . . , yn} on I. Then any solution of L[y] = f
can be expressed as a linear combination of the fundamental solution set and a function yp with
L[yp] = f known as the particular solution :

y = c1y1 + c2y2 + · · ·+ cnyn + yp.

Proof: Theorem 3.2.5 applies, it follows there are many solutions to L[y] = f , one for each set of initial
conditions. Suppose y and yp are two solutions to L[y] = f . Observe that

L[y − yp] = L[y]− L[yp] = f − f = 0.

Therefore, yh = y − yp is a solution of the homogeneous ODE L[y] = 0 thus Theorem 3.2.22 we can write
yh as a linear comination of the fundamental solutions: yh = c1y1 + c2y2 + · · ·+ cnyn. But, y = yp + yh and
the theorem follows. □

Example 3.2.24. Suppose L[y] = f is a second order linear ODE and y = ex + x2 and z = cos(x) + x2 are
solutions. Then

L[y − z] = L[y]− L[z] = f − f = 0

hence y − z = (ex + x2) − (cos(x) − x2) = ex − cos(x) gives a homogeneous solution y1(x) = ex − cos(x).
Notice that w = y+ 2y1 = ex + x2 + 2(ex − cos(x)) = 3ex − cos(x) + x2 is also a solution since L[y+ 2y1] =
L[y] + 2L[y1] = f + 0 = f . Consider that w − z = (3ex − cos(x) + x2) − (cos(x) + x2) = 3ex is also a
homogeneous solution. It follows that {3ex, ex − cos(x)} is a fundamental solution set of L[y] = f . In invite
the reader to show {ex, cos(x)} is also a fundamental solution set.

The example above is important because it illustrates that we can extract homogeneous solutions from
particular solutions. Physically speaking, perhaps you might be faced with the same system subject to
several different forces. If solutions are observed for L[y] = F1 and L[y] = 2F1 then we can deduce the
general solution set of L[y] = 0. In particular, this means you could deduce the mass and spring constant
of a particular spring-mass system by observing how it responds to a pair of forces. More can be said here,
we’ll return to these thoughts as we later discuss the principle of superposition.

3.3 constant coefficient homogeneous problem

In Section 3.1 we established many facts about operators. Let us review those concepts briefly once more, this
time without proof. Let L = P (D) for some polynomial with real coefficients P (x) = anx

n+an−1x
n−1+· · ·+

a1x+a0. By the fundamental theorem of algebra we can factor P into n-linear factors. In particular, if P (x) =
0 has solutions r1, r2, . . . , rk then the factor theorem implies that there are real constants m1,m2, . . . ,mk

with m1 +m2 + · · ·+mk = n and

P (x) = an(x− r1)
m1(x− r2)

m2 · · · (x− rk)
mk

I include the possibility that rj could be complex. P is a polynomial with real coefficients, it follows that if
rj is a complex zero then the complex conjugate r∗j also has P (r∗j ) = 0. By Theorem 3.2.4 the polynomial
of the differentiation operator P (D) shares the same factorization:

L = P (D) = an(D − r1)
m1(D − r2)

m2 · · · (D − rk)
mk

We wish to solve the differential equation P (D)[y] = 0. The following facts hold for both real and complex
zeros. However, understand that when rj is complex the corresponding solutions are likewise complex:

(1.) if (D − rj)
mj [y] = 0 then P (D)[y] = 0.
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(2.) if D = d/dt then the DEqn (D − r)[y] = 0 has solution y = ert.

(3.) if D = d/dt then the DEqn (D − r)2[y] = 0 has two solutions y = ert, tert.

(4.) if D = d/dt then the DEqn (D − r)3[y] = 0 has three solutions y = ert, tert, t2ert.

(5.) if D = d/dt then the DEqn (D − r)m[y] = 0 has m-solutions y = ert, tert, . . . , tm−1ert

(6.) {ert, tert, . . . , tm−1ert} is a LI set of functions (on R or C).

Let us unravel the complex case into real notation. Suppose r = α+ iβ then r∗ = α− iβ. Note:

ert = eαt+iβt = eαt cos(βt) + ieαt sin(βt)

er
∗t = eαt−iβt = eαt cos(βt)− ieαt sin(βt)

Observe that the both complex functions give the same real solution set:

Re(eαt±iβt) = eαt cos(βt) & Im(eαt±iβt) = ±eαt sin(βt)

If (D − r)m[y] = 0 has m-complex solutions y = ert, tert, . . . , tm−1ert then (D − r)m[y] = 0 possesses the
2m-real solutions

eαt cos(βt), eαt sin(βt), teαt cos(βt), teαt sin(βt), . . . , tm−1eαt cos(βt), tm−1eαt sin(βt).

It should be clear how to assemble the general solution to the general constant coefficient problem P (D)[y] =
0. I will abstain from that notational quagmire and instead illustrate with a series of examples.

Example 3.3.1. Problem: Solve y′′ + 3y′ + 2y = 0.
Solution: Note the differential equation is (D2+3D+2)[y]. Hence (D+1)(D+2)[y] = 0. We find solutions

y1 = e−x and y2 = e−2x therefore the general solution is y = c1e
−x + c2e

−2x .

Example 3.3.2. Problem: Solve y′′ − 3y′ + 2y = 0.
Solution: Note the differential equation is (D2−3D+2)[y]. Hence (D−1)(D−2)[y] = 0. We find solutions

y1 = ex and y2 = e2x therefore the general solution is y = c1e
x + c2e

2x.

Example 3.3.3. Problem: Solve y(4) − 5y′′ + 4y = 0.
Solution: Note the differential equation is (D4 − 5D + 4)[y]. Note that

D4 − 5D + 4 = (D2 − 1)(D2 − 4) = (D + 1)(D − 1)(D + 2)(D − 2)

It follows that the differential equation factors to (D+1)(D+2)(D−1)(D−2)[y] = 0 and the general solution
reads

y = c1e
−x + c2e

−2x + c3e
x + c4e

2x.

You should notice that I do not state that D = ±1 or D = ±2 in the example above. Those equations are
illogical nonsense. I am using the theory we’ve developed in this chapter to extract solutions from inspection
of the factored form. If you really want to think in terms of roots instead of factors then I would advise that
you use the following fact:

P (D)[eλt] = P (λ)eλt.

I exploited this identity to solve the second order problem in our first lecture on the n-th order problem.
Solutions to P (λ) = 0 are called the characteristic values of the DEqn P (D)[y] = 0. The equation
P (λ) = 0 is called the characteristic equation.

Example 3.3.4. Problem: Solve y(4) − 5y′′ + 4y = 0.
Solution: Let P (D) = D4 − 5D + 4 thus the DEqn is P (D)[y] = 0. Note that P (λ) = λ4 − 5λ+ 4.

λ4 − 5λ+ 4 = (λ2 − 1)(λ2 − 4) = (λ+ 1)(λ− 1)(λ+ 2)(λ− 2)

Hence, the solutions of P (λ) = 0 are λ1 = −1, λ1 = −2, λ3 = 1 and λ4 = 2 the characteristic values of
P (D)[y] = 0. The general solution follows:

y = c1e
−x + c2e

−2x + c3e
x + c4e

2x.
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We can also group the exponential functions via the hyperbolic sine and cosine. Since

cosh(x) =
1

2
(ex + e−x) & sinh(x) =

1

2
(ex − e−x)

we have ex = cosh(x) + sinh(x) and e−x = cosh(x)− sinh(x). Thus,

c1e
−x + c3e

x = c1(cosh(x)− sinh(x)) + c3(cosh(x) + sinh(x)) = (c1 + c3) cosh(x) + (c1 − c3) sinh(x).

For a given problem we can either use exponentials or hyperbolic sine and cosine.

Example 3.3.5. Problem: Solve y′′ − y = 0 with y(0) = 1 and y′(0) = 2.
Solution: we find λ2 − 1 = 0. Hence λ = ±1. We find general solution y = c1 cosh(x) + c2 sinh(x) in view
of the comments just above this example (worth remembering for later btw). Observe:

y′ = c1 sinh(x) + c2 cosh(x)

Consequently, y(0) = c1 = 1 and y′(0) = c2 = 2 and we find y = cosh(x) + 2 sinh(x).

Believe it or not, the hyperbolic sine and cosine are easier to work with when we encounter this type of
ODE in our study of boundary value problems in partial differential equations towards the conclusion of this
course.

Example 3.3.6. Problem: Solve y(4) + 2y′′ + y = 0.
Solution: the characteristic equation is λ4 + 2λ2 + 1 = 0. Hence (λ2 + 1)2 = 0. It follows that we have
λ = ±i repeated. The general solution is found from the real and imaginary parts of eit and teit. Since
eit = cos(t) + i sin(t) we find:

y = c1 cos(t) + c2 sin(t) + c3t cos(t) + c4t sin(t).

Up to this point I have given examples where we had to factor the operator (or characteristic eqn.) to extract
the solution. Sometimes we find problems where the operators are already factored. I consider a few such
problems now.

Example 3.3.7. Problem: Solve (D2 + 9)(D − 2)3[y] = 0 with D = d/dx for a change.
Solution: I read from the expression above that we have λ = ±3i and λ = 2 thrice. Hence,

y = c1 cos(3x) + c2 sin(3x) + c3e
2x + c4xe

2x + c5x
2e2x.

Example 3.3.8. Problem: Solve (D2 + 4D + 5)[y] = 0 with D = d/dx.
Solution: Complete the square to see that P (D) is not reducible; D2+4D+5 = (D+2)2+1 it follows that
the characteristic values are λ = −2± i and the general solution is given from the real and imaginary parts
of e−2x+ix = e−2xeix

y = c1e
−2x cos(x) + c2e

−2x sin(x).

Example 3.3.9. Problem: Solve (D2 + 4D − 5)[y] = 0 with D = d/dx.
Solution: Complete the square; D2 + 4D − 5 = (D + 2)2 − 9 it follows that the characteristic values are
λ = −2± 3 or λ1 = 1 or λ2 = −5

y = c1e
x + c2e

−5x.

Of course, if you love hyperbolic sine and cosine then perhaps you would prefer that we see from ((D+2)2 −
9)[y] = 0 the solutions

y = b1e
−2x cosh(3x) + b2e

−2x sinh(3x)

as the natural expression of the general solution. In invite the reader to verify the solution above is just
another way to write the solution y = c1e

x + c2e
−5x.
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Example 3.3.10. Problem: Solve (D2 + 6D + 15)(D2 + 1)(D2 − 4)[y] = 0 with D = d/dx.
Solution: Completing the square gives ((D + 3)2 + 6)(D2 + 1)(D2 − 4)[y] = 0 hence we find characteristic
values of λ = −3± i

√
6,±i,±2. The general solution follows:

y = c1e
−3x cos(

√
6x) + c2e

−3x sin(
√
6x) + c3 cos(x) + c4 sin(x) + c5e

2x + c6e
−2x.

The example that follows is a bit more challenging since it involves both theory and a command of polynomial
algebra.

Example 3.3.11. Problem: Solve (D5 − 8D2 − 4D3 + 32)[y] = 0 given that y = cosh(2t) is a solution.
Solution: Straightforward factoring of the polynomial is challenging here, but I gave an olive branch. Note
that if y = cosh(2t) is a solution then y = sinh(2t) is also a solution. It follows that (D2−4) = (D−2)(D+2)
is a factor of D5− 8D2− 4D3+32. For clarity of thought lets work on x5− 8x2− 4x3+32 and try to factor
out x2 − 4. Long division is a nice tool for this problem. Recall:

x3 − 8

x2 − 4
)

x5 − 4x3 − 8x2 + 32
− x5 + 4x3

− 8x2 + 32
8x2 − 32

0

Thus,
x5 − 8x2 − 4x3 + 32 = (x2 − 4)(x3 − 8)

Clearly x3−8 = 0 has solution x = 2 hence we can factor (x−2). I’ll use long-division once more (of course,
some of you might prefer synthetic division and/or have this memorized already... good)

x2 + 2x+ 4

x− 2
)

x3 − 8
− x3 + 2x2

2x2

− 2x2 + 4x

4x− 8
− 4x+ 8

0

Consequently, x5 − 8x2 − 4x3 + 32 = (x2 − 4)(x− 2)(x2 + 2x+ 4). It follows that

(D5 − 8D2 − 4D3 + 32)[y] = 0 ⇒ (D − 2)2)(D + 2)((D + 1)2 + 3)[y] = 0

Which suggests the solution below:

y = c1e
2t + c2te

2t + c3e
−2t + c4e

−t cos(
√
3t) + c5e

−t sin(
√
3t).
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3.4 annihilator method for nonhomogeneous problems

In the previous section we learned how to solve any constant coefficient n-th order ODE. We now seek to
extend the technique to the nonhomogeneous problem. Our goal is to solve:

L[y] = f

where L = P (D) as in the previous section, it is a polynomial in the differentiation operator D. Suppose we
find a differential operator A such that A[f ] = 0. This is called an annihilator for f . Operate on L[y] = f to
obtain AL[y] = A[f ] = 0. Therefore, if we have an annihilator for the forcing function f then the differential
equation yields a corresponding homogeneous differential equation AL[y] = 0. Suppose y = yh + yp is the
general solution as discussed for Theorem 3.2.23 we have L[yh] = 0 and L[yp] = f . Observe:

AL[yh + yp] = A[L[yh + yp]] = A[f ] = 0

It follows that the general solution to AL[y] = 0 will include the general solution of L[y] = f . The method we
justify and implement in this section is commonly called the method of undetermined coefficients. The
annihilator method shows us how to set-up the coefficients. To begin, we should work on finding annihilators
to a few simple functions.

Example 3.4.1. Problem: find an annihilator for ex.
Solution: recall that ex arises as the solution of (D−1)[y] = 0 therefore a natural choice for the annihilator
is A = D − 1. This choice is minimal. Observe that A2 = Q(D)(D − 1) is also an annihilator of ex

since A2[e
x] = Q(D)[(D − 1)[ex]] = Q(D)[0] = 0. There are many choices, however, we prefer the minimal

annihilator. It will go without saying that all the choices that follow from here on out are minimal.

Example 3.4.2. Problem: find an annihilator for xe3x.
Solution: recall that xe3x arises as a solution of (D − 3)2[y] = 0 hence choose A = (D − 3)2.

Example 3.4.3. Problem: find an annihilator for e3x cos(x).
Solution: recall that e3x cos(x) arises as a solution of ((D−3)2+1)[y] = 0 hence choose A = ((D−3)2+1).

Example 3.4.4. Problem: find an annihilator for x2e3x cos(x).
Solution: recall that x2e3x cos(x) arises as a solution of ((D − 3)2 + 1)3[y] = 0 hence choose A = ((D −
3)2 + 1)3.

Example 3.4.5. Problem: find an annihilator for 2ex cosh(2x).
Solution: observe that 2ex cosh(2x) = ex(e2x + e−2x) = e3x + e−x and note that (D − 3)[e3x] = 0 and
(D + 1)[e−x] = 0 thus A = (D − 3)(D + 1) will do nicely.

For those who love symmetric calculational schemes, you could also view 2ex cosh(2x) as the solution arising
from ((D − 1)2 − 4)[y]− 0. Naturally (D − 1)2 − 4 = D2 − 2D − 3 = (D − 3)(D + 1).

Example 3.4.6. Problem: find an annihilator for x2 + e3x cos(x).
Solution: recall that e3x cos(x) arises as a solution of ((D−3)2+1)[y] = 0 hence choose A1 = ((D−3)2+1).
Next notice that x2 arises as a solution of D3[y] = 0 hence we choose A2 = D3. Construct A = A1A2 and
notice how this works: (use A1A2 = A2A1 which is true since these are constant coefficient operators)

A1[A2[x
2 + e3x cos(x)]] = A1[A2[x

2] +A2[A1[e
3x cos(x)]]

= A1[0] +A2[0]

= 0

because A1A2 = A2A1 for these constant coefficient operators. To summarize, we find
A = D3((D − 3)2 + 1) is an annihilator for x2 + e3x cos(x).
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I hope you see the idea generally. If we are given a function which arises as the solution of a constant
coefficient differential equation then we can use the equation to write the annihilator. You might wonder if
there are other ways to find annihilators.... well, surely there are, but not usually for this course. I think
the examples thus far give us a good grasp of how to kill the forcing function. Let’s complete the method.
We proceed by example.

Example 3.4.7. Problem: find the general solution of y′′ + y = 2ex

Solution: observe L = D2 + 1 and we face (D2 + 1)[y] = ex. Let A = D − 1 and operate on the given
nonhomogeneous ODE,

(D − 1)(D2 + 1)[y] = (D − 1)[ex] = 0

We find general solution y = c1e
x + c2 cos(x) + c3 sin(x). Notice this is not the finished product. We should

only have two constants in the general solution of this second order problem. But, remember, we insist that
L[y] = f in addition to the condition AL[y] = 0 hence:

L[c1e
x + c2 cos(x) + c3 sin(x)] = 2ex

which simplifes to L[c1e
x] = 2ex since the functions cos(x), sin(x) are solutions of L[y] = 0. Expanding

L[c1e
x] = 2ex in detail gives us:

D2[c1e
x] + c1e

x = 2ex ⇒ 2c1e
x = 2ex ⇒ c1 = 1.

Therefore we find, y = ex + c2 cos(x) + c3 sin(x).

The notation used in the example above is not optimal for calculation. Usually I skip some of those steps
because they’re not needed once we understand the method. For example, once I write y = c1e

x+c2 cos(x)+
c3 sin(x) then I usually look to see which functions are in the fundamental solution set. Since {cos(x), sin(x)}
is a natural fundamental solution set this tells me that only the remaining function ex is needed to construct
the particular solution. Since c1 is annoying to do algebra on, I instead use notation yp = Aex. Next,
calculate y′p = Aex and y′′p = Aex and plug these into the given ODE:

Aex +Aex = 2ex ⇒ 2Aex = 2ex ⇒ A = 1.

which brings us to the fact that yp = ex and naturally yh = c1 cos(x) + c2 sin(x). The general solution is
y = yh + yp = c1 cos(x) + c2 sin(x) + ex.

Example 3.4.8. Problem: find the general solution of y′′ + 3y′ + 2y = x2 − 1
Solution: in operator notation the DEqn is (D2 + 3D + 2)[y] = (D + 1)(D + 2)[y] = 0. Let A = D3 and
operate on the given nonhomogeneous ODE,

D3(D + 1)(D + 2)[y] = D3[x2 − 1] = 0

The homogeneous ODE above has solutions 1, x, x2, e−x, e−2x. Clearly the last two of these form the homo-
geneous solution whereas the particular solution is of the form yp = Ax2 +Bx+ C. Calculate:

y′p = 2Ax+B, y′′p = 2A

Plug this into the DEqn y′′p + 3y′p + 2yp = x2 − 1,

2A+ 3(2Ax+B) + 2(Ax2 +Bx+ C) = x2 − 1

multiply it out and collect terms:

2A+ 6Ax+ 3B + 2Ax2 + 2Bx+ 2C = x2 − 1 ⇒ 2Ax2 + (6A+ 2B)x+ 2A+ 3B + 2C = x2 − 1

this sort of equation is actually really easy to solve. We have two polynomials. When are they equal? Simple.
When the coefficients match, thus calculate:

2A = 1, 6A+ 2B = 0, 2A+ 3B + 2C = −1
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Clearly A = 1/2 hence B = −3A = −3/2. Solve for C = −1/2 − A − 3B/2 = −1/2 − 1/2 + 9/4 = 5/4.
Therefore, the general solution is given by:

y = c1e
−x + c2e

−2x +
1

2
x2 − 3

2
x+

5

4
.

At this point you might start to get the wrong impression. It might appear to you that the form of yp has
nothing to do with the form of yh. That is a fortunate feature of the examples we have thus far considered.
The next example features what I usually call overlap.

Example 3.4.9. Problem: find the general solution of y′ − y = ex + x
Solution: Observe the annihilator is A = (D− 1)D2 and when we operate on (D− 1)[y] = ex +x we obtain

(D − 1)D2(D − 1)[y] = (D − 1)D2[ex + x] = 0 ⇒ (D − 1)2D2[y] = 0

Thus, ex, xex, 1, x are solutions. We find yh = c1e
x whereas the particular solution is of the form yp =

Axex +Bx+ C. Calculate y′p = A(ex + xex) +B and substitute into the DEqn to obtain:

A(ex + xex) +B − (Axex +Bx+ C) = ex + x ⇒ (A−A)xex +Aex −Bx− C = ex + x

We find from equating coefficients of the linearly independent functions ex, 1, x that A = 1 and −B = 1

and −C = 0. Therefore, y = c1e
x + xex − x.

If you look in my linear algebra notes I give a proof which shows we can equate coefficients for linearly
independent sets. Usually in the calculation of yp we find it useful to use the technique of equating coefficients
to fix the undetermined constants A,B,C, etc...

Example 3.4.10. Problem: find the general solution of y′′ + y = 4 cos(t)
Solution: Observe the annihilator is A = D2 + 1 and when we operate on (D2 + 1)[y] = cos(t) we obtain

(D2 + 1)2[y] = 0

Thus, cos(t), sin(t), t cos(t), t sin(t) are solutions. We find yh = c1 cos(t) + c2 sin(t) whereas the particular
solution is of the form yp = At cos(t) +Bt sin(t) = t(A cos(t) +B sin(t)). Calculate

y′p = A cos(t) +B sin(t) + t(−A sin(t) +B cos(t)) = (A+Bt) cos(t) + (B −At) sin(t)

y′′p = B cos(t)−A sin(t)− (A+Bt) sin(t) + (B −At) cos(t) = (2B −At) cos(t)− (2A+Bt) sin(t)

It is nice to notice that y′′p = 2B cos(t)− 2A sin(t)− yp hence y′′p + yp = 4 cos(t) yields:

2B cos(t)− 2A sin(t) = 4 cos(t)

thus 2B = 4, −2A = 0. Consequently, A = 0, B = 2 and the general solution is found to be:

y = c1 cos(t) + c2 sin(t) + 2t sin(t).

From this point forward I omit the details of the annihilator method and simply propose the correct template
for yp.

Example 3.4.11. Problem: find the general solution of y′ + y = x
Solution: Observe yh = c1e

−x for the given DEqn. Let yp = Ax+B then y′p+yp = A+Ax+B = x implies

A+B = 0 and A = 1 hence B = −1 and we find y = c1e
−x + x− 1 .
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Example 3.4.12. Problem: find the general solution of y′′ + 4y′ = x
Solution: Observe λ2 + 4λ = 0 gives solutions λ = 0,−4 hence yh = c1 + c2e

−4x for the given DEqn. Let5

yp = Ax2 + Bx then y′p = 2Ax + B and y′′p = 2A hence y′′p + 4y′p = x yields 2A + 4(2Ax + B) = x hence
8Ax + 2A + 4B = x. Equate coefficients of x and 1 to find 8A = 1 and 2A + 4B = 0 hence A = 1/8 and
B = −1/16. We find

y = c1 + c2e
−4x +

1

8
x2 − 1

16
x .

Example 3.4.13. Problem: find the general solution of y′′ + 4y′ = cos(x) + 3 sin(x) + 1
Solution: Observe λ2 + 4λ = 0 gives solutions λ = 0,−4 hence yh = c1 + c2e

−4x for the given DEqn. Let
yp = A cos(x) + B sin(x) + Cx then y′p = −A sin(x) + B cos(x) + C and y′′p == −A cos(x)− B sin(x) hence
y′′p + 4y′p = cos(x) + 3 sin(x) + 1 yields

−A cos(x)−B sin(x) + 4(−A sin(x) +B cos(x) + C) = cos(x) + 3 sin(x) + 1

Collecting like terms:

⇒ (4B −A) cos(x) + (−4A−B) sin(x) + 4C = cos(x) + 3 sin(x) + 1

Equate coefficients of cos(x), sin(x), 1 to obtain:

4B −A = 1, −4A−B = 3, 4C = 1

Observe B = −4A − 3 hence 4(−4A − 3) − A = 1 or −17A − 12 = 1 thus A = −13/17. Consequently,
B = 52/17− 3 = (52− 51)/17 = 1/17. Obviously C = 1/4 thus we find

y = c1 + c2e
−4x − 13

17
cos(x) +

1

17
sin(x) +

1

4
x .

We have enough examples to appreciate the theorem given below:

Theorem 3.4.14. superposition principle for linear differential equations.

Suppose L[y] = 0 is an n-th order linear differential equation with continuous coefficient functions
on an interval I with fundamental solution set S = {y1, y2, . . . , yn} on I. Furthermore, suppose
L[ypj

] = fj for functions fj on I then for any choice of constants b1, b2, . . . , bk the function y =∑k
j=1 bjypj

forms the particular solution of L[y] =
∑k

j=1 bjfj on the interval I.

Proof: we just use k-fold additivity and then homogeneity of L to show:

L

[ k∑
j=1

bjypj

]
=

k∑
j=1

L[bjypj ] =

k∑
j=1

bjL[ypj ] =

k∑
j=1

bjfj . □

The Superposition Theorem paired with Theorem 3.2.23 allow us to find general solutions for complicated
problems by breaking down the problem into pieces. In the example that follows we already dealt with the
pieces in previous examples.

Example 3.4.15. Problem: find the general solution of y′′ + 4y′ = 17(cos(x) + 3 sin(x) + 1) + 16x = f
(introduced f for convenience here)

Solution: observe that L = D2 + 4D for both Example 3.4.12 and Example 3.4.13. We derived that the
particular solutions yp1

= 1
8x

2 − 1
16x and yp2

= − 13
17 cos(x) +

1
17 sin(x) +

1
4x satisfy

L[yp1 ] = f1 = x & L[yp2 ] = f2 = cos(x) + 3 sin(x) + 1

5I know this by experience, but you can derive this by the annihilator method, of course the merit is made manifest
in the successful selection of A,B below to actually solve y′′

p + 4y′
p = x.
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Note that f = 17f2 + 16f1 thus L[y] = f has particular solution y = 17yp2 + 16yp1 by the superposition
principle. Therefore, the general solution is given by:

y = c1 + c2e
−4x − 13 cos(x) + sin(x) +

17

4
x+ 2x2 − x.

Or, collecting the x-terms together,

y = c1 + c2e
−4x − 13 cos(x) + sin(x) +

13

4
x+ 2x2.

Example 3.4.16. Problem: find the general solution of y′′ + 5y′ + 6y = 2 sinh(t)

Solution: It is easy to see that y′′ + 5y′ + 6y = et has yp1
= 1

12e
t. On the other hand, it is easy to see that

y′′ + 5y′ + 6y = e−t has solution yp2 = 1
2e

−t. The definition of hyperbolic sine gives 2 sinh(t) = et − e−t

hence, by the principle of superposition we find particular solution of y′′ + 5y′ + 6y = 2 sinh(t) is simply
yp = 2yp1

− 2yp2
. Note λ2 +5λ+6 = 0 factors to (λ+2)(λ+3) = 0 hence yh = c1e

−2t + c2e
−3t. Therefore,

the general solution of y′′ + 5y′ + 6y = 2 sinh(t) is

y = c1e
−2t + c2e

−3t +
1

12
et − 1

2
e−t .

Naturally, you can solve the example above directly. I was merely illustrating the superposition principle.

Example 3.4.17. Problem: find the general solution of y′′ + 5y′ + 6y = 2 sinh(t)

Solution: a natural choice for the particular solution is yp = A cosh(t) +B sinh(t) hence

y′p = A sinh(t) +B cosh(t), , y′′p = A cosh(t) +B sinh(t) = yp

Thus y′′p + 5y′p + 6yp = 5y′p + 7yp = 2 sinh(t) and we find

(5A+ 7B) cosh(t) + (5B + 7A) sinh(t) = 2 sinh(t)

Thus 5A + 7B = 0 and 5B + 7A = 2. Algebra yields A = 7/12 and B = −5/12. Therefore, as the
characteristic values are λ = −2,−3 the general solution is given as follows:

y = c1e
−2x + c2e

−3x +
7

12
cosh(t)− 5

12
sinh(t) .

I invite the reader to verify the answers in the previous pair of examples are in fact equivalent.



94 CHAPTER 3. ORDINARY n-TH ORDER PROBLEM

3.5 variation of parameters

The method of annihilators is deeply satisfying, but sadly most function escape its reach. For example, if
the forcing function was sec(x) or tan(x) or ln(x) then we would be unable to annihilate these functions with
some polynomial in D. Moreover, if the DEqn L[y] = f has nonconstant coefficients then the problem of
factoring L into linear factors L1, L2, . . . , Ln is notoriously difficult6. If we had a factorization and a way to
annihilate the forcing function we might be able to extend the method of the last section, but, this is not a
particularly easy path to implement in any generality. In contrast, the technique of variation of parameters
is both general and amazingly simple.

We begin by assuming the existence of a fundamental solution set for L[y] = f ; assume {y1, y2, . . . , yn} is a
linearly independent set of solutions for L[y] = 0. We propose the particular solution yp can be written as
a linear combination of the fundmental solutions with coefficients of functions v1, v2, . . . , vn (these are the
”parameters”)

yp = v1y1 + v2y2 + · · ·+ vnyn

Differentiate,

y′p = v′1y1 + v′2y2 + · · ·+ v′nyn + v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n

Let constraint 1 state that v′1y1+v′2y2+ · · ·+v′nyn = 0 and differentiate y′p in view of this added constraint,
once more we apply the product-rule n-fold times:

y′′p = v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n + v1y

′′
1 + v2y

′′
2 + · · ·+ vny

′′
n

Let constraint 2 state that v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n = 0 and differentiate y′′p in view of contraints 1 and 2,

y′′′p = v′1y
′′
1 + v′2y

′′
2 + · · ·+ v′ny

′′
n + v1y

′′′
1 + v2y

′′′
2 + · · ·+ vny

′′′
n

Let constraint 3 state that v′1y
′′
1 + v′2y

′′
2 + · · ·+ v′ny

′′
n = 0. We continue in this fashion adding constraints

after each differentiation of the form v′1y1
(j) + v′2y2

(j) + · · · + v′nyn
(j) = 0 for j = 3, 4, . . . , n − 2. Note this

brings us to

y(n−1)
p = v1y

(n−1)
1 + v2y

(n−1)
2 + · · ·+ vny

(n−1)
n .

Thus far we have given (n−1)-constraints on [v′1, v
′
2, . . . , v

′
n]. We need one more constraint to fix the solution.

Remember we need L[yp] = f ; any
(n)
p + an−1y

(n−1)
p + · · ·+ a1y

′
p + a0yp = f thus:

y(n)p =
f

an
− an−1

an
y(n−1)
p − · · · − a1

an
y′p −

a0
an

yp. (⋆)

Differentiating yp = v1y1 + v2y2 + · · ·+ vnyn and apply the previous contraints to obtain:

y(n)p = v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n + v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n . (⋆2)

6we’ll tackle the problem for the Cauchy Euler problem later this chapter, see Rabenstein for some more exotic
examples of factorization of operators
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Equate ⋆ and ⋆2 to obtain:

f

an
=

an−1

an
y(n−1)
p + · · ·+ a1

an
y′p +

a0
an

yp+

+ v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n + v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n

= v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n

+
an
an

(
v1y

(n)
1 + v2y

(n)
2 + · · ·+ vny

(n)
n

)
+

+
an−1

an

(
v1y

(n−1)
1 + v2y

(n−1)
2 + · · ·+ vny

(n−1)
n

)
+

+ · · ·+

+
a1
an

(
v1y

′
1 + v2y

′
2 + · · ·+ vny

′
n

)
+

+
a0
an

(
v1y1 + v2y2 + · · ·+ vnyn

)

= v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n

+
v1
an

(
any

(n)
1 + an−1y

(n−1)
1 + · · ·+ a1y

′
1 + a0y1

)
+

+
v2
an

(
any

(n)
2 + an−1y

(n−1)
2 + · · ·+ a1y

′
2 + a0y2

)
+

+ · · ·+

+
vn
an

(
any

(n)
n + an−1y

(n−1)
n + · · ·+ a1y

′
n + a0yn

)
= v′1y

(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

(n−1)
n .

In the step before the last we used the fact that L[yj ] = 0 for each yj in the given fundamental solution set.
With this calculation we obtain our n-th condition on the derivatives of the parameters. In total, we seek
to impose 

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n




v′1
v′2
...
v′n

 =


0
0
...

f/an

 . (⋆3)

Observe that the coefficient matrix of the system above is the Wronskian Matrix. Since we assumed
{y1, y2, . . . , yn} is a fundamental solution set we know that the Wronskian is nonzero which means the equa-
tion above has a unique solution. Therefore, the constraints we proposed are consistent and attainable for
any n-th order linear ODE.

Let us pause to learn a little matrix theory convenient to our current endeavors. Nonsingular system of
linear equations by Cramer’s rule. To solve Av⃗ = b⃗ you can follow the procedure below: to solve for vk of
v⃗ = (v1, v2, . . . , vk, . . . , vn) we

(1.) take the matrix A and replace the k-th column with the vector b⃗ call this matrix Sk

(2.) calculate det(Sk) and det(A)

(3.) the solution is simply vk = det(Sk)
det(A) .
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Cramer’s rule is a horrible method for specific numerical systems of linear equations7. But, it has for us the
advantage of giving a nice, neat formula for the matrices of functions we consider here.

Example 3.5.1. Suppose you want to solve x+ y + z = 6, x+ z = 4 and y − z = −1 simultaneously. Note
in matrix notation we have:  1 1 1

1 0 1
0 1 −1

 x
y
z

 =

 6
4
−1

 .

We can swap out columns 1, 2 and 3 to obtain S1, S2 and S3

S1 =

 6 1 1
4 0 1
−1 1 −1

 S2 =

 1 6 1
1 4 1
0 −1 −1

 S3 =

 1 1 6
1 0 4
0 1 −1


You can calculate det(S1) = 1, det(S1) = 2 and det(S3) = 3. Likewise det(A) = 1. Cramer’s Rule states the

solution is x = det(S1)
det(A) = 1, y = det(S2)

det(A) = 2 and z = det(S3)
det(A) = 3.

In the notation introduced above we see ⋆3 has

A =


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 & b⃗ =


0
0
...

f/an

 .

Once more define Sk as the matrix obtained by swapping the k-th column of A for the column vector b⃗
and let W be the Wronskian which is det(A) in our current notation. We obtain the following solutions for
v′1, v

′
2, . . . , v

′
n by Cramer’s Rule:

v′1 =
det(S1)

W
, v′2 =

det(S2)

W
, . . . , v′n =

det(Sn)

W

Finally, we can integrate to find the formulas for the parameters. Taking x as the independent parameter
we note v′k = dvk

dx hence:

v1 =

∫
det(S1)

W
dx, v2 =

∫
det(S2)

W
dx, . . . , vn =

∫
det(Sn)

W
dx.

The matrix Sk has a rather special form and we can simplify the determinants above in terms of the so-called
sub-Wronskian determinants. Define Wk = W (y1, . . . , yk−1, yk+1, . . . , yn;x) then it follows by Laplace’s
Expansion by minors formula that det(Sk) = (−1)n+k f

an
Wk. Thus,

v1 =

∫
(−1)n+1 fW1

anW
dx, v2 =

∫
(−1)n+2 fW2

anW
dx, . . . , vn =

∫
fWn

anW
dx .

Of course, you don’t have to think about subWronskians, we could just use the formula in terms of det(Sk).
Include the subWronskain comment in part to connect with formulas given in Nagel Saff and Snider (Ritger
& Rose does not have detailed plug-and-chug formulas on this problem, see page 154). In any event, we
should now enjoy the spoils of this conquest. Let us examine how to calculate yp = v1y1 + · · · + vnyn for
particular n.

(1.) (n=1) a1
dy
dx + a0y = f has W (y1;x) = y1 and W1 = 1. It follows that the solution y = y1v1 has

v1 =
∫

f
a1y1

dx where y1 is the solution of a1
dy
dx + a0y = 0 which is given by y1 = exp(

∫ −a0

a1
dx). In

other words, variation of parameters reduces to the integrating factor method8 for n = 1.

7Gaussian elimination is faster and more general, see my linear algebra notes or any text on the subject!
8note dy

dx
+ a0

a1
y = 0 implies I = exp(

∫
a0
a1

dx) hence d
dx

(Iy) = 0 and so y = C/I and taking C = 1 derives y1.
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(2.) (n=2) Suppose a2y
′′ + a1y

′ + a0y = f has fundamental solution set {y1, y2} then

W = det

[
y1 y2
y′1 y′2

]
= y1y

′
2 − y2y

′
1

furthermore, calculate:

det(S1) = det

[
0 y2

f/a2 y′2

]
= −fy2

a2
& det(S2) = det

[
y1 0
y′1 f/a2

]
=

fy1
a2

Therefore,

v1 =

∫
−fy2

a2(y1y′2 − y2y′1)
dx & v2 =

∫
fy1

a2(y1y′2 − y2y′1)
dx

give the particular solution yp = v1y1 + v2y2. Note that if the integrals above are indefinite then the
general solution is given by:

y = y1

∫
−fy2
a2

dx+ y2

∫
fy1
a2

dx .

Formulas for n = 3, 4 are tedious to derive and I leave them to the reader in the general case. Most
applications involve n = 2.

Example 3.5.2. Solve y′′ + y = sec(x). The characteristic equation λ2 + 1 = 0 yields λ = ±i hence
y1 = cos(x), y2 = sin(x). Observe the Wronskian simplifies nicely in this case: W = y1y

′
2 − y2y

′
1 = cos2(x)+

sin2(x) = 1. Hence,

v1 =

∫
−fy2
W

dx =

∫
− sec(x) sin(x) dx = −

∫
sin(x)

cos(x)
dx = − ln | cos(x)|+ c1 = ln | sec(x)|+ c1.

and,

v2 =

∫
fy1
W

dx =

∫
sec(x) cos(x) dx =

∫
dx = x+ c2.

we find the general solution y = y1v1 + y2v2 is simply:

y = c1 cos(x) + c2 sin(x) + cos(x) ln | sec(x)|+ x sin(x) .

Sometimes variation of parameters does not include the c1, c2 in the formulas for v1 and v2. In that case
the particular solution truly is yp = y1v1 + y2v2 and the general solution is found by y = yh + yp where
yh = c1y1 + c2y2. Whatever system of notation you choose, please understand that in the end there must
be a term c1y1 + c2y2 in the general solution.

Example 3.5.3. Solve y′′ − 2y′ + y = f . The characteristic equation λ2 − 2λ + 1 = (λ − 1)2 = 0 yields
λ1 = λ2 = 1 hence y1 = ex, y2 = xex. Observe the Wronskian simplifies nicely in this case: W = y1y

′
2 −

y2y
′
1 = ex(ex + xex)− exxex = e2x. Hence,

v1 =

∫
−f(x)xex

e2x
dx & v2 =

∫
f(x)ex

e2x
dx.

we find the general solution y = y1v1 + y2v2 is simply:

y = c1e
x + c2xe

x − ex
∫

f(x)xex

e2x
dx+ xex

∫
f(x)ex

e2x
dx .

In particular, if f(x) = ex sin(x) then

v1 =

∫
−x sin(x) dx = x cos(x)− sin(x) & v2 =

∫
sin(x) dx = − cos(x).

Hence, yp = (x cos(x)− sin(x))ex + xex(− cos(x)) = −ex sin(x). The general solution is

y = c1e
x + c2xe

x − ex sin(x) .
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Notice that we could also solve y′′ − 2y′ + y = ex sin(x) via the method of undetermined coefficients. In
fact, any problem we can solve by undetermined coefficients we can also solve by variation of parameters.
However, given the choice, it is usually easier to use undetermined coefficients.

Example 3.5.4. Solve y′′′ + y′ = x ln(x). The characteristic equation has λ3 + λ = λ(λ2 + 1) = 0 hence
λ = 0 and λ = ±i. The fundmental solutions are y1 = 1, y2 = cos(x), y3 = sin(x). Calculate,

W (1, cos(x), sin(x);x) = det

 1 cos(x) sin(x)
0 − sin(x) cos(x)
0 − cos(x) − sin(x)

 = 1(sin2(x) + cos2(x)) = 1.

Swapping the first column of the Wronskian matrix with (0, 0, x ln(x)) gives us S1 and we find

det(S1) = det

 0 cos(x) sin(x)
0 − sin(x) cos(x)

x ln(x) − cos(x) − sin(x)

 = x ln(x).

Swapping the second column of the Wronskian matrix with (0, 0, x ln(x)) gives us S2 and we find

det(S2) = det

 1 0 sin(x)
0 0 cos(x)
0 x ln(x) − sin(x)

 = −x ln(x) cos(x).

Swapping the third column of the Wronskian matrix with (0, 0, x ln(x)) gives us S3 and we find

det(S3) = det

 1 cos(x) 0
0 − sin(x) 0
0 − cos(x) x ln(x)

 = −x ln(x) sin(x).

Note, integration by parts yields9 v1 =
∫
x ln(x) dx = 1

2x
2 ln(x)− 1

4x
2. The integrals of v2 =

∫
−x ln(x) cos(x) dx

and v3 = −x ln(x) sin(x) dx are not elementary. However, we can express the general solution as:

y = c1 + c2 cos(x) + c3 sin(x) +
1

2
x2 ln(x)− 1

4
x2 − cos(x)

∫
x ln(x) cos(x) dx− sin(x)

∫
x ln(x) sin(x) dx .

If you use Mathematica directly, or Wolfram Alpha or other such software then some of the integrals will be
given in terms of unusual functions such as hypergeometric functions or polylogarithms or the cosine integral
function or the exponential integral function or the sine integral function, or Bessel functions and so forth...
the list of nonstandard, but known, functions is very lenghthy at this point. What this means is that when
you find an integral you cannot perform as part of an answer it may well be that the values of that integral
are known, tabulated and often even automated as a built-in command. Moreover, if you randomly try other
nonhomogeneous ODEs then you’ll often find solutions appear in this larger class of named functions. More
generally, the solutions appear as series of orthogonal functions. But, I suppose I am getting a little ahead of
the story here. In the next section we explore substitutions of a particular sort for the n-th order problem.

9I am just calculating an antiderivative here since the homogeneous solution will account for the neccessary
constants in the general solution
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3.6 reduction of order

We return to the question of the homogeneous linear ODE L[y] = 0. Suppose we are given a solution y1
with

any
(n)
1 + an−1y

(n−1)
1 + · · ·+ a1y

′
1 + a0y1 = 0

on an interval I. To find a second solution we propose there exists v such that y2 = vy1 is a solution of
L[y] = 0. I invite the reader to verify the following:

y′2 = v′y1 + vy′1

y′′2 = v′′y1 + 2v′y′1 + vy′′1

y′′′2 = v′′′y1 + 3v′′y′1 + 3v′y′′1 + vy′′′1

and, by an inductive argument, we arrive at

y
(n)
2 = v(n)y1 + nv(n−1)y′1 + · · ·+ nv′y

(n−1)
1 + vy

(n)
1

where the other coefficients are the binomial coefficients. I suppose it’s worth mentioning the formula below
is known as Leibniz’ product formula:

dn

dxb

[
F (x)G(x)

]
=

n∑
k=0

(
n

k

)
F (n−k)(x)G(k)(x)

Returning to the substitution y2 = vy1 we find that the condition L[y2] = 0 gives

an(vy1)
(n) + · · ·+ a1(vy1)

′ + a0vy1 = 0

Thus,

an
[
v(n)y1 + nv(n−1)y′1 + · · ·+ nv′y

(n−1)
1 + vy

(n)
1

]
+ · · ·++a1

[
v′y1 + vy′1

]
+ a0vy1 = 0

Notice how all the terms with v collect together to give v
[
y
(n)
1 + · · ·+ an−1y

′
1 + any1

]
which vanishes since

y1 is a solution. Therefore, the equation L[y2] = 0 reduces to:

an
[
v(n)y1 + nv(n−1)y′1 + · · ·+ nv′y

(n−1)
1

]
+ · · ·++a1v

′y1 = 0

If we substitute z = v′ then the equation is clearly an (n− 1)-th order linear ODE for z;

an
[
z(n−1)y1 + nz(n−2)y′1 + · · ·+ nzy

(n−1)
1

]
+ · · ·++a1zy1 = 0.

I include this derivation to show you that the method extends to the n-th order problem. However, we are
primarily interested in the n = 2 case. In that particular case we can derive a nice formula for y2.
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3.6.1 the second linearly independent solution formula

Let a, b, c be functions and suppose ay′′ + by′ + cy = 0 has solution y1. Let y2 = vy1 and seek a formula for
v for which y2 is a solution of the ay′′ + by′ + cy = 0. Substitute y2 = vy1 and differentiate the product,

a(v′′y1 + 2v′y′1 + vy′′1 ) + b(v′y1 + vy′1) + cvy1 = 0

Apply ay′′1 + by′1 + cy1 = 0 to obtain:

a(v′′y1 + 2v′y′1) + bv′y1 = 0

Now let z = v′ thus z′ = v′′

ay1z
′ + 2ay′1z + by1z = 0 ⇒ dz

dx
+

[
2ay′1 + by1

ay1

]
z = 0.

Apply the integrating factor method with I = exp(
∫ 2ay′

1+by1

ay1
dx) we find

d

dx

[
Iz

]
= 0 ⇒ Iz = C ⇒ z =

C

I
= Cexp

(
−
∫

2ay′1 + by1
ay1

dx

)

Recall z = dv
dx thus we integrate to find v =

∫
Cexp

(
−
∫ 2ay′

1+by1

ay1
dx

)
dx thus

y2 = y1

∫
Cexp

(
−
∫

2ay′1 + by1
ay1

dx

)
dx

It is convenient to take C = 1 since we are just seeking a particular function to construct the solution set.
Moreover, notice that the integral

∫ −2
y1

dy1

dx dx = −2 ln |y1| = ln(1/y21) thus it follows

y2 = y1

∫
1

y21
exp

(
−
∫

b

a
dx

)
dx (3.2)

Example 3.6.1. Consider y′′ − 2y′ + y = 0. We found y1 = ex by making a simple guess of y = eλx and
working out the algebra. Let us now find how to derive y2 in view of the derivation preceding this example.
Identify a = 1, b = −2, c = 1. Suppose y2 = vy1. We found that

y2 = y1

∫
1

y21
exp

(
−
∫

b

a
dx

)
dx = ex

∫
1

e2x
exp

(∫
2 dx

)
dx = ex

∫
e2x

e2x
dx = ex

∫
dx

Thus y2 = xex.

This example should suffice for the moment. We will use this formula in a couple other places. Notice if we
have some method to find at least one solution for ay′′ + by′ + cy = 0 then this formula allows us to find a
second, linearly independent10 solution.

10no, I have not proved this, perhaps you could try
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3.7 operator factorizations

In this section we consider a method to solve L[y] = f given that L = L1L2 · · ·Ln and Lj are all first order
differential operators. Without loss of generality this means Lj = ajD + bj for j = 1, 2, . . . , n. We do not
suppose these operators commute. Let z1 = (L2L3 · · ·Ln)[y] and note that in z1 the n-th order ODE for y
simplifies to

L1[z1] = f ⇒ dz1
dx

+
b1
a1

z1 = f ⇒ exp

[∫
b1
a1

dx

]
dz1
dx

+ exp

[∫
b1
a1

dx

]
b1
a1

z1 =
f

a1
exp

[∫
b1
a1

dx

]
Consequently,

d

dx

[
z1 exp

[∫
b1
a1

dx

]]
=

f

a1
exp

[∫
b1
a1

dx

]
integrating and solving for z1 yields:

z1 = exp

[
−
∫

b1
a1

dx

][
c1 +

∫
f

a1
exp

[∫
b1
a1

dx

]
dx

]
Next let z2 = (L3 · · ·Ln)[y] observe that L1(L2[z2]) = f implies z1 = L2[z2] hence we should solve

a2
dz

dx
+ b2z2 = z1

By the calculation for z1 we find, letting z1 play the role f did in the previous calculation,

z2 = exp

[
−
∫

b2
a2

dx

][
c2 +

∫
z1
a2

exp

[∫
b2
a2

dx

]
dx

]
Well, I guess you see where this is going, let z3 = (L4 · · ·Ln)[y] and observe (L1L2)[L3[z3]] = f hence
L3[z3] = z2. We must solve a3z

′
3 + b3z3 = z2 hence

z3 = exp

[
−
∫

b3
a3

dx

][
c3 +

∫
z2
a3

exp

[∫
b3
a3

dx

]
dx

]
.

Eventually we reach y = zn where (L1L2 · · ·Ln)[zn] = f and anz
′
n + bnzn = zn−1 will yield

y = exp

[
−
∫

bn
an

dx

][
cn +

∫
zn−1

an
exp

[∫
bn
an

dx

]
dx

]
.

If we expand zn−1, zn−2, . . . , z2, z1 we find the formula for the general solution of L[y] = f .

The trouble with this method is that its starting point is a factored differential operator. Many problems
do not enjoy this structure from the outset. We have to do some nontrivial work to massage an arbitrary
problem into this factored form. Rabenstein11 claims that it is always possible to write L in factored form,
but even in the n = 2 case the problem of factoring L is as difficult, if not more, then solving the differential
equation!

11page 70, ok technically he only claims n = 2, I haven’t found a general reference at this time
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Example 3.7.1. Let L1 = x d
dx and suppose L2 = 1 + d

dx . Solve (L1L2)[y] = 3. We want to solve

x
d

dx

[
y +

dy

dx

]
= 3

Let z = y + dy
dx and consider

x
dz

dx
= 3 ⇒

∫
dz =

∫
3dx

x
⇒ z = 3 ln |x|+ c1.

Hence solve,

y +
dy

dx
= 3 ln |x|+ c1

Multiply by integrating factor ex and after a short calculation we find

y = e−x

∫ [
3 ln |x|ex + c1e

x
]
dx

Therefore,

y = c2e
−x + c1 + e−x

∫ [
3 ln |x|ex

]
dx

Identify the fundamental solution set of y1 = e−x and y2 = 1. Note that L2[e
−x] = 0 and L1[1] = 0.

Curious, we just saw a non-constant coefficient differential equation which has the same fundamental solution
set as y′′ + y′ = 0. I am curious how the solution will differ if we reverse the order of L1 and L2

Example 3.7.2. Let L1, L2 be as before and solve (L2L1)[y] = 3. We want to solve[
1 +

d

dx

][
x
dy

dx

]
= 3

Let z = x dy
dx and seek to solve z + dz

dx = 3. This is a constant coefficient ODE with λ = −1 and it is easy to

see that z = 3 + c1e
−x. Thus consider, x dy

dx = 3 + c1e
−x yields dy =

(
3
x + c1

e−x

x

)
dx and integration yields:

y = c2 + c1

∫
e−x

x
dx+ 3 ln |x|.

The fundamental solution set has y1 = 1 and y2 =
∫

e−x

x dx.

You can calculate that L1L2 ̸= L2L1. This is part of what makes the last pair of examples interesting. On
the other hand, perhaps you can start to appreciate the constant coefficient problem. In the next section
we consider the next best thing; the equidimensional or Cauchy Euler problem. It turns out we can factor
the differential operator for a Cauchy -Euler problem into commuting differential operators. This makes the
structure of the solution set easy to catalogue.
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3.8 cauchy euler problems

The general Cauchy-Euler problem is specified by n-constants a1, a2, . . . , an. If L is given by

L = xnDn + a1x
n−1Dn−1 + · · ·+ an−1xD + an

then L[y] = 0 is a Cauchy-Euler problem. Suppose the solution is of the form y = xR for some constant R.
Note that

xD[xR] = xRxR−1 = RxR

x2D2[xR] = x2R(R− 1)xR−2 = R(R− 1)xR

x3D3[xR] = x3R(R− 1)(R− 2)xR−3 = R(R− 1)(R− 2)xR

xnDn[xR] = xnR(R− 1)(R− 2) · · · (R− n)xR−n = R(R− 1)(R− 2) · · · (R− n)xR

Substitute into L[y] = 0 and obtain:(
R(R− 1)(R− 2) · · · (R− n) + a1R(R− 1)(R− 2) · · · (R− n+ 1) + · · ·+ an−1R+ an

)
xR = 0

It follows that R must satisfy the characteristic equation

R(R− 1)(R− 2) · · · (R− n) + a1R(R− 1)(R− 2) · · · (R− n+ 1) + · · ·+ an−1R+ an = 0.

Notice that it is not simply obtained by placing powers of R next to the coefficients a1, a2, . . . , an. However,
we do obtain an n-th order polynomial equation for R and it follows that we generally have n-solutions,
some repeated, some complex. This begs an interesting question: what does x to a complex power mean ?

Definition 3.8.1. complex power function with real base.

Let a, b ∈ R, define xa+ib = xa(cos(b ln(x)) + i sin(b ln(x))).

Motivation: xc = elog(x
c) = eclog(x) = ea ln(x)+ib ln(x) = ea ln(x)eib ln(x) = xaeib ln(x).

I invite the reader to check that the power-rule holds for complex exponents:

Proposition 3.8.2. let c ∈ C then for x > 0,

d

dx

[
xc
]
= cxc−1.

This make a nice homework problem. I worked the analogous problem for the complex exponential in an
earlier section. The rules for complexified problems apply here, the real and imaginary parts of the complex
solution give us a pair of real solutions.

Example 3.8.3. Solve x2y′′ + xy′ + y = 0. Let y = xR then we must have

R(R− 1) +R+ 1 = 0 ⇒ R2 + 1 = 0 ⇒ R = ±i

Hence y = xi is a complex solution. We defined, for x > 0, the complex power function xc = ec ln(x) hence

xi = ei ln(x) = cos(ln(x)) + i sin(ln(x))

The real and imaginary parts of xi give real solutions for x2y′′ + xy′ + y = 0. We find

y = c1 cos(ln(x)) + c2 sin(ln(x))
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Example 3.8.4. Solve x2y′′ + 4xy′ + 2y = 0. Let y = xR then we must have

R(R− 1) + 4R+ 2 = 0 ⇒ R2 + 3R+ 2 = (R+ 1)(R+ 2) ⇒ R = −1,−2.

We find fundamental solutions y1 = 1/x and y2 = 1/x2 hence the general solution is

y = c1
1

x
+ c2

1

x2

Example 3.8.5. Solve x2y′′ − 3xy′ + 4y = 0 for x > 0. Let y = xR then we must have

R(R− 1)− 3R+ 4 = 0 ⇒ R2 − 4R+ 4 = (R− 2)2 ⇒ R = 2, 2.

We find fundamental solution y1 = x2. To find y2 we must use another method. We derived that the second
solution of ay′′ + by′ + cy = 0 can be found from the first via Equation 3.2:

y2 = y1

∫
1

y21
exp

(∫
−b

a
dx

)
dx.

In this problem identify that a = x2 and b = −3x whereas y1 = x2 and y′1 = 2x thus:

y2 = x2

∫
1

x4
exp

(∫
3x

x2
dx

)
dx = x2

∫
1

x4
exp

(
3 ln(x)

)
dx = x2

∫
dx

x
= x2 ln(x).

The general solution is y = c1x
2 + c2x

2 ln(x) .

The first order case is also interesting:

Example 3.8.6. Solve x dy
dx −ay = 0. Let y = xR and find R−a = 0 hence y = c1x

a . The operator xD−a

has characteristic equation R− a = 0 hence the characteristic value is R = a.

Let us take two first order problems and construct a second order problem. Notice the operator in the last
example is given by xD − a. We compose two such operators to construct,

(xD − a)(xD − b)[y] = 0

We can calculate,

(xD − a)[xy′ − by] = xD[xy′ − by]− axy′ + aby = xy′ + x2y′′ − bxy′ − axy′ + aby

In operator notation we find

(xD − a)(xD − b) = x2D2 + (1− a− b)xD + ab

from which it is clear that (xD − a)(xD − b) = (xD − b)(xD − a). Moreover,

(xD − a)(xD − b)[y] = 0 ⇔ (x2D2 + (1− a− b)xD + ab)[y] = 0

Example 3.8.7. To construct an cauchy-euler equation with characteristic values of a = 2+3i and b = 2−3i
we simply note that 1 − a − b = −3 and ab = 4 + 9 = 13. We can check that the cauchy-euler problem
x2y′′ − 3xy′ + 13y = 0 has complex solutions y = x2±3i, suppose y = xR then it follows that R must solve
the characteristic equation:

R(R− 1)− 3R+ 13 = R2 − 4R+ 13 = (R− 2)3 + 9 = 0 ⇒ R = 2± 3i.

Note x2+3i = e(2+3i) ln(x) = eln(x
2)e3i ln(x) = x2(cos(3 ln(x)) + i sin(3 ln(x))) (you can just memorize it as I

defined it, but these steps help me remember how this works) Thus, the DEqn x2y′′ − 3xy′ + 13y = 0 has
general solution

y = c1x
2 cos(3 ln(x)) + c2x

2 sin(3 ln(x))
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We saw that noncommuting operators are tricky to work with in a previous section. Define [L1, L2] =
L1L2−L2L1 and note that L2L1 = L1L2− [L1, L2]. The [L1, L2] is called the commutator, when it is zero
then the inputs to [, ] are said to commute. If you think about the homogeneous problem (L1L2)[y] = 0 then
contrast with (L2L1)[y] = 0 we can understand why these are not the same in terms of the commutator. For
example, suppose L2[y] = 0 then it is clearly a solution of (L1L2)[y] = 0 since L1[L2[y]] = L1[0] = 0. On the
other hand,

(L2L1)[y] = (L1L2 − [L1, L2])[y] = L1[L2[y]]− [L1, L2][y] = −[L1, L2][y]

and there is no reason in general for the solution to vanish on the commutator above. If we could factor a
given differential operator into commuting operators L1, L2, . . . , Ln then the problem L[y] = 0 nicely splits
into n-separate problems L1[y] = 0, L2[y] = 0, . . . , Ln[y] = 0.

With these comments in mind return to the question of solving L[y] = 0 for

L = xnDn + a1x
n−1Dn−1 + · · ·+ an−1xD + an

note in the case n = 2 we can solve R(R− 1) + aR + ao = 0 for solutions a, b and it follows that

x2D2 + a1xD + a2 = (xD − a)(xD − b)[y] = 0

The algebra to state a, b as functions of a1, a2 is a quadratic equation. Notice that for the third order
operator it starts to get ugly, the fourth unpleasant, and the fifth, impossible in closed form for an arbitrary
equidimensional quintic operator.

All of this said, I think it is at least possible to explicitly12 factor the operator whenever we can factor
the characteristic equation. Suppose R1 is a solution to the characteristic equation hence y1 = xR1 is a
solution of L[y] = 0. I claim you can argue that L1 = (xD − a1) is a factor of L. Likewise, for the other
zeros a2, a3, . . . , an the linear differential operators Lj = (xD − aj) must somehow appear as a factor of L.
Hence we have n-first order differential operators and since I wrote L = xnDn + · · · + an it follows that
L = L1L2 · · ·Ln. From a DEqns perspective this discussion is not terribly useful as the process of factoring
L into a polynomial in xD is not so intutive. Even the n = 2 case is tricky:

(xD − a)(xD − b)[f ] = (x2D2 + (1− a− b)xD + ab)[f ]

= (xD − a)(xD − b)[f ]

= xD(xD[f ]− b[f ])− axD[f ] + ab[f ]

= (xD)2 − (a+ b)(xD) + ab)[f ]

Notice the polynomials in xD behave nicely but the x2D2 term does not translate simply into the xD for-
mulas. Let’s see if we can derive some general formula to transform xnDn into some polynomial in xD.

Calculate, for f a suitably differentiable function,

(xD)2[f ] = xD[xD[f ]] = xD[xf ′] = xf ′ + x2f ′′ = (xD + x2D2)[f ] ⇒ x2D2 = (xD)2 − xD

Next, order three, using Leibniz’ product rule for second derivative of a product,

(xD)3[f ] = (xD + x2D2)[xf ′] = xf ′ + x2f ′′ + x2(x′′f ′ + 2x′f ′′ + xf ′′′)

= (xD + x2D2 + 2x2D2 + x3D3)[f ]

= (xD + 3x2D2 + x3D3)[f ]

= (xD + 3(xD)2 − 3xD + x3D3)[f ]

= (3(xD)2 − 2xD + x3D3)[f ]

⇒ x3D3 = (xD)3 − 3(xD)2 + 2xD .

12theoretically it is always possible by the fundamental theorem of algebra applied to the characteristic equation
and the scheme I am about to outline
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It should be fairly clear how to continue this to higher orders. Let’s see how this might be useful13 in the
context of a particular third order cauchy-euler problem.

Example 3.8.8. Solve (x3D3 + 3x2D2 + 2xD)[y] = 0. I’ll use operator massage. By the calculations
preceding this example:

x3D3 + 3x2D2 + 2xD = (xD)3 − 3(xD)2 + 2xD + 3(xD)2 − 3xD + 2xD = (xD)3 + (xD)

Now I can do algebra since xD commutes with itself,

(xD)3 + (xD) = xD((xD)2 + 1) = xD(xD − i)(xD + i)

Hence R = 0, R = ±i are evidentally the characteristic values and we find real solution

y = c1 + c2 cos(ln(x)) + c3 sin(ln(x))

Let’s check this operator-based calculation against our characteristic equation method:

R(R− 1)(R− 2) + 3R(R− 1) + 2R = R3 − 3R2 + 2R+ 3R2 − 3R+ 2R = R3 +R.

Which would then lead us to the same solution as we uncovered from the xD factorization.

If you’re enjoying this section then you might want to read the paper A Generalized Method of Undetermined
Coefficients which I wrote with my brother Dr. William Cook for Volume 15 of the CODEE Journal in 2022.
See (click here for the CODEE journal paper). We generalize the annhilator method to solve a wide variety of
differential equations. The genesis of that paper was basically a student asking my brother if it was possible
to solve non-homogenous Cauchy Euler problems in the same fashion as the constant coefficient problems.
In short, the answer is yes.

3.9 applications

We explore two interesting applications in this section:

1. springs with friction

2. RLC circuits

We begin by studying the homogeneous case and then add external forces (1.) or a voltage source (2.). The
mathematics is nearly the same for both applications. Finally we study resonance.

3.9.1 springs with and without damping

Suppose a mass m undergoes one-dimensional motion under the influence of a spring force Fs = −kx and a
velocity dependent friction force Ff = −βẋ. Newton’s Second Law states mẍ = −kx− βẋ. We find

mẍ+ βẋ+ kx = 0

The constants m,β, k are non-negative and we assume m ̸= 0 in all cases. Technically the value of m should
be assigned kg, that of β should be assigned kg/s and the spring constant k should have a value with units of
the form N/m. Please understand these are omitted in this section. When faced with a particular problem
make sure you use quantities which have compatible units.

13my point in these calculations is not to find an optimal method to solve the cauchy euler problem, probably
the characteristic equation is best, my point here is to explore the structure of operators and test our ability to
differentiate and think!

https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1063&context=codee
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Example 3.9.1. Problem: the over-damped spring: Suppose m = 1, β = 3 and k = 2. If the mass has
velocity v = −2 and position x = 1 when t = 0 then what is the resulting equaiton of motion?

Solution: We are faced with ẍ + 3ẋ + 2x = 0. This gives chararcteristic equation λ2 + 3λ + 2 = 0 hence
(λ+ 1)(λ+ 2) = 0 thus λ1 = −1 and λ2 = −2 and the general solution is

x(t) = c1e
−t + c2e

−2t

Note that ẋ(t) = −c1e
−t − 2c2e

−2t. Apply the given initial conditions,

x(0) = c1 + c2 = 1 & ẋ(0) = −c1 − 2c2 = −2

You can solve these equations to obtain c2 = 1 and c1 = 0. Therefore, x(t) = e−2t .

Example 3.9.2. Problem: the critically-damped spring: Suppose m = 1, β = 4 and k = 4. If the
mass has velocity v = 1 and position x = 3 when t = 0 then what is the resulting equaiton of motion?

Solution: We are faced with ẍ + 4ẋ + 4x = 0. This gives chararcteristic equation λ2 + 4λ + 4 = 0 hence
(λ+ 2)2 = 0 thus λ1 = λ2 = −2 and the general solution is

x(t) = c1e
−2t + c2te

−2t

Note that ẋ(t) = −2c1e
−t + c2(e

−2t − 2te−2t). Apply the given initial conditions,

x(0) = c1 = 3 & ẋ(0) = −2c1 + c2 = 1

You can solve these equations to obtain c1 = 3 and c2 = 7. Therefore, x(t) = 3e−2t + 7te−2t .

Example 3.9.3. Problem: the under-damped spring: Suppose m = 1, β = 2 and k = 6. If the mass
has velocity v = 1 and position x = 1 when t = 0 then what is the resulting equaiton of motion?

Solution: We are faced with ẍ + 2ẋ + 6x = 0. This gives chararcteristic equation λ2 + 2λ + 6 = 0 hence
(λ+ 1)2 + 5 = 0 thus λ = −1± i

√
5 and the general solution is

x(t) = c1e
−t cos(

√
5 t) + c2e

−t sin(
√
5 t)

Note that ẋ(t) = c1e
−t(− cos(

√
5 t)−

√
5 sin(

√
5 t)+ c2e

−t(− sin(
√
5 t)+

√
5 cos(

√
5 t). Apply the given initial

conditions,
x(0) = c1 = 1 & ẋ(0) = −c1 +

√
5c2 = 1

You can solve these equations to obtain c1 = 1 and c2 = 2/
√
5. Therefore,

x(t) = e−t cos(
√
5 t) +

2√
5
e−t sin(

√
5 t) .

Example 3.9.4. Problem: spring without damping; simple harmonic oscillator: Suppose β = 0
and m, k are nonzero. If the mass has velocity v(0) = vo and position x(0) = xo then find the resulting
equaiton of motion.

Solution: We are faced with mẍ+kx = 0. This gives chararcteristic equation mλ2+k = 0 hence λ = ±i
√

k
m

and the general solution is, using ω = k
m ,

x(t) = c1 cos(ωt) + c2 sin(ω t)

Note that
ẋ(t) = −c1ω sin(ω t) + c2ω cos(ω t).

Apply the given initial conditions,

x(0) = c1 = xo & ẋ(0) = c2ω = vo

Therefore,

x(t) = xo cos(ωt) +
vo
ω

sin(ω t) .
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3.9.2 the RLC-circuit

Now we turn to circuits. Suppose a resistor R, an inductor L and a capacitor C are placed in series then
the we know that VR = IR by Ohm’s Law for the resistor, whereas the voltage dropped on an inductor is
proportional to the change in the current according to the definition of inductance paired with Faraday’s
Law: VL = LdI

dt for the inductor, the capacitor C has charge ±Q on its plates when VC = Q/C. We also

know I = dQ
dt since the capacitor is in series with R and L. Finally, we apply Kirchoff’s voltage law around

the circuit to obtain VR + VL + VC = 0, this yields:

IR+ L
dI

dt
+

Q

C
= 0 ⇒ L

d2Q

dt2
+R

dQ

dt
+

1

C
Q = 0 .

Obviously there is an analogy to be made here:

m ⇆ L β ⇆ R k ⇆
1

C

I will exploit this analogy to construct the following examples.

Example 3.9.5. Problem: the over-damped RLC circuit: Suppose L = 1, R = 3 and C = 1/2. If
the circuit has current I = −2 and charge Q = 1 when t = 0 then what is the charge as a function of time?
What is the current at a function of time?

Solution: We are faced with Q̈ + 3Q̇ + 2Q = 0. This gives chararcteristic equation λ2 + 3λ + 2 = 0 hence
(λ+ 1)(λ+ 2) = 0 thus λ1 = −1 and λ2 = −2 and the general solution is

Q(t) = c1e
−t + c2e

−2t

Note that Q̇(t) = −c1e
−t − 2c2e

−2t. Apply the given initial conditions,

Q(0) = c1 + c2 = 1 & Q̇(0) = −c1 − 2c2 = −2

You can solve these equations to obtain c2 = 1 and c1 = 0. Therefore, Q(t) = e−2t . Differentiate to obtain

the current I(t) = −2e−2t .

Example 3.9.6. Problem: the critically-damped RLC circuit: Suppose L = 1, R = 4 and C = 1/4.
If the circuit has current I = 1 and charge Q = 3 when t = 0 then what is the charge as a function of time?
What is the current at a function of time?

Solution: We are faced with Q̈ + 4Q̇ + 4Q = 0. This gives chararcteristic equation λ2 + 4λ + 4 = 0 hence
(λ+ 2)2 = 0 thus λ1 = λ2 = −2 and the general solution is

Q(t) = c1e
−2t + c2te

−2t

Note that Q̇(t) = −2c1e
−t + c2(e

−2t − 2te−2t). Apply the given initial conditions,

Q(0) = c1 = 3 & Q̇(0) = −2c1 + c2 = 1

You can solve these equations to obtain c1 = 3 and c2 = 7. Therefore, Q(t) = 3e−2t + 7te−2t . Differentiate

the charge to find the current I(t) = e−2t − 14te−2t .
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Example 3.9.7. Problem: the under-damped RLC circuit: Suppose L = 1, R = 2 and C = 1/6. If
the circuit has current I = 1 and charge x = 1 when t = 0 then what is the charge as a function of time?
What is the current at a function of time?

Solution: We are faced with Q̈ + 2Q̇ + 6Q = 0. This gives chararcteristic equation λ2 + 2λ + 6 = 0 hence
(λ+ 1)2 + 5 = 0 thus λ = −1± i

√
5 and the general solution is

Q(t) = c1e
−t cos(

√
5 t) + c2e

−t sin(
√
5 t)

Note that Q̇(t) = c1e
−t(− cos(

√
5 t)−

√
5 sin(

√
5 t)+c2e

−t(− sin(
√
5 t)+

√
5 cos(

√
5 t). Apply the given initial

conditions,
Q(0) = c1 = 1 & Q̇(0) = −c1 +

√
5c2 = 1

You can solve these equations to obtain c1 = 1 and c2 = 2/
√
5. Therefore,

Q(t) = e−t cos(
√
5 t) +

2√
5
e−t sin(

√
5 t) .

Differentiate to find the current,

I(t) = e−t

(
− cos(

√
5 t)−

√
5 sin(

√
5 t)

)
+

2√
5
e−t

(
− sin(

√
5 t) +

√
5 cos(

√
5 t)

)
.

Example 3.9.8. Problem: the LC circuit or simple harmonic oscillator: Suppose R = 0 and L,C
are nonzero. If the circuit has current I(0) = Io and charge Q(0) = Qo then find the resulting equaitons for
charge and current at time t.

Solution: We are faced with LQ̈ + 1
CQ = 0. This gives chararcteristic equation λ2 + 1

LC = 0 hence

λ = ±i
√

1
LC and the general solution is, using ω =

√
1

LC ,

Q(t) = c1 cos(ωt) + c2 sin(ω t)

Note that
Q̇(t) = −c1ω sin(ω t) + c2ω cos(ω t).

Apply the given initial conditions,

Q(0) = c1 = Qo & Q̇(0) = c2ω = Io

Therefore,

Q(t) = Qo cos(ωt) +
Io
ω

sin(ω t) .

Differentiate to find the current,

I(t) = −ωQo sin(ωt) + Io cos(ω t) .

3.9.3 springs with external force

Suppose a mass m undergoes one-dimensional motion under the influence of a spring force Fs = −kx and
a velocity dependent friction force Ff = −βẋ and some external force f . Newton’s Second Law states
mẍ = −kx− βẋ+ f . We find

mẍ+ βẋ+ kx = f

We have tools to solve this problem for many interesting forces.
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Example 3.9.9. Problem: constant force: Suppose m ̸= 0 and β, k > 0. Suppose a constant force
f = Fo is placed on the spring. Describe the resulting motion.

Solution: We are faced with mẍ + βẋ + kx = Fo. Notice that we can find xh to solve the homogeneous,
force-free equation; mẍh + βẋh + kxh = 0. The particular solution is simply xp = Fo/k and it follows the
general solution has the form:

x(t) = xh(t) + Fo/k

We find motion that is almost identical to the problem with Fo removed. If we change coordinates to y =
x−Fo/k then clearly ẋ = ẏ and ẍ = ÿ hence mÿ+βẏ+ky = 0. An important example of a constant force is
that of gravity on a srping hanging vertically. The net-effect of gravity is to reset the equilbrium position of
the spring from x = 0 to x = mg/k. The frequency of any oscillations is not effected by gravity, moreover,
the spring returns to the new equilbrium x = mg/k in the same manner as it would with matching damping,
mass and stiffness in a horizontal set-up. For example, to find the frequency of oscillation for shocks on a
car is determined from the viscosity of the oil in the shock assembly, the stiffness of the springs and the mass
of the car. Gravity doesn’t enter the picture.

Example 3.9.10. Problem: sinusoidal, nonresonant, force on a simple harmonic oscillator Sup-
pose m = 1 and β = 0 and k = 1. Suppose a sinusoidal force f = Fo cos(2t) is placed on the spring. Find
the equations of motion given that x(0) = 0 and ẋ(0) = 0.

Solution: observe that ẍ + x = Fo cos(2t) has homogeneous solution xh(t) = c1 cos(t) + c2 sin(t) and the
method of annihilators can be used to indicate xp = A cos(2t) +B sin(2t). Calculate ẍp = −4xp thus

ẍp + xp = Fo cos(2t) ⇒ −3A cos(2t)− 3B sin(2t) = Fo cos(2t)

Thus A = −Fo/3 and B = 0 which gives us the general solution,

x(t) = c1 cos(t) + c2 sin(t)−
Fo

3
cos(2t)

We calculate ẋ(t) = −c1 sin(t) + c2 cos(t) +
2Fo

3 sin(2t). Apply initial conditions to the solution,

c1 −
Fo

3
= 0 &c2 = 0 ⇒ x(t) = Fo

3

[
cos(t)− cos(2t)

]
.

Example 3.9.11. Problem: sinsoidal, resonant, force on a simple harmonic oscillator: Suppose
m = 1 and β = 0 and k = 1. Suppose a sinusoidal force f = 2 cos(t) is placed on the spring. Find the
equations of motion given that x(0) = 1 and ẋ(0) = 0.

Solution: observe that ẍ+x = 2 cos(t) has homogeneous solution xh(t) = c1 cos(t)+c2 sin(t) and the method
of annihilators can be used to indicate xp = At cos(t) +Bt sin(t). We calculate,

ẋp = (A+Bt) cos(t) + (B −At) sin(t)

ẍp = B cos(t)− (A+Bt) sin(t)−A sin(t) + (B −At) cos(t) = (2B −At) cos(t)− (2A+Bt) sin(t)

Now plug these into ẍp + xp = 2 cos(t) to obtain:

At cos(t) +Bt sin(t) + (2B −At) cos(t)− (2A+Bt) sin(t) = 2 cos(t)

notice the terms with coefficients t cancel and we deduce 2B = 2 and −2A = 0 thus A = 0 and B = 1. We
find the general solution

x(t) = c1 cos(t) + c2 sin(t) + t sin(t)

Note ẋ(t) = −c1 sin(t) + c2 cos(t) + sin(t) + t cos(t). Apply the initial conditions, x(0) = c1 = 1 and
ẋ(0) = c2 = 0. Therefore, the equation of motion is

x(t) = cos(t) + t sin(t) .
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Note that as t → ∞ the equation above ceases to be physically reasonable. In the absence of damping it
is possible for the energy injected from the external force to just build and build leading to infinite energy.
Of course the spring cannot store infinite energy and it breaks. In this case without damping it is simple
enough to judge the absence or presence of resonance. Resonance occurs iff the forcing function has the

same frequency as the natural frequency ω =
√

k
m . In the case that there is damping we say resonance

is reached if for a givenm,β, k the applied force Fo cos(γt) produces a particular solution of largest magnitude.

To keep it simple let us consider a damped spring in the arbitrary underdamped case where
β2 − 4mk < 0 with an external force Fo cos(γt). We seek to study solutions of

mẍ+ βẋ+ kx = Fo cos(γt)

Observe the characteristic equation is mλ2 + βλ+ k = 0 gives λ2 + β
mλ+ k

m = 0. Complete the square, or
use the quadratic formula, whichever you prefer:

λ =
−β ±

√
β2 − 4mk

2m
=

−β ± i
√
4mk − β2

2m

It follows that the homogeneous (also called the transient solution since it goes away for t >> 0) is

xh(t) = e
−βt
2m

(
c1 cos(ωt) + c2 sin(ωt)

)
where I defined ω =

√
4mk−β2

2m for convenience. The particular solution is also called the steady-state
solution since it tends to dominate for t >> 0. Suppose xp = A cos(γt) +B sin(γt) calculate,

ẋp = −γA sin(γt) + γB cos(γt) & ẍp = −γ2A cos(γt)− γ2B sin(γt)

Subtitute into mẍp + βẋp + kxp = Fo cos(γt) and find

−mγ2A cos(γt)−mγ2B sin(γt)− βγA sin(γt) + βγB cos(γt) + kA cos(γt) + kB sin(γt) = Fo cos(γt)

Hence, [
−mγ2A+ βγB + kA

]
cos(γt) +

[
−mγ2B − βγA+ kB

]
sin(γt) = Fo cos(γt)

Equating coefficients yield the conditions:

(k −mγ2)A+ βγB = Fo & (k −mγ2)B − βγA = 0

We solve the second equation for B = βγ
k−mγ2A and substitute this into the other equation,

(k −mγ2)A+
β2γ2

k −mγ2
A = Fo

Now make a common denominator,
(k −mγ2)2 + β2γ2

k −mγ2
A = Fo

We find,

A =
(k −mγ2)Fo

(k −mγ2)2 + β2γ2
& B =

βγFo

(k −mγ2)2 + β2γ2

It follows that the particular solution has the form

xp =
Fo

(k −mγ2)2 + β2γ2

[
(k −mγ2) cos(γt) + βγ sin(γt)

]
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You can show14 that the amplitude of A1 cos(γt)+A2 sin(γt) is given by A =
√

A2
1 +A2

2. Apply this lemma
to the formula above to write the particular solution in the simplified form

xp =
Fo√

(k −mγ2)2 + β2γ2
sin(γt+ ϕ)

where ϕ is a particular angle. We’re mostly interested in the magnitude so let us focus our attention on the
amplitude of the steady state solution15.

Suppose k,m, β are fixed and let us study M(γ) = 1√
(k−mγ2)2+β2γ2

. What choice of γ maximizes this factor

thus producing the resonant motion? Differentiate and seek the critical value:

dM

dγ
= −1

2
· 2(k −mγ2)(−2mγ) + 2β2γ

[(k −mγ2)2 + β2γ2]3/2
= 0

The critical value must arise from the vanishing of the numerator since the denominator is nonzero,

(k −mγ2)(−2mγ) + β2γ = 0 ⇒ (−2mk + 2m2γ2 + β2)γ = 0

But, we already know γ = 0 is not the frequency we’re looking for, thus

−2mk + 2m2γ2 + β2 = 0 ⇒ γ = ±
√

2mk − β2

2m2

Nothing is lost by choosing the + here and we can simplify to find

γc =

√
k

m
− β2

2m2

It is nice to see that β = 0 returns us to the natural frequency ω =
√
km as we studied initially. Section

4.10 of Nagel Saff and Snider, or 6-3 of Ritger & Rose if you would like to see further analysis.

3.10 RLC circuit with a voltage source

Suppose a resistor R, an inductor L and a capacitor C are placed in series with a voltage source E . Kirchoff’s
Voltage Law reads

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E

We can solve these problems in the same way as we have just explored for the spring force problem. I will
jump straight to the resonance problem and change gears a bit to once more promote complex notation.

Suppose we have an underdamped R,L,C circuit driven by a voltage source E(t) = Vo cos(γt). I propose we
solve the related complex problem

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = Voe

iγt

We propose a complex particular solution: Qp = Aeiγt hence

Q′
p = iγAeiγt & Q′′

p = −γ2Aeiγt

14the precalculus chapter in my calculus I notes has some of the ideas needed for this derivation
15see page 240-241 of Nagel Saff and Snider for a few comments beyond mine and a nice picture to see the difference

between the transient and steady state solutions
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Subtitute into LQ′′
p +RQ′

p +
1
CQp = Voe

iγt and factor out the imaginary exponential

[
−γ2L+ iγR+

1

C

]
Aeiγt = Voe

iγt

Hence,

−γ2L+ iγR+
1

C
=

Vo

A

Hence,

A =
Vo

1/C − γ2L+ iγR
· 1/C − γ2L− iγR

1/C − γ2L− iγR
=

Vo[1/C − γ2L− iγR]

(1/C − γ2L)2 + γ2R2

Thus, using eiγt = cos(γt) + i sin(γt), the complex particular solution is given by

Qp(t) =

[
Vo[1/C − γ2L]

(1/C − γ2L)2 + γ2R2
− i

VoγR

(1/C − γ2L)2 + γ2R2

][
cos(γt) + i sin(γt)

]
.

We can read solutions for particular solutions of any real linear combination of Vo cos(γt) and Vo sin(γt). For

example, for Ld2Q
dt2 +R dQ

dt + 1
CQ = Vo cos(γt) we derive the particular solution

Qp1
(t) =

Vo[1/C − γ2L]

(1/C − γ2L)2 + γ2R2
cos(γt) +

VoγR

(1/C − γ2L)2 + γ2R2
sin(γt)

Likewise, as Im(eiγt) = sin(γt) the solution of Ld2Q
dt2 +R dQ

dt +
1
CQ = Vo sin(γt) is given by the Im(Qp) = Qp2

.

Qp2
(t) =

Vo[1/C − γ2L]

(1/C − γ2L)2 + γ2R2
sin(γt) +

VoγR

(1/C − γ2L)2 + γ2R2
cos(γt)

To solve Ld2Q
dt2 + R dQ

dt + 1
CQ = B1Vo cos(γt) + B2Vo sin(γt) we use superposition to form the particular

solution Qp3
= B1Qp1

+B2Qp2
.

Remark 3.10.1.

Notice that Qp1
is analagous to the solution we found studying resonance for the underdamped

spring. If we use the dictionary m ⇆ L, β ⇆ R, k ⇆ 1/C, Fo ⇆ Vo then it ought to be obvious the
solution above was already derived in real notation. However, the complex solution is quicker and
cleaner. We also can deduce that resonance is reached at

γr =

√
k

m
− β2

2m2
⇆

√
1

LC
− R2

2L2

and note how R = 0 reduces the problem to the pure harmonic oscillation of the LC-tank.

3.11 practice problems

PP 73 Solve y′′ − y′ − 11y = 0 where y′ = dy/dx.

PP 74 Solve 4w′′ + 20w′ + 25w = 0 where w′ = dw/dx.

PP 75 Solve y′′ + 2y′ + y = 0 where y(0) = 1 and y′(0) = −3 given y′ = dy/dx.

PP 76 Suppose y1 = te2t and y2 = e2t. Determine if y1 and y2 are linearly dependent on (0, 1).

PP 77 Solve y′′ − 8y′ + 7y = 0 where y = y(t).

PP 78 Solve z′′ + 10z′ + 25z = 0 where z′ = dz/dx

PP 79 Solve u′′ + 7u = 0 given t is the independent variable.
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PP 80 Solve y′′ + 10y′ + 41y = 0 given y′ = dy/dx.

PP 81 Solve y′′ − 2y′ + 2y = 0 given y(π) = eπ and y′(π) = 0. Use independent variable x.

PP 82 Consider y′′ − 6y′ − 4y = 4 sin(3t) − t2e3t + 1
t . Can we solve this via the method of undetermined

coefficients ? If so, suggest a form for the particular solution.

PP 83 Consider y′′ − 2y′ + 3y = cosh t. Can we solve this via the method of undetermined coefficients ? If
so, suggest a form for the particular solution.

PP 84 Find the general solution to y′′ − y = 1− 11t.

PP 85 Solve z′′ + z = 2e−x given z(0) = 0 and z′(0) = 0.

PP 86 Determine if {sin2 x, cos2 x, 1} is linearly independent on R.

PP 87 Show {x, x2x3, x4} is linearly independent on R.

PP 88 Let us define L[y] = y′′′ + y′ + xy. Let y1 = sinx and y2 = x.

(a.) Calculate L[y1] and L[y2],

(b.) Solve L[y] = 2x sinx− x2 − 1,

(c.) Solve L[y] = 4x2 + 4− 6x sinx.

I am not asking for the general solution in the problem above

PP 89 Solve y′′′ + 2y′′ − 8y′ = 0 given y′ = dy/dt.

PP 90 Solve u′′′ − 9u′′ + 27u′ − 27u = 0 given u = u(x).

PP 91 Solve y(4) + 4y′′ + 4y = 0 given y = y(x).

PP 92 Solve y(4) + 2y′′′ + 10y′′ + 18y′ + 9y = 0 given that y = sin(3x) is a solution.

PP 93 Let D = d/dx. Solve

(D + 1)2(D − 6)3(D + 5)(D2 + 1)(D2 + 4)[y] = 0.

PP 94 Completely factor the following polynomials over R. Place any irreducible quadratic factors in the
completed-square format (x− α)2 + β2.

(a.) x2 + 6x+ 20

(b.) x4 + 5x2 − 6

(c.) x4 − 256

(d.) f(x) = −20− 36x− 15x2 + 5x3 + 5x4 + x5 given that f(−1) = 0 and f(−2 + i) = 0

PP 95 Find the general solutions of the DEqns given below.

(a.) y′′ + 6y′ + 20y = 0

(b.) (D4 + 5D2 − 6)[y] = 0

(c.) y(4) − 256y = 0

(d.) −20y − 36y′ − 15y′′ + 5y′′′ + 5y(4) + y(5) = 0
given that y1 = e−x and y2 = e−2x cos(x) are solutions.

PP 96 Solve the following ODE,

(D2 + 6D + 13)(D2 − 9)(D2 + 1)(D2 + 4D + 3)[y] = 0.

PP 97 Find minimal annihilators for each of the functions below:

(a.) f1(x) = x2ex
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(b.) f2(x) = ex cos(4x)

(c.) f3(x) = x3 + ex cos(4x)

(d.) f4(x) = cos2(3x) + ex cosh(x)

PP 98 Set-up, but do not determine explicitly, the particular solutions for:

(a.) y′′ − 2y′ + y = x2ex

(b.) y′′ + 16y = ex cos(4x)

(c.) y′′′ + y′ = x3 + ex cos(4x)

(d.) y′′′ + 36y′ = cos2(3x) + ex cosh(x)

PP 99 Solve y′′ + 3y′ + 2y = x+ e−x + e3x.

PP 100 Solve y′′ + 3y′ + 2y = e−2t cos(t).

PP 101 Solve y′′ + 3y′ + 2y = 20(t+ e−t + e3t) + 2e−2t cos(t) given that y(0) = 0 and y′(0) = 1.

PP 102 Solve y′′ + 2y′ + y = e−x

x+1 .

PP 103 Solve y′′ + y = tan2(x)

PP 104 Find integral solutions for y′′′+16y′ = f . (you need to use variation of parameters, I would explicitly
calculate the determinants of S1, S2, S3 as I discuss in the notes)

PP 105 Solve x2y′′ − (x2 + 2x)y′ + (x+ 2)y = x3. Note y1 = x is a fundamental solution of the DEqn. Hint:
find the 2nd. fundamental soln. and then use variation of parameters to find yp...

PP 106 Solve the following cauchy euler problems. Give your solution as a real linear combination of the
real-value functions in the fundamental solution set.

(a.) 4x2y′′ + y = 0

(b.) x2y′′ − 3xy′ + 5y = 0

(c.) 2x2y′′ + 3xy′ − y = 0

(d.) x3y′′′ + 2x2y′′ − xy′ + y = 0

(e.) x2y′′ + 5xy′ + 4y = 0 with y(1) = 2 and y′(1) = −3

PP 107 Derive a formula to rewrite x4D4 as a polynomial in xD. Use the result to solve x4D4[y] = 0. Please
use my notes for formulas for x3D3 and x2D2, also, use Leibniz product rule for best results.

PP 108 Suppose a mass of 1kg is attached to a spring with stiffness 5 Newtons per meter. Then the spring
and mass are immersed in an oil with viscosity producing a velocity-dependent friction force with
coefficient β = 4kg/s. If a force F (t) = 10 cos(t) (in Newtons and seconds) is used to drive the system
then what is the resulting equation of motion? Assume that x(0) = 0 and v(0) = 1. What anglular
frequency γ would make the force 10 cos(γt) give a particular solution of maximum amplitude?

PP 109 Suppose an RLC-circuit is assembled with R = 11Ω, L = 1H and C = 0.1F . If a half-decaying
voltage source of E(t) = 10e−t + cos(t) is attached to the circuit then what is the resulting current
as a function of time. Assume a switch closes at t = 0 connecting the voltage source to the circuit.
This means I(0) = 0 and Q(0) = 0.

PP 110 Let f and g be functions which are twice continuously differentiable on an interval I for which
W (f, g;x) ̸= 0 for each x ∈ I. Show that

det

 y y′ y′′

f f ′ f ′′

g g′ g′′

 = 0

is a second order, linear, homogeneous differential equation with fundamental solutions y1 = f and
y2 = g. Then, use this result to construct a differential equation which has solutions ex and e1/x,
include the interval on which these are the solutions.
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PP 111 Show that the Cauchy-Euler problem

ao
dny

xn
+ a1

dn−1y

xn−1
+ · · ·+ an−1

dy

dx
+ any = 0

problem changes to a constant coefficient problem if we make the substitution x = et. Use this result
to derive the solutions of the Cauchy-Euler problem for which we find R = 1 three times, or R = 1+2i
twice.

PP 112 Novel methods of integration.

(a.) Solve
∫
x3ex dx by solving dy

dx = x3ex using the method of undetermined coefficients.

(b.) Solve
∫
ex cos(2x) dx by studying the integral of

∫
e(1+2i)x dx. Hint: we know d

dxe
λx = λeλx

even for the case λ = 1 + 2i.

PP 113 Let y1 and y2 form the fundamental solution set of the second order linear differential equation

aoy
′′ + a1y

′ + a2y = 0

on an interval I. Show that between any two successive zeros of y1 there is exactly one zero of y2.

PP 114 (Ritger & Rose section 5-4 problem 1a-d) find the general solution of:

(a.) y′′ = 0

(b.) y′′ − 2y′ = 0

(c.) y′′ − a2y = 0

(d.) y′′ + a2y = 0

PP 115 (Ritger & Rose section 5-4 problem 3) Suppose ay′′ + by′ + cy = 0 has distinct real characteristic
values of λ± = A ± B and hence a general solution y = c1e

λ+x + c2e
λ−x. Show that the general

solution can be rewritten as

y = eAx(b1 cosh(Bx) + b2 sinh(Bx)).

PP 116 (Ritger & Rose section 5-5 problems 1,2,3 and 8)

(1.) y′′ + 3y′ − 5y = 4e2x + 6e−3x

(2.) y′′ + 3y′ + 5y = 2 sin(3x)

(3.) y′′ + 9y = 4 cos(3x)

(8.) y′′ − 3y′ = 2x2 + 3ex

PP 117 (introduction to theory of adjoints, from page 95 of Boyce and DiPrima’s 3rd Ed.) If

p(x)y′′ + q(x)y′ + r(x)y = 0

can be expressed as [p(x)y′]′+[f(x)y]′ = 0 then it is said to be exact. Omit x-dependence in p, q, r, µ
for brevity, if py′′ + qy′ + ry = 0 is not exact then it is possible to make it exact with multiplication
by the appropriate integrating factor µ. Show that for µ to accomplish its stated task it must itself
be the solution of the so-called adjoint equation

pµ′′ + (2p′ − q)µ′ + (p′′ − q′ + r)µ = 0.

where we have assumed p, q possess the stated derivatives. Find the adjoint equation for

(a.) constant coefficient case: ay′′ + by′ + cy = 0

(b.) Bessel Eqn. of order ν: x2y′′ + xy′ + (x2 − ν2)y = 0

(c.) The Airy Equation: y′′ − xy = 0
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PP 118 Consider the differential equation y′′′ − 3y′′ + 2y′ = g(t). Is {1, et, e2t} a fundamental solution set ?
Explain your answer.

PP 119 Let y1(x) = x3 and y2(x) = |x|3. Show that W (y1, y2)(x) = 0 for all x ∈ R. However, explain why
{y1, y2} is linearly independent on R. Does there exist a linear ODE for which {y1, y2} forms the
fundamental solution set? Discuss.

PP 120 Solve

(a.) y′′ + 5y′ + 6y = 0,

(b.) y′′ + 4y′ + 4y = 0,

(c.) y′′ + 4y′ + 5y = 0.

PP 121 Solve

(a.) y′′ − 36y = 0 subject the initial conditions y(0) = 1, y′(0) = 0,

(b.) y′′ + 25 = 0 subject the initial conditions y(0) = 1, y′(0) = 0.

PP 122 Solve, here D = d/dx

(a.) D2(D2 − 9)[y] = 0,

(b.) (D2 + 6D + 18)2[y] = 0,

(c.) (D2 + 3D + 2)(D2 − 4)[y] = 0

PP 123 Give constant coefficient ODEs for which the following form general solutions. Please leave your
answer in D = d/dx factored notation. No need to multiply them out.

(a.) y = c1e
−4x + c2e

−3x,

(b.) y = c1e
10x + c2xe

10x

(c.) y = A cosh(3x+B)

(d.) y = c1 +Ae2x sin(3x+ ϕ)

PP 124 (fitting initial conditions) Given x(t) = c1 cosωt+ c2 sinωt is the general solution to

x′′ + ω2x = 0.

Show x(0) = xo and x′(0) = x1 implies c1 = xo and c2 = x1/ω.

PP 125 (reduction of order) Use the reduction of order formula y2 = y1
∫ exp(−

∫
pdx)

y2
1

dx to calculate a second

linearly independent solution for x2 + 2xy′ − 6y = 0 given y1 = x2.

PP 126 (reduction of order) Consider x2y′′ − 3xy′ +5y = 0 for x > 0. You are given that y1 = x2 cos lnx is a
solution. Find y2 for which y1, y2 forms a fundamental solution set for the given differential equation.
One approach is to use the n = 2 reduction of order formula as derived in 3.6 of my notes.

PP 127 (based on Cook section 3.7) Suppose T = D and S = 3− x2D. Solve

(a.) ST [y] = 0,

(b.) TS[y] = 0.

PP 128 Consider f(x) = x2+3i for x > 0. Find u, v such that f = u+ iv. Furthermore, by differentiation of
u, v show that f ′(x) = (2 + 3i)x1−3i.
(the point: you can replace 2 with a ∈ R and 3 with b ∈ R and derive

d

dx
xa+ib = (a+ ib)xa−1+ib;

we see the power rule extends naturally to the case of a complex exponent of the power function. This
is an important fact as we deal with solving the Cauchy Euler problem ax2y′′ + bxy′ + cy = 0)
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PP 129 Solve the following Cauchy Euler problems

(a.) 4x2y′′ + y = 0,

(b.) 25x2y′′ + 25xy′ + y = 0

(c.) x3y′′′ − 6y = 0

PP 130 Suppose that y1 is a nontrivial solution of y′′ + p(x)y′ + q(x)y = 0. We seek a method to derive a
second LI solution. Let y2 be such a solution and show that it must satisfy

d

dx

[
y2
y1

]
=

W (y1, y2)

y21
.

Now, use Abel’s formula to find a nice formula for y2.

PP 131 (from page 103 of Boyce and DiPrima’s 3rd Ed.) Consider for N ∈ N,

xy′′ − (x+N)y′ +Ny = 0.

(a.) show y1 = ex is a solution.

(b.) show that y2 = cex
∫
xNe−x dx is a second solution. (perhaps use the result of the previous

problem, or the theorem from my notes or Ritger & Rose)

(c.) set c = −1
N ! and show by induction that y2(x) = Tn(x) where Tn(x) denotes the n-th order Taylor

polynomial of ex centered at zero.

PP 132 Find minimal annihilators for each of the functions below:

(a.) f1(x) = x2ex

(b.) f2(x) = ex cos(4x)

(c.) f3(x) = x3 + ex cos(4x)

(d.) f4(x) = cos2(3x) + ex cosh(x)

Now, given what you’ve just thought through, set-up, but do not determine explicitly, the particular
solutions for:

(a.) y′′ − 2y′ + y = x2ex

(b.) y′′ + 16y = ex cos(4x)

(c.) y′′′ + y′ = x3 + ex cos(4x)

(d.) y′′′ + 36y′ = cos2(3x) + ex cosh(x)

PP 133 (Zill section 4.4 problem 17) Solve y′′ − 2y′ + 5y = ex cos(2x).

PP 134 Solve y′′ + 3y′ + 2y = t2 subject the initial conditions y(0) = 1 and y′(0) = 0.

PP 135 (Zill section 4.5 problem 63) Solve y(4) − 2y′′′ + y′′ = ex + 1.

PP 136 (Zill section 4.6 problem 8) Solve y′′ − y = sinh(2x).

PP 137 (Zill section 4.6 problem 14) Solve y′′ − 2y′ + y = et tan−1(t).

PP 138 Solve y′′ + 3y′ + 2y = x+ e−x + e3x.

PP 139 Solve y′′ + 2y′ + y = e−x

x+1 .

PP 140 Find integral solutions for y′′′+16y′ = f . (you need to use variation of parameters, I would explicitly
calculate the determinants of S1, S2, S3 as I discuss in the notes)

PP 141 Solve x2y′′ − (x2 + 2x)y′ + (x+ 2)y = x3. Note y1 = x is a fundamental solution of the DEqn. Hint:
find the 2nd. fundamental soln. and then use variation of parameters to find yp...
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PP 142 Solve (xD + 3)(D2 − 4)[y] = 0. Be careful.

PP 143 Suppose L is a linear differential operator. Furthermore, suppose L[y1] = g1 and L[y2] = 2g1. Solve
L[y] = 0 using the given solutions.

PP 144 Find an integral solution for y′′ + y = g with y(0) = yo and y′(0) = y1 and g is some integrable
function of time t.

PP 145 Consider a third order linear differential equation for which sin(x), cos(x) and ln(x) appear as the
fundamental solution set. Call this differential equation L[y] = 0. Solve L[y] = 42 via variation of
parameters. It is interesting to note that even though I asked you to supply an explicit linear ODE
L[y] = 0 to solve you should not need that explicit formula to solve L[y] = 42.

PP 146 Green’s function for a linear ODE L[y] = f provides a method for solving the DEqn via integration.
If we assume the initial conditions of the given ODE are all trivial then the operator L can be in-
verted; L[y] = f with trivial initial conditions iff y = L−1[f ]. In particular, if G(x, t) is a function
for which y(x) =

∫ x

xo
G(x, t)f(t)dt is a solution of L[y] = f then we say G is aGreen’s function for L.

In the case of a second order differential equation with fundamental solutions y1, y2 ( with L[y1] = 0
and L[y2] = 0 for LI y1, y2 ) we can construct a Green’s function as follows:

G(x, t) =
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y2(t)y′1(t)

Then observe y =
∫ x

xo
G(x, t)f(t)dt gives a solution to L[y] = f by variation of parameters. Find

Green’s function for the following solution sets and write an integral solution for L[y] = f for the
given L and given initial conditions:

(a.) L = D2 + 9, y1 = cos 3t and y2 = sin 3t with y(0) = y′(0) = 0,

(b.) L = D2 + 3D + 2, y1 = e−x, y2 = e−2x with y(0) = −1 and y′(0) = 0,

PP 147 Use the Green’s function technique to solve

y′′ + 3y′ + 2y = sin(ex)

subject y(0) = −1 and y′(0) = 0. In other words, work out the integrals for part (b.) of the previous
problem given that f(x) = sin(ex).

PP 148 Suppose a spring is attached to a mass of 1 kg and the spring has spring constant 16 N/m. This
spring mass system is immersed in an oil which gives a retarding frictional force of Fretard = −βv
where v is velocity and β = 10 Ns/m. Find the equations of motion ( please omit units, so in the
usual notation m = 1, k = 16 and β = 10 ) in the cases

(a.) x(0) = −1 and x′(0) = 0

(b.) x(0) = −1 and x′(0) = 12

PP 149 Newton’s Law for a retarded spring-mass system with external force f yield

mẍ+ βẋ+ kx = f

Given m = 2, b = 0, k = 32 and f = 68e−2t cos(4t) find the equation of motion given the system has
initial conditions x(0) = ẋ(0) = 0.

PP 150 Consider Newton’s Second Law for mass-spring system under a sinusoidal force:

ẍ+ ω2x = Fo cos γt

given x(0) = ẋ(0) = 0. Here Fo, ωγ are nonzero constants.
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(a.) Find x(t) given that γ ̸= ω

(b.) Calculate xr(t) = limγ→ω x(t)

(c.) Contrast the motion of x(t) and xr(t) as t → ∞

PP 151 Kirchoff’s Voltage Law for an RLC-circuit with voltage source E is given by

L
dI

dt
+RI +

1

C
Q = E

Since I = dQ
dt we find LQ̈ + RQ̇ + Q/C = E . Given that L = 1 and R = 2 and C = 0.25 and

E = 50 cos t find the charge Q as a function of time t given the initial charge and current are both
zero for t = 0.

PP 152 If we study the motion of an spring
mẍ+ βẋ+ kx = F

such that β2 − 4mk < 0 then it is known as underdamped motion. If the external force F =
Fo cos(γt) then we find the motion is dominated by the particular solution as t → ∞. Let ω =√

4mk−β2

2m , then the homogeneous solution xh(t) = e
−βt
2m (c1 cos(ωt) + c2 sin(ωt)) → 0 as t → ∞. Show

that the particular solution of such a system is given by

xp =
Fo sin(γt+ ϕ)√

(k −mγ2)2 + β2γ2

where ϕ is a constant. Then, find the frequency γ which maximizes the magnitude of xp in the
following cases:

(a.) m = 1/2 and k = 19 and β = 1

(b.) m = 1 and k = 2 and β =
√
6.

PP 153 Find general solution of y′′ − 3y′ + 2y = 0 where y′ = dy/dx.

PP 154 Find general solution of y′′ − 6y′ + 9y = 0 where y′ = dy/dx.

PP 155 Find general solution of y′′ + 6y′ + 13y = 0 where y′ = dy/dt.

PP 156 Find general solution of (D − 2)3(D2 − 1)D2[y] = 0 where D = d/dx.

PP 157 Suppose D = d/dx and L = Dn + an−1D
n−1 + · · · + a2D

2 + a1D + ao defines differential equation
L[y] = 0. Find smallest n and the coefficients ao, a1, . . . , an−1 ∈ R for which ex cos(2x) and x3 are
solutions to the differential equation L[y] = 0.

PP 158 Find general solution of y′′ − 9y = t2 + et + 1.

PP 159 Solve y′′ + y = 2 cos t+ sin t

PP 160 Solve y′′ + 4y = tan(2x).

PP 161 Find general solution of y′′ + 3y′ + 2y = t+ 1.

PP 162 Solve y′′ + y = cos t+ et

PP 163 Solve y′′ − 6y + 9y = 0 where y′ = dy/dt.

PP 164 Solve ((D + 3)2 + 36)[y] = 0 where D = d/dθ.

PP 165 Let D = d/dx. Observe (D4 + 9D2)[y] = x + cos(x) can be solved by the method of undetermined
coefficients aided by the annihilator method. We find the minimal particular solution derived from
the annhilator method is: (circle one answer)

(a.) yp = Ax+B + C cos(x) +D sin(x)
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(b.) yp = Ax3 +Bx2 + Cx cos(x) +Dx sin(x)

(c.) yp = Ax3 +Bx2 + C cos(x) +D sin(x)

(d.) yp = A+Bx+ C cos(3x) +D sin(3x)

PP 166 A spring has mass m = 1, coefficient of damping β = 4 and a spring constant k = 5. Find the general
solution of Newton’s Second Law.

PP 167 Solve y′ − 3y = 2x+ 3.

PP 168 Find a particular solution for y′′ − 4y′ + 3y = 65 cos(2t).

PP 169 Find a particular solution of y′′ − 4y′ + 3y = et.

PP 170 Find the general solution of y′′ − 4y′ + 3y = 130 cos(2t) + 7et.

PP 171 Suppose L[y] = 0 is an n-th order differential equation where L = Dn + an−1D
n−1 + · · ·+ a1D + ao

and D = d/dt and an−1, . . . , a1, ao ∈ R. If L[ et cos(2t) ] = 0 and L[ t3e−t ] = 0 then find the smallest
n which allows these solutions and give the explicit form of L in terms of D = d/dt. You need not
multiply out the formula, I am perfectly happy with L in factored form.

PP 172 Find an integral solution for x > 0 to the Cauchy Euler problem
x2y′′ + xy′ + 9y = g where g is a continuous function.

PP 173 Solve the following differential equations:

(a.) y′′ − 8y′ + 7y = 0 where y′ = dy/dt,

(b.) z′′ + 10z + 25z = 0 where z′ = dz/dx,

(c.) u′′ + 7u = 0 where u′ = du/dt,

(d.) y′′ + 10y′ + 41y = 0 where y′ = dyd/dx

(e.) y′′′ + 4y′′ + 5y′ = 0 where y′ = dy/dx.

PP 174 Find the minimal annihilator for each of the following functions: for each define D as either D = d/dx
or D = d/dt as appropriate:

(a.) g = ex + sin(4x)

(b.) g = x2 + cosh(x)

(c.) g = te−3t + 2

(d.) g = cos(x) sin(3x)

(e.) g = et cos(6t)

PP 175 Set-up, but do not explicitly determine the coefficients, the form of yp via the method of annihilators.
Notice you found the annihilators in the previous problem.

(a.) y′′ − y = ex + sin(4x)

(b.) y′′ + y′ = x2 + cosh(x)

(c.) y′′ + 3y′ = te−3t + 2

(d.) y′′ + 4y = cos(x) sin(3x)

(e.) y′′ + 36y = et cos(6t)

PP 176 Solve y′′ − 4y′ = 6t+ et.

PP 177 Solve y′′ + 2y′ + y = cos(x) + 3 subject the initial conditions y(0) = 0 and y′(0) = 1.

PP 178 Consider mx′′ + bx′ + kx = 0 where m > 0 and b, k ≥ 0. Show that in every possible case the motion
of the solution is bounded.

PP 179 Find the general solution of
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(a.) y′′ + y = 3 cos(2x)

(b.) y′′ + y = csc(x)

(c.) y′′ + y = 2 csc(x) + cos(2x)

PP 180 These require variation of parameters technique.

(a.) Solve y′′ − 2y′ + y = 1
t e

t

(b.) Solve y′′ + y = sec3 θ.

PP 181 Solve the integral
∫
(x3 + 2x)ex dx = y by solving dy

dx = (x2 + 2x)ex via the method of undetermined
coefficients

PP 182 Consider the differential equation given by: D = d/dx and

(D4 + 2D3 + 10D2 + 18D + 9)[y] = 0

You are given that y = sin 3x is a solution to the above. Use this data to help solve the problem.



Chapter 4

systems of ordinary differential
equations

A system of ordinary differential equations is precisely what is sounds like; a system of ODEs is several ODEs
which share dependent variables and a single independent variable. In this chapter we learn the standard
terminology for such problems and we study two strategies to solve such problems quantitatively. In a later
chapter we will study the phase plane method which gives us a qualitative method which is readily tenable
for the n = 2 problem.

The operator method has a natural implementation for systems with constant coefficients. We could use
this approach to extend the spring/mass problem to problems with several springs coupled together. Or,
we could solve RLC-circuits with several loops which likewise couple. Such examples are not given in these
notes, but we do explore briefly the technique of solving systems via operator methods.

The operator method is hard to beat in many respects, however, linear algebra offers another approach which
is equally general and allows generalization to other fields of study. Focusing on the constant coefficient case
it turns out the system of ODEs dx⃗

dt = Ax⃗ has solution x⃗ = etAc⃗. In the case the matrix A is diagonalizable
the method simplifies greatly and we begin in that simple case by discussing the e-vector-type solutions. As
usual the solution is sometimes complex and in the event of that complex algebra we have to select real and
imaginary parts to derive the real solution.

In the case A is not diagonalizable we need a deeper magic. The chains of generalized e-vectors bind the
solutions and force them to do our bidding via the magic formula.

Finally the nonhomogeneous case is once more solved by variation of parameters. On the other hand, we do
not attempt to say much about systems with variable coefficients.

123
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4.1 operator methods for systems

I do not always cover this section, in practice the linear algebra based method is more reliable

The method of this section applies primarily to systems of constant coefficient ODEs1. Generally the
approach is as follows:

1. consider writing the given ODEs in operator notation

2. add, operate, substract in whatever combination will reduce the problem to one-dependent variable

3. solve by the usual characteristic equation method

4. find other dependent variable solutions as the algebra or operators demand.

5. resolve any excess constants by making use of the given differential relations and/or applying initial
conditions.

It’s best to illustrate this method by example.

Example 4.1.1. Problem: Solve x′ = −y and y′ = x.

Solution: note Dx = −y and Dy = x thus D2x = −Dy = −x. Therefore, (D2+1)[x] = 0 and we find the so-

lution x(t) = c1 cos(t) + c2 sin(t) . Note that y = −Dx thus the remaining solution is y = c1 sin(t)− c2 cos(t) .

Example 4.1.2. Problem: Solve x′ = x− y and y′ = x+ y.

Solution: note Dx = x− y and Dy = x+ y. Notice this gives

(D − 1)x = −y & (D − 1)y = x

Operate by D − 1 to obtain (D − 1)2x = −(D − 1)y = −x. Thus,

(D2 − 2D + 1)[x] = −x ⇒ (D2 − 2D + 2)[x] = 0 ⇒ ((D − 1)2 + 1)[x] = 0

Therefore, x(t) = c1e
t cos(t) + c2e

t sin(t) . Calculate,

Dx = c1e
t(cos(t)− sin(t)) + c2e

t(sin(t) + cos(t))

Consqeuently, y = −(D − 1)x = x−Dx yields

y(t) = c1e
t sin(t)− c2e

t cos(t).

Example 4.1.3. Problem: Solve ẍ+ 3x− 4y = 0 and ÿ + 2y − x = 0.

Solution: As operator equations we face

(D2 + 3)x− 2y = 0

(D2 + 2)y − x = 0

Operate by D2 + 3 on the second equation to derive (D2 + 3)x = (D2 + 3)(D2 + 2)y. Substituting into the
first equation gives a fourth order ODE for y,

(D2 + 3)(D2 + 2)y − 2y = 0.

1if you could express the system as a polynomials in a particular smooth differential operator then the idea would
generalize to that case
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Hence, (D4 + 5D2 + 4)y = 0 which gives

(D2 + 1)(D2 + 4)y = 0

Therefore,

y(t) = c1 cos(t) + c2 sin(t) + c3 cos(2t) + c4 sin(2t)

Note that D2y = −c1 cos(t)− c2 sin(t)− 4c3 cos(2t)− 4c4 sin(2t). Note x = (D2 + 2)y thus we find

x(t) = c1 cos(t) + c2 sin(t)− 2c3 cos(2t)− 2c4 sin(2t).

We can also cast the solutions above in a more physically useful notation:

y(t) = A1 cos(t+ ϕ1) +A2 cos(2t+ ϕ2) & x(t) = A1 cos(t+ ϕ1)− 2A2 cos(2t+ ϕ2)

You can see there are two modes in the solution above. One mode has angular frequency ω1 = 1 whereas
the second has angular frequency ω2 = 2. Motions of either frequency are possible (A1 ̸= 0 and A2 = 0 or
vice-versa) however, more generally the motion is a superposition of those two motions. This type of system
can arise from a system of coupled springs without damping or in a coupled pair of LC circuits. Naturally,
those are just the examples we’ve already discussed, the reader is invited to find other applications.

Example 4.1.4. Problem: Solve x′ + y′ = 2t and y′′ − x′ = 0.

Solution: We have Dx+Dy = 2t and D2y −Dx = 0. Operate by D2 to obtain:

D3x+D3y = D2[2t] = 0.

Note that Dx = D2y hence we find by substitution:

D2D2y +D3y = 0 ⇒ D3(D + 1)[y] = 0.

Therefore, y = c1 + c2t+ c3t
2 + c4e

−t. To find x we should solve Dx = D2y:

Dx = 2c3 + c4e
−t ⇒ x(t) = 2c3t− c4e

−t + c5

Let us apply the given nonhomogeneous DEqn to refine these solutions:

x′ + y′ = (c2 + 2c3t− c4e
t) + (2c3 + c4e

t) = 2t

Equating coefficients yield c2 + 2c3 = 0 and 2c3 = 2 thus c3 = 1 and c2 = −2. We find,

x(t) = 2t− c4e
−t + c5, & y(t) = c1 − 2t+ t2 + c4e

−t.

Finally, we should check that y′′ − x′ = 0

(c1 − 2t+ t2 + c4e
−t)′′ − (2t− c4e

−t + c5)
′ = 2 + c4e

−t − 2− c4e
−t = 0

Thus,

x(t) = 2t+ 2e−t + c5, & y(t) = c1 − 2t+ t2 − 2e−t .

I will not seek to offer general advice on this method. If you would like a little more structure on this topic
I invite the reader to consult Nagel Saff and Snider section 5.2 (pages 263-270 in the 5th edition).
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4.2 calculus and matrices

The construction of matrices and the operations thereof are designed to simplify arguments about algebraic
systems of linear equations. We will see that the matrix is also of great utitility for the solution of systems of
linear differential equations. We’ve already seen how matrix calculations unify and simplify with the theory
of the Wronskian and the technique of variation of parameters. I now pause to introduce and define explicitly
the algebra and construction of matrices and we also derive some important theorems about their calculus.

A p × q matrix over R is an ordered array of pq-objects from R which has p-rows and q-columns. The
objects in the matrix are called its components. In particular, if matrix A has components Aij ∈ R for i, j
with 1 ≤ i ≤ p and 1 ≤ j ≤ q then we denote the array by:

A =


A11 A12 · · · A1q

A21 A22 · · · A2q

...
... · · ·

...
Ap1 Ap2 · · · Apq

 = [Aij ]

We also view a matrix as columns or rows glued together:

A =
[
col1(A)|col2(A)| · · · |colq(A)

]
=


row1(A)
row2(A)
...
rowp(A)


where we define colj(A) = [A1j , A2j , . . . , Apj ]

T and rowi(A) = [Ai1, Ai2, . . . , Aiq]. The set of all p×q matrices
assembled from objects in R is denoted Rp×q. Notice that if A,B ∈ Rp×q then A = B iff Aij = Bij for all i, j
with 1 ≤ i ≤ p and 1 ≤ j ≤ q. In other words, two matrices are equal iff all the matching components are
equal. We use this principle in many definitions, for example: if A ∈ Rp×q then the transpose AT ∈ Rq×p

is defined by AT
ij = Aji for all i, j.

We are primarily interested in the cases R = R,C or some suitable set of functions. All of these spaces allow
for addition and multiplication of the components. It is therefore logical to define the sum, difference, scalar
multiple and product of matrices as follows:

Definition 4.2.1. If A,B ∈ Rp×q and C ∈ Rq×r and c ∈ R then define

(A+B)ij = Aij +Bij (A−B)ij = Aij −Bij (cA)ij = cAij (BC)ik =

q∑
j=1

BikCkj .

This means that (A + B), (A − B), cA ∈ Rp×q whereas BC ∈ Rp×r. The matrix product of a p × q and
q × r matrix is a p × r matrix. In order for the product BC to be defined we must have the rows in B be
the same size as the columns in C. We can express the product in terms of dot-products:

(BC)ik = rowi(B) • colk(C)

Let me give a few examples to help you understand these formulas.

Example 4.2.2. The product of a 3× 2 and 2× 3 is a 3× 3 1 0
0 1
0 0

[ 4 5 6
7 8 9

]
=

 [1, 0] • [4, 7] [1, 0] • [5, 8] [1, 0] • [6, 9]
[0, 1] • [4, 7] [0, 1] • [5, 8] [0, 1] • [6, 9]
[0, 0] • [4, 7] [0, 0] • [5, 8] [0, 0] • [6, 9]

 =

 4 5 6
7 8 9
0 0 0





4.2. CALCULUS AND MATRICES 127

Example 4.2.3. The product of a 3× 1 and 1× 3 is a 3× 3 1
2
3

 [ 4 5 6
]
=

 4 · 1 5 · 1 6 · 1
4 · 2 5 · 2 6 · 2
4 · 3 5 · 3 6 · 3

 =

 4 5 6
8 10 12
12 15 18


Example 4.2.4. Let A = [ 1 2

3 4 ] and B = [ 5 6
7 8 ]. We calculate

AB =

[
1 2
3 4

] [
5 6
7 8

]

=

[
[1, 2] • [5, 7] [1, 2] • [6, 8]
[3, 4] • [5, 7] [3, 4] • [6, 8]

]

=

[
5 + 14 6 + 16
15 + 28 18 + 32

]

=

[
19 22
43 50

]
Notice the product of square matrices is square. For numbers a, b ∈ R it we know the product of a and b is
commutative (ab = ba). Let’s calculate the product of A and B in the opposite order,

BA =

[
5 6
7 8

] [
1 2
3 4

]

=

[
[5, 6] • [1, 3] [5, 6] • [2, 4]
[7, 8] • [1, 3] [7, 8] • [2, 4]

]

=

[
5 + 18 10 + 24
7 + 24 14 + 32

]

=

[
23 34
31 46

]
Clearly AB ̸= BA thus matrix multiplication is noncommutative or nonabelian.

When we say that matrix multiplication is noncommuative that indicates that the product of two matrices
does not generally commute. However, there are special matrices which commute with other matrices.

Example 4.2.5. Let I = [ 1 0
0 1 ] and A =

[
a b
c d

]
. We calculate

IA =

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]
Likewise calculate,

AI =

[
a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]
Since the matrix A was arbitrary we conclude that IA = AI for all A ∈ R2×2.

The Kronecker delta δij is defined to be zero if i ̸= j and δii = 1. The identity matrix is the matrix I such
that Iij = δij . It is simple to show that AI = A and IA = A for all matrices.

Definition 4.2.6.

Let A ∈ R n×n. If there exists B ∈ R n×n such that AB = I and BA = I then we say that A
is invertible and A−1 = B. Invertible matrices are also called nonsingular. If a matrix has no
inverse then it is called a noninvertible or singular matrix.
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Example 4.2.7. In the case of a 2 × 2 matrix A =

[
a b
c d

]
a nice formula to find the inverse is known

provided det(A) = ad− bc ̸= 0: [
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
It’s not hard to show this formula works,

1
ad−bc

[
a b
c d

] [
d −b
−c a

]
= 1

ad−bc

[
ad− bc −ab+ ab
cd− dc −bc+ da

]
= 1

ad−bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
This formula is worth memorizing for future use.

The problem of inverting an n× n matrix for n > 0 is more challenging. However, it is generally true2 that
A−1 exists iff det(A) ̸= 0. Recall our discussion of Cramer’s rule in the variation of parameters section, we
divided by the determinant for form the solution. If the determinant is zero then we cannot use Cramer’s
rule and we must seek other methods of solution. In particular, the methods of Gaussian elimination or back
subsitution are general and we will need to use those techniques to solve the eigenvector problem in the later
part of this chapter. But, don’t let me get too ahead of the story. Let’s finish our tour of matrix algebra.

Proposition 4.2.8.

If A,B are invertible square matrices and c is nonzero then

1. (AB)−1 = B−1A−1,

2. (cA)−1 = 1
cA

−1,

Proof: property (1.) is called the socks-shoes property because in the same way you first put on your
socks and then your shoes to invert the process you first take off your shoes then your socks. The proof is
just a calculation:

(AB)B−1A−1 = ABB−1A−1 = AIA−1 = AA−1 = I.

The proof of (2.) is similar □

The power of a matrix is defined in the natural way. Notice we need for A to be square in order for the
product AA to be defined.

Definition 4.2.9.

Let A ∈ R n×n. We define A0 = I, A1 = A and Am = AAm−1 for all m ≥ 1. If A is invertible then
A−p = (A−1)p.

As you would expect, A3 = AA2 = AAA.

Proposition 4.2.10.

Let A,B ∈ R n×n and p, q ∈ N ∪ {0}

1. (Ap)q = Apq.

2. ApAq = Ap+q.

3. If A is invertible, (A−1)−1 = A.

2the formula is simply A−1 = 1
det(A)

ad(A)T where ad(A) is the adjoint of A, see my linear notes where I give the
explicit calculation for an arbitrary 3× 3 case
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You should notice that (AB)p ̸= ApBp for matrices. Instead,

(AB)2 = ABAB, (AB)3 = ABABAB, etc...

This means the binomial theorem will not hold for matrices. For example,

(A+B)2 = (A+B)(A+B) = A(A+B) +B(A+B) = AA+AB +BA+BB

hence (A+B)2 ̸= A2 + 2AB +B2 as the matrix product is not generally commutative. If we have A and B
commute then AB = BA and we can prove that (AB)p = ApBp and the binomial theorem holds true.

Example 4.2.11. A square matrix A is said to be idempotent of order k if there exists k ∈ N such that
Ak−1 ̸= I and Ak = I. On the other hand, a square matrix B is said to be nilpotent of order k if there
exists k ∈ N such that Bk−1 ̸= 0 and Bk = 0. Suppose B is idempotent of order 2; B2 = 0 and B ̸= 0. Let
X = I +B and calculate,

X2 = (I +B)(I +B) = II + IB +BI +B2 = I + 2B

X3 = (I +B)(I + 2B) = II + I2B +BI +B2B = I + 3B

You can show by induction that Xk = I + kB. (neat, that is all I have to say for now)

Example 4.2.12. A square matrix which only has zero entries in all components except possibly the diagonal
is called a diagonal matrix. We say D ∈ Rn×n is diagonal iff Dij = 0 for i ̸= j. Consider, if X =[

x1 0
0 x2

]
and Y =

[
y1 0
0 y2

]
then we find

XY =

[
x1 0
0 x2

] [
y1 0
0 y2

]
=

[
x1y1 0
0 x2y2

]
=

[
y1x1 0
0 y2x2

]
= Y X.

These results extend beyond the 2× 2 case. If X,Y are diagonal n× n matrices then XY = Y X. You can
also show that if X is diagonal and A is any other square matrix then AX = XA. We will later need the
formula below: 

D1 0 · · · 0
0 D2 · · · 0
...

... · · ·
...

0 0 · · · Dn


k

=


Dk

1 0 · · · 0
0 Dk

2 · · · 0
...

... · · ·
...

0 0 · · · Dk
n

 .

Example 4.2.13. The product of a 2× 2 and 2× 1 is a 2× 1. Let A = [ 1 2
3 4 ] and let v = [ 57 ],

Av =

[
1 2
3 4

] [
5
7

]
=

[
[1, 2] • [5, 7]
[3, 4] • [5, 7]

]
=

[
19
43

]
Likewise, define w = [ 68 ] and calculate

Aw =

[
1 2
3 4

] [
6
8

]
=

[
[1, 2] • [6, 8]
[3, 4] • [6, 8]

]
=

[
22
50

]
Something interesting to observe here, recall that in Example 4.2.4 we calculated

AB =

[
1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]
. But these are the same numbers we just found from the two

matrix-vector products calculated above. We identify that B is just the concatenation of the vectors v and

w; B = [v|w] =
[

5 6
7 8

]
. Observe that:

AB = A[v|w] = [Av|Aw].
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The term concatenate is sometimes replaced with the word adjoin. I think of the process as gluing matrices
together. This is an important operation since it allows us to lump together many solutions into a single
matrix of solutions.

Proposition 4.2.14.

Let A ∈ R m×n and B ∈ R n×p then we can understand the matrix multiplication of A and B as
the concatenation of several matrix-vector products,

AB = A[col1(B)|col2(B)| · · · |colp(B)] = [Acol1(B)|Acol2(B)| · · · |Acolp(B)]

The proof is left to the reader. Finally, to conclude our brief tour of matrix algebra, I collect all my favorite
properties for matrix multiplication in the theorem below. To summarize, matrix math works as you would
expect with the exception that matrix multiplication is not commutative. We must be careful about the
order of letters in matrix expressions.

Example 4.2.15. Suppose Ax = b has solution x1 and Ax = c has solution x2 then note that Xo = [x1|x2]
is a solution matrix of the matrix equation AX = [b|c]. In particular, observe:

AXo = A[x1|x2] = [Ax1|Ax2] = [b|c].

For the sake of completeness and perhaps to satisfy the curiousity of the inquisitive student I pause to give
a brief synopsis of how we solve systems of equations with matrix techniques. We will not need technology
to solve most problems we confront, but I think it is useful to be aware of just how you can use the ”rref”
command to solve any linear system.

Remark 4.2.16. summary of how to solve linear equations

(1.) Write the system of equations in matrix notation Au = b

(2.) Perform Gaussian eliminate to reduce the augmented coefficient matrx [A|b] to its reduced-row
echelon form rref [A|b] (usually I use a computer for complicated examples)

(3.) Read the solution from rref [A|b]. There are three cases:

(a.) there are no solutions

(b.) there is a unique solution

(c.) there are infinitely many solutions

The nuts and bolts of gaussian elimination is the process of adding, subtracting and multiplying equations
by a nonzero constant towards the goal of eliminating as many variables as possible.
Let us illustrate the remark above.

Example 4.2.17. Suppose u1+u2 = 3 and u1−u2 = −1. Then Au = b for coefficient matrix A =

[
1 1
1 −1

]
and b = [3,−1]T . By gaussian elimination,

rref

[
1 1 3
1 −1 −1

]
=

[
1 0 1
0 1 2

]
It follows that u1 = 1 and u2 = 2. This is the unique solution. The solution set {(1, 2)} contains a single
solution.

Set aside matrix techniques, you can solve the system above by adding equations to obtain 2u1 = 2 hence
u1 = 1 and u2 = 3− 1 = 2.
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Example 4.2.18. Suppose u1 + u2 + u3 = 1 and 2u1 + 2u2 + 2u3 = 4. Then Au = b for coefficient matrix

A =

[
1 1 1
2 2 2

]
and b = [1, 2]T . By gaussian elimination,

rref

[
1 1 1 1
2 2 2 4

]
=

[
1 1 1 0
0 0 0 1

]
The second row suggests that 0u1 + 0u2 + 0u3 = 1 or 0 = 1 which is clearly false hence the system is
inconsistent and the solution set in this case is the empty set.

Set aside matrix techniques, you can solve the system above by dividing the second equation by 2 to reveal
u1 + u2 + u3 = 2. Thus insisting both equations are simultaneously true amounts to insisting that 1 = 2.
For this reason the system has no solutions.

Example 4.2.19. Suppose u1 + u2 + u3 = 0 and 2u1 + 2u2 + 2u3 = 0. Then Au = b for coefficient matrix

A =

[
1 1 1
2 2 2

]
and b = [0, 0]T . By gaussian elimination,

rref

[
1 1 1 0
2 2 2 0

]
=

[
1 1 1 0
0 0 0 0

]
The second row suggests that 0u1 +0u2 +0u3 = 0 or 0 = 0 which is clearly true. This system is consistent
and the solutions have u1 + u2 + u3 = 0. It follows that the solution set is infinite

{[−u2 − u3, u2, u3]
T | u2, u3 ∈ R}.

Any solution can be written as u2[−1, 1, 0]T + u3[−1, 0, 1]T for particular constants u2, u3.

It turns out that the last example is the type of matrix algebra problem we wil face with the eigenvector
method. The theorem that follows summarizes the algebra of matrices.

Theorem 4.2.20.

If A,B,C ∈ R m×n, X,Y ∈ R n×p, Z ∈ R p×q and c1, c2 ∈ R then

1. (A+B) + C = A+ (B + C),

2. (AX)Z = A(XZ),

3. A+B = B +A,

4. c1(A+B) = c1A+ c2B,

5. (c1 + c2)A = c1A+ c2A,

6. (c1c2)A = c1(c2A),

7. (c1A)X = c1(AX) = A(c1X) = (AX)c1,

8. 1A = A,

9. ImA = A = AIn,

10. A(X + Y ) = AX +AY ,

11. A(c1X + c2Y ) = c1AX + c2AY ,

12. (A+B)X = AX +BX,

The proof of the theorem above follows easily from the definitions of matrix operation. I give some explicit
proof in my linear algebra notes. In fact, all of the examples thus far are all taken from my linear algebra
notes where I discuss not just these formulas, but also their motivation from many avenues of logic. The
example that follows would not be something I would commonly include in the linear algebra course.
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Example 4.2.21. Suppose R = C∞(R) be the set of all smooth functions on R. For example,

A =

[
cos(t) t3

3t ln(t2 + 1)

]
∈ R2×2.

We can multiply A above by 3−t by

3−tA =

[
3−t cos(t) t33−t

1 ln(t2 + 1)3−t

]
∈ R2×2.

We can subtract the identity matrix to form A− I:

A− I =

[
cos(t) t3

3t ln(t2 + 1)

]
−
[

1 0
0 1

]
=

[
cos(t)− 1 t3

3t ln(t2 + 1)− 1

]
Another way of looking at A in the example above is that it is a matrix-valued function of a real variable
t. In other words, A : R → R2×2; this means for each t ∈ R we assign a single matrix A(t) ∈ R2×2. We can
similarly consider p × q-matrix valued functions of a real variable3 . We now turn to the calculus of such
matrices.

Definition 4.2.22.

A matrix-valued function of a real variable is a function from I ⊆ R to R m×n. Suppose A : I ⊆
R → R m×n is such that Aij : I ⊆ R → R is differentiable for each i, j then we define

dA
dt =

[dAij

dt

]
which can also be denoted (A′)ij = A′

ij . We likewise define
∫
Adt = [

∫
Aijdt] for A with integrable

components. Definite integrals and higher derivatives are also defined component-wise.

Example 4.2.23. Suppose A(t) =

[
2t 3t2

4t3 5t4

]
. I’ll calculate a few items just to illustrate the definition

above. calculate; to differentiate a matrix we differentiate each component one at a time:

A′(t) =

[
2 6t

12t2 20t3

]
A′′(t) =

[
0 6
24t 60t2

]
A′(0) =

[
2 0
0 0

]
Integrate by integrating each component:

∫
A(t)dt =

[
t2 + c1 t3 + c2
t4 + c3 t5 + c4

] ∫ 2

0

A(t)dt =

 t2
∣∣2
0

t3
∣∣2
0

t4
∣∣2
0

t5
∣∣2
0

 =

[
4 8
16 32

]

Example 4.2.24. Suppose A =

[
t 1
0 t2

]
. Calculate A2 =

[
t 1
0 t2

] [
t 1
0 t2

]
hence,

A2 =

[
t2 t+ t2

0 t4

]
Clearly d

dt [A
2] =

[
2t 1 + 2t
0 4t3

]
. On the other hand, calculate

2A
dA

dt
= 2

[
t 1
0 t2

] [
1 0
0 2t

]
= 2

[
t 2t
0 2t3

]
=

[
2t 4t
0 4t3

]
̸= d

dt
[A2]

The naive chain-rule fails.

3for those of you who have (or are) taking linear algebra, the space Rp×q is not necessarily a vector space since R
is not a field in some examples. The space of smooth functions forms what is called a ring and the set of matrices
over a ring can be understood as a ”module”. A module is like a vector space where the scalar multiplication is taken
from a ring rather than a field. Every vector space is a module but some modules are not vector spaces.
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Theorem 4.2.25.

Suppose A,B are matrix-valued functions of a real variable, f is a function of a real variable, c is a
constant, and C is a constant matrix then

1. (AB)′ = A′B +AB′ (product rule for matrices)

2. (AC)′ = A′C

3. (CA)′ = CA′

4. (fA)′ = f ′A+ fA′

5. (cA)′ = cA′

6. (A+B)′ = A′ +B′

where each of the functions is evaluated at the same time t and I assume that the functions and
matrices are differentiable at that value of t and of course the matrices A,B,C are such that the
multiplications are well-defined.

Proof: Suppose A(t) ∈ R m×n and B(t) ∈ R n×p consider,

(AB)′ij = d
dt ((AB)ij) defn. derivative of matrix

= d
dt (
∑

k AikBkj) defn. of matrix multiplication
=
∑

k
d
dt (AikBkj) linearity of derivative

=
∑

k

[
dAik

dt Bkj +Aik
dBkj

dt

]
ordinary product rules

=
∑

k
dAik

dt Bkj +
∑

k Aik
dBkj

dt algebra
= (A′B)ij + (AB′)ij defn. of matrix multiplication
= (A′B +AB′)ij defn. matrix addition

this proves (1.) as i, j were arbitrary in the calculation above. The proof of (2.) and (3.) follow quickly
from (1.) since C constant means C ′ = 0. Proof of (4.) is similar to (1.):

(fA)′ij = d
dt ((fA)ij) defn. derivative of matrix

= d
dt (fAij) defn. of scalar multiplication

= df
dtAij + f

dAij

dt ordinary product rule

= (dfdtA+ f dA
dt )ij defn. matrix addition

= (dfdtA+ f dA
dt )ij defn. scalar multiplication.

The proof of (5.) follows from taking f(t) = c which has f ′ = 0. I leave the proof of (6.) as an exercise for
the reader. □.

To summarize: the calculus of matrices is the same as the calculus of functions with the small qualifier that
we must respect the rules of matrix algebra. The noncommutativity of matrix multiplication is the main
distinguishing feature.

Let’s investigate, just for the sake of some practice mostly, what the non-naive chain rule for the square of
matrix function.

Example 4.2.26. Let A : R → R n×n be a square-matrix-valued differentiable function of a real variable t.
Calculate, use the product rule:

d

dt
[A2] =

d

dt
[AA] =

dA

dt
A+A

dA

dt
.

In retrospect, it must be the case that the matrix A does not commute with dA
dt in Example 4.2.24. The

noncommutative nature of the matrix multiplication is the source of the naive chain-rule not working in the
current context. In contrast, we have seen that the chain-rule for complex-valued functions of a real variable
does often work. For example, d

dte
λt = λeλt or d

dxx
λ = λxλ−1. It is possible to show that if f(z) is analytic
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and g(t) is differentiable from R to C then d
dtf(g(t)) =

df
dz (g(t))

dg
dt where df

dz is the derivative of f with respect
to the complex variable z. However, you probably will not discuss this in complex variables since it’s not
terribly interesting in the big-scheme of that course. I find it interesting to contrast to the matrix case here.
You might wonder if there is a concept of differentiation with respect to a matrix, or differentiation with
respect to a vector. The answer is yes. However, I leave that for some other course.

Example 4.2.27. Another example for fun. The set of orthogonal matrices is denoted O(n) and is
defined to be the set of n × n matrices A such that ATA = I. These matrices correspond to changes of
coordinate which do not change the length of vectors; Ax⃗ •Ay⃗ = x⃗ • y⃗. It turns out that O(n) is made from
rotations and relections.

Suppose we have a curve of orthogonal matrices; A : R → O(n) then we know that AT (t)A(t) = I for all
t ∈ R. If the component functions are differentiable then we can differentiate this equation to learn about the
structure that the tangent vector to an orthogonal matrix must possess. Observe:

d

dt
[AT (t)A(t)] =

d

dt
[I] ⇒ dA

dt

T

A(t) +AT (t)
dA

dt
= 0

Suppose the curve we considered passed through the identity matrix I (which is in O(n) as IT I = I) and
suppose this happened at t = 0 then we have

dA

dt

T

(0) +
dA

dt
(0) = 0

Let B = dA
dt (0) then we see that BT = −B is a necessary condition for tangent vectors to the orthogonal

matrices at the identity matrix. A matrix with BT = −B is said to be antisymmetric or skew-symmetric.
The space of all such skew matrices is called o(n). The set O(n) paired with matrix multiplication is called
a Lie Group whereas the set o(n) paired with the matrix commutator is called a Lie Algebra4. These are
concepts of considerable interest in modern studies of differential equations.

4it’s is pronounced ”Lee” not as you might expect
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4.3 the normal form and theory for systems

A system of ODEs in normal form is a finite collection of first order ODEs which share dependent variables
and a single independent variable.

1. (n = 1) dx
dt = A11x+ f

2. (n = 2) dx
dt = A11x + A12y + f1 and dy

dt = A21x + A22y + f2 we can express this in matrix normal
form as follows, use x = x1 and y = x2,[

dx1

dt
dx2

dt

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
f1
f2

]
This is nicely abbreviated by writing dx⃗/dt = Ax⃗+ f⃗ where x⃗ = (x1, x2) and f⃗ = (f1, f2) whereas the
2× 2 matrix A is called the coefficient matrix of ths system.

3. (n = 3) The matrix normal form is simply dx1

dt
dx2

dt
dx3

dt

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 x1

x2

x3

+

 f1
f2
f3


Expanded into scalar normal form we have dx1

dt = A11x1 +A12x2 +A13x3 + f1
and dx2

dt = A21x1 +A22x2 +A23x3 + f2 and dx3

dt = A31x1 +A32x2 +A33x3 + f3.

Generally an n-th order system of ODEs in normal form on an interval I ⊆ R can be written as dxi

dt =∑n
j=1 Aijxj + fi for coefficient functions Aij : I ⊆ R → R and forcing functions fi : I ⊆ R → R. You

might consider the problem of solving a system of k-first order differential equations in n-dependent variables
where n ̸= k, however, we do not discuss such over or underdetermined problems in these notes. That said,
the concept of a system of differential equations in normal form is perhaps more general than you expect.
Let me illustrate this by example. I’ll start with a single second order ODE:

Example 4.3.1. Consider ay′′ + by′ + cy = f . We define x1 = y and x2 = y′. Observe that

x′
1 = x2 & x′

2 = y′′ = −1

a
(f − by′ − cy) =

1

a
(f − bx2 − cx1)

Thus, [
x′
1

x′
2

]
=

[
0 1

−c/a −b/a

] [
x1

x2

]
+

[
0

f/a

]
The matrix

[
0 1

−c/a −b/a

]
is called the companion matrix of the second order ODE ay′′+ by′+ cy = f .

The example above nicely generalizes to the general n-th order linear ODE.

Example 4.3.2. Consider aoy
(n) + a1y

(n−1) + · · · + an−1y
′ + any = f . Introduce variables to reduce the

order:
x1 = y, x2 = y′, x3 = y′′, . . . xn = y(n−1)

From which is is clear that x′
1 = x2 and x′

2 = x3 continuing up to x′
n−1 = xn and x′

n = y(n). Hence,

x′
n = −a1

ao
xn − · · · − an−1

ao
x2 −

an
ao

x1 + f

Once again the matrix below is called the companion matrix of the given n-th order ODE.
x′
1

x′
2
...

x′
n−1

x′
n

 =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
−an

ao
−an−1

ao
−an−2

ao
· · · −a2

ao
−a1

ao




x1

x2

...
xn−1

xn

+


0
0
...
0
f
ao


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The problem of many higher order ODEs is likewise confronted by introducing variables to reduce the order.

Example 4.3.3. Consider y′′ + 3x′ = sin(t) and x′′ + 6y′ − x = et. We begin with a system of two second
order differential equations. Introduce new variables:

x1 = x, x2 = y, x3 = x′, x4 = y′

It follows that x′
3 = x′′ and x′

4 = y′′ whereas x′
1 = x3 and x′

2 = x4. We convert the given differential
equations to first order ODEs:

x′
4 + 3x3 = sin(t) & x′

3 + 6x4 − x1 = et

Let us collect these results as a matrix problem:
x′
1

x′
2

x′
3

x′
4

 =


0 0 1 0
0 0 0 1
1 0 0 6
0 0 −3 0




x1

x2

x3

x4

+


0
0
et

sin(t)


Generally speaking the order of the normal form corresponding to a system of higher order ODE will simply be
the sum of the orders of the systems (assuming the given system has no reundancies; for example x′′+y′′ = x
and x′′ − x = −y′′ are redundant). I will not prove the following assertion, however, it should be fairly clear
why it is true given the examples thus far discussed:

Proposition 4.3.4. linear systems have a normal form.

A given systems of linear ODEs may be converted to an equivalent system of first order ODEs in
normal form.

For this reason the first order problem will occupy the majority of our time. That said, the method of the
next section is applicable to any order.

Since normal forms are essentially general it is worthwhile to state the theory which will guide our work. I
do not offer all the proof here, but you can find proof in many texts. For example, in Nagel Saff and Snider
these theorems are given in §9.4 and are proved in Chapter 13.

Definition 4.3.5. linear independence of vector-valued functions

Suppose v⃗j : I ⊆ R → Rn is a function for j = 1, 2, . . . , k then we say that {v⃗1, v⃗2, . . . , v⃗k} is linearly

independent on I iff
∑k

j=1 cj v⃗j(t) = 0 for all t ∈ I implies cj = 0 for j = 1, 2, . . . , k.

We can use the determinant to test LI of a set of n-vectors which are all n-dimensional vectors. It is true
that {v⃗1, v⃗2, . . . , v⃗n} is LI on I iff det[v⃗1(t)|v⃗2(t)| · · · |v⃗n(t)| ≠ 0 for all t ∈ I.

Definition 4.3.6. wronskian for vector-valued functions of a real variable.

Suppose v⃗j : I ⊆ R → Rn is differentiable for j = 1, 2, . . . , n. The Wronskian is defined by
W (v⃗1, v⃗2, . . . , v⃗n; t) = det[v⃗1|v⃗2| . . . |v⃗n] for each t ∈ I.

Theorems for wronskians of solutions sets mirror those already discussed for the n-th order problem.

Definition 4.3.7. solution and homogeneous solutions of dx⃗/dt = Ax⃗+ f⃗

Let A : I → Rn×n and f⃗ : I → Rn be continuous. A solution of dv⃗/dt = Av⃗ + f⃗ on I ⊆ R is

a vector-valued function x⃗ : I → Rn such that dx⃗/dt = Ax⃗ + f⃗ for all t ∈ I. A homogeneous
solution on I ⊆ R is a solution of dv⃗/dt = Av⃗.

In the example below we see three LI homogeneous solutions and a single particular solution.
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Example 4.3.8. Suppose x′ = x− 1, y′ = 2y − 2 and z′ = 3z − 3. In matrix normal form we face: x′

y′

z′

 =

 1 0 0
0 2 0
0 0 3

 x
y
z

+

 −1
−2
−3


It is easy to show by separately solving the the DEqns that x = c1e

t + 1, y = c2e
2t + 2 and z = c3e

3t + 3. In
vector notation the solution is

x⃗(t) =

 c1e
t + 1

c2e
2t + 2

c3e
3t + 3

 = c1

 et

0
0

 c2

 0
e2t

0

 c3

 0
0
e3t

+

 1
2
3


I invite the reader to show that S = {x⃗1, x⃗2, x⃗3} is LI on R where x⃗1(t) = ⟨et, 0, 0⟩, x⃗2(t) = ⟨0, e2t, 0⟩ and
x⃗3(t) = ⟨0, 0, e3t⟩. On the other hand, x⃗p = ⟨1, 2, 3⟩ is a particular solution to the given problem.

In truth, any choice of c1, c2, c3 with at least one nonzero constant will produce a homogeneous solution.
To obtain the solutions I pointed out in the example you can choose c1 = 1, c2 = 0, c3 = 0 to obtain
x⃗1(t) = ⟨et, 0, 0⟩ or c1 = 0, c2 = 1, c3 = 0 to obtain x⃗2(t) = ⟨0, e2t, 0⟩ or c1 = 0, c2 = 0, c3 = 1 to obtain
x⃗3(t) = ⟨0, 0, e3t⟩.

Definition 4.3.9. fundamental solution set of a linear system dx⃗/dt = Ax⃗+ f⃗

Let A : I → Rn×n and f⃗ : I → Rn be continuous. A fundmental solution set on I ⊆ R is a set of
n-homogeneous solutions of dv⃗/dt = Av⃗ + f⃗ for which {x⃗1, x⃗1, . . . , x⃗n} is a LI set on I. A solution
matrix on I ⊆ R is a matrix X is a matrix for which each column is a homogeneous solution on I.
A fundamental matrix on I ⊆ R is an invertible solution matrix.

Example 4.3.10. Continue Example 4.3.8. Note that S = {x⃗1, x⃗2, x⃗3} is a fundamental solution set. The
fundamental solution matrix is found by concatenating x⃗1, x⃗2 and x⃗3:

X = [x⃗1|x⃗2|x⃗3] =

 et 0 0
0 e2t 0
0 0 e3t


Observe det(X) = ete2te3t = e6t ̸= 0 on R hence X is invertible on R.

Example 4.3.11. Let A =

 0 0 −4
2 4 2
2 0 6

 define the system of DEqns dx⃗
dt = Ax⃗. I claim that the matrix

X(t) =

 0 −e4t −2e2t

e4t 0 e2t

0 e4t e2t

 is a solution matrix. Calculate,

AX =

 0 0 −4
2 4 2
2 0 6

 0 −e4t −2e2t

e4t 0 e2t

0 e4t e2t

 =

 0 −4e4t −4e2t

4e4t 0 2e2t

0 4e4t 2e2t

 .

On the other hand, differentiation yields X ′ =

 0 −4e4t −4e2t

4e4t 0 2e2t

0 4e4t 2e2t

. Therefore X ′ = AX. Notice

that if we express X in terms of its columns X = [x⃗1|x⃗2|x⃗3] then it follows that X ′ = [x⃗1
′|x⃗2

′|x⃗3
′] and

AX = A[x⃗1|x⃗2|x⃗3] = [Ax⃗1|Ax⃗2|Ax⃗3] hence

x⃗1
′ = Ax⃗1 & x⃗2

′ = Ax⃗2 & x⃗3
′ = Ax⃗3

We find that x⃗1(t) = ⟨0, e4t, 0⟩, x⃗2(t) = ⟨−e4t, 0, e4t⟩ and x⃗3(t) = ⟨−2e2t, e2t, e2t⟩ form a fundamental
solution set for the given system of DEqns.
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Theorem 4.3.12. Let A : I → Rn×n and f⃗ : I → Rn be continuous.

1. there exists a fundamental solution set {x⃗1, x⃗2, . . . , x⃗n} on I

2. if to ∈ I and x⃗o is a given initial condition vector then there exists a unique solution x⃗ on I
such that x⃗(to) = x⃗o

3. the general solution has the form x⃗ = x⃗h + x⃗p where x⃗p is a particular solution and x⃗h

is the homogeneous solution is formed by a real linear combination of the fundamental
solution set (x⃗h = c1x⃗1 + c1x⃗1 + · · ·+ cnx⃗n)

The term general solution is intended to indicate that the formula given includes all possible solutions to the
problem. Part (2.) of the theorem indicates that there must be some 1-1 correspondance between a given
initial condition and the choice of the constants c1, c2, . . . , cn with respect to a given fundamental solution
set. Observe that if we define c⃗ = [c1, c2, . . . , cn]

T and the fundamental matrix X = [x⃗1|x⃗2| · · · |x⃗n] we can
express the homogeneous solution via a matrix-vector product:

x⃗h = Xc⃗ = c1x⃗1 + c1x⃗1 + · · ·+ cnx⃗n ⇒ x⃗(t) = X(t)c⃗+ x⃗p(t)

Further suppose that we wish to set x⃗(to) = x⃗o. We need to solve for c⃗:

x⃗o = X(to)c⃗+ x⃗p(to) ⇒ X(to)c⃗ = x⃗o − x⃗p(to)

Since X−1(to) exists we can multiply by the inverse on the right and find

c⃗ = X−1(to)
[
x⃗o − x⃗p(to)

]
Next, place the result above back in the general solution to derive

x⃗(t) = X(t)X−1(to)
[
x⃗o − x⃗p(to)

]
+ x⃗p(t)

We can further simplify this general formula in the constant coefficient case, or in the study of variation of
parameters for systems. Note that in the homogeneous case this gives us a clean formula to calculate the
constants to fit initial data:

x⃗(t) = X(t)X−1(to)x⃗o (homogeneous case)

Example 4.3.13. We found x′ = −y and y′ = x had solutions x(t) = c1 cos(t) + c2 sin(t) and y(t) =

c1 sin(t) − c2 cos(t). It follows that X(t) =

[
cos(t) sin(t)
sin(t) − cos(t)

]
. Calculate that det(X) = −1 to see that

X−1(t) =

[
cos(t) sin(t)
sin(t) − cos(t)

]
. Suppose we want the solution through (a, b) at time to then the solution is

given by

x⃗(t) = X(t)X−1(to)x⃗o =

[
cos(t) sin(t)
sin(t) − cos(t)

] [
cos(to) sin(to)
sin(to) − cos(to)

] [
a
b

]
.

This concludes our brief tour of the theory for systems of ODEs. Clearly we have two main goals past this
point (1.) find the fundamental solution set (2.) find the particular solution.

4.4 solutions by eigenvector

We narrow our focus at this point: our goal is to find nontrivial5 solutions to the homogeneous constant
coefficient problem dx⃗

dt = Ax⃗ where A ∈ R n×n. A reasonable ansatz for this problem is that the solution

5nontrivial simply means the solution is not identically zero. The zero solution does exist, but it is not the solution
we are looking for...
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should have the form x⃗ = eλtu⃗ for some constant scalar λ and some constant vector u⃗. If such solutions
exist then what conditions must we place on λ and u⃗? To begin clearly u⃗ ̸= 0 since we are seeking nontrivial
solutions. Differentiate,

d

dt

[
eλtu⃗

]
=
[
eλt
]
u⃗ = λeλtu⃗

Hence dx⃗
dt = Ax⃗ implies λeλtu⃗ = Aeλtu⃗. However, eλt ̸= 0 hence we find λu⃗ = Au⃗. We can write the vector

λu⃗ as a matrix product with identity matrix I; λu⃗ = λIu⃗. Therefore, we find

(A− λI)u⃗ = 0

to be a necessary condition for the solution. Note that the system of linear equations defined by (A−λI)u⃗ = 0
is consistent since 0 is a solution. It follows that for u⃗ ̸= 0 to be a solution we must have that the matrix
(A− λI) is singular. It follows that we find

det(A− λI) = 0

a necessary condition for our solution. Moreover, for a given matrix A this is nothing more than an n-th
order polynomial in λ hence there are at most n-distinct solutions for λ. The equation det(A − λI) = 0 is
called the characteristic equation of A and the solutions are called eigenvalues. The nontrivial vector
u⃗ such that (A − λI)u⃗ = 0 is called the eigenvector with eigenvalue λ. We often abbreviate these by
referring to ”e-vectors” or ”e-values”. Many interesting theorems are known for eigenvectors, see a linear
algebra text or my linear notes for elaboration on this point.

Definition 4.4.1. eigenvalues and eigenvectors

Suppose A is an n × n matrix then we say λ ∈ C which is a solution of det(A − λI) = 0 is an
eigenvalue of A. Given such an eigenvalue λ a nonzero vector u⃗ such that (A− λI)u⃗ = 0 is called
an eigenvector with eigenvalue λ.

Example 4.4.2. Problem: find the fundamental solutions of the system x′ = −4x− y and y′ = 5x+ 2y

Solution: we seek to solve dx⃗
dt = Ax⃗ where A =

[
−4 −1
5 2

]
. Consider the characteristic equation:

det(A− λI) = det

[
−4− λ −1

5 2− λ

]
= (−4− λ)(2− λ) + 5

= λ2 + 2λ− 3

= (λ+ 3)(λ− 1)

= 0

We find λ1 = 1 and λ2 = −3. Next calculate the e-vectors for each e-value. We seek u⃗1 = [u, v]T such that
(A− I)u⃗1 = 0 thus solve:[

−5 −1
5 1

] [
u
v

]
=

[
0
0

]
⇒ −5u− v = 0 ⇒ v = −5u, u ̸= 0 ⇒ u⃗1 =

[
u

−5u

]
Naturally we can write u⃗1 = u[1,−5]T and for convenience we set u = 1 and find u⃗1 = [1,−5]T which gives

us the fundamental solution x⃗1(t) = et[1,−5]T . Continue6 to the next e-value λ2 = −3 we seek u⃗2 = [u, v]T

such that (A+ 3I)u⃗2 = 0.[
−1 −1
5 5

] [
u
v

]
=

[
0
0

]
⇒ −u− v = 0 ⇒ v = −u, u ̸= 0 ⇒ u⃗2 =

[
u
−u

]
6the upcoming u, v are not the same as those I just worked out, I call these letters disposable variables because

I like to reuse them in several ways in a particular example where we repeat the e-vector calculation over several
e-values.
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Naturally we can write u⃗2 = u[1,−1]T and for convenience we set u = 1 and find u⃗2 = [1,−1]T which gives

us the fundamental solution x⃗2(t) = e−3t[1,−1]T . The fundmental solution set is given by {x⃗1, x⃗2} and the

domains of these solution clearly extend to all of R.

We can assemble the general solution as a linear combination of the fundamental solutions x⃗(t) = c1x⃗1+c2x⃗2.
In particular this yields

x⃗(t) = c1x⃗1 + c2x⃗2 = c1e
t

[
1
−5

]
+ c2e

−3t

[
1
−1

]
=

[
c1e

t + c2e
−3t

−5c1e
t − c2e

−3t

]
Thus the system x′ = −4x− y and y′ = 5x+ 2y has scalar solutions x(t)c1e

t + c2e
−3t and y(t) = −5c1e

t −
c2e

−3t. Finally, a fundamental matrix for this problem is given by

X = [x⃗1|x⃗2] =

[
et e−3t

−5et −e−3t

]
.

Example 4.4.3. Problem: find the fundamental solutions of the system x′ = −3x and y′ = −3y

Solution: we seek to solve dx⃗
dt = Ax⃗ where A =

[
−3 0
0 −3

]
. Consider the characteristic equation:

det(A− λI) = det

[
−3− λ 0

0 −3− λ

]
= (λ+ 3)2 = 0

We find λ1 = −3 and λ2 = −3. Finding the eigenvectors here offers an unusual algebra problem; to find u⃗

with e-value λ = −3 we should find nontrivial solutions of (A + 3I)u⃗ =

[
0 0
0 0

] [
u
v

]
= 0. We find no

condition on u⃗. It follows that any nonzero vector is an eigenvector of A. Indeed, note that A = −3I and
Au⃗ = −3Iu⃗ hence (A+3I)u⃗ = 0. Convenient choices for u⃗ are [1, 0]T and [0, 1]T hence we find fundamental
solutions:

x⃗1(t) = e−3t

[
1
0

]
=

[
e−3t

0

]
& x⃗2(t) = e−3t

[
0
1

]
=

[
0

e−3t

]
.

We can assemble the general solution as a linear combination of the fundamental solutions

x⃗(t) = c1

[
e−3t

0

]
+ c2

[
0

e−3t

]
. Thus the system x′ = −3x and y′ = −3y has scalar solutions

x(t) = c1e
−3t and y(t) = c2e

−3t. Finally, a fundamental matrix for this problem is given by

X = [x⃗1|x⃗2] =

[
e−3t 0
0 e−3t

]
.

Example 4.4.4. Problem: find the fundamental solutions of the system x′ = 3x+ y and y′ = −4x− y

Solution: we seek to solve dx⃗
dt = Ax⃗ where A =

[
3 1
−4 −1

]
. Consider the characteristic equation:

det(A− λI) = det

[
3− λ 1
−4 −1− λ

]
= (λ− 3)(λ+ 1) + 4

= λ2 − 2λ+ 1

= (λ− 1)2

= 0

We find λ1 = 1 and λ2 = 1. Let us find the e-vector u⃗1 = [u, v]T such that (A− I)u⃗1 = 0[
2 1
−4 −2

] [
u
v

]
=

[
0
0

]
⇒ 2u+ v = 0 ⇒ v = −2u, u ̸= 0 ⇒ u⃗1 =

[
u

−2u

]
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We choose u = 1 for convenience and thus find the fundamental solution x⃗1(t) = et
[

1
−2

]
.

Remark 4.4.5.

In the previous example the algebraic multiplicity of the e-value λ = 1 was 2. However, we found
only one LI e-vector. This means the geometric multiplicity for λ = 1 is only 1. This means we
are missing a vector and hence a fundamental solution. Where is x⃗2 which is LI from the x⃗1 we just
found? This question is ultimately answered via the matrix exponential.

Example 4.4.6. Problem: find the fundamental solutions of the system x′ = −y and y′ = 4x

Solution: we seek to solve dx⃗
dt = Ax⃗ where A =

[
0 −1
4 0

]
. Consider the characteristic equation:

det(A− λI) = det

[
−λ −1
4 −λ

]
= λ2 + 4 = 0 ⇒ λ = ±2i.

This e-value is a pure imaginary number which is a special type of complex number where there is no
real part. Careful review of the arguments that framed the e-vector solution reveal that the same calculations
apply when either λ or u⃗ are complex. With this in mind we seek the e-vector for λ = 2i: let us find the
e-vector u⃗1 = [u, v]T such that (A− 2iI)u⃗1 = 0[

−2i −1
4 −2i

] [
u
v

]
=

[
0
0

]
⇒ 2iu− v = 0 ⇒ v = 2iu, u ̸= 0 ⇒ u⃗1 =

[
u
2iu

]
Let u = 1 for convenience and find u⃗1 = [1, 2i]T . We find the fundamental complex solution x⃗:

x⃗ = e2it
[

1
2i

]
=
(
cos(2t) + i sin(2t)

) [ 1
2i

]
=

[
cos(2t) + i sin(2t)

2i cos(2t)− 2 sin(2t)

]
Note: if x⃗ = Re(x⃗) + iIm(x⃗) then it follows that the real and imaginary parts of the complex solution are
themselves real solutions. Why? Because differentiation with respect to t is defined such that:

dx⃗

dt
=

dRe(x⃗)

dt
+ i

dIm(x⃗)

dt

and Ax⃗ = A[Re(x⃗)+ iIm(x⃗)] = ARe(x⃗)+ iA Im(x⃗). However, we know dx⃗/dt = Ax⃗ hence we find, equating
real parts and imaginary parts separately that:

dRe(x⃗)

dt
= ARe(x⃗) &

dIm(x⃗)

dt
= AIm(x⃗)

Hence x⃗1 = Re(x⃗) and x⃗2 = Im(x⃗) give a solution set for the given system. In particular we find the
fundamental solution set

x⃗1(t) =

[
cos(2t)

−2 sin(2t)

]
& x⃗2(t) =

[
sin(2t)
2 cos(2t)

]
.

We can assemble the general solution as a linear combination of the fundamental solutions

x⃗(t) = c1

[
cos(2t)

−2 sin(2t)

]
+ c2

[
sin(2t)
2 cos(2t)

]
. Thus the system x′ = −y and y′ = 4x has scalar solutions

x(t) = c1 cos(2t) + c2 sin(2t) and y(t) = −2c1 sin(2t) + 2c2 cos(2t). Finally, a fundamental matrix for this
problem is given by

X = [x⃗1|x⃗2] =

[
cos(2t) sin(2t)

−2 sin(2t) 2 cos(2t)

]
.
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Example 4.4.7. Problem: find the fundamental solutions of the system x′ = 2x− y and y′ = 9x+ 2y

Solution: we seek to solve dx⃗
dt = Ax⃗ where A =

[
2 −1
9 2

]
. Consider the characteristic equation:

det(A− λI) = det

[
2− λ −1
9 2− λ

]
= (λ− 2)2 + 9 = 0.

Thus λ = 2± 3i. Consider λ = 2 + 3i, we seek the e-vector subject to (A− (2 + 3i)I)u⃗ = 0. Solve:[
−3i −1
9 −3i

] [
u
v

]
=

[
0
0

]
⇒ −3iu− v = 0 ⇒ v = −3iu, u ̸= 0 ⇒ u⃗1 =

[
u

−3iu

]
We choose u = 1 for convenience and thus find the fundamental complex solution

x⃗(t) = e(2+3i)t

[
1

−3i

]
= e2t(cos(3t) + i sin(3t))

[
1

−3i

]
= e2t

[
cos(3t) + i sin(3t)

−3i cos(3t) + 3 sin(3t)

]
Therefore, using the discussion of the last example, we find fundamental real solutions of the system by
selecting real and imaginary parts of the complex solution above:

x⃗1(t) =

[
e2t cos(3t)
3e2t sin(3t)

]
& x⃗2(t) =

[
e2t sin(3t)

−3e2t cos(3t)

]
.

We can assemble the general solution as a linear combination of the fundamental solutions

x⃗(t) = c1

[
e2t cos(3t)
3e2t sin(3t)

]
+ c2

[
e2t sin(3t)

−3e2t cos(3t)

]
. Thus the system x′ = 2x− y and y′ = 9x+ 2y has scalar

solutions x(t) = c1e
2t cos(3t)+ c2e

2t sin(3t) and y(t) = 3c1e
2t sin(3t)− 3c2e

2t cos(3t). Finally, a fundamental
matrix for this problem is given by

X = [x⃗1|x⃗2] =

[
e2t cos(3t) e2t sin(3t)
3e2t sin(3t) −3e2t cos(3t)

]
.

Example 4.4.8. Problem: we seek to solve dx⃗
dt = Ax⃗ where A =

 2 0 0
−1 −4 −1
0 5 2

.
Solution: Begin by solving the characteristic equation:

0 = det(A− λI) = det

 2− λ 0 0
−1 −4− λ −1
0 5 2− λ


= (2− λ)

[
(λ− 2)(λ+ 4) + 5

]
= (2− λ)(λ− 1)(λ+ 3).

Thus λ1 = 1, λ2 = 2 and λ3 = −3. We seek u⃗1 = [u, v, w]T such that (A− I)u⃗1 = 0: 1 0 0
−1 −5 −1
0 5 1

 u
v
w

 =

 0
0
0

 ⇒ u = 0
5v + w = 0

⇒ u = 0
w = −5v

⇒ u⃗1 = v

 0
1
−5

 .

Choose v = 1 for convenience and find u⃗1 = [0, 1,−5]T . Next, seek u⃗2 = [u, v, w]T such that (A− 2I)u⃗2 = 0: 0 0 0
−1 −6 −1
0 5 0

 u
v
w

 =

 0
0
0

 ⇒ −u− 6v − w = 0
v = 0

⇒ v = 0
w = −u

⇒ u⃗2 = u

 1
0
−1

 .
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Choose u = 1 for convenience and find u⃗2 = [1, 0,−1]T . Last, seek u⃗3 = [u, v, w]T such that (A+ 3I)u⃗3 = 0: 5 0 0
−1 −1 −1
0 5 5

 u
v
w

 =

 0
0
0

 ⇒ 5u = 0
5v + 5w = 0

⇒ u = 0
w = −v

⇒ u⃗3 = v

 0
1
−1

 .

Choose v = 1 for convenience and find u⃗3 = [0, 1,−1]T . The general solution follows:

x⃗(t) = c1e
t

 0
1
−5

+ c2e
2t

 1
0
−1

+ c3e
−3t

 0
1
−1

 .

The fundamental solutions and the fundamental matrix for the system above are given as follows:

x⃗1(t) =

 0
et

−5et

 , x⃗2(t) =

 e2t

0
−e2t

 , x⃗3(t) =

 0
e−3t

−e−3t

 , X(t) =

 0 e2t 0
et 0 e−3t

−5et −e2t −e−3t

 .

Example 4.4.9. we seek to solve dx⃗
dt = Ax⃗ where A =

 2 0 0
0 2 0
1 0 3

.
Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 2− λ 0 0
0 2− λ 0
1 0 3− λ

 = (2− λ)(2− λ)(3− λ) = 0.

Thus λ1 = 2, λ2 = 2 and λ3 = 3. We seek u⃗1 = [u, v, w]T such that (A− 2I)u⃗1 = 0: 0 0 0
0 0 0
1 0 1

 u
v
w

 =

 0
0
0

 ⇒ u+ w = 0
v free

⇒ v free
w = −u

⇒ u⃗1 =

 u
v
−u

 .

There are two free variables in the solution above and it follows we find two e-vectors. A convenient choice
is u = 1 and v = 0 or u = 0 and v = 1; u⃗1 = [1, 0,−1]T and u⃗2 = [0, 1, 0]T . Next, seek u⃗3 = [u, v, w]T such
that (A− 3I)u⃗3 = 0 −1 0 0

0 −1 0
1 0 0

 u
v
w

 =

 0
0
0

 ⇒
u = 0
v = 0

w free
⇒ u⃗3 = w

 0
0
1

 .

Choose w = 1 for convenience to find u⃗3 = [0, 0, 1]T . The general solution follows:

x⃗(t) = c1e
2t

 1
0
−1

+ c2e
2t

 0
1
0

+ c3e
−3t

 0
0
1

 .

The fundamental solutions and the fundamental matrix for the system above are given as follows:

x⃗1(t) =

 e2t

0
−e2t

 , x⃗2(t) =

 0
e2t

0

 , x⃗3(t) =

 0
0

e−3t

 , X(t) =

 e2t 0 0
0 e2t 0

−e2t 0 e−3t

 .
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Example 4.4.10. we seek to solve dx⃗
dt = Ax⃗ where A =

 2 1 0
0 2 0
1 −1 3

.
Solution: Begin by solving the characteristic equation:

det

 2− λ 1 0
0 2− λ 0
1 −1 3− λ

 = (2− λ)2(3− λ) = 0.

Thus λ1 = 2, λ2 = 2 and λ3 = 3. We seek u⃗1 = [u, v, w]T such that (A− 2I)u⃗1 = 0: 0 1 0
0 0 0
1 −1 1

 u
v
w

 =

 0
0
0

 ⇒ v = 0
u+ w = 0

⇒ v = 0
w = −u

⇒ u⃗1 =

 u
0
−u

 .

Choose u = 1 to select u⃗1 = [1, 0,−1]T . Next find u⃗2 such that (A− 3I)u⃗2 = 0 −1 1 0
0 −1 0
1 −1 0

 u
v
w

 =

 0
0
0

 ⇒
−u+ v = 0
−v = 0
w free

⇒
u = 0
v = 0

w free
⇒ u⃗2 =

 0
0
w

 .

Choose w = 1 to find u⃗2 = [0, 0, 1]T . We find two fundamental solutions from the e-vector method:

x⃗1(t) = e2t

 1
0
−1

 & x⃗1(t) = e3t

 0
0
1

 .

We cannot solve the system at this juncture since we are missing the third fundamental solution x⃗3. In the
next section we will find the missing solution via the generalized e-vector/ matrix exponential method.

Example 4.4.11. we seek to solve dx⃗
dt = Ax⃗ where A =

 7 0 0
0 7 0
0 0 7

.
Solution: Begin by solving the characteristic equation:

det

 7− λ 0 0
0 7− λ 0
0 0 7− λ

 = (7− λ)3 = 0.

Thus λ1 = 7, λ2 = 7 and λ3 = 7. The e-vector equation in this case is easy to solve; since A−7I = 7I−7I = 0
it follows that (A− 7I)u⃗ = 0 for all u⃗ ∈ R3. Therefore, any nontrivial vector is an eigenvector with e-value
7. A natural choice is u⃗1 = [1, 0, 0]T , u⃗2 = [0, 1, 0]T and u⃗3 = [0, 0, 1]T . Thus,

x⃗(t) = c1e
7t

 1
0
0

+ c2e
7t

 0
1
0

+ c3e
7t

 0
0
1

 = e7t

 c1
c2
c3

 .
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Example 4.4.12. we seek to solve dx⃗
dt = Ax⃗ where A =

 −2 0 0
4 −2 0
1 0 −2

.
Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 −2− λ 0 0
4 −2− λ 0
1 0 −2− λ

 = −(λ+ 2)3 = 0.

Thus λ1 = −2, λ2 = −2 and λ3 = −2. We seek u⃗1 = [u, v, w]T such that (A+ 2I)u⃗1 = 0: 0 0 0
4 0 0
1 0 0

 u
v
w

 =

 0
0
0

 ⇒
u = 0
v free
w free

⇒ u⃗1 =

 0
v
w

 .

Choose v = 1, w = 0 to select u⃗1 = [0, 1, 0]T and v = 0, w = 1 to select u⃗2 = [0, 0, 1]T . Thus we find
fundamental solutions:

x⃗1(t) = e−2t

 0
1
0

 & x⃗2(t) = e−2t

 0
0
1

 .

We cannot solve the system at this juncture since we are missing the third fundamental solution x⃗3. In the
next section we will find the missing solution via the generalized e-vector/ matrix exponential method.

Example 4.4.13. we seek to solve dx⃗
dt = Ax⃗ where A =

 2 1 −1
−3 −1 1
9 3 −4

.
Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 2− λ 1 −1
−3 −1− λ 1
9 3 −4− λ


= (2− λ)[(λ+ 1)(λ+ 4)− 3]− [3(λ+ 4)− 9]− [−9 + 9(λ+ 1)]

= (2− λ)[λ2 + 5λ+ 1]− 3λ− 3− 9λ

= −λ3 − 5λ2 − λ+ 2λ2 + 10λ+ 2− 12λ− 3

= −λ3 − 3λ2 − 3λ− 1

= −(λ+ 1)3

Thus λ1 = −1, λ2 = −1 and λ3 = −1. We seek u⃗1 = [u, v, w]T such that (A+ I)u⃗1 = 0: 3 1 −1
−3 0 1
9 3 −3

 u
v
w

 =

 0
0
0

 ⇒ 3u+ v − w = 0
−3u+ w = 0

⇒ w = 3u
v = w − 3u = 0

⇒ u⃗1 =

 u
0
3u

 .

Choose u = 1 to select u⃗1 = [1, 0, 3]T . We find just one fundamental solution: x⃗1 = e−t[1, 0, 3]T . We

cannot solve the problem in it’s entirety with our current methods. In the section that follows we find the
missing pair of solutions.

Example 4.4.14. we seek to solve dx⃗
dt = Ax⃗ where A =

 0 1 0
0 0 1
1 −1 1

.
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Solution: Begin by solving the characteristic equation:

det(A− λI) = det

 −λ 1 0
0 −λ 1
1 −1 1− λ


= −λ[λ(λ− 1) + 1] + 1

= −λ3 + λ2 − λ+ 1

= −λ2(λ− 1)− (λ− 1)

= (1− λ)(λ2 + 1)

Thus λ1 = 1, λ2 = i and λ3 = −i. We seek u⃗1 = [u, v, w]T such that (A− I)u⃗1 = 0: −1 1 0
0 −1 1
1 −1 0

 u
v
w

 =

 0
0
0

 ⇒ −u+ v = 0
−v + w = 0

⇒ v = u
w = v

⇒ u⃗1 =

 u
u
u

 .

Choose u = 1 thus select u⃗1 = [1, 1, 1]T . Now seek u⃗2 such that (A− iI)u⃗2 = 0 −i 1 0
0 −i 1
1 −1 1− i

 u
v
w

 =

 0
0
0

 ⇒
v = iu

w = iv = i(iu) = −u
(i− 1)w = u− v

⇒ u⃗2 =

 u
iu
−u

 .

Set u = 1 to select the following complex solution:

x⃗(t) = eit

 1
i
−1

 =

 eit

ieit

−eit

 =

 cos(t) + i sin(t)
i cos(t)− sin(t)
− cos(t)− i sin(t)

 =

 cos(t)
− sin(t)
− cos(t)

+ i

 sin(t)
cos(t)
− sin(t)

 .

We select the second and third solutions by taking the real and imaginary parts of the above complex solution;
x⃗2(t) = Re(x⃗(t)) and x⃗3(t) = Im(x⃗(t)). The general solution follows:

x⃗(t) = c1e
t

 1
1
1

+ c2

 cos(t)
− sin(t)
− cos(t)

+ c3

 sin(t)
cos(t)
− sin(t)

 .

The fundamental solution set and fundamental matrix of the example above are simply:

x⃗1 =

 et

et

et

 , x⃗2 =

 cos(t)
− sin(t)
− cos(t)

 , x⃗3 =

 sin(t)
cos(t)
− sin(t)

 & X =

 et cos(t) sin(t)
et − sin(t) cos(t)
et − cos(t) − sin(t)





4.5. SOLUTIONS BY MATRIX EXPONENTIAL 147

4.5 solutions by matrix exponential

Recall the Maclaurin series for the exponential is given by:

et =

∞∑
j=o

tj

j!
= 1 + t+

1

2
t2 +

1

6
t3 + · · ·

This provided the inspiration for the definition given below7

Definition 4.5.1. matrix exponential

Suppose A is an n× n matrix then we define the matrix exponential of A by:

eA =

∞∑
j=0

Aj

j!
= I +A+

1

2
A2 +

1

6
A3 + · · ·

Suppose A = 0 is the zero matrix. Note that

e0 = I + 0 +
1

2
02 + · · · = I.

Furthermore, as (−A)j = (−1)jAj it follows that e−A = I −A+ 1
2A

2 − 1
6A

3 + · · · . Hence,

eAe−A =

(
I +A+

1

2
A2 +

1

6
A3 + · · ·

)(
I −A+

1

2
A2 − 1

6
A3 + · · ·

)
= I −A+

1

2
A2 − 1

6
A3 + · · ·+A

(
I −A+

1

2
A2 + · · ·

)
+

1

2
A2

(
I −A+ · · ·

)
+

1

6
A3I + · · ·

= I +A−A+
1

2
A2 −A2 +

1

2
A2 − 1

6
A3 +

1

2
A3 − 1

2
A3 +

1

6
A3 + · · ·

= I.

I have only shown the result up to the third-order in A, but you can verify higher orders if you wish. We
find an interesting result:

(eA)−1 = e−A ⇒ det(eA) ̸= 0 ⇒ columns of A are LI.

Noncommutativity of matrix multiplication spoils the usual law of exponents. Let’s examine how this
happens. Suppose A,B are square matrices. Calculate eA+B to second order in A,B:

eA+B = I + (A+B) +
1

2
(A+B)2 + · · · = I +A+B +

1

2

(
A2 +AB +BA+B2

)
+ · · ·

On the other hand, calculate the product eAeB to second order in A,B,

eAeB = (I +A+
1

2
A2 + · · · )(I +B +

1

2
B2 + · · · ) = I +A+B +

1

2

(
A2 + 2AB +B2

)
+ · · ·

We find that, to second order, eAeB − eA+B = 1
2 (AB − BA). Define the commutator [A,B] = AB − BA

and note (after a short calculation)

eAeB = eA+B+ 1
2 [A,B]+···

7the concept of an exponential actually extends in much more generality than this, we could derive this from more
basic and general principles, but that has little to do with this course so we behave. In addition, the reason the series
of matrices below converges is not immediately obvious, see my linear notes for a sketch of the analysis needed here
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When A,B are commuting matrices the commutator [A,B] = AB −BA = AB −AB = 0 hence the usual
algebra eAeB = eA+B applies. It turns out that the higher-order terms in the boxed formula above can be
written as nested-commutators of A and B. This formula is known as the Baker-Campbell-Hausdorff, it is
the essential calculation in the theory of matrix Lie groups (which is the math used to formulate important
symmetry aspects of modern physics).

Let me pause8 to give a better proof that AB = BA implies eAeB = eA+B . The heart of the argument follows
from the fact the binomial theorem holds for (A + B)k in this context. I seek to prove by mathematical

induction on k that (A + B)k =
∑k

n=0

(
k
n

)
Ak−nBn. Note k = 1 is clearly true as

(
1
0

)
=
(
1
1

)
= 1 and

(A+B)1 = A+B. Assume inductively the binomial theorem holds for k and seek to prove k + 1 true:

(A+B)k+1 = (A+B)k(A+B)

=

( k∑
n=0

(
k

n

)
Ak−nBn

)
(A+B) : by induction hypothesis

=

k∑
n=0

(
k

n

)
Ak−nBnA+

k∑
n=0

(
k

n

)
Ak−nBnB

=

k∑
n=0

(
k

n

)
Ak−nABn +

k∑
n=0

(
k

n

)
Ak−nBn+1 : AB = BA implies BnA = ABn

=

k∑
n=0

(
k

n

)
Ak+1−nBn +

k∑
n=0

(
k

n

)
Ak−nBn+1

Continuing,

(A+B)k+1 = Ak+1 +

k∑
n=1

(
k

n

)
Ak+1−nBn +

k−1∑
n=0

(
k

n

)
Ak−nBn+1 +Bk+1

= Ak+1 +

k∑
n=1

(
k

n

)
Ak+1−nBn +

k∑
n=1

(
k

n− 1

)
Ak+1−nBn +Bk+1

= Ak+1 +

k∑
n=1

[(
k

n

)
+

(
k

n− 1

)]
Ak+1−nBn +Bk+1

= Ak+1 +

k∑
n=1

(
k + 1

n

)
Ak+1−nBn +Bk+1 : by Pascal’s Triangle

=

k+1∑
n=0

(
k + 1

n

)
Ak+1−nBn

Which completes the induction step and we find by mathematical induction the binomial theorem for com-
muting matrices holds for all k ∈ N . Consider the matrix expontial formula in light of the binomial theorem,

8you may skip ahead if you are not interested in how to make arguments precise, in fact, even this argument has
gaps, but I include it to give the reader some idea about what is missing when we resort to + · · · -style induction
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also recall
(
k+1
n

)
= k!

n!(k−n)! ,

eA+B =

∞∑
k=0

1

k!
(A+B)k

=

∞∑
k=0

k∑
n=0

1

k!

k!

n!(k − n)!
Ak−nBn

=

∞∑
k=0

k∑
n=0

1

n!

1

(k − n)!
Ak−nBn

=

∞∑
k=0

k∑
n=0

1

n!

1

(k − n)!
Ak−nBn

On the other hand, if we compute the product of eA with eB we find:

eAeB =

∞∑
j=0

1

j!
Aj

∞∑
n=0

1

n!
Bn =

∞∑
j=0

∞∑
n=0

1

n!

1

j!
AjBn

It follows9 that eAeB = eA+B . We use this result implicitly in much of what follows in this section.

Suppose A is a constant n× n matrix. Calculate10

d
dt

[
exp(tA)

]
= d

dt

[ ∞∑
k=0

1
k! t

kAk

]
defn. of matrix exponential

=

∞∑
k=0

d
dt

[
1
k! t

kAk
]

since matrix exp. uniformly conv.

=

∞∑
k=0

k
k! t

k−1Ak Ak constant and d
dt (t

k) = ktk−1

= A

∞∑
k=1

1
(k−1)! t

k−1Ak−1 since k! = k(k − 1)! and Ak = AAk−1.

= Aexp(tA) defn. of matrix exponential.

I suspect the following argument is easier to follow:

d
dt (exp(tA)) = d

dt (I + tA+ 1
2 t

2A2 + 1
3! t

3A3 + · · · )
= d

dt (I) +
d
dt (tA) +

1
2

d
dt (t

2A2) + 1
3·2

d
dt (t

3A3) + · · ·
= A+ tA2 + 1

2 t
2A3 + · · ·

= A(I + tA+ 1
2 t

2A2 + · · · )
= Aexp(tA). □

Whichever notation you prefer, the calculation above completes the proof of the following central theorem
for this section:

Theorem 4.5.2.

9after some analytical arguments beyond this course; what is missing is an explicit examination of the infinite
limits at play here, the doubly infinite limits seem to reach the same terms but the structure of the sums differs

10the term-by-term differentiation theorem for power series extends to a matrix power series, the proof of this
involves real analysis
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Suppose A ∈ Rn×n. The matrix exponential etA gives a fundamental matrix for dx⃗
dt = Ax⃗.

Proof: we have already shown that (1.) etA is a solution matrix ( d
dt [e

tA] = AetA) and (2.) (etA)−1 = e−tA

thus the columns of etA are LI. □

It follows that the general solution of dx⃗
dt = Ax⃗ is simply x⃗(t) = etAc⃗ where c⃗ = [c1, c2, . . . , cn]

T determines
the initial conditions of the solution. In theory this is a great formula, we’ve solved most of the problems we
set-out to solve. However, more careful examination reveals this result is much like the result from calculus;
any continuous function is integrable. Ok, so f continuous on an interval I implies F exists on I and F ′ = f ,
but... how do you actually calculate the antiderivative F? It’s possible in principle, but in practice the
computation may fall outside the computation scope of the techniques covered in calculus11.

Example 4.5.3. Suppose x′ = x, y′ = 2y, z′ = 3z then in matrix form we have: x
y
z

′

=

 1 0 0
0 2 0
0 0 3

 x
y
z


The coefficient matrix is diagonal which makes the k-th power particularly easy to calculate,

Ak =

 1 0 0
0 2 0
0 0 3

k

=

 1 0 0
0 2k 0
0 0 3k


⇒ exp(tA) =

∞∑
k=0

tk

k!

 1 0 0
0 2k 0
0 0 3k

 =


∑∞

k=0
tk

k! 1
k 0 0

0
∑∞

k=0
tk

k! 2
k 0

0 0
∑∞

k=0
tk

k! 3
k


⇒ exp(tA) =

 et 0 0
0 e2t 0
0 0 e3t


Thus we find three solutions to x′ = Ax,

x1(t) =

 et

0
0

 x2(t) =

 0
e2t

0

 x3(t) =

 0
0
e3t


In turn these vector solutions amount to the solutions x = et, y = 0, z = 0 or x = 0, y = e2t, z = 0 or
x = 0, y = 0, z = e3t. It is easy to check these solutions.

Of course the example above is very special. In order to unravel the mystery of just how to calculate the
matrix exponential for less trivial matrices we return to the construction of the previous section. Let’s see
what happens when we calculate etAu⃗ for u⃗ and e-vector with e-value λ.

etAu⃗ = et(A−λI+λI)u⃗ : added zero anticipating use of (A− λI)u⃗ = 0,

= etλI+t(A−λI)u⃗

= etλIet(A−λI)u⃗ : noted that tλI commutes with t(A− λI),

= etλIet(A−λI)u⃗ : a short exercise shows etλI = etλI.

= etλ
(
I + t(A− λI) +

t2

2
t(A− λI)2 + · · ·

)
u⃗

= etλ
(
Iu⃗+ t(A− λI)u⃗+

t2

2
t(A− λI)2u⃗+ · · ·

)
= etλu⃗ : as it was given (A− λI)u⃗ = 0 hence all but the first term vanishes.

11for example,
∫ sin(x)dx

x
or

∫
e−x2

dx are known to by incalculable in terms of elementary functions
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The fact that this is a a solution of x⃗ ′ = Ax⃗ was already known to us, however, it is nice to see it arise
from the matrix exponential. Moreover the calculation above reveals the central formula that guides the
technique of this section. The magic formula. For any square matrix and possibly constant λ we find:

etA = etλ
(
I + t(A− λI) +

t2

2
(A− λI)2 + · · ·

)
= etλ

∞∑
k=0

tk

k!
(A− λI)k.

When we choose λ as an e-value and multiply this formula by the corresponding e-vector then this infinite
series truncates nicely to reveal eλtu⃗. It follows that we should define vectors which truncate the series at
higher order, this is the natural next step:

Definition 4.5.4. generalized eigenvectors and chains of generalized e-vectors

Given an eigenvalue λ a nonzero vector u⃗ such that (A − λI)pu⃗ = 0 is called an generalized
eigenvector of order p with eigenvalue λ. If u⃗1, u⃗2, . . . , u⃗p are nonzero vectors such that
(A−λI)u⃗j = u⃗j−1 for j = 2, 3, . . . , p and u⃗1 is an e-vector with e-value λ then we say {u⃗1, u⃗2, . . . , u⃗p}
forms a chain of generalized e-vectors of length p.

In the notation of the definition above, it is true that u⃗k is a generalized e-vector of order k with e-value λ.
Let’s examine k = 2,

(A− λI)u⃗2 = u⃗1 ⇒ (A− λI)2u⃗2 = (A− λI)u⃗1 = 0.

Then suppose inductively the claim is true for k which means (A− λI)ku⃗k = 0, consider k + 1

(A− λI)u⃗k+1 = u⃗k ⇒ (A− λI)k+1u⃗k+1 = (A− λI)ku⃗k = 0.

Hence, in terms of the notation in the definition above, we have shown by mathematical induction that u⃗k

is a generalized e-vector of order k with e-value λ.

I do not mean to claim this is true for all k ∈ N. In practice for an n × n matrix we cannot find a chain
longer than length n. However, up to that bound such chains are possible for an arbitrary matrix.
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Example 4.5.5. The matrices below are in Jordan form which means the vectors e1 = [1, 0, 0, 0, 0]T etc...
e5 = [0, 0, 0, 0, 1]T are (generalized)-e-vectors:

A =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 3 1
0 0 0 0 3

 & B =


4 1 0 0 0
0 4 0 0 0
0 0 5 0 0
0 0 0 6 0
0 0 0 0 6


You can easily calculate (A−2I)e1 = 0, (A−2I)e2 = e1, (A−2I)e3 = e2 or (A−3I)e4 = 0, (A−2I)e5 = e4.
On the other hand, (B−4I)e1 = 0, (B−4I)e2 = e1 and (A−5I)e3 = 0 and (A−6I)e4 = 0, (A−6I)e5 = 0.
The matrix B needs only one generalized e-vector whereas the matrix A has 3 generalized e-vectors.

Let’s examine why chains are nice for the magic formula:

Example 4.5.6. Problem: Suppose A is a 3× 3 matrix with a chain of generalized e-vector u⃗1, u⃗2, u⃗3 with
respect to e-value λ = 2. Solve dx⃗

dt = Ax⃗ in view of these facts.

Solution: we are given (A− 2I)u⃗1 = 0 and (A− 2I)u⃗2 = u⃗1 and (A− 2I)u⃗3 = u⃗2. It is easily shown that
(A− 2I)2u⃗2 = 0 and (A− 2I)3u⃗3 = 0. It is also possible to prove {u⃗1, u⃗2, u⃗3} is a LI set. Apply the magic
formula with λ = 2 to derive the following results:

1. x⃗1(t) = etAu⃗1 = e2tu⃗1 (we’ve already shown this in general earlier in this section)

2. x⃗2(t) = etAu⃗2 = e2t
(
Iu⃗2 + t(A− 2I)u⃗2 +

t2

2 (A− 2I)2u⃗2 + · · ·
)
= e2t(u⃗2 + tu⃗1).

3. note that (A− 2I)2u⃗3 = (A− 2I)u⃗2 = u⃗1 hence:

x⃗3(t) = etAu⃗3 = e2t
(
Iu⃗3 + t(A− 2I)u⃗3 +

t2

2
(A− 2I)2u⃗3 + · · ·

)
= e2t(u⃗3 + tu⃗2 +

t2

2
u⃗1).

Therefore, x⃗(t) = c1e
2tu⃗1 + c2e

2t(u⃗2 + tu⃗1) + c3e
2t(u⃗3 + tu⃗2 +

t2

2
u⃗1) is the general solution.

Perhaps it is interesting to calculate etA[u⃗1|u⃗2|u⃗3] in view of the calculations in the example above. Observe:

etA[u⃗1|u⃗2|u⃗3] = [etAu⃗1|etAu⃗2|etAu⃗3] = e2t
[
u⃗1

∣∣∣∣u⃗2 + tu⃗1

∣∣∣∣u⃗3 + tu⃗2 +
t2

2
u⃗1

]
.

I suppose we could say more about this formula, but let’s get back on task: we seek to complete the solution
of the unsolved problems of the previous section. It is our hope that we can find generalized e-vector solutions
to complete the fundamental solution sets in Examples 4.4.4, 4.4.10,4.4.12 and 4.4.13.

Example 4.5.7. Problem: (returning to Example 4.4.4) solve dx⃗
dt = Ax⃗ where A =

[
3 1
−4 −1

]
Solution: we found λ1 = 1 and λ2 = 1 and a single e-vector u⃗1 =

[
1
−2

]
. Now seek a generalized e-vector

u⃗2 = [u, v]T such that (A− I)u⃗2 = u⃗1,[
2 1
−4 −2

] [
u
v

]
=

[
1
−2

]
⇒ 2u+ v = 1 ⇒ v = 1− 2u, u ̸= 0 ⇒ u⃗1 =

[
u

1− 2u

]
We choose u = 0 for convenience and thus find u⃗2 = [0, 1]T hence the fundamental solution

x⃗2(t) = etAu⃗2 = et(I + t(A− I) + · · · )u⃗2 = et(u⃗2 + tu⃗1) = et
[

t
1− 2t

]
.

Therefore, we find x⃗(t) = c1e
t

[
1
−2

]
+ c2e

t

[
t

1− 2t

]
.
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Example 4.5.8. Problem: (returning to Example 4.4.10) solve dx⃗
dt = Ax⃗ where

A =

 2 1 0
0 2 0
1 −1 3

.
Solution: we found λ1 = 2, λ2 = 2 and λ3 = 3 and we also found e-vector u⃗1 = [1, 0,−1]T with e-value 2
and e-vector u⃗2 = [0, 0, 1]T . Seek u⃗3 such that (A − 2I)u⃗3 = u⃗1 since we are missing a solution paired with
λ2 = 2. 0 1 0

0 0 0
1 −1 1

 u
v
w

 =

 1
0
−1

 ⇒ v = 1
u− 1 + w = −1

⇒ v = 1
w = −u

⇒ u⃗1 =

 u
1
−u

 .

Choose u = 0 to select u⃗1 = [0, 1, 0]T . It follows from the magic formula that x⃗3(t) = etAu⃗3 = e2t(u⃗3 + tu⃗1).
Hence, the general solution is

x⃗(t) = c1e
2t

 1
0
−1

+ c2e
3t

 0
0
1

+ c3e
2t

 t
1
−t

 .

Once more we found a generalized e-vector of order two to complete the solution set and find x⃗3 in the
example above. You might notice that had we replaced the choice u = 0 in both of the last examples
with some nonzero u then we would have added a copy of x⃗1 to the generalized e-vector solution. This is
permissable since the sum of solutions to the system x⃗ ′ = Ax⃗ is once more a solution. This freedom works
hand-in-hand with the ambiguity of the generalized e-vector problem.

Example 4.5.9. Problem: (returning to Example 4.4.12) we seek to solve dx⃗
dt = Ax⃗ where A = −2 0 0

4 −2 0
1 0 −2

.
Solution: We already found λ1 = −2, λ2 = −2 and λ3 = −2 and a pair of e-vectors u⃗1 = [0, 1, 0]T and
v = 0, w = 1 to select u⃗2 = [0, 0, 1]T . We face a dilemma, should we look for a chain that ends with
u⃗1 = [0, 1, 0]T or u⃗2 = [0, 0, 1]T ? Generally it may not be possible to do either. Thus, we set aside the chain
condition and instead look for directly for solutions of (A+ 2I)2u⃗3 = 0.

(A+ 2I)2 =

 0 0 0
4 0 0
1 0 0

 0 0 0
4 0 0
1 0 0

 =

 0 0 0
0 0 0
0 0 0


Since we seek u⃗3 which forms a LI set with u⃗1, u⃗2 it is natural to choose u⃗3 = [1, 0, 0]T . Calculate,

x⃗3(t) = etAu⃗3 = e−2t(Iu⃗3 + t(A+ 2I)u⃗3 +
t2

2
(A+ 2I)2u⃗3 + · · · ) (4.1)

= e−2t

 1
0
0

+ t

 0 0 0
4 0 0
1 0 0

 1
0
0


= e−2t

 1
4t
t


Thus we find the general solution:

x⃗(t) = c1e
−2t

 0
1
0

+ c2e
−2t

 0
0
1

+ c3e
−2t

 1
4t
t

 .
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I leave the complete discussion of the chains in the subtle case above for the second course on linear alge-
bra. See Insel Spence and Friedberg’s Linear Algebra text for an accessible treatment aimed at advanced
undergraduates.

Example 4.5.10. Problem: (returning to Example 4.4.13) we seek to solve dx⃗
dt = Ax⃗ where A = 2 1 −1

−3 −1 1
9 3 −4

.
Solution: we found λ1 = −1, λ2 = −1 and λ3 = −1 and a single e-vector u⃗1 = [1, 0, 3]T . Seek u⃗2 such that
(A+ I)u⃗2 = u⃗1, 3 1 −1

−3 0 1
9 3 −3

 u
v
w

 =

 1
0
3

 ⇒ 3u+ v − w = 1
−3u+ w = 0

⇒ w = 3u
v = w − 3u+ 1

⇒ u⃗2 =

 0
1
0

 .

where we set u = 0 for convenience. Continuing, we seek u⃗3 where (A+ I)u⃗3 = u⃗2, 3 1 −1
−3 0 1
9 3 −3

 u
v
w

 =

 0
1
0

 ⇒ 3u+ v − w = 0
−3u+ w = 1

⇒ w = 1 + 3u
v = w − 3u

⇒ w = 1 + 3u
v = 1

Choose u = 0 to select u⃗3 = [0, 1, 1]T . Given the algebra we’ve completed we know that

(A+ I)u⃗1 = (A+ I)2u⃗2 = (A+ I)3u⃗3 = 0, (A+ I)u⃗2 = u⃗1, (A+ I)u⃗3 = u⃗2, (A+ I)2u⃗3 = u⃗1

These identities paired with the magic formula with λ = −1 yield:

etAu⃗1 = e−tu⃗1 & etAu⃗2 = e−t(u⃗2 + tu⃗1) & etAu⃗3 = e−t(u⃗3 + tu⃗2 +
t2

2
u⃗1)

Therefore, we find general solution:

x⃗(t) = c1e
−t

 1
0
3

+ c2e
−t

 t
1
3t

+ c3e
−t

 0

1 + t+ t2

2

1 + t2

2

 .

The method we’ve illustrated extends naturally to the case of repeated complex e-values where there are
insufficient e-vectors to form the general solution.

Example 4.5.11. Problem: Suppose A is a 6 × 6 matrix with a chain of generalized e-vector u⃗1, u⃗2, u⃗3

with respect to e-value λ = 2 + i. Solve dx⃗
dt = Ax⃗ in view of these facts.

Solution: we are given (A − (2 + i)I)u⃗1 = 0 and (A − (2 + i)I)u⃗2 = u⃗1 and (A − (2 + i)I)u⃗3 = u⃗2. It is
easily shown that (A− (2 + i)I)2u⃗2 = 0 and (A− (2 + i)I)3u⃗3 = 0. It is also possible to prove {u⃗1, u⃗2, u⃗3} is
a LI set. Apply the magic formula with λ = (2 + i) to derive the following results:

1. x⃗1(t) = etAu⃗1 = e(2+i)tu⃗1 (we’ve already shown this in general earlier in this section)

2. x⃗2(t) = etAu⃗2 = e(2+i)t
(
Iu⃗2 + t(A− (2 + i)I)u⃗2 +

t2

2 (A− (2 + i)I)2u⃗2 + · · ·
)
= e(2+i)t(u⃗2 + tu⃗1).

3. note that (A− (2 + i)I)2u⃗3 = (A− (2 + i)I)u⃗2 = u⃗1 hence:

x⃗3(t) = etAu⃗3 = e(2+i)t
(
Iu⃗3+ t(A− (2+ i)I)u⃗3+

t2

2
(A− (2+ i)I)2u⃗3+ · · ·

)
= e(2+i)t(u⃗3+ tu⃗2+

t2

2
u⃗1).

The solutions x⃗1(t), x⃗2(t) and x⃗3(t) are complex-valued solutions. To find the real solutions we select the
real and imaginary parts to form the fundamental solution set

{Re(x⃗1), Im(x⃗1), Re(x⃗2), Im(x⃗2), Re(x⃗3), Im(x⃗3)}

I leave the explicit formulas to the reader, it is very similar to the case we treated in the last section for the
complex e-vector problem.
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Suppose A is idempotent or order k then Ak−1 ̸= I and Ak = I. In this case the matrix exponential
simplifies:

etA = I + tA+
t2

2
A2 + · · ·+ tk−1

(k − 1)!
Ak−1 +

(
tk

k!
+

tk+1

(k + 1)!
+ · · ·

)
I

However, tk

k! +
tk+1

(k+1)! + · · · = et−1− t− t2

2 −· · ·− tk−1

(k−1)! hence we can calculate etA nicely in such a case. On

the other hand, if the matrix A is nilpotent of order k then Ak−1 ̸= 0 and Ak = 0. Once again, the matrix
exponential simplifies:

etA = I + tA+
t2

2
A2 + · · ·+ tk−1

(k − 1)!
Ak−1

Therefore, if A is nilpotent then we can calculate the matrix exponential directly without too much trouble...
of course this means we can solve x⃗ ′ = Ax⃗ without use of the generalized e-vector method.

Finally, I conclude this section with a few comments about direct computation via the Cayley Hamilton
Theorem (this is proved in an advanced linear algebra course)

Theorem 4.5.12.

If A ∈ Rn×n and p(λ) = det(A− λI) = 0 is the characteristic equation then p(A) = 0.

Note that if p(x) = x2 + 3 then p(A) = A2 + 3I.

Example 4.5.13. Problem: solve the system given in Example 4.4.13) by applying the Cayley

Hamilton Theorem to A =

 2 1 −1
−3 −1 1
9 3 −4

.
Solution: we found p(λ) = −(λ− 1)3 = 0 hence −(A− I)3 = 0. Consider the magic formula:

etA = et(I + t(A− I) +
t2

2
(A− I)2 +

t3

3!
(A− I)3 + · · · ) = et(I + t(A− I) +

t2

2
(A− I)2)

Calculate,

A− I =

 1 1 −1
−3 −2 1
9 3 −5

 & (A− I)2 =

 −11 −4 5
12 2 −4
−45 −12 19


Therefore,

etA = et

 1 + t− 11t2

2 t− 2t2 −t+ 5t2

2
−3t+ 6t2 1− 2t+ t2 t− 2t2

9t− 45t2

2 3t− 6t2 1− 5t− 19t2

2


The general solution is given by x⃗(t) = etAc⃗.

There are certainly additional short-cuts and deeper understanding that stem from a working knowledge
of full-fledged linear algebra, but, I hope I have shown you more than enough in these notes to solve any
constant-coefficient system x⃗ ′ = Ax⃗. It turns out there are always enough generalized e-vectors to complete
the solution. The existence of the basis made of generalized e-vectors (called a Jordan basis) is a deep
theorem of linear algebra. It is often, sadly, omitted from undergraduate linear algebra texts. The pair of
examples below illustrate some of the geometry behind the calculations of this section.

Example 4.5.14. Consider for example, the system

x′ = x+ y, y′ = 3x− y
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We can write this as the matrix problem

[
x′

y′

]
︸ ︷︷ ︸
dx⃗/dt

=

[
1 1
3 −1

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

x⃗

It is easily calculated that A has eigenvalue λ1 = −2 with e-vector u⃗1 = (−1, 3) and λ2 = 2 with e-vectors
u⃗2 = (1, 1). The general solution of dx⃗/dt = Ax⃗ is thus

x⃗(t) = c1e
−2t

[
−1
3

]
+ c2e

t

[
1
1

]
=

[
−c1e

−2t + c2e
2t

3c1e
−2t + c2e

2t

]

So, the scalar solutions are simply x(t) = −c1e
−2t + c2e

2t and y(t) = 3c1e
−2t + c2e

2t .

Thus far I have simply told you how to solve the system dx⃗/dt = Ax⃗ with e-vectors, it is interesting to
see what this means geometrically. For the sake of simplicity we’ll continue to think about the preceding
example. In it’s given form the DEqn is coupled which means the equations for the derivatives of the
dependent variables x, y cannot be solved one at a time. We have to solve both at once. In the next example
I solve the same problem we just solved but this time using a change of variables approach.

Example 4.5.15. Suppose we change variables using the diagonalization idea: introduce new variables x̄, ȳ
by P (x̄, ȳ) = (x, y) where P = [u⃗1|u⃗2]. Note (x̄, ȳ) = P−1(x, y). We can diagonalize A by the similarity
transformation by P ; D = P−1AP where Diag(D) = (−2, 2). Note that A = PDP−1 hence dx⃗/dt = Ax⃗ =
PDP−1x⃗. Multiply both sides by P−1:

P−1 dx⃗

dt
= P−1PDP−1x⃗ ⇒ d(P−1x⃗)

dt
= D(P−1x⃗).

You might not recognize it but the equation above is decoupled. In particular, using the notation (x̄, ȳ) =
P−1(x, y) we read from the matrix equation above that

dx̄

dt
= −2x̄,

dȳ

dt
= 2ȳ.

Separation of variables and a little algebra yields that x̄(t) = c1e
−2t and ȳ(t) = c2e

2t. Finally, to find the
solution back in the original coordinate system we multiply P−1x⃗ = (c1e

−2t, c2e
2t) by P to isolate x⃗,

x⃗(t) =

[
−1 1
3 1

] [
c1e

−2t

c2e
2t

]
=

[
−c1e

−2t + c2e
2t

3c1e
−2t + c2e

2t

]
.

This is the same solution we found in the last example. Usually linear algebra texts present this solution
because it shows more interesting linear algebra, however, from a pragmatic viewpoint the first method is
clearly faster.

Finally, we can better appreciate the solutions we found if we plot the direction field (x′, y′) = (x+y, 3x−y) via
the ”pplane” tool in Matlab. I have clicked on the plot to show a few representative trajectories (solutions):
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4.6 nonhomogeneous problem

Theorem 4.6.1.

The nonhomogeneous case x⃗ ′ = Ax⃗ + f⃗ the general solution is x⃗(t) = X(t)c⃗ + x⃗p(t) where c⃗ is a
vector of constants, X is a fundamental matrix for the corresponding homogeneous system and x⃗p

is a particular solution to the nonhomogeneous system. We can calculate x⃗p(t) = X(t)
∫
X−1f⃗dt.

Proof: suppose that x⃗p = Xv⃗ for X a fundamental matrix of x⃗ ′ = Ax⃗ and some vector of unknown functions

v⃗. We seek conditions on v⃗ which make x⃗p satisfy x⃗p
′ = Ax⃗p + f⃗ . Consider,

(x⃗p)
′ = (Xv⃗)′ = X ′v⃗ +Xv⃗′ = AXv⃗ +Xv⃗′

But, x⃗p
′ = AX⃗p + f⃗ = AXv⃗ + f⃗ hence

X dv⃗
dt = f⃗ ⇒ dv⃗

dt = X−1f⃗

Integrate to find v⃗ =
∫
X−1f⃗dt therefore xp(t) = X(t)

∫
X−1f⃗dt. □

If you ever work through variation of parameters for higher order ODEqns then you should appreciate the
calculation above. In fact, we can derive n-th order variation of parameters from converting the n-th order
ODE by reduction of order to a system of n first order linear ODEs. You can show that the so-called
Wronskian of the fundamental solution set is precisely the determinant of the fundamental matrix for the
system x⃗ ′ = Ax⃗ where A is the companion matrix.

Example 4.6.2. Problem: Suppose that A =

[
3 1
3 1

]
and f⃗ =

[
et

e−t

]
, find the general solution of the

nonhomogenous DEqn x⃗ ′ = Ax⃗+ f⃗ .
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Solution: you can easily show x⃗ ′ = Ax⃗ has fundamental matrix X =

[
1 e4t

−3 e4t

]
. Use variation of

parameters for systems of ODEs to constuct x⃗p. First calculate the inverse of the fundamental matrix, for a
2× 2 we know a formula:

X−1(t) = 1
e4t−(−3)e4t

[
e4t −e4t

3 1

]
= 1

4

[
1 −1

3e−4t e−4t

]
Thus,

xp(t) = X(t)

∫
1
4

[
1 −1

3e−4t e−4t

] [
et

e−t

]
dt = 1

4X(t)

∫ [
et − e−t

3e−3t + e−5t

]
dt

= 1
4

[
1 e4t

−3 e4t

] [
et + e−t

−e−3t − 1
5e

−5t

]
= 1

4

[
1(et + e−t) + e4t(−e−3t − 1

5e
−5t)

−3(et + e−t) + e4t(−e−3t − 1
5e

−5t)

]
= 1

4

[
et + e−t − et − 1

5e
−t

−3et − 3e−t − et − 1
5e

−t

]
= 1

4

[
4
5e

−t

−4et − 16
5 e−t

]
Therefore, the general solution is

x⃗(t) = c1

[
1
−3

]
+ c2e

4t

[
1
1

]
+ 1

5

[
e−t

−et − 4e−t

]
.

The general scalar solutions implicit within the general vector solution x⃗(t) = [x(t), y(t)]T are

x(t) = c1 + c2e
4t + 1

5e
−t y(t) = −3c1 + c2e

4t − 1
5e

t − 4
5e

−t.

I might ask you to solve a 3×3 system in the homework. The calculation is nearly the same as the preceding
example with the small inconvenience that finding the inverse of a 3× 3 requires some calculation.

Remark 4.6.3.

You might wonder how would you solve a system of ODEs x′ = Ax such that the coefficients Aij are
not constant. The theory we’ve discussed holds true with appropriate modification of the interval of
applicability. In the constant coefficient case I = R so we have had no need to discuss it. In order
to solve non-constant coefficient problems we will need to find a method to solve the homogeneous
problem to locate the fundamental matrix. Once that task is accomplished the technique of this
section applies to solve any associated nonhomogeneous problem.

4.7 practice problems

PP 236 Solve LI ′′1 + R1I
′
1 + 1

C (I ′1 − I ′2) = 0 and R2I
′
2 + 1

C (I2 − I1) = E ′(t) given that E(t) = 10 cos(2t),
L = 1 and C = 1 and R1 = 2 and R2 = 3 (in volts, seconds, Henries and Farads). These differential
equations stem from the circuit pictured below:

PP 237 Suppose D =

[
d1 0
0 d2

]
. Show that eD =

[
ed1 0
0 ed2

]
.

PP 238 Suppose dx
dt = x+ 4y and dy

dt = x+ y. Find the general real solution via the e-vector method.

PP 239 Suppose dx
dt = 2x+y and dy

dt = 2y. Find the general real solution via the generalized e-vector method.

PP 240 Suppose dx
dt = 4x− 3y and dy

dt = 3x+ 4y. Find the general real solution via the e-vector method.
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PP 241 Suppose dx
dt = x+4y+ e6t and dy

dt = x+ y+3. Find the solution with x(0) = 0 and y(0) = 0. Please
use matrix arguments (do not solve by the operator method, instead, use variation of parameters for
systems)

PP 242 Suppose X is a fundamental matrix for dx⃗
dt = Ax⃗. Suppose B is a square matrix with det(B) ̸= 0.

Show that XB is a fundamental matrix for dx⃗
dt = Ax⃗.

PP 243 Calculate etA for A =

[
1 4
1 1

]
. (Problem 238 should help)

PP 244 Use the Cayley Hamilton Theorem to calculate etA for A =

 2 1 −1
−3 −1 1
9 3 −4

. The Cayley Hamilton

Theorem simply states that a matrix solves it’s own characteristic equation; that is, if p(λ) = 0 is
the characteristic equation then p(A) = 0. For example, if p(λ) = (λ + 2)3 = 0 then (A + 2I)3 = 0.
The proof of this theorem is easy in the diagonalizable case, however the general proof requires ideas
about invariant subspaces often not covered in the undergraduate course on linear algebra.

you may use technology to aid with the matrix calculations in the next three problems.
That said, you don’t really need it for these in my view

PP 245 Suppose dx
dt = 5x− 6y− 6z, dy

dt = −x+4y+2z and dz
dt = 3x− 6y− 4z. Find the general real solution

via the e-vector method.

PP 246 Suppose dx
dt = 5x− 5y− 5z, dy

dt = −x+4y+2z and dz
dt = 3x− 5y− 3z. Find the general real solution

via the e-vector method.

PP 247 Suppose dx
dt = 3x + y, dy

dt = 3y + z and dz
dt = 3z. Find the general real solution via the generalized

e-vector method.

PP 248 To solve dx⃗
dt = Ax⃗ in the case A =

 −3 0 −3
1 −2 3
1 0 1

 by the following calculations:

(a) find the e-values and corresponding e-vectors u⃗1, u⃗2, u⃗3. (you may use technology)

(b) construct P = [u⃗1|u⃗2|u⃗3] and calculate P−1AP . (you may use technology)

(c) note the solution of APy⃗ = d
dt [P y⃗] = P dy⃗

dt is easily found since multiplying by P−1 yields

P−1APy⃗ = P−1P dy⃗
dt = I dy⃗

dt = dy⃗
dt . Solve P−1APy⃗ = dy⃗

dt . (this should be really easy, just solve
3 first order problems, one at a time)

(d) APy⃗ = d
dt [P y⃗] means x⃗ = P y⃗ solves dx⃗

dt = Ax⃗. Solve the original system by multiplying the
solution from (3.) by P .

The method outlined above is more meaningful in a larger discussion involving coordinate change for
linear transformations. The coordinates y⃗ = P−1x⃗ are eigencoordinates. A matrix is said to be
diagonalizable iff there exists some coordinate change matrix P such that P−1AP = D where D
is diagonalizable. Not all matrices are diagonalizable. We’ve seen this. When there are less than
n-LI e-vectors then we cannot build the P -matrix as above and it turns out there is no other way to
diagonalize a matrix. On the other hand, the generalized e-vectors always exist and cojugating by P
made of generalized e-vectors will place any matrix in Jordan-form (possibly complex).

PP 249 Suppose A is an 7 × 7 matrix with complex e-value λ1 = 3i repeated and a real e-value of λ2 = 1
repeated three times. You are given a complex vector u⃗1 = a⃗1 + i⃗b1 a second LI complex-vector
u⃗2 = a⃗2 + i⃗b2 such that

(A− 3iI)u⃗1 = 0 (A− 3iI)u⃗2 = u⃗1.

We assume a⃗1, a⃗2, b⃗1, b⃗2 are all real vectors. Furthermore, you are given u⃗3, u⃗4, u⃗5 LI vectors such that

(A− I)u⃗3 = 0, Au⃗4 = u⃗4, Au⃗5 = u⃗5 + u⃗4

Find the general, manifestly real, solution.
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PP 250 Suppose a force F (x) = 3x4 + 16x3 + 6x2 − 72x is the net-force on some mass m = 1. Newton’s
Equation is ẍ = 3x4 + 16x3 + 6x2 − 72x.

(a) make the substitution v = ẋ and write Newton’s equation as a system in normal form for x and
v.

(b) find all three critical points for the system in (1.). (the potential should factor nicely)

(c) plot the potential plane and phase plane juxtaposed vertically with the potential at the top
and the phase plane at the base. Plot several trajectories and include arrows to indicate the
direction of physically feasible solutions.

(d) classify each critical point by examining your plot from (3.)

in this context the phase plane is also called the Poincare plane in honor of the mathematician who
did much pioneering work in this realm of qualitative analysis. Incidentally, given any autonomous
system dx

dt = g(x, y) and dy
dt = f(x, y) we can study the timeless phase plane equation dy

dx = f
g to

indirectly analyze the solutions to the system. Solutions to the phase plane equation are the Cartesian
level curves which are parametrized, with parameter t, by the solutions to the system

PP 251 The Volterra-Lotka equations are a nonlinear system of ODEs which model the population interaction
between some prey with population x and predator of population y. For example,
dx
dt = x(3 − y) and dy

dt = y(x − 3). This means that when the predator population is over 3 then
prey population declines. On the other hand, if the prey population goes beyond 3 then the predator
population grows. This competition can lead to a variety of outcomes. Find all the critical points
of the system and plot the phase plane via the pplane tool, plot about 20 interesting trajectories.
Comment on the stability of the critical points. (you’ll need to print this out and attach it to this
homework)

PP 252 Show that nontrivial solutions for the cauchy-euler system tdx⃗dt = Ax⃗ of the form x⃗(t) = tRu⃗ must have

R an e-value of A with u⃗ the corresponding e-vector. Solve tdx⃗dt = Ax⃗ in the case A =

[
−4 2
2 −1

]
for t > 0.

PP 253 Difference equations can sometimes be written in the form x⃗k+1 = Bx⃗k where k = 0, 1, 2, . . . . It
is easy to show that if x⃗o is the given initial state of the system then the k-th state is found by
x⃗k = Bkx⃗o. There is a natural connection with this difference equation and the linear differential
equations we have studied. Consider this: for small △t,

dx⃗

dt
= Ax⃗ ⇒ x⃗(t+△t)− x⃗(t)

△t
≊ Ax⃗(t) ⇒ x⃗(t+△t) = x⃗(t) +△tAx⃗(t)

Hence, x⃗(t+△t) = (I+△tA)x⃗(t). Identify that this approximation resembles the difference equation
where x⃗(t) = x⃗k and x⃗(t+△t) = x⃗k+1 and B = I +△tA.

(a) Suppose x⃗o = [2, 0]T is the initial state. Calculate the states up to k = 10 for x⃗k+1 = Bx⃗k

where B =

[
1.1 −1
1 1.1

]
.

(b) Solve dx⃗
dt = Ax⃗ where A =

[
0.1 −1
1 0.1

]
given the initial condition x⃗(0) = [2, 0]T .

(c) plot the states from (1.) as dots and the solution from (2.) as a curve on a common xy-plane.
Comment on what you see. (what △t did I choose ? How could we make the difference equation
more closely replicate the differential equation?)

PP 254 Suppose A =

 1 2 3
4 5 6
7 8 9

. Calculate A2.
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PP 255 Let A be as in the previous problem. Suppose v1 =

 1
2
0

 and v2 =

 −1
0
3

.
(a.) calculate Av1 c

(b.) calculate Av2

(c.) calculate A[v1|v2] (here [v1|v2] is the 3 × 2 matrix made from gluing (aka concatenating) the
column vectors v1 and v2)

(d.) Does A[v1|v2] = [Av1|Av2]?

PP 256 A square matrix X is invertible iff there exists Y such that XY = Y X = I where I is the identity
matrix. Moreover, linear algebra reveals that X is invertible iff det(X) ̸= 0. For a 2× 2 matrix X =[

a b
c d

]
we define det(X) = ad− bc. Suppose X is invertible and show X−1 = 1

ad−bc

[
d −b
−c a

]
.

This formula is worth memorizing for future use in two-dimensional problems. Please understand, all

I’m asking here is for you to multiply X and my propsed formula for X−1 to obtain I =

[
1 0
0 1

]
.

PP 257 Differentiation of matrices of functions is not hard. Let X(t) =

[
et t
1/t e−t

]
. Calculate:

(a.) calculate dX
dt

(b.) calculate dX−1

dt

(c.) simplify dX
dt X

−1 +X dX−1

dt .

(d.) explain the previous part by differentiating X(t)X−1(t) = I. Note: the product rule for matrix
products is simply d

dt (AB) = dA
dt B +AdB

dt .

PP 258 If two masses m1,m2 are coupled by a spring and then the whole system is attached to springs
between to walls (see figure 1 on page 230 of Ritger & Rose for a related picture) then

m1ẍ1 = −k1x1 + k2(x2 − x1)

m2ẍ2 = −k2(x2 − x1)− k3x2.

PP 259 Suppose k2 = 0. Find the equations of motion.

PP 260 Suppose k1 = k3 = 0. Find the equations of motion.

PP 261 Suppose k1 = k3 = 1 and k2 = 2 with m1 = m2 = 1. Find the equations of motion.

PP 262 Solve x′ = 7x+ 3y and y′ = 3x+ 7y by the eigenvector method.

PP 263 Use the solution of the previous problem to solve x′ = 7x+ 3y + 1 and y′ = 3x+ 7y + 2 subject the
initital condition x(0) = 1 and y(0) = 2.

PP 264 Solve x′ = −3x− 5y and y′ = 3x+ y with x(0) = 4 and y(0) = 0 by the eigenvector method.

PP 265 An ice tray has tiny holes between each of its three partititions such that the water can flow from one
partition to the next. Let x, y, z denote the height of water in the three water troughs. The holes are
designed such that the flow rate is proportional to the height of water above the adjacent trough. For
example, supposing x and z are the edge troughs whereas y is in the middle we have dx

dt = k(y − x).
For simplicity of discussion suppose k = 1. Write the corresponding differential equations to find the
water-level in the y and z troughs. If initially there is 3.0 cm of water in the x trough and none in
the other two troughs then find the height in all three troughs as a function of time t. Discuss the
steady state solution, is it reasonable?
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PP 266 Let a, b be constants which are some measure of the trust between two nations. Furthermore, let x
be the military expenditure of Bobslovakia and let y be the military expenditure of the Leaf Village.
Detailed analysis by strategically gifted ninjas reveal that

dx

dt
= −x+ 2y + a

dy

dt
= 4x− 3y + b

Analyze possible outcomes for various initial conditions and values of a, b. Consider drawing an ab-
plane to explain your solution(s). Is a stable peace without a run-away arms race possible given the
analysis thus far?

PP 267 Suppose (A− λI)u⃗1 = 0 and (A− λI)u⃗2 = u⃗1 where λ = 3 + i
√
2 and

u⃗1 = [3 + i, 4 + 2i, 5 + 3i, 6 + 4i]T and u⃗2 = [i, 1, 2, 3− i]T .

(a.) find a pair of complex solutions of dx⃗
dt = Ax⃗

(b.) extract four real solutions to write the general real solution (c1, c2, c3, c4 should be real in this
answer)

PP 268 Let I =

[
1 0
0 1

]
and let J =

[
0 −1
1 0

]
. Calculate eθJ where θ ∈ R. Express your answer in terms

of sine and cosine and relevant matrices.

PP 269 Solve x′ = 2x+ y and y′ = 2y by the method generalized eigenvectors.

PP 270 Introduce variables to reduce

y′′′ + 4y′′ + 2y′ + 6y = tan(t)

to a system of three first order ODEs in matrix normal form dx⃗
dt = Ax⃗+ f⃗ .

PP 271 Introduce variables to reduce

y′′ + 4ty′ + 5y′ = 0, w′′ + 9e−tw = 0

to a system of four first order ODEs in matrix normal form dx⃗
dt = Ax⃗.

PP 272 Linear independence (LI) of vector-valued functions {f⃗j : I ⊆ R → Rn | j = 1, . . . , k} is defined in the

same way as was previously discussed for real-valued functions. In particular, {f⃗1, . . . , f⃗k} is LI on

I ⊆ R if c1f⃗1(t) + · · ·+ ckf⃗k(t) = 0 for all t ∈ I implies c1 = 0, . . . , ck = 0. We can check LI of n such

n-vector-valued functions without any further differentiation; in particular, if det[f⃗1(t)| · · · |f⃗n(t)] ̸= 0

for all t ∈ I ⊆ R then {f⃗1(t), . . . , f⃗n(t)} is LI on I. Show the following sets of vector-valued functions
are LI on R. (notice, my notation is that (a, b) = [a, b]T , in other words, each of the expressions below
has lists of column vectors.

(a.) { (et, et), (et,−et) }

(b.) { (cos(t),− sin(t)), (sin(t), cos(t)) },

(c.) { etu⃗1, , et(u⃗2 + tu⃗1) , e
t(u⃗3 + tu⃗2 +

t2

2 u⃗3) } given u⃗1 = (1, 0, 0), u⃗2 = (0, 1, 1), u⃗3 = (1, 1, 1).

PP 273 (Cook 5.1)(problem 13 of section 4.9 in Zill) Solve:

2ẋ− 5x+ ẏ = et

2ẋ− x+ ẏ = 5et
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PP 274 (Cook 5.1)(problem 7 of section 7.6 in Zill) Solve:

ẍ+ x− y = 0,

ÿ + y − x = 0,

subject the initial conditions x(0) = 0, ẋ(0) = −2 and y(0) = 0, ẏ(0) = 1. (you could use the technique
of section 4.9 or that of 7.6, either method should be a profitable exercise)

PP 275 (matrix multiplication) work problem 6 of Appendix II in Zill (page APP-18)

PP 276 Solve, via the eigenvector technique,

dx

dt
= 5x− y

dy

dt
= −x+ 5y.

PP 277 Plot the direction field of the system given in previous Problem using pplane. Plot a few solutions.
Can you see the e-vectors’ geometric significance? Include a print-out of your investigation.

PP 278 Solve, via the complex eigenvector technique,

dx

dt
= 4x+ 2y

dy

dt
= −x+ 2y.

PP 279 Plot the direction field of the system given in the previous problem. Plot a few solutions. Can you
see the e-vectors’ geometric significance? Include a print-out of your investigation.

PP 280 Solve x′ = 7x+ 3y + 4z, y′ = 6x+ 2y, z′ = 5z by the eigenvector method.

PP 281 Use technology to find e-values and e-vectors for each of the matrices below. If possible, use the
solutions of dx⃗

dt = Ax⃗ derived from e-vectors to write the general solution of dx⃗
dt = Ax⃗. If not possible,

explain why.

(a.) A =

 3 2 4
2 0 2
4 2 3

.
(b.) A =

 3 1 0
0 3 0
0 0 5

.
(c.) A =

 0 0 1
1 0 −3
0 1 3


(d.) A =

 −1 −3 −9
0 5 18
0 −2 −7

.
(e.) A =

 1 0 −1
0 2 0
1 0 1

.
PP 282 Find fundamental matrices for each of the systems given in the previous half dozen problems where

reasonable.

PP 283 Suppose v⃗ is an eigevector with eigenvalue λ for the real matrix A. Show A2 also has e-vector v⃗.
What is the e-value for v⃗ with respect to A2.
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PP 284 Write down the magic formula for the matrix exponential.

PP 285 Suppose A is a 3× 3 matrix with nonzero vectors u⃗, v⃗, w⃗ such that

Au⃗ = 3u⃗, (A− 3I)v⃗ = u⃗, Aw⃗ = 0.

Write the general solution of dx⃗
dt = Ax⃗ in terms of the given vectors.

PP 286 Suppose (A− λI)u⃗1 = 0 and (A− λI)u⃗2 = u⃗1 where λ = 3 + i
√
2 and

u⃗1 = [3 + i, 4 + 2i, 5 + 3i, 6 + 4i]T and u⃗2 = [i, 1, 2, 3− i]T .

(a.) find a pair of complex solutions of dx⃗
dt = Ax⃗

(b.) extract four real solutions to write the general real solution (c1, c2, c3, c4 should be real in this
answer)

PP 287 Let I =

[
1 0
0 1

]
and let J =

[
0 −1
1 0

]
. Calculate eθJ where θ ∈ R. Express your answer in terms

of sine and cosine and relevant matrices.

PP 288 Solve x′ = 2x+ y and y′ = 2y by the method generalized eigenvectors.

PP 289 Show why d
dte

tA = AetA. Is this enough to show etA is a fundamental solution matrix? If not, say
what else we need to know about the matrix exponential.

PP 290 Show x⃗(t) = etAx⃗o is a solution to dx⃗
dt = Ax⃗ with x⃗(0) = x⃗o. In this sense, the matrix exponential

generates the solution of the system of ODEs with coefficient matrix A.

PP 291 (matrix inverse of 2× 2) Suppose X(t) =

[
cosh t sinh t
sinh t cosh t

]
. Find X−1(t). (use the nice formula in

Example 5.2.7 of Cook)

PP 292 work out problem 15 of section 8.3.2 in Zill. That is, solve dx⃗
dt = Ax⃗+ f⃗ where

A =

[
0 2
−1 3

]
and f⃗(t) =

[
et

−et

]
PP 293 work out problem 21 of section 8.3.2 in Zill. That is, solve dx⃗

dt = Ax⃗+ f⃗ where

A =

[
0 −1
1 0

]
and f⃗(t) =

[
sec t
0

]
PP 294 Consider the differential equation y′′−2y′+y = 0. I think we can all solve this one. Let x1 = y, x2 = y′.

Let A be the companion matrix which stems from the reduction of order just listed. Solve dx⃗
dt = Ax⃗

by translating the fundamental solution set {y1, y2} = {et, tet} into the corresponding fundamental
solution set {x⃗1, x⃗2}. Let u⃗1 = e−tx⃗1 and u⃗2 = e−tx⃗2. Solve the following equations:

(A− I)u⃗1 = a⃗ (A− I)u⃗2 = b⃗.

In other words, find a⃗, b⃗ explicitly. Comment on which of the fundamental solutions to {x⃗1, x⃗2} was
an eigensolution.

PP 295 Suppose A has n-LI e-vectors and hence we can write the general solution for dx⃗
dt = Ax⃗ as a linear

combination
x⃗ = c1e

λ1t + · · ·+ cne
λnt

Solve dx⃗
dt = Akx⃗ where k ∈ N.

PP 296 If AT = A then we say A is a symmetric matrix. A rather deep theorem of linear algebra states that
a symmetric matrix has real eigenvalues and it is possible to select n-LI eigenvectors {u⃗1, . . . , u⃗n} for

which Au⃗j = λj u⃗j and u⃗i · u⃗j = δij =

{
1 i = j

0 i ̸= j
for all i, j ∈ Nn. It follows that P = [u⃗1| · · · |u⃗n] has

PTP = I which means P−1 = PT . This means, if we’re studying a system of differential equations
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dx⃗
dt = Ax⃗ with AT = A we can change coordinates to y⃗ = PT x⃗ and in that new y⃗-coordinate system
the differential equation is simply:

dy1
dt

= λ1y1, . . . ,
dyn
dt

= λnyn. ⋆ .

This system is said to be uncoupled and it’s really the most trivial sort of system you can come
across; we can solve each equation in the uncoupled system without knowledge of the remaining

variables. Consider x⃗ = ⟨x, y, z⟩ and the differential equation dx⃗
dt = Ax⃗ where A =

 0 2 2
2 0 2
2 2 0

.
Find an orthonormal eigenbasis for A and use it to change coordinates on the given system. Verify
the claim ⋆ in the context of A. Use the notation y⃗ = ⟨x̄, ȳ, z̄⟩, so y1 = x̄ etc..

PP 297 Consider the solution-set of 4xy + 4xz + 4yz = 1. Change to the barred-coordinates x̄, ȳ, z̄ you
discovered in the previous problem. Which Quadric surface is this?

PP 298 The Cayley Hamilton Theorem states that a matrix will solve its own characteristic equation. For
example, if P (x) = x3 + I then P (A) = A3 + I = 0. For this A, calculate etA in terms of A. Recall,
as you should know, etA = I + tA+ · · · =

∑∞
n=0

tn

n!A
n.

PP 299 Solve x′ = −x− 4y and y′ = 8x+ 11y using matrix methods.

PP 300 Solve x′ = −7x− 6y and y′ = 15x+ 11y using matrix methods.

PP 301 Suppose A =

[
2 5
0 2

]
. Calculate etA.

Also, solve dr⃗
dt = Ar⃗ given that r⃗(0) = (1, 2).

PP 302 Consider A is a 3× 3 matrix for which there exist nonzero vectors v1, v2, v3 such that:

Av1 = 10v1, Av2 = 10v2, Av3 = 10v3 + v1

derive the general solution for dr⃗
dt = Ar⃗ with appropriate arguments based on the matrix exponential.

PP 303 Let A =

[
1 2
2 1

]
let B = I +A where I =

[
1 0
0 1

]
. Also set M =

 8 5 9
6 3 0
7 0 0


(a.) Calculate AB and calculate BA. (this doesn’t usually happen)

(b.) We say e1 =

 1
0
0

 and e2 =

 0
1
0

 in R3. Calculate Me1 and Me2 then check that

M

 1 0
0 1
0 0

 = [Me1|Me2]. This ought to illustrate the column-by-column multiplication rule

in the sense that M [e1|e2] = [Me1|Me2]. Recall this was important for us as we analyzed how
the solution matrix gives us a matrix where each column is itself a solution

PP 304 Let A =

 1 2 3
2 1 3
3 3 0

. Calculate the following items for A,

(a.) show the eigenvalues of A are λ1 = −3, λ2 = −1 and ,λ3 = 6

(b.) find eigenvectors u⃗1, u⃗2, u⃗3 with eigenvalues λ1 = −3, λ2 = −1 and ,λ3 = 6 respective. Nor-
malize the eigenvectors so that each has length one.

(c.) show u⃗i • u⃗j = δij =

{
1 i = j

0 i ̸= j
.
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(d.) Let P = [u⃗1|u⃗2|u⃗3] and show that PTP = I (this shows that P−1 = PT and that P is what is
known as an orthgonal matrix)

(e.) Calculate PTAP . You should get something really pretty.

Remark: the problem above illustrates the real spectral theorem which implies that a symmetric matrix
has an orthonormal eigenbasis and eigenvalues which are all real

PP 305 Find the general solution of dr⃗
dt = Ar⃗ where A is was given in the previous problem.

PP 306 Let x′ = 2x − 3y and y′ = 3x + 2y. Find the general real solution via the techinque of eigenvectors
and/or generalized eigenvectors. In addition, set-up the solution to x′ = 2x − 3y + f1 and y′ =
3x + 2y + f2 via the method of variation of parameters for systems. hint: I think this one requires
calculation of a complex eigenvector

PP 307 Let x′ = 3x− 18y and y′ = 2x− 9y. Find the general real solution via the techinque of eigenvectors
and/or generalized eigenvectors. Then solve the initial value problem for the given system of DEqns
with initial data x(0) = 1 and y(0) = 0. hint: I believe this problem will require you to find one
eigenvector and one generalized eigenvector, both with the same eigevalue

PP 308 Let I be the 2× 2 identity matrix and let

K =

[
0 1
1 0

]
.

Prove that etK = cosh(t)I + sinh(t)K. Is dr⃗
dt = Kr⃗ a system of differential equations obtained by

reduction of order ? If so, do the solutions you found in etK coincide logically with those you find by
directly solving the corresponding 2-nd order problem ?

PP 309 Suppose A is a 4× 4 matrix with nonzero real vectors u⃗1, u⃗2, u⃗3 and u⃗4 for which:

Au⃗1 = 3u⃗1, (A− 3I)u⃗2 = u⃗3, (A− 3I)u⃗3 = u⃗1, Au⃗4 = 0

Find the general solution to dr⃗
dt = Ar⃗. Do not assume it fits a pattern. You need to think.



Chapter 5

energy analysis and the phase plane
approach

This chapter collects our thoughts on how to use energy to study problems in Newtonian mechanics. In
particular we explain how to plot possible motions in the Poincare plane (x, ẋ plane, or the one-dimensional
tangent bundle if you’re interested). A simple method allows us to create plots in the Poincare plane from
corresponding data for the plot of the potential energy function. Nonconservative examples can be included
as modifications of corresponding conservative systems.

All of this said, there are mathematical techniques which extend past physical examples. We begin by dis-
cussing such generic features. In particular, the nature of critical points for autonomous linear ODEs have
structure which is revealed from the spectrum (list of eigenvalues from smallest to largest) of the coefficient
matrix. In fact, such observations are easily made for n-dimensional problems. Of course our graphical
methods are mainly of use for two-dimensional problems. We discuss almost linear systems and some of
the deeper results due to Poincare for breadth. We omit discussion of Liapunov exponents, however the
interested reader would be well-advised to study that topic along side what is discussed here (chapter 10 of
Ritger & Rose has much to add to these notes).

Time-permitting we may exhibit the linearization of a non-linear system of ODEs and study how successful
our approximation of the system is relative to the numerical data exhibited via the pplane tool. We also may
find time to study the method of characteristics as presented in Zachmanoglou and Thoe and some of the
deeper symmetry methods which are describe in Peter Hydon’s text or Brian Cantwell’s text on symmetries
in differerential equations.

167



168 CHAPTER 5. ENERGY ANALYSIS AND THE PHASE PLANE APPROACH

5.1 phase plane and stability

This section concerns largely qualitative analysis for systems of ODEs. We know from the existence theorems
the solutions to a system of ODEs can be unique and will exist given continuity of the coefficient matrix which
defines the system. However, certain points where the derivatives are all zero are places where interesting
things tend to happen to the solution set. Often many solutions merge at such a critical point.

Definition 5.1.1. critical point for a system of ODEs in normal form

If the system of ODEs dx⃗
dt = F (x⃗, t) has a solution x⃗ for which to has dx⃗

dt (to) = 0 then x⃗(to) is called
a critical point of the system.

There are two major questions that concern us: (1.) where are the critical point(s) for a given system of
ODEs ? (2.) do solutions near a given critical point tend to stay near the point or flow far away ? Let us
begin by studying a system of two autonomous ODEs

dx

dt
= g(x, y) &

dy

dt
= f(x, y)

The location of critical points becomes an algebra problem: the system above has a critical point wherever
both f(xo, yo) = 0 and g(xo, yo) = 0.

Example 5.1.2. Problem: find critical points of the system dx
dt = x2 − 3x+ 2 , dy

dt = sin(xy).

Solution: a critical point must simultaneously solve x2 − 3x + 2 = 0 and sin(xy) = 0. The polynomial
equation factors to yield (x−1)(x−2) = 0 hence we require the point to have either x = 1 or x = 2. If x = 1
then sin(y) = 0 hence y = nπ for n ∈ Z. It follows that (1, nπ) is a critical point for each n ∈ Z. Likewise,
if x = 2 then sin(2y) = 0 hence 2y = kπ for k ∈ Z hence y = kπ/2. It follows that (2, kπ/2) is a critical
point for each k ∈ Z.

The plot above was prepared with the pplane tool which you can find online. You can study the plot and
you’ll spot the critical points with ease. If you look more closely then you’ll see that some of the critical
points have solutions which flow into the point whereas others have solutions which flow out of the point. If
all the solutions flow into the point then we say the point is stable or asymptotically stable. Otherwise,
if some solutions flow away from the point without bound then the point is said to be unstable. I will
not attempt to give careful descriptions of these terms here. There is another type of stable point. Let me
illustrate it by example. The plot below shows sample solutions for the system dx

dt = y and dy
dt = sin(2x).

The points where y = 0 and x = nπ/2 for some n ∈ Z are critical points.
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These critical points are stable centers. Obviously I used pplane to create the plot above, but another
method is known and has deep physical significance for problems such as the one illustrated above. The
method I discuss next is known as the energy method, I focus on a class of problems which directly stem
from a well-known physical problem.

Consider a mass m under the influence of a conservative force F = −dU/dx. Note:

ma = F ⇒ m
d2x

dt2
= −dU

dx
⇒ m

dx

dt

d2x

dt2
= −dx

dt

dU

dx
⇒ m

dx

dt

dv

dt
= −dx

dt

dU

dx

However, v dv
dt = d

dt [
1
2v

2] and dx
dt

dU
dx = dU

dt hence,

m
d

dt
[
1

2
v2] = −dU

dt
⇒ d

dt

[
1

2
mv2 + U

]
= 0

In particular, we find that if x, v are solutions of ma = F then the associated energy function:

E(x, v) =
1

2
mv2 + U(x)

is constant along solutions of Newton’s Second Law. Furthermore, consider md2x
dt2 − F (x) = 0 as a second

order ODE. We can reduce it two a system of two ODEs in normal form by the standard substitution:
v = dx

dt . Using velocity as an independent coordinate gives:

dx

dt
= v &

dv

dt
=

F

m

Critical points of this system occur wherever both v = 0 and F = 0 since m > 0 by physical assumptions.
Given our calculations concerning energy the solutions to this system must somehow parametrize the energy
level curves as they appear in the xv-plane. This xv-plane is called the phase plane or the Poincare plane
in honor of the mathematician who pioneered these concepts in the early 20-th century. Read Chapter 5
of Nagel Saff and Snider for a brief introduction to the concept of chaos and how the Poincare plane gave
examples which inspired many mathematicians to work on the problem over the century that followed (chaos
is still an active math research area).

Think further about the critical points of dx
dt = v & dv

dt = F
m . Recall we assumed F was conservative

hence there exists a potential energy function U such that F = −dU
dx . This means the condition F = 0

gives dU
dx = 0. Ah HA ! this means that the critical points of the phase plane solutions must be on the

x-axis (where v = 0) at points where the potential energy U has critical points in the xU -plane. Here I am
contrasting the concept of critical point of a system with critical point ala calculus I. The xU -plane is called
the potential plane.
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The analysis of the last paragraph means that we can use the potential energy diagram to create the phase
plane trajectories. This is closely tied to the specific mathematics of the energy function. Let us observe for
a particular energy Eo = 1

2mv2 + U(x) we cannot have motions where U(x) < Eo since the kinetic energy
1
2mv2 ≥ 0. Moreover, points where E = U are points where v = 0 and these correspond to points where the
motion either turns around or is resting.

In the plot above the top-graph is the potential plane plot whereas the lower plot is the corresponding
phase plane plot. The point (0, 0) is a stable center in the phase plane whereas (±1, 0) are unstable critical
points. The trajectories in the phase plane are constructed such that the critical points match-up and the
direction of all trajectories with v > 0 flow right whereas those with v < 0 flow left since dx

dt = v. Also, if

E > U at a critical point of U then the corresponding trajectory will have a horizontal tangent since dv
dt = 0

at such points. These rules force you to draw essentially the same pattern plotted above.

All of the discussion above concerns the conservative case. In retrospect you should see the example dx
dt = y

and dy
dt = sin(2x) is the phase plane DEqn corresponding to m = 1 with F = sin(2x). If we add a friction

force Ff = −v then dv
dt = sin(2x) − v is Newton’s equation and we would study the system dx

dt = y and
dy
dt = sin(2x) − y. The energy E = 1

2v
2 − 1

2 cos(2x) is not conserved in this case. I will not work out the
explicit details of such analysis here, but perhaps you will find the contrast of the pplane plot below with
that previously given of interest:

This material is discussed in §12.4 of Nagel Saff and Snider. The method of Lyaponov as discussed in §12.5 is
a way of generalizing this energy method to autonomous ODEs which are not direct reductions of Newton’s
equation. That is a very interesting topic, but we don’t go too deep here. Let us conclude our brief study



5.1. PHASE PLANE AND STABILITY 171

of qualitative methods with a discussion of homogeneous constant coefficient linear systems. The
problem dx⃗

dt = Ax⃗ we solved explicitly by the generalized e-vector method and we can make some general
comments here without further work:

1. if all the e-values were both negative then the solutions will tend towards (0, 0) as t → ∞ due to the
exponentials in the solution.

2. if any of the e-values were positive then the solutions will be unbounded as t → ∞ since exponentials
in the solution.

3. if the e-value was pure imaginary then the motion is bounded since the formulas are just sines and
cosines which are bounded

4. if the e-value was complex with negative real part then the associated motion is stable and tends to
(0, 0) as the exponentials damp the sines and cosines in the t → ∞ limit.

5. if the e-value was complex with positive real part then the associated motion is unstable and becomes
unbounded as the exponentials blow-up in the limit t → ∞.

See the table in §12.2 on page 779 of Nagel Saff and Snider for a really nice summary. Note however, my
comments apply just as well to the n = 2 case as the n = 22 case. In short, the spectrum of the matrix A
determines the stability of the solutions for dx⃗

dt = Ax⃗. The spectrum is the list of the e-values for A. We could
explicitly prove the claims I just made above, it ought not be too hard given all the previous calculations
we’ve made to solve the homoegeneous constant coefficient case. What follows is far less trivial.

Theorem 5.1.3.

If the almost linear system dx⃗
dt = Ax⃗+ f⃗(t, x⃗) has a matrix A with e-values whose real parts are all

negative then the zero solution of the almost linear system is asymptotically stable. However, if A
has even one e-value with a positive real part then the zero solution is unstable.

This theorem is due to Poincare and Perron as is stated in section §12.7 page 824 of Nagel Saff and Snider.
Here is a sketch of the idea behind the theorem:

1. when x⃗ is sufficiently small the term f⃗(t, x⃗) tends to zero hence the ODE is well-approximated by
dx⃗
dt = Ax⃗

2. close to the origin the problem is essentially the same as that we have already solved thus the e-values
reveal the stability or instability of the origin.

In the pure imaginary case the theorem is silient because it is not generally known whether that pure cyclicity
of the localization of the ODE will be maintained globally or if it will be spoiled into spiral-type solutions.
Spirals can either go out or in and that is the trouble for the pure imaginary case.

This idea is just another appearance of the linearization concept from calculus. We can sometimes replace a
complicated, globally nonlinear ODE, with a simple almost linear system. The advantage is the usual one;
linear systems are easier to analyze.

In any event, to go deeper into these matters it would be wiser to think about manifolds and general
coordinate change since we are being driven to think about such issues like it or not. Have no fear, your
course ends here.
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5.2 practice problems

PP 378 Suppose a force F (x) = 3x4 + 16x3 + 6x2 − 72x is the net-force on some mass m = 1. Newton’s
Equation is ẍ = 3x4 + 16x3 + 6x2 − 72x.

(1.) make the substitution v = ẋ and write Newton’s equation as a system in normal form for x and
v.

(2.) find all three critical points for the system in (1.). (the potential should factor nicely)

(3.) plot the potential plane and phase plane juxtaposed vertically with the potential at the top
and the phase plane at the base. Plot several trajectories and include arrows to indicate the
direction of physically feasible solutions.

(4.) classify each critical point by examining your plot from (3.)

in this context the phase plane is also called the Poincare plane in honor of the mathematician who
did much pioneering work in this realm of qualitative analysis. Incidentally, given any autonomous
system dx

dt = g(x, y) and dy
dt = f(x, y) we can study the timeless phase plane equation dy

dx = f
g to

indirectly analyze the solutions to the system. Solutions to the phase plane equation are the Cartesian
level curves which are parametrized, with parameter t, by the solutions to the system

PP 379 Plot the phase plane (or Poincare plot) given the potential energy plot below. For each energy
E1, E2, . . . , E6 graph the corresponding trajectories below. Use a couple different colors so your work
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is easy to follow. Be neat. If no motion is possible then explain why.
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PP 380 You are given a not so great phase plane (or Poincare plot) of the motion of a particle with various
energies as listed. Plot the potential energy responsible for such motion.



Chapter 6

The Laplace transform technique

In our treatment of constant coefficients of differential equations, we discovered that we can translate the
problem of calculus into a corresponding problem of algebra. Laplace transforms do something similar,
however, Laplace transforms allow us to solve a wider class of problems. In particular, the Laplace transform
will allow us to derive an elegant solution to problems with discontinuous forcing functions (g(x) is the forcing
function). In short, the method of Laplace transforms provides a powerful method to solve a wide class of
ODE’s which appear in common applications (especially electrical engineering, where t is time and s is
frequency).
The motivation for the method of Laplace transforms is not the easiest thing to find in many texts on
differential equations. However, there is actually a nice intuition for it. I think the best thing to do is to
hear it from the master:

http://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/lecture-19-
introduction-to-the-laplace-transform/

Check it out for yourself.
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6.1 History and overview

We will spend the next few lectures learning how to take Laplace transforms and inverse Laplace transforms.
The reason is primarily the following: We can solve differential equations with discontinuous forcing equations
in a clean elegant manner.

Example 6.1.1. This example gives you a look ahead to our end goal in this Chapter: using the Laplace
transform to solve initial value problems for ordinary differential equations:

The function u(t−1) =

{
1, if t > 1

0, if t < 1
is known as the ”unit-step” or ”Heaviside” function in honor of Oliver

Heaviside who was one of the pioneers in this sort of Mathematics.
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6.2 Definition and existence

Definition 6.2.1. Laplace Transform

Let f(t) be a function on [0,∞). The Laplace transform of f is the function F defined by:

F (s) :=

∫ ∞

0

e−stf(t) dt := L(f)(s)

F is defined on all real numbers s such that the intergral is finite.

Remark 6.2.2.

You should recall that
∫∞
0

g(t) dt = limn→∞
∫ n

0
g(t) dt. In this course we use both of the following

notations: ∫ ∞

0

e−x dx = lim
n→∞

∫ n

0

e−x dx = lim
n→∞

(−en + 1) = 1 ( explicitly)∫ ∞

0

e−x dx = −e−x

∣∣∣∣∞
0

= e−∞ + 1 = 1 (implicitly)

If I ask you to be explicit then follow the direction, you will likely to see the implicit version in applied
courses. The implicit version is usually ok, but when something subtle arises it will confuses or disguise the
issue. for example, what is ∞e−∞?

Theorem 6.2.3.

The Laplace transform L is a linear operator. In particular,

L(f + g) = L(f) + L(g) & L(cf) = cL(f).

Proof: Follows imediately from the linearity of integral. □

To be picky for a moment, you might ask which f and g are allowed in the above Theorem? Can we take
the Laplace transform of any function? Skip ahead to Definition 6.2.9 to see a useful criteria for when a
function f has a Laplace transform.

Example 6.2.4. Problem: Calculate the Laplace transform of the constant function f(t) = 1.

Solution: calculate directly from the definition as follows:

F (s) =

∫ ∞

0

e−stf(t) dt =

∫ ∞

0

e−st dt = −−1

s
e−st

∣∣∣∣∞
0

=
1

s

for s > 0. Thus L(1)(s) = 1
s .

Example 6.2.5. Find the Laplace transform of the function f(t) = eat.

Solution: calculate directly from the definition as follows:

F (s) =

∫ ∞

0

e−stf(t) dt =

∫ ∞

0

e(−s+a)t dt = − −1

s− a
e(−s+a)t

∣∣∣∣∞
0

=
1

s− a

for s > a. Thus L(eat)(s) = 1
s−a .

The calculation of the example above is also valid if we replace a with α+ iβ. Observe that

1

s− α− iβ
=

1

s− α− iβ
· s− α+ iβ

s− α+ iβ
=

s− α+ iβ

(s− α)2 + β2



178 CHAPTER 6. THE LAPLACE TRANSFORM TECHNIQUE

Example 6.2.6. Problem: Find the Laplace transform of the functions f(t) = eαt cos bt and
f(t) = eαt sin bt, where α, β ∈ R with β ̸= 0.

Solution: the linearity of the Laplace transform applies in the complex case. We can reason:

L(e(α+iβ)t) = L(eαt cos(βt) + ieαt sin(βt) = L(eαt cos(βt)) + iL(eαt sin(βt)).

However, following the algebra above this example,

L(eαt cos(βt)) + iL(eαt sin(βt)) = s− α+ iβ

(s− α)2 + β2
.

We equate real and imaginary parts of the complex equation above to derive:

L(eαt cos(βt)) = s− α

(s− α)2 + β2
& L(eαt sin(βt)) = β

(s− α)2 + β2
.

Example 6.2.7. Problem: Find the Laplace transform of the function f(t) =

{
1, if 0 ≤ t < a

0, if t > a
.

Solution: we proceed by direct calculation from the definition:

F (s) =

∫ ∞

0

e−stf(t) dt =

∫ a

0

e−st · 0 dt+
∫ a

∞
e−st · 1 dt = e−sa

s
.

The function f(t) = H(t − a) is an example of the Heaviside or unit step function. Notice that it is
discontinuos at t = a.

Remark 6.2.8.

You may recall that any continuous function is integrable. In fact, it is possible to integrate any
function with finitely many jump-discontinuities. You just break up the integral into piecies, the
value of the function at the discontinuities is irrelevant to integration.

One may inquire, for which functions on [0,∞) does the Laplace transform exist. Certainly piecewise
continuity is a convenient assumption for the integral over a finite domain to exist. In addition we need f(t)
not to grow too fast or else the integral of the Laplace transform will diverge.

Definition 6.2.9.

A function f(t) is said to be exponential order α iff there exists positive constanst T,M such that
|f(t)| ≤ Meαt for all t ≥ T .

This criteria will allow us to state when the Laplace transform of f(t) exists, i.e. when the integral is finite.
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Theorem 6.2.10.

If f(t) is piecewise continuous on [0,∞) and of exponential of order α, then L(f)(s) exists for s > α.

Proof: let f be piecewise continuous on [0,∞) with exponential order α. Then:∫ ∞

0

e−stf(t) dt ≤
∫ ∞

0

e−st|f(t)| dt ≤
∫ T

0

e−st|f(t)| dt+
∫ ∞

T

e−stMeαt dt ≤ C +Me−(s−α)t

∣∣∣∣T
∞

≤ ∞

Thus L(f)(s) exists. □

Examples of Laplace transformable functions:

(1.) eat has exponential of order a.

(2.) sin t has exponential of order 0.

(3.) cos bt has exponential of order 0.

(4.) eat cos bt is exponential of order a.

(5.) tn is exponential of order 1 (|tn| < et, for all t > 1)

We observe that all the functions which appear as fundamental solution of constant coefficient ODE’s can
be Laplace transformed. This is good as it is necessary if L is to handle common examples. The following
table summarizes some popular Laplace transforms. I invite the interested reader to derive those which we
have not already calculated in this section.

Known Laplace transforms: L(f)(s) := F (s)

f(t) F (s) dom(F )

1 1
s s > a

eat 1
s−a s > a

tn n!
sn+1 s > 0

sin bt b
s2+b2 s > 0

cos bt s
s2+b2 s > 0

eattn n!
(s−a)n+1 s > a

eat sin bt b
(s−a)+b2 s > a

eat cos bt s−a
(s−a)2+b2 s > a

Examples are always helpful to assimilate the concepts here.

Example 6.2.11. Problem: Find the Laplace transform of the function f(t) = t2 − 3t− 2e−t sin 3t.

Solution: begin by using the linearity of the transform:

F (s) = L(t2)(s) + L(−3t)(s) + L(−2e−t sin 3t)(s)

=
2

s3
− 3

s2
− 6

(s+ 1)2 + 9
.

Example 6.2.12. Problem: Find the Laplace transform of the function f(t) = e−2t cos
√
3t−t2e−2t.
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Solution: by linearity of the transform we calculate:

F (s) = L(e−2t cos
√
3t)(s) + L(t2e−2t)(s)

=
s+ 2

(s+ 2)2 + 3
− 2

(s+ 2)3
.

Taking the Laplace transform is not too hard. The trouble comes later when we try to go backwards.

Theorem 6.2.13. Shift Theorem:

If the Laplace transform L(f)(s) = F (s) exists for s > α, then for s > α+ a

L(eatf(t))(s) = F (s− a)

Proof: is essentially just an algebra step:

L(eatf(t))(s) =
∫ ∞

0

e−steatf(t) dt

=

∫ ∞

0

e−(s−a)tf(t) dt

= F (s− a) □

Example 6.2.14. Observe, L(eat sin bt)(s) = F (s − a) = b
(s−a)2+b2 is an example of the shift theorem in

view of L(sin bt)(s) = b
s2+b2 = F (s).

Example 6.2.15. Observe L(eat)(s) = F (s−a) = 1
s−a is an example of the shift theorem as L(1)(s) = 1/s.

Theorem 6.2.16. Laplace Transform of Derivative:

Let f and f ′ be piecewise continuous with exponential order α, the for s > α,

L(f ′)(s) = sL(f)(s)− f(0)

Proof: is essentially by the product rule (a.k.a. as integration by parts):

L(f ′)(s) = lim
n→∞

∫ n

0

e−st d

dt
(f(t)) dt

= lim
n→∞

∫ n

0

(
d

dt
(e−stf(t))− d

dt
(e−st)f(t)

)
dt

= lim
n→∞

(
e−snf(n)− f(0) + s

∫ n

0

e−stf(t) dt

)
= −f(0) + sL(f)(s)

Where we observed, for t > α, we have |f(t)| ≤ Meαt. Thus |e−snf(n)| ≤ e−snMeαn = Men(α−s) → 0 as
n → ∞, provided that s ≥ α. □
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Similarly, we can derive the following theorem:

Theorem 6.2.17. Laplace Transform of Derivative:

Let f, f ′, f ′′, ..., f (n−1) be continuous and f (n) piecewise continuous, of exponential order α. Then
for s > α,

L(f (n))(s) = snL(f)(s)−
n∑

i=1

sn−if (i−1)(0)

Example 6.2.18. Problem: use the previous theorems to transform the constant coefficient
differential equation ay′′ + by′ + cy = 0

L(y′′)(s) = s2L(y)(s)− sy(0)− y′(0)

L(y′)(s) = sL(y)(s)− y(0)

L(y)(s) = Y (s)

It is customary to use lower case y for y(t), Y to denote the Laplace transform L(y). Taking the Laplace
transform of ay′′ + by′ + cy = 0 yields:

a(s2Y − sy(0)− y′(0)) + b(sY − y(0) + cY = 0

or collecting terms with Y
(as2 + bs+ c)Y = asy(0) + ay′(0) + by(0).

Notice we have transformed a differential equation in t to an algebraic equation in s. Beautiful.

Example 6.2.19. Problem: Let g(t) =
∫ t

0
f(u) du, calculate the Laplace transform of g

Solution: observe g′(t) = f(t) by the Fundamental theorem of Calculus. Thus

L(f)(s) = L(g′)(s) = sL(g)(s)− g(0) = sG(s)

Therefore,
1

s
L(f)(s) = L

(∫ t

0

f(u) du

)
(s).

We just saw that integration in the t-domain prompts division by s of the transform of the integrand. On
the other hand, L(dy/dt)(s) = sY − y(0) indicates differentiation in the t-domain prompts a multiplication
by s in the s-domain. The theorem that follows shows there is also a relation between differentiation in the
s-domain and multiplication by t in the t-domain:

Theorem 6.2.20.

Let F (s) = L(f)(s) and assume f is piecewise continous on [0,∞) and of exponential order α. Then
for s > α,

L(tnf(t))(s) = (−1)n
dnF

dsn
(s).

Proof: Let us investigate the n = 1 case:

dF

ds
=

d

ds

(∫ ∞

0

e−stf(t) dt

)
=

∫ ∞

0

d

ds

(
e−stf(t)

)
dt

=

∫ ∞

0

−te−stf(t) dt

= (−1)L(tf(t))(s)
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For the case n = 2,

d2F

ds2
=

d

ds

(
dF

ds

)
= (−1)

d

ds

∫ ∞

0

e−sttf(t) dt

= (−1)

∫ ∞

0

d

ds

(
e−sttf(t)

)
dt

= (−1)2
∫ ∞

0

e−stt2f(t) dt

= (−1)2L(t2f(t))(s).

The arguments for n = 3, 4, . . . are similar and could be made rigorous via an inductive argument. □

Summary of Laplace Transforms Theorems:

(1.) L(f + g) = L(f) + L(g)
(2.) L(cf) = cL(f)
(3.) L(eatf(t))(s) = L(f)(s− a)

(4.) L(f (n))(s) = snL(f)(s)−
∑n

i=1 s
n−if (i−1)(0)

(5.) L(tnf(t))(s) = (−1)nF (n)(s)

Example 6.2.21. Problem: Let f(t) = (1 + e−t)2 calculate L(f)(s)

Solution: observe f(t) = 1 + 2e−t + e−2t hence:

L(f)(s) = L(1)(s) + L(2e−t)(s) + L(e−2t)(s)

=
1

s
+

2

s+ 1
+

1

s+ 2
.

Example 6.2.22. Problem: Let f(t) = tewt cos 5t. Calculate L(f)(s).

Solution: utilize the theorem which says multilpication by t amounts to − d
ds of the transform:

L(f)(s) = − d

ds

(
L(e2t cos 5t)(s)

)
= − d

ds

(
s− 2

(s− 2)2 + 25

)
=

(s− 2)2 − 25

((s− 2)2 + 25)2

Example 6.2.23. Problem: Let f(t) = t sin2 t. Calculate L(f)(s).

Solution: begin by applying the appropriate theorem, then recall a trigonometric identity:

L(f)(s) = − d

ds

(
L(sin2 t)(s)

)
= − d

ds

(
L
(
1− cos 2t

2

)
(s)

)
= −1

2

d

ds

(
1

s
− s

s2 + 4

)
=

1

2

(
1

s2
+

4− s2

(s2 + 4)2

)
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Example 6.2.24. Problem: Calculate Laplace transform of f(t) = sin t cos 2t.

Solution: I use the technique of imaginary exponentials to derive the necessary trigonometric identity:

sin t cos 2t =
1

2i

(
eit − e−it

)
1

2

(
e2it + e−2it

)
=

1

4i

(
e3it − e−3it + e−it − eit

)
=

1

2
sin 3t− 1

2
sin t.

Thus, in view of the algebra above,

L(f)(s) = 3

2(s+ 9)2
− 1

s2 + 1
.

Example 6.2.25. Problem: Calculate Laplace transform of f(t) = te−t − 3.

Solution: use linearity and the known transforms.

L(te−t − 3)(s) = L(te−t)(s) + L(−3)(s) =
1

(s+ 1)2
− 3

s
.

Example 6.2.26. Problem: Calculate Laplace transform of f(t) = 13e2t sin(t+ π).

Solution: I use the trigonometric identity sin(a+ b) = sin a cos b+ cos a sin b to make the calculation below:

L(13e2t sin(t+ π))(s) = −L(13e2t sin t)(s) = − 13

(s− 2)2 + 1
.

Example 6.2.27. Problem: Calculate Laplace transform of f(t) = te−2t sin 3t.

Solution: we use the multiplication by t gives −d/ds of transform theorem:

L(te−2t sin 3t)(s) = − d

ds

(
L(e−2t sin 3t)(s)

)
= − d

ds

[
3

(s+ 2)2 + 9

]
=

6(s+ 2)

[(s+ 2)2 + 9]
2 .

Example 6.2.28. Problem: Calculate Laplace transform of f(t) = sin t cos2 t.

Solution: begin by deriving the needed trigonometric identity:

sin t cos2 t =
eit − e−it

2

(
eit + e−it

2

)2

=
1

8i
(eit − e−it)(e2it + 2 + e−2it)

=
1

8i
(e3it + 2eit + e−it − eit − 2e−it − e−3it)

=
1

4

1

2i
(e3it − e−3it) +

1

4

1

2i
(eit − e−it)

=
1

4
sin 3t+

1

4
sin t

All that remains is to apply the known transforms:

L(sin t cos2 t)(s) = 1

4

(
3

s2 + 9
+

1

s2 + 1

)
.
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6.3 The inverse transform

Definition 6.3.1.

Given F (s), if there is a function f(t) on [0,∞) such that L(f) = F then we say f is the inverse
Laplace transform of F and denote f = L−1(F )

Remark 6.3.2.

There are many possible choices for f given some particular F . This is due to the fact that∫∞
0

e−stf1(t) dt =
∫∞
0

e−stf2(t) dt provided that f1 and f2 disagree only at a few points. The
result of the inverse transform is unique if we require f to be continuous. To those who know mea-
sure theory, this means that f is unique up to an equivalence relation on l∞([0,∞)). The relation
is define as following: f ∼ g iff f(t) = g(t) almost everywhere, i.e. the Lebesgue measure of the set
of points where f and g differ is 0. This is a subtle point and I’ve already said too much here.

Example 6.3.3. Problem: calculate the inverse transform of F (s) = 2
s3 .

Solution: observe L(t2)(s) = 2
s3 thus L−1(2/s3)(t) = t2.

Example 6.3.4. Problem: calculate the inverse transform of F (s) = 3
s2+9 .

Solution: recall L(sin 3t)(s) = 3
s2+9 thus L−1

(
3

s2+9

)
(t) = sin 3t .

Example 6.3.5. Problem: calculate the inverse transform of F (s) = s−1
s2−2s+5 .

Solution: completing the square reveals much:

L−1

(
s− 1

s2 − 2s+ 5

)
(t) = L−1

(
s− 1

(s− 1)2 + 4

)
(t) = et cos 2t.

Reminder: To complete the square, we simply want to rewrite a quadratic form x2+bx+c into (x−h)2+k.

To do this we just take 1
2 of coefficient of x and then (x + b

2 )
2 = x2 + bx + b2

4 so we then have to subtract
b2

4 to be fair,

x2 + bx+ c =

(
x+

b

2

)2

− b2

4
+ c.

It’s easier to understand for specific examples,

x2 + 2x+ 5 = (x+ 1)2 − 1 + 5 = (x+ 1)2 + 4

x2 + 6x+ 5 = (x+ 3)2 − 9 + 5 = (x+ 3)2 − 4

In practice I just make sure that the LHS and RHS are equal, you don’t need to remember some algorithm
if you understand the steps.

Theorem 6.3.6.

Inverse Laplace Transform is linear provided we choose continuous f

L−1(F +G) = L−1(F ) + L−1(G),

L−1(cF ) = cL−1(F ).

Proof: It follows from linearity of L that

L(L−1(F ) + L−1(G)) = L(L−1(F )) + L(L−1(G)) = F +G

Then L−1(F +G) = L−1(F ) + L−1(G). Similar argument for homogeneous property. □

If we drop the stipulation of continuity then linearity holds almost everywhere for the inverse transforms.
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Example 6.3.7. Problem: find f(t) = L−1(F )(t) for F (s) = 3s+2
s2+2s+10 .

Solution: the algebra below anticipates the inverse transform:

3s+ 2

s2 + 2s+ 10
=

3s+ 2

(s+ 1)2 + 9

=
3(s+ 1)

(s+ 1)2 + 9
+

−3 + 2

(s+ 1)2 + 9

= 3
s+ 1

(s+ 1)2 + 32
− 1

3

3

(s+ 1)2 + 32

In view of the algebra above it should be obvious that

L−1(F )(t) = 3e−t cos 3t− 1

3
e−t sin 3t = f(t).

Example 6.3.8. Problem: consider F (s) = s
s2+5s+6 . Find L−1(F )(t) = f(t).

Solution: Note the following partial fractions decomposition:

s

s2 + 5s+ 6
=

s

(s+ 2)(s+ 3)
=

3

s+ 3
− 2

s+ 2
.

Therefore, we deduce

L−1(F )(t) = L−1

(
3

s+ 3
− 2

s+ 2

)
(t)

= 3L−1

(
1

s+ 3

)
(t)− L−1

(
1

s+ 2

)
(t)

= 3e−3t − 2e−2t.

Partial Fractions: We have discussed how polynomials split into linear and irreducible quadratic factors.

This means if we have a rational function which is p(s)
g(s) then p(s) and g(s) will factor, we assume deg(p) <

deg(g) for convenience (otherwise we would do long division). In short, partial fractions says you can split
up a rational function into a sum of basic rational functions. For basic rational functions we can readily see
how to take the inverse transform. Partial fractions involves a number of cases as you may read in most
basic DEqns texts. I do not attempt generality here, I just wish for you to realize it is nothing more than
undoing making a common denominator. I will leave you with a few examples,

s3 − 3

(s+ 1)3(s2 + 1)
=

A

s+ 1
+

B

(s+ 1)2
+

C

(s+ 1)3
+

Ds+ E

s2 + 1

s+ 3

s2(s− 2)(s2 + 3)2
=

A

s
+

B

s2
+

C

s− 2
+

Ds+ E

s2 + 3
+

Fs+G

(s2 + 3)2

It is a simple, but tedious matter to calculate the constants A,B,C, .., G in the above. Notice on the RHS
almost all the terms are easily inverse transformed. The last term in the second equation is subtle, just as
in the corresponding algebra problem we saw in the study of integration in calculus II.

Remark 6.3.9.

It is crucial to understand the difference between (s2 + 1) and (s + 1)2. Note that the inverse

transforms of
(

1
s2+1

)
and

(
1

(s+1)2

)
are quite different.
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Example 6.3.10. Problem: find the inverse Laplace transform of F (s) = s+1
s2−2s+5 .

Solution: the observation 1 = −1 + 2 is especially useful below:

F (s) =
s+ 1

s2 − 2s+ 5
=

s+ 1

(s− 1)2 + 4
=

(s− 1) + 2

(s− 1)2 + 4
.

Therefore, L−1(F )(t) = et cos 2t+ et sin 2t.
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Example 6.3.11. Problem: find the inverse Laplace transform of F (s) = 7s3−2s2−3s+6
s3(s−2) .

Solution: we propose the partial-fractal-decomposition below:

F (s) =
7s3 − 2s2 − 3s+ 6

s3(s− 2)
=

A

s
+

B

s2
+

C

s3
+

D

s− 2

multiply by the denominator s3(s− 2) to obtain:

7s3 − 2s2 − 3s+ 6 = As2(s− 2) +Bs(s− 2) + C(s− 2) +Ds3.

There are a number of methods to solve such equations. As this must hold for all s it is convienent to plug
in a few simple integers:

(i.) s = 0 : We have 6 = −2C. Therefore C = −3,

(ii.) s = 1 : We have 8 = −A−B + 3 +D,

(iii.) s = 2 : We have 56− 8− 6 + 6 = 8D. Therefore D = 6,

(iv.) s = −1 : We have −3A+ 3B + 3 = 0, which implies A = B + 1.

Hence (ii.) reduces to 8 = −B − 1−B + 3 + 6. Therefore B = 0 and A = 1. In summary,

F (s) =
1

s
− 3

s3
+

6

s− 2
⇒ L−1(F )(t) = 1− 3t2

2
+ 6e2t.

Example 6.3.12. Problem: find the inverse Laplace transform of F (s) = e−s 4s+2
s(s+1) .

Solution: Let us set F (s) = e−sG(s). Note that

G(s) =
4s+ 2

s(s+ 1)
=

2

s
+

2

s+ 1

Thus g(t) = 2 + 2e−t. Therefore,

L−1(G(s)e−s)(t) = g(t− 1)u(t− 1)

= (2 + 2e−t+1)u(t− 1)

= 2(1 + e−t+1)u(t− 1).

6.3.1 how to solve an ODE via the method of Laplace transforms

Example 6.3.13. Problem: solve y′′ − 2y′ + 5y = 0 with y(0) = 2 and y′(0) = 12.

Solution: Take the Laplace transform of the given initial value problem,

s2Y − sy(0)− y′(0)− 2(sY − y(0)) + 5Y = 0

We solve for Y ,

(s2 − 2s+ 5)Y = 2s+ 8 ⇒ Y (s) =
2s+ 8

s2 − 2s+ 5
.

We wish to find y(t) = L−1(Y )(t). To do that we need to find if s2 − 2s + 5 will factor, note b2 − 4ac =
4 − 20 = −16 < 0. Thus it is an irreducible quadratic. We will complete the square and break into sin and
cos pieces.

2s+ 8

s2 − 2s+ 5
=

2s+ 8

(s− 1)2 + 4
=

2(s− 1)

(s− 1)2 + 22
+

2

2

8 + 2

(s− 1)2 + 22

Thus,
y(t) = 2et cos 2t+ 5et sin 2t.
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Example 6.3.14. Problem: solve the repeated root problem y′′+4y′+4y = 0 subject to the intial conditions
y(0) = 1 and y′(0) = 1.

Solution: the Laplace transform yields,

s2Y − sy(0)− y′(0) + 4(sY − y(0)) + 4Y = 0

We solve for Y as usual,

(s2 + 4s+ 4)Y = s+ 5 ⇒ Y =
s+ 5

s2 + 4s+ 4
=

1

s+ 2
+

3

(s+ 2)2

Therefore,

y(t) = L−1(Y )(t) = L−1

(
1

s+ 2

)
(t) + L−1

(
3

(s+ 2)2

)
(t)

and we conclude y(t) = e−2t + 3te−2t.

Remark 6.3.15.

The method of Laplace transform has derived the curious te−t term. Before we just pulled it out of
thin-air and argued that it worked. In defense of our earlier methods, the Laplace machine is not
that intuitive either. At least we have one derivation now. Another route to explain the ”t” in the
double root solution is to use ”reduction of order”. There is also a pretty derivation based on the
matrix exponential and generalized eigenvectors which we should discusss in our solution of systems
of ODEs.

Example 6.3.16. Problem: y′′ + y = 2et, where y(0) = 1 and y′(0) = 2.

Solution: Take the Laplace transform,

s2Y − s− 2 + Y =
2

s− 1
⇒ (s2 + 1)Y = s+ 2 +

2

s− 1

Algebra yields

Y =
s+ 2

s2 + 1
+

2

(s2 + 1)(s− 1)
=

s+ 2

s2 + 1
+

−s− 1

s2 + 1
+

1

s− 1
=

1

s2 + 1
+

1

s− 1

Taking L−1 yields the solution:
y = sin t+ et.

The standard Laplace technique is set-up for initial values at t = 0. However, the next example illustrates
that is just a convenience of our exposition thus far.

Example 6.3.17. Problem: solve w′′ − 2w′ + 5w = 8π−t, given w(π) = 2 and w′(π) = 12.

Solution: We need conditions at t = 0 so to remedy being given them at π. We define y as follows:

y(t) = w(t+ π) ⇒ y(0) = w(π) = 2

And,
y′(0) = w′(π) = 12

Then,
w′′(t+ π)− 2w′(t+ π) + 5w(t+ π) = −8eπ−(t+π) = −8e−t

Thus,
y′′ − 2y′ + 5y = −8e−t
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Taking the Laplace transform yields,

(s2 − 2s+ 5)Y − 2s− 12− 2(−2) =
−8

s+ 1

⇒ Y =

(
8 + 2s− 8

s+ 1

)
1

s2 − 2s+ 5
=

3(s− 1) + 2(4)

(s− 1)2 + 22
− 1

s+ 1

⇒ L−1(Y )(t) = 3et cos 2t+ 4et sin 2t− e−t = y(t)

Then returning to our original problem. Note w(t) = y(t− π), thus:

w(t) = 3t−π cos(2(t− π)) + 4et−π sin(2(t− π))− eπ−t

= 3et−π cos(2t− 2π) + 4et−π sin(2t− 2π)− eπ−t.

We find w(t) = 3et−π cos 2t+ 4et−π sin 2t− eπ−t.

Remark 6.3.18.

This example is important in that it shows us how to use Laplace transforms to treat problems
where the data is given at any time not just zero as the formalism is set-up for

Example 6.3.19. Problem: suppose w(1) = 1 and w′(1) = 0. Solve: w′′ − w = sin(t− 1).

Solution: Using Laplace transforms. Introduce y(t) = w(t + 1) so that y(0) = w(1). Also noteice that
y′(t) = dw

dt
d
dt (t+ 1) = w′(t+ 1) and y′′(t) = w′′(t+ 1). Consider the differential equation at t+ 1,

w′′(t+ 1)− w(t+ 1) = sin(t+ 1− 1)

Thus, y′′ − y = sin t, and y(0) = 1, y′(0) = 0. Now we can use the standard Laplace theory on y,

s2Y − s− Y =
1

s2 + 1

⇒ Y =
1

s2 − 1

(
s+

1

s2 + 1

)
=

s(s2 + 1) + 1

(s+ 1)(s− 1)(s2 + 1)
=

1

4

1

s+ 1
+

3

4

1

s− 1
− 1

2

1

s2 + 1

Thus, y(t) = 1
4e

−t + 3
4e

t − 1
2 sin(t). Therefore,

w(t) =
1

4
e−t+1 +

3

4
et−1 − 1

2
sin(t− 1)

There are other perhaps simpler ways to express our final answer, but this will suffice.

Example 6.3.20. Problem: solve: ty′′ − ty′ + y = 2, where y(0) = 2 and y′(0) = −1.

Solution: We have:

L(ty′′) = − d

ds
L(y′′) = − d

ds
(s2Y − 2s+ 1) = −2sY − s2Y ′ + 2

And

L(ty′) = − d

ds
(L(y′) = − d

ds
(sY − 2) = −Y − sY ′

Thus, L(ty′′ − ty′ + y) = L(2) yields:

dY

ds
(s− s2) + Y (2− 2s) =

2

s
− 2
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Hence,

−dY

ds
s(s− 1)− 2(s− 1)Y = 2

(
1

s
− 1

)
⇒ s

dY

ds
+ 2Y =

2

s
.

One more algebra step brings us to standard form:

dY

ds
+

2

s
Y =

2

s2

Therefore, by the integrating factor technique:

Y =
1

s2

∫
s2

2

s2
ds =

2

s
+

c1
s2

which implies

Y (s) =
2

s
+

c1
s2

⇒ y(t) = 2 + c1t.

Since y′(0) = −1, c1 = −1. As a result, we find the solution y(t) = 2− t.

There is probably an easier way to solve the problem above. I include it here merely to show you that there
are problems where calculus must be done in the s-domain.

6.4 Discontinuous functions

One main motivation for including Laplace transforms in your education is that it allows us to treat problems
with piecewise continuous forcing terms in a systematic fashion. Without this technique, you have to solve
the problem in each piece then somehow glue them together.

Definition 6.4.1.

The unit-step function u(t) is defined by

u(t) =

{
0, if t < 0

1, if t > 0

Often it will be convenient to use u(t− a) =

{
0, if t > a

1, if t < a
. This allows us to switch functions on or off for

particular ranges of t.

Example 6.4.2. The casewise-defined function g(t) =


0, if t < 0

cos t, if 0 < t < 1

sin t, if 1 < t < π

t2, if π < t

can be written elegantly as:

g(t) = (u(t)− u(t− 1)) cos t+ (u(t− 1)− u(t− π)) sin t+ u(t− π)t2.

It is not hard to see why this function is useful to a myriad of applications, anywhwere you have a switch
the unit-step functions provides an idealized model of that.

Proposition 6.4.3.

L(u(t− a))(s) = 1
se

−as

Proof: We have

L(u(t− a))(s) =

∫ ∞

0

e−stu(t− a) dt =

∫ ∞

a

e−st dt =
−1

s
e−st

∣∣∣∣∞
a

=
1

s
e−as □.
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Theorem 6.4.4.

Let F (s) = L(f)(s) for s > α ≥ 0. If a > 0, then

L(f(t− a)u(t− a))(s) = e−asF (s)

And conversely,
L−1(e−asF (s))(t) = f(t− a)u(t− a)

Proof: We calculate from the definition,

L(f(t− a)u(t− a))(s) =

∫ ∞

0

e−stf(t− a)u(t− a) dt =

∫ ∞

a

e−stf(t− a) dt =

=

∫ ∞

0

e−s(u+a)f(u) du = e−saL(f)(s) = e−asF (s) □.

Corollary 6.4.5.

L(g(t)u(t− a))(s) = e−asL(g(t+ a))(s)

Proof: Let h(t− a) := g(t). The corollary is immediately follows from Theorem 6.4.4. □

Example 6.4.6. Simply apply the previous corollary to obtain,

L(t2u(t− 1))(s) = e−sL((t+ 1)2)(s) = e−sL(t2 + 2t+ 1)(s) =

= e−s

(
2

s3
+

2

s2
+

1

s

)
.

Example 6.4.7. Problem: find L−1
(

1
s2 e

−2s
)
.

Solution: we use Theorem 6.4.4

L−1

(
1

s2
e−2s

)
= L−1

(
1

s2

)
(t− 2)u(t− 2) = (t− 2)u(t− 2).

Remark 6.4.8.

If we find exponential factors in the s-domain, that suggests we will encounter unit-step functions
upon taking L−1 to get back to the t-domain.

Example 6.4.9. Problem: Calculate Laplace transform of f(t) =

{
et, if 0 ≤ t ≤ 2

t, if t > 2
.

Solution: we begin by expressing the function in terms of unit-step functions:

f(t) = et(u(t)− u(t− 2) + t(u(t− 2)) = etu(t) + (t− et)u(t− 2)

The transforms below follow, notice how the u(t− 2) term prompts the appearance of the t+ 2 arguments:

L(f)(s) = L(etu(t))(s) + L((t− et)u(t− 2))(s)

= L(et)(s) + e−2sL(t+ 2− et+2)(s)

= L(et)(s) + e−2sL(t+ 2− e2et)(s)

=
1

s− 1
+ e−2s

(
1

s2
+

2

s
− e2

s− 1

)
.
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Example 6.4.10. Problem: Calculate Laplace transform of f(t) =


1, if 0 ≤ t ≤ 1

t2, if 1 < t ≤ 2

sin t, if t > 2

.

Solution: we begin by converting the formula to unit-step format:

f(t) = (u(t)− u(t− 1)) + (u(t− 1)− u(t− 2))t2 + u(t− 2) sin t

= u(t) + (t2 − 1)u(t− 1) + (sin t− t2)u(t− 2)

We have:

L(u(t))(s) = 1

s

L((t2 − 1)u(t− 1))(s) = e−s

(
2

s3
+

2

s2

)
L((sin t− t2)u(t− 2))(s) = e−s

(
cos 2

s2 + 1
+ sin 2

s

s2 + 1
− 2

s3
+

2

s2
− 4

s

)
Linearity combines the three results above to yield L(f)(s)

L(f)(s) = 1

s
+ e−s

(
2

s3
+

2

s2

)
+ e−s

(
cos 2

s2 + 1
+ sin 2

s

s2 + 1
− 2

s3
+

2

s2
− 4

s

)
.

6.5 further Laplace transforms

I don’t always have time to cover everything in this Section. Here I study periodic functions, the Gamma
function and the extension of Laplace techniques to series. If you are truly curious then I would strongly
advise you don’t stop with this humble treatment. There is much more to learn1

Definition 6.5.1.

A function f is said to be periodic on its domain with period T if f(t) = f(t+ T ) for all t.

Example 6.5.2. note items (4.) and (5.) are extended periodically past the given window of the function.

(1.) f1(t) = sin t has T = 2π

(2.) f2(t) = sin kt has T = 2π
k

(3.) f3(t) = tan t has T = π

(4.) g(t) =

{
1, if 0 < t < 1

0, if 1 < t < 2
with T = 2

(5.) g(t) =

{
t, if 0 < t < 1

2− t, if 1 < t < 2
with T = 2

Definition 6.5.3.

For f with [0, T ] ∈ dom(f) with f periodic with period T , we define the ”windowed version” of f

fT (t) =

{
f(t), if 0 < t < T

0, otherwise

1If you want to really understand the Γ function then take Math 331 and then find time for a conversation with
Dr. Smith.



6.5. FURTHER LAPLACE TRANSFORMS 193

The Laplace transform of the windowed version of a periodic function f with period T is similarly denoted

FT (t) =

∫ ∞

0

e−stfT (t) dt =

∫ T

0

e−stf(t) dt.

Theorem 6.5.4.

If f has period T and is piecewise continuos on [0, T ], then

L(f)(s) = FT (s)

1− e−sT
=

∫ T

0
e−stf(t) dt

1− e−sT

Proof: We will use the unit step function to express the function in a format which permits us to use
Theorem 6.4.4. Assume dom(f) = [0,∞)

f(t) = fT (t) + fT (t− T )u(t− T ) + fT (t− 2T )u(t− 2T ) + ...

This is sneaky in that fT (t − T ) ̸= 0 only for T < t < 2T and fT (t − 2T ) ̸= 0 only for 2t < t < 3t. so the
unit step functions just multiply by 1 amd are superfluous as these shifted fT functions are already set-up
to be zero most places. We want the unit step functions so we can use Theorem 6.4.4:

L(f)(s) = L(fT )(s) + L(fT (t− T )u(t− T ))(s) + ...

= FT (s) + e−sTFT (s) + e−2sTFT (s) + ...

=
Ft(s)

1− e−sT

for |e−st| < 1. The theorem follows. □

Example 6.5.5. Problem: fT (t) = et and periodic f has T = 1. Calculate the Laplace transform of f .

Solution: We have:

L(f)(s) =
∫ 1

0
e−stet dt

1− e−s

=
1

1− e−s

∫ 1

0

et(1−s) dt

=
1

1− e−s
· 1

1− s
et(1−s)

∣∣∣∣1
0

=
1

1− e−s
· 1

1− s
(e1−s − 1)

=
1

s− 1
· e

s − e

es − 1
.

Example 6.5.6. Problem: let f(t) =

{
sin t
t , if t ̸= 0

1, ift = 0
. Find the Laplace transform of f .

Solution: Recall that

sin t =

∞∑
n=0

(−1)n
t2n+1

(2n+ 1)!
⇒ sin t

t
=

∞∑
n=0

(−1)n
t2n

(2n+ 1)!

It is not hard to see that f is of exponential order. Thus, we expect its Laplace transform exists. And in fact
it can be shown that the Laplace transform of a series is the series of the Laplace transform of the terms.
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That is we can extend linearity of L to infinite sums provided the series is well-behaved (need exponential
order).

L(f)(s) = L

( ∞∑
n=0

(−1)n
t2n

(2n+ 1)!

)
(s)

=

∞∑
n=0

(−1)n
1

(2n+ 1)!
L(t2n)(s)

=

∞∑
n=0

(−1)n
1

(2n+ 1)!

(2n)!

s2n+1

=

∞∑
n=0

(−1)n
1

2n+ 1

1

s2n+1

= tan−1

(
1

s

)
.

Definition 6.5.7.

The gamma function Γ is defined on (0,∞) as

Γ(t) :=

∫ ∞

0

e−uut−1 du

Integration by parts shows that Γ has the property Γ(t+ 1) = tΓ(t). Furthermore, notice that

Γ(1) =

∫ ∞

0

e−u du = 1.

If n ∈ Z then Γ(n+ 1) = nΓ(n) = ... = n!. This means the gamma function is a continuous extension of the
factorial ! Previously, we have utilized L(tn)(s) = n!

sn+1 . However, for any non-negative n, we have:

L(tn)(s) = Γ(n+ 1)

sn+1
.

Let’s prove it, take s > 0 as usual,

L(tn)(s) =
∫ ∞

0

e−sttn dt =

∫ ∞

0

e−uu
n

sn
1

s
du =

1

sn+1

∫ ∞

0

e−uun du =
Γ(n+ 1)

sn+1
.

The discussion above serves to prove the following:

Theorem 6.5.8.

L(tn)(s) = Γ(n+ 1)

sn+1

Remark: The gamma funcion is important to probability theory.

Example 6.5.9. L(t3.6)(s) = Γ(4.6)
s4.6 .

Values of the Γ-function typically must be determined by some numerical method or table.
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6.6 The Dirac delta device

Definition 6.6.1.

The Dirac delta function δ(t) is characterized by

1. δ(t) =

{
0, if t ̸= 0

∞, otherwise

2.
∫∞
−∞ f(t)δ(t) dt = f(0)

for any function f that is continuous on some neighborhood of zero.

Technically δ(t) is a ”generalized function” or better yet a ”distribution”. It was introduced by P.A.M. Dirac
for physics, but was only later justified by mathematicians. This trend is also seen in recent physics, the
physics community tends to do calculations that are not well-defined. Fortunately, physical intuition has
guided them to not make very bad mistakes for the most part. Dirac later introduced something that came
to be named ”Dirac string” to described a quirk in the mathematics of the magnetic monopole. It took
more than 20 years for the mathematics to really catch up and better explain the Dirac String in terms of
a beautiful mathematical construction of fiber bundles. I digress! Anyway, we sometimes say ”we have it
down to a science”, it would be better to say ”we have it down to a math”.

Remark 6.6.2.

Dirac delta functions in 3−dimensions work about the same: δ(r) = δ(x)δ(y)δ(z), for r = (x, y, z).
One application is to model the ideal point charge q at location a it has charge density

ρ(r) = qδ(r− a)

see Griffith’s Electrodynamics or take a junior-level electricity and magnetism course.

Heuristic Justification of δ(t): Impulse is defined to be the time integral of force experienced by some
object over some short time interval t0 → t1,

Impulse :=

∫ t1

t0

F (t) dt =

∫ t1

t0

dP

dt
dt = P (t1)− P (t0)

Since F = dP
dt , it is also equal to the change in momentum. You might think of a hammer striking a nail or

a ball bouncing off a wall. A large force is exerted over a short time period.

You can imagine applying a greater force over a shorter time till in the limit you approach the notion of the
delta function. The Dirac delta function can be used to model an impulse where we do not perhaps know the
details of the impact, but we know it happened quickly and with a certain overall change in momentum. In
such case, the δ(t) provides a useful idealization. Similarly when it is used to describe the charge densities, it
provdies us a convenient mathematics for describing a localized source. I think a point charge is not really a
point, but rather an extended (although tiny) body. We don’t know the details of such tiny things, or if we
do they are complicated. In such cases the Dirac delta function provides a useful mathematical idealization.

Proposition 6.6.3.

L(δ(t− a))(s) = e−as

Proof: Integrals with δ-functions are easy; integration becomes evaluation:

L(δ(t− a))(s) =

∫ ∞

0

e−stδ(t− a) dt = est|t−a=0 = e−as.
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Consider the graph of the unit step function u(t− a). The unit step is constant everywhere except at t = a,
where it jumps 1 in zero-time. This suggests,

d

dt
(u(t− a)) = δ(t− a).

Of course, there is something exotic here, u(t−a) is not even continuous, what right have we to differentiate
it? Of course the result δ(t − a) is not a function and the d

dt here is a more general idea that the one seen
in Calculus I. □

Remark 6.6.4.

In reality applications typically have functions more like the picture above. As δt → 0, we obtain
the unit step function and δ(t). We use u(t− a) amd δ(t− a) necaise we either do not know or do
not care the details of what happens close to time t = a.

Example 6.6.5. Problem: consider a mass spring system with no friction and m = 1 and spring constant
k = 1 initially at rest x(0) = 0 and x′(0) = 0 hit by hammer at t = 0. Model the force by F (t) = δ(t). Find
the resulting motion.

Solution: We apply Newton’s Second Law. This can be described by (no friction and m = k = 1)

x′′ + x = δ(t).

Suppose the system has . Then

s2X +X = L(δ(t))(s) = e0 = 1 ⇒ X =
1

s2 + 1
⇒ x(t) = sin t.

Notice that while x(0) = 0, x′(0) = 1 ̸= 0. This is to be expected as x′(0−) = 0 while x′(0+) Since
∆P = m∆V = 1. So the velocity has to change very quickly.

Example 6.6.6. Problem: solve: x′′ + 9x = 3δ(t− π), where x(0) = 1 and x′(0) = 0.

Solution: We have: s2X − s+ 9X = 3e−πs, which implies

(s2 + 9)X = 3e−πs + s ⇒ X = 3e−πs 1

s2 + 9
+

s

s2 + 9

Thus we have

x(t) = L−1(X)(t)

= L−1

(
3e−πs

s2 + 9

)
(t) + L−1

(
s

s2 + 9

)
(t)

= sin(3(t− π))u(t− π) + cos 3t

=

{
cos 3t, if t < π

cos 3t− sin 3t, if t > π
.
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Example 6.6.7. Problem: Solve y′′ − 2y′ + y = u(t− 1), where y(0) = 0 and y′(0) = 1.

Solution: We have s2Y − 1− 2sY + Y = e−s

s , which implies

(s2 − 2s+ 1)Y = 1 +
e−s

s

Thus we have:

Y =
1

s2 − 2s+ 1
+

e−s

s(s2 − 2s+ 1)

Define F (s) as follows and perform the partial-fractal-decomposition:

F (s) =
1

s(s2 − 2s+ 1)
=

1

s
− 1

s− 1
+

1

(s− 1)2
.

Therefore, f(t) = 1 − et + tet. Hence L−1(F (s)e−s)(t) = (1 − et−1 + (t − 1)et−1)u(t − 1). Thus, noting
s2 − 2s+ 1 = (s− 1)2 to simplify the formula for Y ,

L−1(Y )(t) = L−1

(
1

(s− 1)2

)
+ L−1

(
e−sF (s)

)
= tet + (1− et−1 + (t− 1)et−1)u(t− 1).

Therefore, the solution is given by:

y(t) = tet + (1− et−1(t− 2))u(t− 1).

Example 6.6.8. Problem: solve y′′ + 5y′ + 6y = u(t− 1), with y(0) = 2, y′(0) = 1.

Solution: We have s2Y − 2s− 1 + 5(sY − 2) + 6Y = e−s

s . Thus

(s2 + 5s+ 6)Y = 2s+ 1 + 1− e−s

s
⇒ Y =

2s+ 11

s2 + 5s+ 6
+

e−s

s(s2 + 5s+ 6

Note that
2s+ 11

s2 + 5s+ 6
=

7

s+ 2
− 5

s+ 3

Also, define and decompose F (s) as follows:

F (s) =
1

s(s2 + 5s+ 6)
=

1/6

s
+

−1/2

s+ 2
+

1/3

s+ 3

Thus f(t) = 1
6 − 1

2e
−2t + 1

3e
−3t. Therefore,

y(t) = L−1

(
7

s+ 2
− 5

s+ 3

)
(t) + L−1(F (s)e−s)(t)

= 7e−2t − 5e−3t + f(t− 1)u(t− 1)

= 7e−2t − 5e−3t +

(
1

6
− 1

2
e−2(t−1) +

1

3
e−3(t−1)

)
u(t− 1)

Example 6.6.9. Problem: solve y′′ − 7y′ + 12y = 12u(t− 4), where y(0) = 1 and y′(0) = 4.

Solution: We have s2Y − s− 4− 7(sY − 1) + 12Y = 12
s e

−4s. Therefore,

(s2 − 7s+ 12)Y = s− 3 + 12
e−4s

s
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Solve for Y , and implicitly define F (s) by the rightmost equality

Y =
s− 3

s2 − 7s+ 12
+

12e−4s

s(s2 − 7s+ 12)
=

1

s− 4
+ F (s)e−4s.

Partial fractions for F (s) is found after a short calculation:

F (s) =
12

s(s+ 3)(s+ 4)
=

1

s
− 4

s− 3
+

3

s− 4
.

Thus,
f(t) = L−1(F )(t) = 1− 4e3t + 3e4t.

Now we assemble the solution:

y(t) = L−1(Y )(t)

= L−1

(
1

s− 4

)
(t) + L−1(F (s)e−4s)(t)

= e4t + f(t− 4)u(t− 4)

= e4t +
(
1− 4e3(t−4) + 3e4(t−4)

)
u(t− 4).

Example 6.6.10. Problem: solve y′′ − 7y′ + 12y = 12u(t− 4), where y(0) = 1, and y′(0) = 1
2

Solution: We have s2Y − s− 1
2 − 7(sY − 1) + 12Y = 12e−4s

s , which implies

(s2 − 7s+ 12)Y = s+
1

2
− 7 +

12e−4s

s
= s− 13

2
+

12e−4s

s

Solve for Y ,

Y =
s− 13/2

s2 − 7s+ 12
+

12e−4s

s(s2 − 7s+ 12)
.

Note that
s− 13/2

(s− 3)(s− 4)
=

7/2

s− 3
− 5/2

s− 4
.

Also, define and decompose F (s) into basic rational functions:

F (s) =
12

s(s− 3)(s− 4)
=

1

s
− 4

s− 3
+

3

s− 4
.

Thus f(t) = 1− 4e3t + 3e4t. Therefore,

y(t) =
7e3t

2
− 5e4t

2
+
(
1− 4e3(t−4) + 3e4(t−4)

)
u(t− 4).

6.7 Convolution

It turns out that if we want to map the product of functions in the s-domain2 to a corresponding product
in the t-domain then the following convoluted product is what we need:

Definition 6.7.1.

Let f(t) and g(t) be piecewise continuous on [0,∞). The convolution of f and g is denoted f ∗ g
and is defined by

(f ∗ g)(t) =
∫ t

0

f(t− v)g(v) dv

2this is made precise by the Convolution Theorem 6.7.4
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Example 6.7.2. The convolution of t and t2 on [0,∞) is

t ∗ t2 =

∫ t

0

(t− v)t2 dt =

∫ t

0

(tv2 − v3) dv =

(
1

3
tv3 − 1

4
v4
) ∣∣∣∣t

0

=
1

12
t4.

Theorem 6.7.3.

Given piecewise continuous functions f, g, h on [0,∞), we have

1. f ∗ g = g ∗ f

2. f ∗ (g + h) = f ∗ g + f ∗ h

3. f ∗ (g ∗ h) = (f ∗ g) ∗ h

4. f ∗ 0 = 0

Proof: left to reader. □

The theorem below is the whole reason for defining such a thing as a ”convolution”. You could derive the
formula for the convolution by working backwards from this theorem.
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Theorem 6.7.4. Covolution Theorem

Given f, g piecewise continuous on [0,∞) and of exponential order α with Laplace transforms

L(f)(s) = F (s) & L(g)(s) = G(s)

then,
L(f ∗ g)(s) = F (s)G(s)

Or in other words,
L−1(FG)(t) = (f ∗ g)(t).

Proof: is essentially just the calculation below:

L(f ∗ g)(s) =
∫ ∞

0

e−st(f ∗ g)(t) dt

=

∫ ∞

0

e−st

(∫ t

0

f(t− v)g(v) dv

)
dt

=

∫ ∞

0

e−st

(∫ ∞

0

u(t− v)f(t− v)g(v) dt

)
dt

=

∫ ∞

0

g(v)

(∫ ∞

0

e−stu(t− v)f(t− v) dt

)
dv

=

∫ ∞

0

g(v)L(u(t− v)f(t− v))(s) dv

=

∫ ∞

0

g(v)e−svF (s) dv

= F (s)

∫ ∞

0

e−svF (s) dv

= F (s)G(s). □

Example 6.7.5. Problem: solve y′′ + y = g(t) with y(0) = 0 and y′(0) = 0.

Solution: the Laplace transform yields s2Y + Y = G. This implies

Y (s) =
1

s2 + 1
G(s)

Using the convolution theorem, we obtain,

y(t) = L−1(Y )(t) = L−1

(
1

s2 + 1
G(s)

)
(t) =

(
L−1

(
1

s2 + 1

)
∗ L−1(G)

)
(t) = sin t ∗ g(t)

This is an integral solution to the differential equation. This result is quite impressive, notice it works for
any piecewise continuos forcing term of exponential order.
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Example 6.7.6. Problem: solve: y′′ + y = cos t, with y(0) = y′(0) = 0.

Solution: We make use of the previous example. We found that:

y =

∫ t

0

sin(t− v) cos v dv

=

∫ t

0

(sin t cos2 v − sin v cos t cos v) dv

= sin t

∫ t

0

1

2
(1 + cos 2v) dv − cos t

∫ t

0

sin v cos v dv

=
1

2
sin t(t+ 1/2 sin 2t)− cos t

(
1

2
sin2 t

)
=

1

2
t sin t.

Remark 6.7.7.

This gives us yet another method to explain the presence of the factor ”t” in yp when there is overlap.
Here y1 = cos t and y2 = sin t are the fundamental solution, clearly cos t = g(t) overlaps.

Example 6.7.8. Problem: solve y′′ − y = g(t) with y(0) = 1 and y′(0) = 1. Assuming that g(t) has
well-defined Laplace transform G.

Solution: We have s2Y − sy(0)− y′(0)− Y = G, which implies

Y (s) =
1

s− 1
+

1

s2 − 1
G(s)

Notice by partial fractions 1
s2−1 = 1/2

s+1 − 1/2
s−1 . Therefore,

L−1

(
1

s2 − 1

)
(t) =

1

2
L−1

(
1

s− 1

)
(t)− 1

2
L−1

(
1

s+ 1

)
(t) =

1

2
(et − e−t)

Hence using the convolution theorem,

y(t) = et + sinh(t) ∗ g(t) = et +

∫ t

0

sinh(t− v)g(v) dv.



202 CHAPTER 6. THE LAPLACE TRANSFORM TECHNIQUE

Example 6.7.9. Problem: use convolution theorem to find L−1
(

1
(s+1)2

)
.

Solution: We have 1
(s+1)2 = 1

s2+1
1

s2+1 = F (s)G(s). Now L−1(F )(t) = sin t = f(t) = g(t) = L−1(G)(t).

L−1

(
1

(s2 + 1)2

)
(t) = L−1(FG)(t) = f(t) ∗ g(t)

=

∫ t

0

f(t− v)g(v) dv

=

∫ ∞

0

sin(t− v) sin v dv

=
1

2
sin3 t− cos t

(
1

2
t− 1

4
sin 2t

)
=

1

2
sin t− 1

2
t cos t.

Remark 6.7.10.

The convolution theorem allows us to unravel many inverse Laplace transforms in a slick way. In
the other direction it is not as useful since as a starting point you need to identify some convolution
in t. Unless your example is very special it is unlikely the convolution theorem will be useful in
taking the Laplace transform. I should also mention, the concept of a transfer function and the
associated linear systems analysis is an interesting topic which is intertwined with the convolution
technique.

6.8 practice problems

PP 310 Calculate the Laplace transform of f(t) = t from the definition of the Laplace transform. That is,
calculate L{t}(s) =

∫∞
0

te−stdt.

PP 311 Calculate L{te3t}(s).

PP 312 Let f(t) = sin t for 0 ≤ t ≤ π and f(t) = 0 for t > π. Calculate L{f(t)}(s).

PP 313 Calculate L{e3t sin(6t)− t3 + et}(s)

PP 314 Calculate L{t4 − t2 − t+ sin(
√
2t)}(s)

PP 315 Calculate L{2t2e−t}(s)

PP 316 Calculate L{t2e3t + e−2t sin(2t)}(s)

PP 317 Calculate L{sin(3t) cos(3t)}(s)

PP 318 Calculate L{cos3(t)}(s)

PP 319 Derive L{tn}(s) = n!

sn+1

PP 320 Derive L{cosh(bt)}(s) = s

s2 − b2

PP 321 Calculate L−1

{
6

(s− 1)4

}
(t).

PP 322 Calculate L−1

{
2

s2 + 4

}
(t).

PP 323 Calculate L−1

{
s+ 1

s2 + 2s+ 10

}
(t).
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PP 324 Calculate L−1

{
1

s5

}
(t).

PP 325 Let F (s) =
3s− 15

2s2 − 4s+ 10
. Calculate f = L−1{F}.

PP 326 Let F (s) =
6s2 − 13s+ 2

s(s− 1)(s− 6)
. Calculate f = L−1{F}.

PP 327 Let F (s) =
s+ 11

(s− 1)(s+ 3)
. Calculate f = L−1{F}.

PP 328 Let F (s) =
7s3 − 2s2 − 3s+ 6

s3(s− 2)
. Calculate f = L−1{F}.

PP 329 Given s2F (s) + sF (s)− 6F (s) =
s2 + 4

s2 + 5
calculate f = L−1{F}.

PP 330 Let F (s) = ln

(
s+ 2

s− 5

)
. Calculate f = L−1{F}.

PP 331 Let F (s) = tan−1

(
1

s

)
. Calculate f = L−1{F}.

PP 332 Solve y′′ − 2y′ + 5y = 0 with y(0) = 2 and y′(0) = 4 via the Laplace transform technique.

PP 333 Solve y′′ + 6y′ + 5y = 12et with y(0) = −1 and y′(0) = 7 via the Laplace transform technique.

PP 334 Solve w′′ + w = t2 + 2 with w(0) = 1 and w′(0) = −1 via the Laplace transform technique.

PP 335 Solve y′′ − 4y = 4t− 8e−2t with y(0) = 0 and y′(0) = 5 via the Laplace transform technique.

PP 336 Solve y′′ + 3ty′ − 6y = 1 with y(0) = 0 and y′(0) = 0 via the Laplace transform technique.

PP 337 Solve y′′ + y = t with y(π) = 0 and y′(π) = 0 via the Laplace transform technique.

PP 338 Let g(t) =

{
0, 0 < t < 2

t+ 1, 2 < t
. Calculate G(s).

PP 339 Let g(t) =


0, 0 < t < 1

2, 1 < t < 2

1, 2 < t < 3

3, 3 < t

. Calculate G(s).

PP 340 Let g(t) =


0, t < 1

t− 1, 1 < t < 2

3− t, 2 < t < 3

0, 3 < t

. Calculate G(s).

PP 341 Let G(s) =
e−3s

s2
. Calculate g(t).

PP 342 Calculate L−1

{
e−2s − 3e−4s

s+ 2

}
(t).

PP 343 Calculate L−1

{
e−s

s2 + 4

}
(t).

PP 344 Solve y′′ + 4y′ + 4y = u(t − π) − u(t − 2π) with y(0) = 0 and y′(0) = 0 via the Laplace transform
technique.



204 CHAPTER 6. THE LAPLACE TRANSFORM TECHNIQUE

PP 345 Solve y′′ + 5y′ + 6y = g(t) given y(0) = 0 and y′(0) = 2 where g(t) =


0, 0 < t < 1

t, 1 < t < 5

1, 5 < t

.

PP 346 Solve y′′ − y = u(t− 1)− u(t− 4) given y(0) = 0 and y′(0) = 2.

PP 347 Calculate
∫∞
−∞(t2 − 1)δ(t)dt.

PP 348 Calculate
∫∞
−∞ e3tδ(t)dt.

PP 349 Calculate
∫∞
−∞ sin(3t)δ

(
t− π

2

)
dt.

PP 350 Calculate
∫∞
−∞ e−2tδ(t+ 1)dt.

PP 351 Calculate L{δ(t− 1)− δ(t− 3)}(s).

PP 352 Calculate L{δ(t− π) sin t}(s).

PP 353 Solve w′′ + w = δ(t− π) where w(0) = 0 and w′(0) = 0.

PP 354 Solve y′′ + y = 4δ(t− 2) + t2 given y(0) = 0 and y′(0) = 2.

PP 355 A hammer hits a spring mass system at time t = π/2 and thus Newton’s Second Law gives

d2x

dt2
+ 9x = −3δ(t− π/2)

with x(0) = 1 and x′(0) = 0 since the spring is initially stretched to 1-unit and released from rest.
Calculate the equation of motion and explain what happens after the hammer hits the spring at time
t = π/2.

PP 356 Calculate the Laplace transforms of the following functions

(a.) f(t) = sin(t) cos(2t) + sin2(3t)

(b.) f(t) = etu(t− 3) + sin(t)u(t− 6)

PP 357 Calculate the Laplace transforms of the following functions

(a.) f(t) =

{
t, 0 ≤ t ≤ 2

sin(t) t > 2
.

(b.) f(t) = te−2t + t sin(t)

PP 358 Compute the inverse Laplace transforms of F (s) =
3s+ 9

s2 − 8s+ 7

PP 359 Compute the inverse Laplace transform of F (s) =
e−2s

s(s2 + 6s+ 13)

PP 360 Compute the inverse Laplace transform of F (s) =
4s

s4 − 1

PP 361 Solve the following differential equations with the given initial conditions by the method of Laplace
transforms.

(a.) y′′ + y′ − 2y = 0 where y(0) = 2 and y′(0) = 1

(b.) y′′ − 2y′ + y = δ(t− 2) where y(0) = 1 and y′(0) = 0

PP 362 Solve y′′ − 8y′ + 7y = u(t− 2) where y(0) = 0 and y′(0) = 0 by the method of Laplace transforms.

PP 363 Solve y′′ − 8y′ + 7y = u(t − 2) + u(t − 4) where y(0) = 0 and y′(0) = 0 by the method of Laplace
transforms.
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PP 364 Solution of IVP with periodic forcing functions.

(a.) find the Laplace transform of the periodic function f where T = 2a and we define f(t) = 1 for
0 < t < a and f(t) = 0 for a ≤ t ≤ 2a. This is the square wave pictured in Problem 25 of Nagel
Saff and Snider, page 422 of §7.6. (5th edition, you might need to look around given the current
edition)

(b.) solve y′′ + 3y′ + 2y = f(t) for t > 0 given y(0) = y′(0) = 0.

PP 365 A spring with stiffness k = 4 is attached to a mass m = 1 and oscillates in one-dimensional motion
such that it has x(0) = 1 and x′(0) = 1. Is it possible to strike the mass / spring system with a
hammer such that the system is motionless after the strike ? Assume an idealized hammer which
produces a force F (t) = Joδ(t− a), you are free to adjust Jo and a as needed.

PP 366 (Ritger & Rose section 9-6 problem 1a) Use convolution to find the inverse Laplace transform of
1

s2(s− a)
for a ̸= 0.

PP 367 Find an integral solution of y′′ + y = g via Laplace transforms and convolution. You may assume g
is an integrable function of time t.

PP 368 (Ritger & Rose pg. 302 section 9-8) Suppose L[y] = f is a second order linear system. If the possible
inputs (we use a complex notation to treat sines and cosines at once) are given by f(t) = ceiωt for
c ∈ C and ω ∈ R then show that the output is given by

y(t) = H(iω)ceiωt + yt(t)

where yt(t) → 0 as t → ∞ (yt is the transient solution). The function H(iω) is called the frequency-
response function for the system. Notice that we can express

H(iω) = A(ω)eiϕ(ω)

The factor A(ω) is the amplification factor for the system whereas ϕ(ω) is the phase lag. Find
formulas for A(ω) ∈ (0,∞) and ϕ(ω) in the particular cases:

(a.) H(s) =
1

s2 + 5s+ 6

(b.) H(s) =
1

s2 + s+ 1

(c.) H(s) =
1

s2 + s

PP 369 Consider L[y] = (D − 2)(D2 + 4D + 5)[y] = f where D = d/dt. Find:

(a.) green’s function K(u, t) (see my notes for the meaning of this),

(b.) transfer function H(s) and h(t),

(c.) an integral solution of L[y] = f subject y(0) = y′(0) = y′′(0) = 0 for f(t) = t2 cos(t).
NOTE: DO NOT DO THIS INTEGRAL, THIS IS WHAT IS MEANT BY ”INTE-
GRAL” SOLUTION, IT IS THE ANSWER REDUCED TO AN INTEGRAL

PP 370 Calculate the Laplace transforms of the following functions using the table of basic Laplace transforms
plus possibly the given Theorems and trigonometry.

(a.) f(t) =

{
t, 0 ≤ t ≤ 2

sin(t) t > 2
.

(b.) f(t) = te−2t + t sin(t)

PP 371 Compute the inverse Laplace transforms of,
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(a.) F (s) =
3s+ 9

s2 − 8s+ 7

(b.) F (s) =
e−2s

s(s2 + 6s+ 13)

(c.) F (s) =
4s

s4 − 1

PP 372 Solve the following differential equations with the given initial conditions by the method of Laplace
transforms.

(a.) y′′ + y′ − 2y = 0 where y(0) = 2 and y′(0) = 1

(b.) y′′ − 2y′ + y = δ(t− 2) where y(0) = 1 and y′(0) = 0

PP 373 Solve the following differential equations with the given initial conditions by the method of Laplace
transforms.

(a.) y′′ − 8y′ + 7y = u(t− 2) where y(0) = 0 and y′(0) = 0

(b.) y′′ − 8y′ + 7y = u(t− 2) + u(t− 4) where y(0) = 0 and y′(0) = 0

PP 374 Solution of IVP with periodic forcing functions.

(a.) find the Laplace transform of the periodic function f where T = 2a and we define f(t) = 1 for
0 < t < a and f(t) = 0 for a ≤ t ≤ 2a. This is the square wave pictured in Problem 25 of Nagel
Saff and Snider, page 422 of §7.6.

(b.) solve y′′ + 3y′ + 2y = f(t) for t > 0 given y(0) = y′(0) = 0.

PP 375 Let f(t) =

{
sin(t) 0 ≤ t ≤ 2

et t > 2
. Calculate the Laplace transform of f .

PP 376 Suppose F (s) =
72s

s4 − 81
. Calculate the inverse Laplace transform of F (s).

PP 377 Solve y′′ + 6y′ + 13y = u(t− 1) given y(0) = 1 and y′(0) = 3



Chapter 7

the series solution technique

Series techniques have been with us a long time now. Founders of calculus worked with series in a somewhat
careless fashion and we will do the same here. The wisdom of nineteenth century analysis is more or less
ignored in this work. In short, I am not too worried about the interval of convergence in these notes. This
is of course a dangerous game, but the density of math majors permits no other. I’ll just make this com-
ment: the series we find generally represent a function of interest only locally. Singularities prevent us from
continuing the expansion past some particular point.

It doesn’t concern this course too much, but perhaps it’s worth mentioning: much of the work we see here
arose from studying complex differential equations. The results for ordinary points were probably known
by Euler and Lagrange even took analyticity as a starting point for what he thought of as a ”function”.
The word ”analytic” should be understood to mean that there exists a power series expansion representing
the function near the point in question. There are functions which are not analytic and yet are smooth
(f(f(x) = sin(x) defines such a function, see the math stack for more). Logically, functions need not be
analytic. However, most nice formulas do impart analyticity at least locally.

Fuchs studied complex differential equations as did Weierstrauss, Cauchy, Riemann and most of the research
math community of the nineteenth century. Fuchasian theory of DEqns dealt with the problem of singulari-
ties and there was (is) a theory of majorants due to Weierstrauss which was concerned with how singularities
appear in solutions. In particular, the study of moveable singularities, the process of what we call analytic
continuation was largely solved by Fuchs. However, his approach was more complicated than the methods
we study. Frobenous proposed a method which clarified Fuch’s work and we use it to this day. Read Hille’s
masterful text about differential equations in the complex plane for a more complete history. My point to
you here is simply this: what we do here did not arise from the study of the real-valued problems we study
alone. To really understand the genesis of this material you must study complex differential equations. We
don’t do this since complex variables are not a prequisite for this course.

The calculations in this chapter can be challenging. However, the power series approximation is one of our
most flexible tools for mathematical modelling and it is most certainly worth understanding. If you compare
these notes with Ritger & Rose then you’ll notice that I have not covered too deeply the sections towards
the end of Chapter 7; Bessel, Legendre, and the hypergeometric equations are interesting problems, but it
would take several class periods to absorb the material and I think it better to spend our time on breadth.
My philosophy is that once you’ve taken this course you ought to be ready to do further study on those
sections.

7.1 calculus of series

I begin with a brief overview of terminology and general concepts about sequences and series. We will not
need all of this, but I think it is best to at least review the terms as to recover as much as we can from your

207
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previous course work.
A sequence in S is a function a : {no, no+1, no+2, . . . } → S where we usually denote a(n) = an for all n ∈ Z
with n ≥ no. Typically no = 0 or no = 1, but certainly it is interesting to consider other initial points for
the domain. If an ∈ R for all n then we say {an} is a sequence of real numbers. If an ∈ C for all n then we
say {an} is a complex sequence. If F is a set of functions and an ∈ F for all n then we say {an} is sequence
of functions. If the codomain for a sequence has an operation such as addition or multiplication then we can
add or multiply such sequences by the usual pointwise defined rules; (ab)n = anbn and (a + b)n = an + bn.
In addition, we can define a series s = ano + an1 + · · · in S as follows:

s = lim
n→∞

n∑
k=no

ak

provided the limit above exists. In other words, the series above exists iff the sequence of partial sums
{ano

, ano
+an1

, ano
+an1

+an2
, . . . } converges. When the sequence of partial sums converges then the series

is likewise said to converge and we can denote this by s =
∑∞

k=no
ak. You should remember studying the

convergence of such series for a few weeks in your second calculus course. Perhaps you will be happy to hear
that convergence is not the focus of our study in this chapter.

A power function is a function with formula f(x) = xn for some n ∈ R. A power series is a series
formed from adding together power functions. However, traditionally the term power series is reserved for
series constructed with powers from N ∪ {0}. Equivalently we can say a power series is a function which
is defined at each point by a series;

f(x) =

∞∑
k=0

ck(x− a)k = co + c1(x− a) + c2(x− a)2 + · · ·

The constants co, c1, c2, . . . are fixed and essentially define f uniquely once the center point a is given. The
domain of f is understood to be the set of all real x such that the series converges. Given that f(x) is a
power series it is a simple matter to compute that

co = f(a), c1 = f ′(a), c2 =
1

2
f ′′(a), . . . , ck =

1

k!
f (k)(a).

Incidentially, the result above shows that if
∑∞

k=0 bk(x − a)k =
∑∞

k=0 ck(x − a)k then bk = ck for all k ≥ 0
since both power series define the same derivatives and we know derivatives are single-valued when they
exist. This result is called equating coefficients of power series, we will use it many times.

The domain of a power series is somewhat boring. Recall that there are three possibilities:

1. dom(f) = {a}

2. dom(f) = {x ∈ R | |x− a| ≤ R} for some radius R > 0.

3. dom(f) = (−∞,∞)

The constant R is called the radius of convergence and traditionally we extend it to all three cases above
with the convention that for case (1.) R = 0 whereas for case (3.) R = ∞.

Given a function on R we can sometimes replace the given formula of the function with a power series. If it
is possible to write the formula for the function f as a power series centered at xo in some open set around
xo then we say f is analytic at xo. When it is possible to write f(x) as a single power series for all x ∈ R
then we say f is entire. A function is called smooth at xo if derivatives of arbitrary order exist for f at xo.

Whenever a function is smooth at xo we can calculate T (x) =
∑∞

n=0
f(n)(xo)

n! (x − xo)
n which is called the

Taylor series of f centered at xo. However, there are functions for which the series T (x) ̸= f(x) near xo.
Such a function is said to be non-analytic. If f(x) = T (x) for all x close to xo then we say f is analytic at
xo. This question is not treated in too much depth in most calculus II courses. It is much harder to prove



7.1. CALCULUS OF SERIES 209

a function is analytic than it is to simply compute a Taylor series. We again set-aside the issue of analytic-
ity for a later course where analysis is the focus. We now turn our focus to the computational aspects of series.

If f : U ⊆ R → R is analytic at xo ∈ U then we can write

f(x) = f(xo) + f ′(xo)(x− xo) +
1

2
f ′′(xo)(x− xo)

2 + · · · =
∞∑

n=0

f (n)(xo)

n!
(x− xo)

n

We could write this in terms of the operator D = d
dt and the evaluation of t = xo

f(x) =

[ ∞∑
n=0

1

n!
(x− t)nDnf(t)

]
t=xo

=

I remind the reader that a function is called entire if it is analytic on all of R, for example ex, cos(x) and
sin(x) are all entire. In particular, you should know that:

ex = 1 + x+
1

2
x2 + · · · =

∞∑
n=0

1

n!
xn

cos(x) = 1− 1

2
x2 +

1

4!
x4 · · · =

∞∑
n=0

(−1)n

(2n)!
x2n

sin(x) = x− 1

3!
x3 +

1

5!
x5 · · · =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

Since ex = cosh(x) + sinh(x) it also follows that

cosh(x) = 1 +
1

2
x2 +

1

4!
x4 · · · =

∞∑
n=0

1

(2n)!
x2n

sinh(x) = x+
1

3!
x3 +

1

5!
x5 · · · =

∞∑
n=0

1

(2n+ 1)!
x2n+1

The geometric series is often useful, for a, r ∈ R with |r| < 1 it is known

a+ ar + ar2 + · · · =
∞∑

n=0

arn =
a

1− r

This generates a whole host of examples, for instance:

1

1 + x2
= 1− x2 + x4 − x6 + · · ·

1

1− x3
= 1 + x3 + x6 + x9 + · · ·

x3

1− 2x
= x3(1 + 2x+ (2x)2 + · · · ) = x3 + 2x4 + 4x5 + · · ·

Moreover, the term-by-term integration and differentiation theorems yield additional results in conjuction
with the geometric series:

tan−1(x) =

∫
dx

1 + x2
=

∫ ∞∑
n=0

(−1)nx2ndx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− 1

3
x3 +

1

5
x5 + · · ·
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ln(1− x) =

∫
d

dx
ln(1− x)dx =

∫
−1

1− x
dx = −

∫ ∞∑
n=0

xndx =

∞∑
n=0

−1

n+ 1
xn+1

Of course, these are just the basic building blocks. We also can twist things and make the student use
algebra,

ex+2 = exe2 = e2(1 + x+
1

2
x2 + · · · )

or trigonmetric identities,

sin(x) = sin(x− 2 + 2) = sin(x− 2) cos(2) + cos(x− 2) sin(2)

⇒ sin(x) = cos(2)

∞∑
n=0

(−1)n

(2n+ 1)!
(x− 2)2n+1 + sin(2)

∞∑
n=0

(−1)n

(2n)!
(x− 2)2n.

Feel free to peruse my most recent calculus II materials to see a host of similarly sneaky calculations.

7.2 solutions at an ordinary point

An ordinary point for a differential equation is simply a point at which an analytic solution exists. I’ll
explain more carefully how to discern the nature of a given ODE in the next section. In this section we make
the unfounded assumption that a power series solution exists in each example.

Example 7.2.1. Problem: find the first four nontrivial terms in a series solution centered at a = 0 for
y′ − y = 0

Solution: propose that y = co + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 · · · . Differentiating,

y′ = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + 5c5x
4 · · ·

We desire y be a solution, therefore:

y′ − y = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + 5c5x
4 · · · − (co + c1x+ c2x

2 + c3x
3 + c4x

4 + c5x
5 · · · ) = 0.

Collect like terms:

c1 − co + x(2c2 − c1) + x2(3c3 − c2) + x3(4c4 − c3) + x4(5c5 − c4) + · · · = 0

We find, by equating coefficients, that every coefficient on the l.h.s. of the expression above is zero thus:

c1 = co, c2 =
1

2
c1, c3 =

1

3
c2, c4 =

1

4
c3

Hence,

c1 = co, c2 =
1

2
co, c3 =

1

3

1

2
co, c4 =

1

4

1

3

1

2
co

Note that 2 = 2!, 3 · 2 = 3!, 4 · 3 · 2 = 4! hence,

y = co + cox+
1

2
cox

2 +
1

3!
cox

3 +
1

4!
cox

4 + · · ·

Consequently, y = co(1 + x+
1

2
x2 +

1

6
x3 + · · · ) is the desired solution.

Of course the example above is not surprising; y′ − y = 0 has λ− 1 = 0 hence y = coe
x is the solution. We

just derived the first few terms in the power series expansion for ex centered at a = 0.
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Example 7.2.2. Problem: find the complete series solution centered at a = 0 for y′′ + x2y = 0.

Solution: Suppose the solution is a power series and calculate,

y =

∞∑
k=0

ckx
k, y′ =

∞∑
k=0

kckx
k−1, y′′ =

∞∑
k=0

k(k − 1)ckx
k−2

Of course, the summations can be taken from k = 1 for y′ and k = 2 for y′′ as the lower order terms vanish.
Suppose y′′ + x2y = 0 to find:

∞∑
k=2

k(k − 1)ckx
k−2 + x2

∞∑
k=0

ckx
k = 0

Notice,

x2
∞∑
k=0

ckx
k =

∞∑
k=0

ckx
2xk =

∞∑
k=0

ckx
k+2 =

∞∑
j=2

cj−2x
j

where in the last step we set j = k + 2 hence k = 0 gives j = 2. Likewise, consider:

∞∑
k=2

k(k − 1)ckx
k−2 =

∞∑
j=0

(j + 2)(j + 1)cj+2x
j .

where we set k − 2 = j hence k = 2 gives j = 0. Hence,

∞∑
j=0

(j + 2)(j + 1)cj+2x
j +

∞∑
j=2

cj−2x
j = 0.

Sometimes we have to separate a few low order terms to clarify a pattern:

2c2 + 6c3x+

∞∑
j=2

[
(j + 2)(j + 1)cj+2 + cj−2

]
xj = 0

It follows that c2 = 0 and c3 = 0. Moreover, for j = 2, 3, . . . we have the recursive rule:

cj+2 =
−1

(j + 2)(j + 1)
cj−2

Let us study the relations above to find a pattern if possible,

c4 =
−1

12
co, c5 =

−1

20
c1, c6 =

−1

42
c2, c7 =

−1

56
c3, c8 =

−1

72
c4, ...

Notice that c2 = 0 clearly implies c4k+2 = 0 for k ∈ N. Likewise, c3 = 0 clearly implies c4k+3 = 0 for k ∈ N.
However, the coefficients co, c4, c8, . . . are linked as are c1, c5, c9, . . . . In particular,

c12 =
−1

(12)(11)
c8 =

−1

(12)(11)
· −1

(8)(7)
c4 =

−1

(12)(11)
· −1

(8)(7)
· −1

(4)(3)
co = c3(4)

c16 =
−1

(16)(15)
· −1

(12)(11)
· −1

(8)(7)
· −1

(4)(3)
co = c4(4)

We find,

c4k =
(−1)k

k!4k(4k − 1)(4k − 5) · · · 11 · 7 · 3
co

Next, study c1, c5, c9, ...

c9 =
−1

(9)(8)
c5 =

−1

(9)(8)
· −1

(5)(4)
c1 = c2(4)+1
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c13 =
−1

(13)(12)
· −1

(9)(8)
· −1

(5)(4)
c1 = c3(4)+1

We find,

c4k+1 =
(−1)k

k!4k(4k + 1)(4k − 3) · · · 13 · 9 · 5
c1

We find the solution has two coefficients co, c1 as we ought to expect for the general solution to a second
order ODE.

y = co

∞∑
k=0

(−1)k

k!4k(4k − 1)(4k − 5) · · · 11 · 7 · 3
x4k + c1

∞∑
k=0

(−1)k

k!4k(4k + 1)(4k − 3) · · · 13 · 9 · 5
x4k+1

If we just want the the solution up to 11-th order in x then the following would have sufficed:

y = co(1− 1
12x

4 + 1
672x

8 + · · · ) + c1(x− 1
20x

5 + 1
1440x

9 + · · · ).

Remark 7.2.3.

The formulas we derived for c4k and c4k+1 are what entitle me to claim the solution is the complete
solution. It is not always possible to find nice formulas for the general term in the solution. Usually
if no ”nice” formula can be found you might just be asked to find the first 6 nontrvial terms since
this typically gives 3 terms in each fundamental solution to a second order problem. We tend to
focus on second order problems in this chapter, but most of the techniques here apply equally well
to arbitrary order.
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Example 7.2.4. Problem: find the complete series solution centered at a = 0 for y′′ + xy′ + 3y = 0.

Solution: Suppose the solution is a power series and calculate,

y =

∞∑
k=0

ckx
k, y′ =

∞∑
k=0

kckx
k−1, y′′ =

∞∑
k=0

k(k − 1)ckx
k−2

Suppose y′′ + xy′ + 3y = 0 to find:

∞∑
k=0

k(k − 1)ckx
k−2 + x

∞∑
k=0

kckx
k−1 + 3

∞∑
k=0

ckx
k = 0.

Hence, noting some terms vanish and xxk−1 = xk:

∞∑
k=2

k(k − 1)ckx
k−2 +

∞∑
k=1

kckx
k +

∞∑
k=0

3ckx
k = 0

Let k − 2 = j to relable k(k − 1)ckx
k−2 = (j + 2)(j + 1)cj+2x

j. It follows that:

∞∑
j=0

(j + 2)(j + 1)cj+2x
j +

∞∑
j=1

jcjx
j +

∞∑
j=0

3cjx
j = 0

We can combine all three sums for j ≥ 1 however the constant terms break the pattern so list them seperately,

2c2 + 3co +

∞∑
j=1

[
(j + 2)(j + 1)cj+2 + (3 + j)cj

]
xj = 0

Equating coefficients yields, for j = 1, 2, 3 . . . :

2c2 + 3co = 0, (j + 2)(j + 1)cj+2 + (3 + j)cj = 0 ⇒ c2 =
−2

3
co, cj+2 =

−(j + 3)

(j + 2)(j + 1)
cj .

In this example the even and odd coefficients are linked. Let us study the recurrence relation above to find a
general formula if possible.

(j = 1) : c3 =
−4

(3)(2)
c1 =

(−1)1(21)(2!)

3!
c1

(j = 3) : c5 =
−6

(5)(4)
c3 =

−6

(5)(4)
· −4

(3)(2)
c1 =

(−1)2(22)(3!)

5!
c1

(j = 5) : c7 =
−8

(7)(6)
c5 =

−8

(7)(6)
· −6

(5)(4)
· −4

(3)(2)
c1 =

(−1)3(23)(4!)

7!
c1

(j = 2k + 1) : c2k+1 =
(−1)k(2k + 2)(2k)(2k − 2) · · · (6)(4)(2)

(2k + 1)!
c1.

Next, study the to even coefficients: we found c2 = −2
3 co

(j = 2) : c4 =
−5

(4)(3)
c2 =

−5

(4)(3)
· −3

2
co

(j = 4) : c6 =
−7

(6)(5)
· −5

(4)(3)
· −3

2
co

(j = 6) : c8 =
−9

(8)(7)
· −7

(6)(5)
· −5

(4)(3)
· −3

2
co

(j = 2k + 1) : c2k =
(−1)k(2k + 1)(2k − 1)(2k − 3) · · · (7)(5)(3)

(2k)!
co.
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Therefore, the general solution is given by:

y = co

∞∑
k=0

(−1)k(2k + 1)(2k − 1) · · · (7)(5)(3)
(2k)!

x2k + c1

∞∑
k=0

(−1)k(2k + 2)(2k) · · · (6)(4)(2)
(2k + 1)!

x2k+1 .

The first few terms in the solution are given by y = co(1− 3
2x

2 + 5
8x

4 + · · · ) + c1(x− 2
3x

3 + 1
5x

5 + · · · ).

Example 7.2.5. Problem: find the first few nontrivial terms in the series solution centered at a = 0 for
y′′ + 1

1−xy
′ + exy = 0. Given that y(0) = 0 and y′(0) = 1.

Solution: Notice that 1
1−x = 1 + x+ x2 + · · · and ex = 1 + x+ 1

2x
2 + · · · hence:

y′′ + (1 + x+ x2 + · · · )y′ + (1 + x+ 1
2x

2 + · · · )y = 0

Suppose y = co + c1x+ c2x
2 + · · · hence y′ = c1 + 2c2x+ 3c3x

2 + · · · and y′′ = 2c2 + 6c3x+ 12c4x
2 + · · · .

Put these into the differential equation, keep only terms up to quadratic order,

2c2 + 6c3x+ 12c4x
2 + (1 + x+ x2)(c1 + 2c2x+ 3c3x

2) + (1 + x+ 1
2x

2)(co + c1x+ c2x
2) + · · · = 0

The coefficients of 1 in the equation above are

2c2 + c1 + co = 0

The coefficients of x in the equation above are

6c3 + c1 + 2c2 + c1 + co = 0

The coefficients of x2 in the equation above are

12c4 + c1 + 2c2 + 3c3 +
1

2
co + c1 + c2 = 0

I find these problems very challenging when no additional information is given. However, we were given
y(0) = 0 and y′(0) = 1 hence1 co = 0 whereas c1 = 1. Thus c2 = −1/2 and c3 = −1

6 (−2c2 − 2c1) =
1
6 and

c4 = 1
12 (−2c1 − 3c2 − 3c3) =

1
12 (−2 + 3/2− 3/6) = −1

12 hence

y = x− 1
2x

2 + 1
6x

3 − 1
12x

4 + · · · .

Remark 7.2.6.

When faced with a differential equation with variable coefficients we must expand the coefficient
functions as power series when we seek a power series solution. Moreover, the center of the expansion
ought to match the center of the desired solution. In this section we have only so far consider series
centered at zero. Next we consider a nonzero center.

Example 7.2.7. Problem: find the first few nontrivial terms in the series solution centered at a = 1 for

y′ = sin(x)
1−(x−1)2 .

Solution: note that we can integrate to find an integral solution: y =
∫ sin(x) dx

1−(x−1)2 . To derive the series

solution we simply expand the integrand in powers of (x− 1). Note,

1

1− (x− 1)2
= 1 + (x− 1)2 + (x− 1)4 + (x− 1)6 + · · ·

1think about Taylor’s theorem centered at zero
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On the other hand, to expand sine, we should use the adding angles formula on sin(x) = sin(x− 1+1) to see

sin(x) = cos(1) sin(x− 1) + sin(1) cos(x− 1) = sin(1) + cos(1)(x− 1)− sin(1)
2 (x− 1)2 + · · ·

Consider the product of the power series above, up to quadratic order we find:

sin(x)

1− (x− 1)2
= sin(1) + cos(1)(x− 1) + sin(1)

2 (x− 1)2 + · · ·

Therefore, integrating term-by-term, we find

y = c1 + sin(1)(x− 1) + cos(1)
2 (x− 1)2 + sin(1)

6 (x− 1)3 + · · · .

Remark 7.2.8.

Taylor’s formula f(x) = f(a) + f ′(a)(x − a) + 1
2f

′′(a)(x − a)2 + 1
6f

′′′(a)(x − a)3 + · · · is one way
we could compute the power series expansions for given functions, however, it is much faster to use
algebra and known results when possible.
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7.3 classification of singular points

We are primarily interested in real solutions to linear ODEs of first or second order in this chapter, however,
the theory of singular points and the Frobenius method necessarily require us to consider singularities as
having their residence in the complex plane. It would appear that our solutions are restrictions of complex
solutions to the real axis in C.

Definition 7.3.1. singular points and ordinary points

We say xo is a ordinary point of y′′ + Py′ + Qy = 0 iff P and Q are analytic at xo. A point xo

is a singular point of y′′ + Py′ + Qy = 0 if xo is not an ordinary point. A point xo is a regular
singular point of y′′+Py′+Qy = 0 if xo is a singular point however (x−xo)P (x) and (x−xo)

2Q(x)
are analytic at xo.

In the definition above we mean to consider the functions (x−xo)P (x) and (x−xo)
2Q(x) with any removable

discontinuities removed. For example, while f(x) = 1
x has xf(x) undefined at x = 0, we still insist that

xf(x) is an analytic function at x = 0. Another example, technically the expression sin(x)/x is not defined
at x = 0, but it is an analytic expression 1− 1

3!x
2+ 1

5!x
4+ · · · which is defined at x = 0. To be more careful,

we could insist that the limit as x → xo of (x − xo)P (x) and (x − xo)
2Q(x) exist. That would just be a

careful way of insisting that the only divergence faced by (x− xo)P (x) and (x− xo)
2Q(x) are simple holes

in the graph a.k.a removable discontinuities.

In addition, the singular point xo may be complex. This is of particular interest as we seek to determine the
domain of solutions in the Frobenius method. I will illustrate by example:

Example 7.3.2. For b, c ∈ R, every point is an ordinary point for y′′ + by′ + cy = 0.

Example 7.3.3. Since ex and cos(x) are analytic it follows that the differential equation
y′′ + exy′ + cos(x)y = 0 has no singular point. Every point is an ordinary point.

Example 7.3.4. Consider (x2 + 1)y′′ + y = 0. We divide by x2 + 1 and find y′′ + 1
x2+1y = 0. Note:

Q(x) =
1

x2 + 1
=

1

(x+ i)(x− i)

It follows that every x ∈ R is an ordinary point and the only singular points are found at xo = ±i. It turns
out that the existence of these imaginary singular points limits the largest open domain of a solution centered
at the ordinary point xo = 0 to (−1, 1).

Example 7.3.5. Consider y′′ + 1
x2(x−1)y

′ + 1
(x−1)2(x2+4x+5)y = 0. Consider,

P (x) =
1

x2(x− 1)
& Q(x) = 1

(x−1)2(x−2+i)(x−2−i)

Observe that,

xP (x) =
x

x2(x− 1)
=

1

x(x− 1)

therefore xP (x) is not analytic at x = 0 hence x = 0 is a singular point which is not regular; this is also
called an irregular singular point. On the other hand, note:

(x− 1)P (x) =
x− 1

x2(x− 1)
=

1

x2
& (x− 1)2Q(x) =

(x− 1)2

(x− 1)2(x2 + 4x+ 5)
=

1

x2 + 4x+ 5

are both analytic at x = 1 hence x = 1 is a regular singular point. Finally, note that the quadratic
x2 + 4x+ 5 = (x+ 2− i)(x+ 2 + i) hence x = −2± i are singular points.

It is true that x = −2 ± i are regular singular points, but this point does not interest us as we only seek
solutions based at some real point.
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Theorem 7.3.6. ordinary points and frobenius’ theorem

A solution of y′′ + Py′ +Qy = 0 centered at an ordinary point xo can be extended to an open disk
in the complex plane which reaches the closest singularity. A solution of y′′ + Py′ +Qy = 0 based
at a regular singular point xo extends to an open interval with xo at one edge and xo ± R on the
other edge where R is the distance to the next nearest singularity (besides xo of course)

See pages 477 and 494 for corresponding theorems in Nagel, Saff and Snider. It is also important to note
that the series technique and the full method of Frobenius will provide a fundamental solution set on the
domains indicated by the theorem above.

Example 7.3.7. Consider y′′ + 1
x2(x−1)y

′ + 1
(x−1)2(x2+4x+5)y = 0. Recall we found singular points x =

0, 1,−2 + i,−2 − i. The point x = 0 is an irregular singular point hence we have nothing much to say. On
the other hand, if we consider solutions on (1, 1 + R) we can make R at most R = 1 the distance from 1
to 0. Likewise, we could find a solution on (0, 1) which puts the regular singular point on the right edge. A
solution

∑∞
n=0 cn(x + 2)n centered at x = −2 will extend to the open interval (−3,−1) at most since the

singularities −2 ± i are one-unit away from −2 in the complex plane. On the other hand, if we consider a
solution of the form

∑∞
n=0 cn(x+ 3)n which is centered at x = −3 then the singularities −2± i are distance√

2 away and we can be confident the domain of the series solution will extend to at least the open interval
(−3−

√
2,−3 +

√
2).

You might notice I was intentionally vague about the regular singular point solutions in the example above.
We extend our series techniques to the case of a regular singular point in the next section.
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7.4 frobenius method

We consider the problem y′′ +Py′ +Qy = 0 with a regular singular point xo. We can study the case xo = 0
without loss of generality since the subsitution x = t − a moves the regular singular point to t = a. For
example:

x2 d
2y

dx2
+ x

dy

dx
+ y = 0 ⇔ (t− a)2

d2z

dt2
+ (t− a)

dz

dt
+ z = 0

Where z(t) = y(x+ a) and y(x) = z(t− a). Therefore, we focus our efforts on the problem

y′′ + Py′ +Qy = 0 a singular DEqn at x = 0 with xP (x), x2Q(x) analytic at x = 0

Let us make some standard notation for the taylor expansions of xP (x) and x2Q(x). Suppose

P (x) =
Po

x
+ P1 + P2x

2 + · · · & Q(x) =
Qo

x2
+

Q1

x
+Q2 +Q3x+ · · ·

The extended Talyor series above are called Laurent series, they contain finitely many nontrivial reciprocal
power terms. In the langauge of complex variables the pole x = 0 is removeable for P and Q where it is of
order 1 and 2 respectively. Note we remove the singularity by multiplying by x and x2:

xP (x) = Po + P1x+ xP2x
3 + · · · & x2Q(x) = Qo +Q1x+Q2x

2 +Q3x
3 + · · · .

This must happen by the definition of a regular singular point.

Theorem 7.4.1. frobenius solution at regular singular point

There exists a number r and coefficients an such that y′′ + Py′ +Qy = 0 has solution

y =

∞∑
n=0

anx
n+r.

See Rabenstein for greater detail as to why this solution exists. We can denote y(r, x) =
∑∞

n=0 anx
n+r if we

wish to emphasize the dependence on r. Formally2 it is clear that

y =

∞∑
n=0

anx
n+r & y′ =

∞∑
n=0

an(n+ r)xn+r−1 & y′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r−2.

Notice that we make no assumption that r = 0, 1, 2, . . . hence y(r, x) is not necessarily a power series. The
frobenius solution is more general than a simple power series. Let us continue to plug in the formulas for
y, y′, y′′ into x2y′′ + x2Py′ + x2Qy = 0:

0 = x2
∞∑

n=0

an(n+ r)(n+ r − 1)xn+r−2

+

(
Po + P1x+ xP2x

3 + · · ·
)
x

∞∑
n=0

an(n+ r)xn+r−1

+

(
Qo +Q1x+Q2x

2 +Q3x
3 + · · ·

) ∞∑
n=0

anx
n+r

2formal in the sense that we ignore questions of convergence
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Hence, (call this ⋆ for future reference)

0 =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r

+

(
Po + P1x+ xP2x

3 + · · ·
) ∞∑

n=0

an(n+ r)xn+r

+

(
Qo +Q1x+Q2x

2 +Q3x
3 + · · ·

) ∞∑
n=0

anx
n+r

You can prove that {xr, xr+1, xr+2, . . . } is a linearly independent set of functions on appropriate intervals.
Therefore, y(r, x) is a solution iff we make each coefficient vanish in the equation above. We begin by
examining the n = 0 terms which are the coefficient of xr:

ao(0 + r)(0 + r − 1) + Poao(0 + r) +Qoao = 0

This gives no condition on ao, but we see that r must be chosen such that

r(r − 1) + rPo +Qo = 0 the indicial equation

We find that we must begin the Frobenius problem by solving this equation. We are not free to just use
any r, a particular pair of choices will be dictated from the zeroth coefficients of the xP and x2Q Taylor
expansions. Keeping in mind that r is not free, let us go on to describe the next set of equations from the
coefficient of xr+1 of ⋆ (n = 1),

a1(1 + r)r + (1 + r)Poa1 + rP1ao +Qoa1 +Q1ao = 0

The equation above links ao to a1. Next, for xr+2 in ⋆ we need

a2(2 + r)(r + 1) + (2 + r)Poa2 + (1 + r)P1a1 + rP2ao +Qoa2 +Q1a1 +Qoa2 = 0

The equation above links a2 to a1 and ao. In practice, for a given problem, the recurrence relations which
define ak are best derived directly from ⋆. I merely wish to indicate the general pattern3 with the remarks
above.

Example 7.4.2. Problem: solve 3xy′′ + y′ − y = 0.

Solution: Observe that xo = 0 is a regular singular point. Calculate,

y =

∞∑
n=0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

and

y′ =

∞∑
n=0

an(n+ r)xn+r−1 & 3xy′′ =
∞∑

n=0

3an(n+ r)(n+ r − 1)xn+r−1

Therefore, 3xy′′ + y′ − y = 0 yields

ao[3r(r − 1) + r]xr +

∞∑
n=1

(
3an(n+ r)(n+ r − 1) + an(n+ r)− an−1

)
xn+r−1

Hence, for n = 1, 2, 3, . . . we find:

3r(r − 1) + r = 0 & an =
an−1

(n+ r)(3n+ 3r − 2)
. ⋆

3if one wishes to gain a deeper calculational dexterity with this method I highly reccommend the sections in
Rabenstein, he has a few techniques which are superior to the clumsy calculations I perform here
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The indicial equation 3r(r− 1) + r = 3r2 − 2r = r(3r− 2) = 0 gives r1 = 2/3 and r2 = 0. Suppose r1 = 2/3
and work out the recurrence relation ⋆ in this context: an = an−1

n(3n+2) thus:

a1 =
ao
5
, a2 =

a1
8 · 2

=
ao

8 · 5 · 2
, a3 =

a2
11 · 3

=
ao

11 · 8 · 5 · 3 · 2

a4 =
a3

14 · 4
=

ao
14 · 11 · 8 · 5 · 4 · 3 · 2

⇒ an =
ao

5 · 8 · 11 · 14 · · · (3n+ 2)n!
(n = 1, 2, . . . )

Therefore, y(2/3, x) = ao
(
x2/3+

∑∞
n=1

xn+2/3

5·8·11·14···(3n+2)n!

)
is a solution. Next, work out the recurrence relation

⋆ in the r2 = 0 case: an = an−1

n(3n−2) thus:

a1 =
ao
1
, a2 =

a1
2 · 4

=
ao
2 · 4

, a3 =
a2
3 · 7

=
ao

7 · 4 · 3 · 2

a4 =
a3

4 · 10
=

ao
10 · 7 · 4 · 4 · 3 · 2

⇒ an =
ao

4 · 7 · 10 · · · (3n− 2)n!
(n = 2, 3, . . . )

Consequently, y(0, x) = ao
(
1 + x+

∑∞
n=2

xn

4·7·10···(3n−2)n!

)
. We find the general solution

y = c1

(
x2/3 +

∞∑
n=1

xn+2/3

5 · 8 · 11 · 14 · · · (3n+ 2)n!

)
+ c2

(
1 + x+

∞∑
n=2

xn

4 · 7 · 10 · · · (3n− 2)n!

)
.

Remark 7.4.3.

Before we try another proper example I let us apply the method of Frobenius to a Cauchy Euler
problem. The Cauchy Euler problem x2y′′+Pxy′+Qy = 0 has Po = P and Qo = Q. Moreover, the
characteristic equation r(r− 1) + rPo +Qo = 0 is the indicial equation. In other words, the regular
singular point problem is a generalization of the Cauchy Euler problem. In view of this you can see
our discussion thus far is missing a couple cases: (1.) the repeated root case needs a natural log,
(2.) the complex case needs the usual technique. It turns out there is another complication. When
r1, r2 are the exponents with Re(r1) > Re(r2) and r1 − r2 is a positive integer we sometimes need
a natural log term.
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Example 7.4.4. Problem: solve x2y′′ + 3xy′ + y = 0.

Solution: Observe that y′′ + 3
xy

′ + 1
x2 y = 0 has regular singular point xo = 0 and Po = 3 whereas Qo = 1.

The indicial equation r(r − 1) + 3r + 1 = r2 + 2r + 1 = (r + 1)2 = 0 gives r1 = r2 = −1. Suppose
y = y(−1, x) =

∑∞
n=0 anx

n−1. Plugging y(−1, x) into x2y′′ + 3xy′ + y = 0 yields:

∞∑
n=0

(n− 1)(n− 2)anx
n−1 +

∞∑
n=0

3(n− 1)anx
n−1 +

∞∑
n=0

anx
n−1 = 0

Collecting like powers is simple for the expression above, we find:

∞∑
n=0

(
(n− 1)(n− 2)an + 3(n− 1)an + an

)
xn−1 = 0

Hence [(n − 1)(n − 2) + 3(n − 1) + 1]an = 0 for n = 0, 1, 2, . . . . Put n = 0 to obtain 0ao = 0 hence no
condition for ao is found. In contrast, for n ≥ 1 the condition yields an = 0. Thus y(−1, x) = aox

−1. Of
course, you should have expected this from the outset! This is a Cauchy Euler problem, we expect the general

solution y = c1
1
x + c2

ln(x)
x .

We examine a solution with imaginary exponents.

Example 7.4.5. Problem: solve x2y′′ + xy′ + (4− x)y = 0.

Solution: Observe that xo = 0 is a regular singular point. Calculate, if y =
∑∞

n=0 anx
n+r then

(4− x)y =

∞∑
n=0

4anx
n+r −

∞∑
n=0

anx
n+r+1 =

∞∑
n=0

4anx
n+r −

∞∑
j=1

aj−1x
j+r

and

xy′ =

∞∑
n=0

an(n+ r)xn+r & x2y′′ =

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r

Therefore, x2y′′ + xy′ + (4− x)y = 0 yields

ao[r(r − 1) + r + 4]xr +

∞∑
n=1

(
an(n+ r)(n+ r − 1) + an(n+ r) + 4an − an−1

)
xn+r

Hence, for n = 1, 2, 3, . . . we find:

r2 + 4 = 0 & an =
an−1

(n+ r)2 + 4
. ⋆

The indicial equation r2 + 4 = 0 gives r1 = 2i and r2 = −2i. We study ⋆ in a few cases. Let me begin by
choosing r = 2i. Let’s reformulate ⋆ into a cartesian form:

an =
an−1

(n+ 2i)2 + 4
=

an−1

n2 + 4ni− 4 + 4
=

an−1

n2 + 4ni
· n

2 − 4ni

n2 − 4ni
=

an−1(n
2 − 4ni)

n2(n2 + 16)
⋆2

Consider then, by ⋆2

a1 =
ao(1− 4i)

17
, a2 =

a1(4− 8i)

4(4 + 16)
=

ao(1− 4i)

17
· 4− 8i

80
=

−ao(28 + 12i)

(17)(80)
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Consequently, we find the complex solution are

y = ao

(
x2i +

1− 4i

17
x1+2i − 28 + 12i

(17)(80)
x2+2i + · · ·

)
= aox

2i

(
1 +

1

17
x− 28

(17)(80)
x2 + · · ·︸ ︷︷ ︸

a(x)

+i

[
−4

17
x− 12

(17)(80)
x2 + · · ·︸ ︷︷ ︸

b(x)

])

Recall, for x > 0 we defined xn+2i = xn[cos(2 ln(x)) + i sin(2 ln(x))]. Therefore,

y = ao

[
cos(2 ln(x))a(x)− sin(2 ln(x))b(x)

]
+ iao

[
sin(2 ln(x))a(x) + cos(2 ln(x))b(x)

]
forms the general complex solution. Set ao = 1 to select the real fundmental solutions y1 = Re(y) and
y2 = Im(y). The general real solution is y = c1y1 + c2y2. In particular,

y = c1

[
cos(2 ln(x))a(x)− sin(2 ln(x))b(x)

]
+ c2

[
sin(2 ln(x))a(x) + cos(2 ln(x))b(x)

]
We have made manifest the first few terms in a and b, it should be clear how to find higher order terms
through additional iteration on ⋆2. The proof that these series converge can be found in more advanced
sources (often Ince is cited by standard texts).

Remark 7.4.6.

The calculation that follows differs from our initial example in one main aspect. I put in the
exponents before I look for the recurrence relation. It turns out that the method of Example 7.4.2
is far more efficient a method of calculation. I leave this slightly clumsy calculation to show you the
difference. You should use the approach of Example 7.4.2 for brevity’s sake..

Example 7.4.7. Problem: solve xy′′ + (3 + x2)y′ + 2xy = 0.

Solution: Observe y′′+(3/x+x)y′+2y = 0 thus identify that Po = 3 whereas Qo = 0. The indicial equation
r(r−1)+3r = 0 yields r(r+2) = 0 thus the exponents are r1 = 0, r2 = −2. In order to find the coefficients
of y(0, x) = y =

∑∞
n=0 anx

n we must plug this into xy′′ + 3y′ + x2y′ + 2xy = 0,

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

3nanx
n−1 +

∞∑
n=1

nanx
n+1 +

∞∑
n=0

2anx
n+1 = 0

Examine these summations and note that x1, x0, x2, x1 are the lowest order terms respectively from left to
right. To combine these we will need to start with x2-terms.

0 = 2a2x+ 3a1 + 6a2x+ 2aox

+

∞∑
n=3

n(n− 1)anx
n−1 +

∞∑
n=3

3nanx
n−1 +

∞∑
n=1

nanx
n+1 +

∞∑
n=1

2anx
n+1 = 0

Let j = n− 1 for the first two sums and let j = n+ 1 for the next two sums.

0 = 3a1 + (2a2 + 6a2 + 2ao)x+

∞∑
j=2

(
(j + 1)jaj+1 + 3(j + 1)aj+1 + (j − 1)aj−1 + 2aj−1

)
xj

Collecting like terms we find:

0 = 3a1 + (8a2 + 2ao)x+

∞∑
j=2

(
(j + 3)(j + 1)aj+1 + (j + 1)aj−1

)
xj .
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Each power’s coefficient must separately vanish, therefore:

a1 = 0, a2 = −1

4
ao, aj+1 =

−1

j + 3
aj−1, ⇒ an =

−1

n+ 2
an−2 for n ≥ 2.

It follows that a2k+1 = 0 for k = 0, 1, 2, 3, . . . . However, the even coefficients are determined by the recurrence
relation given above.

a2 =
−1

4
ao

a4 =
−1

6
a2 =

−1

6
· −1

4
ao

a6 =
−1

8
a4 =

−1

8
· −1

6
· −1

4
ao

a2k =
−1

2k + 2
· −1

2k
· · · −1

6
· −1

4
ao =

(−1)k

2kk!
ao

Therefore, we find the solution:

y(0, x) = ao

∞∑
k=0

(−1)k

2k(k + 1)!
x2k

We know from the theory we discussed in previous chapters the general solution should have the form
y = c1y1 + c2y2 where {y1, y2} is the fundamental solution set. We have found half of the solution at
this point; identify y1 = y(0, x). In contrast to the series method, we found just one of the fundamental
solutions.

To find y2 we must turn our attention to the second solution of the indicial equation r2 = −2. We find the
coefficients of y(−2, x) = y =

∑∞
n=0 anx

n−2 by plugging it into xy′′ + 3y′ + x2y′ + 2xy = 0,

∞∑
n=0

(n− 2)(n− 3)anx
n−3 +

∞∑
n=0

3(n− 2)anx
n−3 +

∞∑
n=0

(n− 2)anx
n−1 +

∞∑
n=0

2anx
n−1 = 0

1. x−3 has coefficient (−2)(−3)ao + 3(−2)ao = 0 (no condtion found)

2. x−2 has coefficient (1− 2)(1− 3)a1 + 3(1− 2)a1 = −a1 hence a1 = 0

3. x−1 has coefficient (2− 2)(2− 3)a2 + 3(2− 2)a2 + (0− 2)ao + 2ao = 0 (no condtion found)

4. x0 has coefficient (3− 2)(3− 3)a3 + 3(3− 2)a3 + (1− 2)a1 + 2a1 = 3a3. Thus a3 = 0

5. x1 has coefficient (4− 2)(4− 3)a4 + 3(4− 2)a4 + (2− 2)a2 + 2a2 = 8a4 + 2a2. Thus a4 = −1
4 a2.

6. x2 has coefficient (5− 2)(5− 3)a5 + 3(5− 2)a5 + (3− 2)a3 + 2a3 = 15a5 + 3a3. Thus a5 = −1
5 a3. We

find a2k−1 = 0 for all k ∈ N.

7. x3 has coefficient (6− 2)(6− 3)a6 + 3(6− 2)a6 + (4− 2)a4 + 2a4 = 24a6 + 4a4. Thus a6 = −1
6 a4.

This pattern should be recongnized from earlier in this problem. For a2, a4, a6, . . . we find terms

a2 − a2
1
4x

2 + a2
1
4 · 1

6x
4 + · · · = a2(1− 1

212!x
2 + 1

223!x
4 + · · · )

recognize this is simply a relabeled version of y(0, x) hence we may set a2 = 0 without loss of generality in
the general solution. This means only ao remains nontrivial. Thus,

y(−2, x) = aox
−2

The general solution follows,

y = c1

∞∑
k=0

(−1)k

2k(k + 1)!
x2k +

c2
x2
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Remark 7.4.8.

In the example above the exponents r1 = 0 and r2 = −2 have r1 − r2 = 2. It turns out that
generally the solution y(r2, x) will not be a solution. A modification involving a logarithm is needed
sometimes (but not in the example above!).

7.4.1 the repeated root technique

In the case that a characteristic root is repeated we have seen the need for special techniques to derive a
second LI solution. I present a new idea, yet another way to search for such double-root solutions. Begin
by observing that the double root solutions are connected to the first solution by differentiation of the
characteristic value:

∂

∂r
erx = terx, &

∂

∂r
xr = ln(x)xr.

Rabenstein gives a formal derivation of why ∂xr

∂r

∣∣
r=r1

solves a Cauchy Euler problem with repeated root r1.

I’ll examine the corresponding argument for the repeated root case (D2−2λ1D+λ2
1)[y] = L[y] = 0. Suppose

y(λ, x) = eλx. Note that:

L[eλx] = (λ2 − 2λ1λ+ λ2
1)e

λx = (λ− λ1)
2eλx

Obviously y1 = y(λ1, x) solves L[y] = 0. Consider y2 = ∂
∂λy(λ, x)

∣∣
λ=λ1

L[y2] = L

[
∂

∂λ
y(λ, x)

∣∣∣∣
λ=λ1

]
=

∂

∂λ

[
L[y(λ, x)

]∣∣∣∣
λ=λ1

=
∂

∂λ

[
(λ− λ1)

2eλx
]∣∣∣∣

λ=λ1

=

[
2(λ− λ1)e

λx + (λ− λ1)
2xeλx

]∣∣∣∣
λ=λ1

= 0.

Suppose that we face x2y′′+Px2y′+x2Q = 0 which has an indicial equation with repeated root r1. Suppose
4

y(r, x) = xr
∑∞

n=0 an(r)x
n is a solution x2y′′ + Px2y′ + x2Q = 0 when we set r = r1. It can be shown5 that

y2 = ∂y(r,x)
∂r

∣∣
r=r1

solves x2y′′ + Px2y′ + x2Q = 0. Consider,

∂y(r, x)

∂r
=

∂

∂r

[
xr

∞∑
n=0

an(r)x
n

]
= ln(x)xr

∞∑
n=0

an(r)x
n + xr

∞∑
n=0

a′n(r)x
n

Setting r = r1 and denoting y1(x) = y(r1, x) = xr1
∑∞

n=0 an(r1)x
n we find the second solution

y2(x) = ln(x)y1(x) + xr1

∞∑
n=0

a′n(r1)x
n.

Compare this result to Theorem 7 of section 8.7 in Nagel Saff and Snider to appreciate the beauty of this
formula. If we calculate the first solution then we find the second by a little differentiation and evaluation
at r1.

Example 7.4.9. include example showing differentiation of an(r) (to be given in lecture most likely)

4I write the xr in front and emphasize the r-dependence of the an coefficients as these are crucial to what follows,
if you examine the previous calculations you will discover that an does dependend on the choice of exponent

5see Rabenstein page 120
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Turn now to the case x2y′′ + Px2y′ + x2Q = 0 has exponents r1, r2 such that r1 − r2 = N ∈ N. Following
Rabenstein once more I examine the general form of the recurrence relation that formulates the coefficients
in the Frobenius solution. We will find that for r1 the coefficients exist, however for r2 there exist P,Q such
that the recurrence relation is insolvable. We seek to understand these features.

Remark 7.4.10.

Sorry these notes are incomplete. I will likely add comments based on Rabenstein in lecture, his
treatment of Frobenius was more generous than most texts at this level. In any event, you should
remember these notes are a work in progress and you are welcome to ask questions about things
which are not clear.

7.5 practice problems

PP 183 Find the first three nonzero terms in the power series solutions of

dy

dx
= x2 + y2

given y(0) = 1.

PP 184 Find the first three nonzero terms in the power series solutions of

dy

dx
= sin y + ex

given y(0) = 0.

PP 185 Find the first three nonzero terms in the power series solutions of

x′′ + tx = 0

given x(0) = 1 and x′(0) = 0.

PP 186 Duffing’s Equation. A nonlinear spring with periodic forcing is described by

y′′ + ky + ry3 = A cosωt.

If we set k = r = A = 1 and ω = 10 then find the first three nonzero terms in the Taylor polynomial
approximations tot he solution with y(0) = 0 and y′(0) = 1.

PP 187 Express the power series

∞∑
n=1

nanx
n−1 as a power series with generic term xk. That is, find ko and ck

for which

∞∑
n=1

nanx
n−1 =

∞∑
k=ko

ckx
k.

PP 188 Express the power series

∞∑
n=1

anx
n+1 as a power series with generic term xk. That is, find ko and ck

for which

∞∑
n=1

anx
n+1 =

∞∑
k=ko

ckx
k.

PP 189 Find the Taylor series for f(x) =
1 + x

1− x
about x0 = 0.

PP 190 Find the singular points of the differential equation (x+ 1)y′′ − x2y′ + 3y = 0.

PP 191 Find the singular points of the differential equation (t2 − t− 2)x′′ − (t+ 1)x′ − (t− 2)x = 0.
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PP 192 Find the first four nonzero terms in the power series solution about x = 0 for:

z′′ − x2z = 0.

PP 193 Find the first four nonzero terms in the power series solution about x = 0 for:

y′′ + (x− 1)y′ + y = 0.

PP 194 Find the complete power series solution ( including a formula for the general coefficient) about x = 0
for:

y′ − 2xy = 0.

PP 195 Find the complete power series solution ( including a formula for the general coefficient) about x = 0
for:

y′′ − xy′ + 4y = 0.

PP 196 Find the complete power series solution ( including a formula for the general coefficient) about x = 0
for:

z′′ − x2z′ − xz = 0.

PP 197 Find the minimum value for the radius of covergence of a power series solution about x0

(1 + x+ x2)y′′ − 3y = 0, x0 = 1.

PP 198 Find the minimum value for the radius of covergence of a power series solution about x0

y′′ − (tanx)y′ + y = 0 = 0, x0 = 0.

PP 199 Find the first four nonzero terms in the power series solution about x = 0 for:

x′ + (sin t)x = 0, x(0) = 1.

PP 200 Find the first four nonzero terms in the power series solution about x = 0 for:

y′′ − e2xy′ + (cosx)y = 0, y(0) = −1, y′(0) = 1.

PP 201 Find the first four nonzero terms in the power series solution about x = 0 for:

z′′ + xz′ + z = x2 + 2x+ 1.

PP 202 Find the first four nonzero terms in the power series solution about x = 0 for:

(1 + x2)y′′ − xy′ + y = e−x.

PP 203 If

∞∑
n=0

Bnx
n =

∞∑
n=2

n(n− 1)cnx
n−2 +

∞∑
n=0

cnx
n+2 then find the formula for Bn in terms of cn. You will

need to break into cases, B0, B1 verse Bn for n ≥ 2.

PP 204 Find the minimum radius of convergence about x = 0 for the solution of

(x2 − 2x+ 10)y′′ + xy′ − 4y = 0.

PP 205 Solve y′′ + (x+ 1)y′ − y = 0 up to 4-th order. Center the solution at zero.

PP 206 Find the first three nontrivial terms in the power series solution centered at zero of the differential
equation (x2 + 1)y′′ + 2xy′ = 0 with y(0) = 0 and y′(0) = 1.
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PP 207 Is x = 0 an ordinary point of y′′ + 5xy′ +
√
xy = 0 ?

PP 208 Find all singularties of the following differential equations, or state no singularities:

(a.) y′′ + xy′ + 3y = 0,

(b.) (x2 − 3x2)y
′′ +

√
xy′ + x2y = 0

(c.) (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

(d.) (x2 − x)y′′ + x2y′ − 3xy = 0

(e.) ex − 1)y′′ + xy = 0

(f.) x(x2 + 2x+ 2)y′′ + (x2 + 1)y′ + 3y = 0

PP 209 Find the complete Frobenius solution of

x2y′′ + x

(
x− 1

2

)
y′ +

1

2
y = 0

(this one has real exponents r = 1 and r = 1/2)

PP 210 Find the Frobenius solution near x = 0 for x > 0 up to order x2 for

x2y′′ + sin(x)y′ − cos(x)y = 0.

PP 211 Solve x3y′′ − x2y′ − y = 0 for x >> 0 by making the substitution z = 1/x and solving the resulting
differential equation in z about the regular singular point z = 0. Find the first four nonzero terms
in the series expansion about ∞ (once upon a time this was Problem 41 in §8.6 of Nagle, Saff and
Snider, 5th edition)

PP 212 Find the complete (summation-notation) power series solution of the following integral:∫
x6 sin(x2) dx

PP 213 Find the first TWO nontrivial terms in a power series solution of exy′′ + xy′ + y = 0 given that
y(0) = 1 and y′(0) = 2.

PP 214 Find the singularities of x(x2+2x+2)y′′+(x2+1)y′+3y = 0 and determine the largest open interval
of convergence for a solution of the form y =

∑
n=0 an(x+ 2)n.

Think. Do not try to solve this, I’m asking you about the interval of convergence, I’m not asking for
what an are in particular

PP 215 Find the complete power series solution of y′′−9x2y = 0 given that y(0) = 1 and y′(0) = 0 by explicit
substitution of a series solution into the given differential equation.

PP 216 Suppose y′′ + x
(x−2)(x2−6x+10)y

′ +
(

1
(x+3)3 + 1

x2

)
y = 0.

(a) find all singular points

(b) classify each real singular point as either regular or irregular (not regular)

(c) plot the singularities in a complex plane

(d) find the largest possible open and real domain of the solution

y =

∞∑
n=0

an(x− 0.5)2

(e) find the largest possible open and real domain of the solution

y =

∞∑
n=0

an(x− 4)2
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PP 217 Suppose y(0) = 1 and y′(0) = 2. Find the solution up to order 5 in x for the differential equation

y′′ + (x2 − 1) cos(x)y′ + sinh(3x)y = 0.

PP 218 Find the complete power series solution centered at zero for dy
dx − 2xy = 0.

PP 219 Find the first two nontrivial terms in the frobenius expansions for the fundamental solutions y1 and
y2 of

3xy′′ + (2− x)y′ − y

PP 220 Find the complete power series solution of y′′ + x2y′ +2xy = 0 about the ordinary point x = 0. Your
answer should include nice formulas for arbitrary coefficients in each of the fundamental solutions.
You need to both set-up and solve the reccurrence relations as best you can.

PP 221 Find the first four nonzero terms in the power series solution about zero for the initial value problem
y′′ + sin(x)y′ + (x− 1)y = 0 with y(0) = 1 and y′(0) = 0.

PP 222 Find the complete Frobenius solution of

x2y′′ + x(x− 1
2 )y

′ + 1
2y = 0.

(it turns out this one has real exponents)

PP 223 Solve x3y′′ − x2y′ − y = 0 for x >> 0 by making the subsitution z = 1/x and solving the resulting
differential equation in z about the regular singular point z = 0. Find the first four nonzero terms in
the series expansion about infinity.

PP 224 Consider y′′+exy′+sin(3x)y = 0. Find the first 3 nontrivial terms in a series solution centered about
x = 0 given that y(0) = 1 and y′(0) = 6.

PP 225 Find the complete power series solution of y′′ + 6x2y = 0 centered at x = 0.

PP 226 Suppose we define ez =

∞∑
n=0

1

n!
zn. Show that eiθ = cos(θ) + i sin(θ).

PP 227 Suppose

∞∑
k=0

(a2kx
2k + b2k+1x

2k+1 = ex + cos(x + 2). Find explicit formulas for a2k and b2k+1 via

Σ-notation algebra.

PP 228 Find a power series solution to the integrals below:

(a.)

∫
x3 + x6

1− x3
dx

(b.)

∫
x8ex

3+2 dx

PP 229 Calculate the 42nd-derivative of x2 cos(x) at x = 1. (use power series techniques)

PP 230 Find the complete power series solution of y′′ + x2y′ +2xy = 0 about the ordinary point x = 0. Your
answer should include nice formulas for arbitrary coefficients in each of the fundamental solutions.
You need to both set-up and solve the reccurrence relations as best you can.

PP 231 (Ritger & Rose 7-2 problem 7 part c) Find the first four nonzero terms in the power series solution
about zero for the initial value problem (x+ 2)y′′ + 3y = 0 with y(0) = 0 and y′(0) = 1.

PP 232 (Ritger & Rose 7-2 problem 7 part d) Find the first four nonzero terms in the power series solution
about zero for the initial value problem y′′ + sin(x)y′ + (x− 1)y = 0 with y(0) = 1 and y′(0) = 0.

PP 233 Construct a differential equation with y1(x) = sin(x)
x for x ̸= 0 and y1(0) = 1, y2(x) = x as its

fundamental solution set. To accomplish this task do two tasks:
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(a.) Argue from appropriate facts from the theory of determinants that L[y] = det

 y y′ y′′

y1 y′1 y′′1
y2 y′2 y′′2


is a linear ODE with solutions y1 and y2.

(b.) calculate L[y] explicitly as a linear ODE of the form py′′+ qy′+ ry = 0 where p, q, r are perhaps
given as Taylor expansions about zero.

PP 234 (from page 103 of Boyce and DiPrima’s 3rd Ed.) Consider xy′′ − (x+N)y′ +Ny = 0 for N ∈ N

(a.) show y1 = ex is a solution.

(b.) show that y2 = cex
∫
xNe−x dx is a second solution. (perhaps use the result of the previous

problem, or the theorem from my notes or Ritger & Rose)

(c.) set c = −1
N ! and show by induction that y2(x) = Tn(x) the n-th order Taylor polynomial of ex.

PP 235 (introduction to theory of adjoints, from page 95 of Boyce and DiPrima’s 3rd Ed.) If p(x)y′′+q(x)y′+
r(x)y = 0 can be expressed as [p(x)y′]′+[f(x)y]′ = 0 then it is said to be exact. Omit x-dependence
in p, q, r, µ for brevity, if py′′ + qy′ + ry = 0 is not exact then it is possible to make it exact with
multiplication by the appropriate integrating factor µ. Show that for µ to accomplish its stated task
it must itself be the solution of the so-called adjoint equation

pµ′′ + (2p′ − q)µ′ + (p′′ − q′ + r)µ = 0.

where we have assumed p, q possess the stated derivatives. Find the adjoint equation for

a. [constant coefficient case] ay′′ + by′ + cy = 0

b. [Bessel Eqn. of order ν] x2y′′ + xy′ + (x2 − ν2)y = 0

c. [The Airy Eqn.] y′′ − xy = 0
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Chapter 8

partial differential equations

8.1 overview

In this chapter we study a particular solution techinque for partial differential equations. Our work here
is certainly not comprehensive or self-contained. There are many simple modifications of the problems we
consider which cannot be solved by the tools which are explicitly considered here. However, much of what
is known beyond this chapter is a more or less simple twist of the methods considered here. Probably the
most serious transgression is the complete lack of Fourier series analysis. You can consult Chapters 13 and
14 of Ritger & Rose or Chapters 10 and 11 of Nagel, Saff and Snider’s text. The Sturm-Lioville results are
of particular interest and we have nothing to say about them here except that you ought to study them if
you wish to go to the next step past this course. I’ll begin with an overview of the techinque:

(i.) we are given a partial differential equation paired with a boundary condition (BC) and an initial
condition (IC)

(ii.) we propose a solution which is formed by multiplying functions of just one variable.

(iii.) the proposed solution is found to depend on some characteristic value which (for reasons explained
elsewhere) will depend on some integer n. Each solution un solves the given BCs.

(iv.) the initial condition is a function of at least one variable. To fit the initial condition we express it as
a series of the un solutions. The Fourier techinque allows for elegant selection of the coefficients in
the series.

(v.) the calculated coefficients are placed back in the formal solution and the solution depending on two
or more variables is complete.

In the case of Laplace’s equation, there are only BVs, but still the Fourier technique is needed to fit them
together.

8.2 Fourier technique

See handout(s). I gave you a copy of an optional section of Stewart’s calculus text as well as the summary
page from Chapter 10 of NSS. There are further calculations given in PH127-133 which are linked as pdfs
on our course website.

8.3 boundary value problems

In this section I treat the three main cases which arise in our study of PDEs. Here we consider families of
ODEs, we’ll see that only certain members of the family actually permit a solution of the given boundary
values. In the interest of streamlining our work in the future sections we intend to refer to the work completed

231
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in this section. In each subsection that follows I present a calculation which justifies the proposition at the
conclusion of the subsection.

8.3.1 zero endpoints

Problem: determine which values of K allow solutions of y′′ + Ky = 0 subject y(0) = y(L).
We suppose x is the independent variable and we seek solutions for 0 ≤ x ≤ L.

There are three cases to consider.

Case I: suppose K = 0. Then y′′ = 0 has solution y = Ax+B and thus y(0) = B = 0 and y(L) = AL = 0
hence y = 0 is the only solution in this case.

Case II: suppose K < 0. Then, there exists β > 0 for which K = −β2. We face y′′ − β2y = 0 thus
solutions have the form y = A cosh(βx) +B sinh(βx). Observe y(0) = 0 yields 0 = A hence y(L) = 0 yields
B sinh(βL) = 0. Hyperbolic sine is only zero at zero thus βL = 0. However, β > 0 hence there is no solution
in this case.

Case III: suppose K > 0. Then, there exists β > 0 for which K = β2. We face y′′ + β2y = 0 thus solutions
have the form y = A cos(βx) + B sin(βx). Note, y(0) = A hence y(L) = B sin(βL) = 0. In considerable
contrast to case II, the condition above permits infinitely many solutions:

βL = nπ

for n ∈ Z. However, as β > 0 we need only consider n ∈ N thus:

Proposition 8.3.1.

The nontrivial solutions of y′′ +Ky = 0 subject y(0) = y(L) = 0 have the form:

yn = Bn sin
(nπx

L

)
for n = 1, 2, 3, . . . .

Moreover, nontrivial solutions exist only if K = n2π2

L2 .

8.3.2 zero-derivative endpoints

Problem: determine which values of K allow solutions of y′′ +Ky = 0 subject y′(0) = y′(L).
We suppose x is the independent variable and we seek solutions for 0 ≤ x ≤ L.

There are three cases to consider.

Case I: suppose K = 0. Then y′′ = 0 has solution y = Ax+ B and thus y′(0) = A = 0 and y′(L) = A = 0
hence y = B is the only solution in this case. We do find one constant solution here which could be nontrivial.

Case II: suppose K < 0. Then, there exists β > 0 for which K = −β2. We face y′′ − β2y = 0 thus
solutions have the form y = A cosh(βx) + B sinh(βx). Observe y′(0) = 0 yields 0 = βB hence y′(L) = 0
yields βA sinh(βL) = 0. Hyperbolic sine is only zero at zero thus βL = 0. However, β > 0 hence there is no
solution in this case.

Case III: suppose K > 0. Then, there exists β > 0 for which K = β2. We face y′′ + β2y = 0 thus solutions
have the form y = A cos(βx) + B sin(βx). Note, y′(0) = 0 yields βB = 0 hence y′(L) = −βA sin(βL) = 0.
This condition permits infinitely many solutions:

βL = nπ
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for n ∈ Z. However, as β > 0 we need only consider n ∈ N thus (including the constant solution as n = 0 in
what follows below) we find:

Proposition 8.3.2.

The nontrivial solutions of y′′ +Ky = 0 subject y′(0) = y′(L) = 0 have the form:

yn = An cos
(nπx

L

)
for n = 0, 1, 2, 3, . . . .

Moreover, nontrivial solutions exist only if K = n2π2

L2 for some n ∈ N ∪ {0}.

8.3.3 mixed endpoints

Problem: determine which values of K allow solutions of y′′ +Ky = 0 subject y(0) = 0 and
y′(L) = 0. We suppose x is the independent variable and we seek solutions for 0 ≤ x ≤ L.

There are three cases to consider.

Case I: suppose K = 0. Then y′′ = 0 has solution y = Ax+ B and thus y(0) = B = 0 and y′(L) = A = 0
hence y = 0 is the only solution in this case.

Case II: suppose K < 0. Then, there exists β > 0 for which K = −β2. We face y′′−β2y = 0 thus solutions
have the form y = A cosh(βx) +B sinh(βx). Observe y(0) = 0 yields A = 0 hence y′(L) = βB cosh(βL) = 0
yields B = 0. There is no solution in this case.

Case III: suppose K > 0. Then, there exists β > 0 for which K = β2. We face y′′ + β2y = 0 thus solutions
have the form y = A cos(βx) +B sin(βx). Note, y(0) = 0 yields A = 0 hence y′(L) = βB cos(βL) = 0. This
condition permits infinitely many solutions:

βL = (2n− 1)
π

2

for n ∈ Z. However, as β > 0 we need only consider n ∈ N thus:

Proposition 8.3.3.

The nontrivial solutions of y′′ +Ky = 0 subject y(0) = y′(L) = 0 have the form:

yn = Bn sin

(
π(2n− 1)x

2L

)
for n = 1, 2, 3, . . . .

Moreover, nontrivial solutions exist only if K = π2(2n−1)2

4L2 for some n ∈ N.

Of course, there is one more mixed case to consider:

Problem: determine which values of K allow solutions of y′′ +Ky = 0 subject y′(0) = 0 and
y(L) = 0. We suppose x is the independent variable and we seek solutions for 0 ≤ x ≤ L.

There are again three cases to consider. I omit the details, but, once again K = 0 and K < 0 add no
nontrivial solutions. On the other hand, when K = β2 > 0 we have solutions of the form:

y = A cos(βx) +B sin(βx)

Note, y′(0) = βB = 0 thus y(L) = 0 yields A cos(βL) = 0. This condition permits infinitely many solutions:

βL = (2n− 1)
π

2

for n ∈ Z. However, as β > 0 we need only consider n ∈ N thus:
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Proposition 8.3.4.

The nontrivial solutions of y′′ +Ky = 0 subject y′(0) = y(L) = 0 have the form:

yn = An cos

(
π(2n− 1)x

2L

)
for n = 1, 2, 3, . . . .

Moreover, nontrivial solutions exist only if K = π2(2n−1)2

4L2 for some n ∈ N.

Remark 8.3.5.

By now you might wonder why we even bother with hyperbolic sine and cosine in these boundary
value problems. It seems only sine, cosine and the constant solution appear nontrivially. Indeed that
is the take-away message of this section. For trivial or unchanging endpoints we find either sine,
cosine or constant solutions. That said, logic requires us to investigate all cases at least to begin our
study. Also, you will see hyperbolic sine and/or cosine appear in the solution to Laplace’s equation
on some rectangular domain.

8.4 heat equations

In this section we discuss how one may solve the one-dimensional heat equation by the technique of separation
of variables paired with the Fourier technique.

Problem: Let u = u(t, x) denote the temperature u at position x and time t along an object
from x = 0 to x = L. The time-evolution of temperature in such an object is modelled by

uxx = αut

where α is a constant determined by the particular physical characteristics of the object. If we
are given an initital temperature distribution f(x) for 0 ≤ x ≤ L and the system is subject to
boundary conditions at x = 0, L of the type studied in Propositions 8.3.1, 8.3.2, 8.3.3, and 8.3.4
then find u(x, t) for t > 0 and 0 ≤ x ≤ L.

Let us study the general problem

uxx = αut ⋆

and see what we can conjecture independent of a particular choice of BV and IC1. Let us suppose the solution
of ⋆ can be written as product of functions of x and t:

u(x, t) = X(x)T (t)

Observe, is we omit arguments and use X ′ = dX
dx and T ′ = dT

dt then:

ux = X ′T, uxx = X ′′T, ut = XT ′

Subsitute the above into ⋆ to obtain:

X ′′T = αXT ′

Therefore, dividing by XT yields:
X ′′

X
= α

T ′

T

1in case you missed it, BV is boundary value and here this indicates u = 0 or ux = 0 at x = 0, L for all t > 0 and
IC is initial condition which we denote f(x) where we suppose u(x, 0) = f(x) for 0 ≤ x ≤ L
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This is an interesting equation as the left and right hand sides are respectively functions of only x or only t.
There is only one way this can happen; both sides must be constant. In other words, there must exist some
constant −K for which

X ′′

X
= −K = α

T ′

T

Hence, we find two families of ODEs which are linked through this characteristic value K. We would like
to solve the following simultaneously:

X ′′ +KX = 0 & T ′ = (−K/α)T

The time function is easily solved by separation of variables to give T (t) = To exp(−Kt/α) where To ̸= 0
and customarily2 we may set To = 1. At this point we cannot go further in detail without specifying the
details of the boundary values. I must break into cases here.

Case I. (ends at zero temperature) suppose u(0, t) = u(L, t) = 0 for t > 0. This indicates X(0)T (t) =
X(L)T (t) = 0 hence, as T (t) ̸= 0 for t > 0 we find X(0) = X(L) = 0 hence, by Proposition 8.3.1:

Xn(x) = Bn sin
(nπx

L

)
for n = 1, 2, 3, . . . . In this case K = n2π2

L2 thus we find Tn(t) = exp
(

−n2π2t
αL2

)
. I include the subscript n here

to reflect the fact that there is not just one T solution. In fact, for each n the corresponding K provides a
Tn solution. It is wise to reflect the n-dependence on the product solution; let un(x, t) = Xn(x)Tn(t). Thus,

un(x, t) = Bn sin
(nπx

L

)
exp

(
−n2π2t

αL2

)
Each choice of n gives us a product solution which solves ⋆ subject the BVs u(0, t) = u(L, t) = 0 for t > 0.
Case II. (ends perfectly insulated) suppose ux(0, t) = ux(L, t) = 0 for t > 0. This indicates X ′(0)T (t) =
X ′(L)T (t) = 0 hence, as T (t) ̸= 0 for t > 0 we find X ′(0) = X ′(L) = 0. Proposition 8.3.2 provides

Xn(x) = An cos
(nπx

L

)
where K = n2π2

L2 thus Tn(t) = exp
(

−n2π2t
αL2

)
. The product solutions un(x, t) = Xn(x)Tn(t) have the form

un(x, t) = An cos
(nπx

L

)
exp

(
−n2π2t

αL2

)
.

Case III.( left end at zero temperature, right end insulated) suppose u(0, t) = ux(L, t) = 0 for
t > 0. This indicates X(0)T (t) = X ′(L)T (t) = 0 hence, as T (t) ̸= 0 for t > 0 we find X(0) = X ′(L) = 0.
Proposition 8.3.3 shows us

Xn(x) = Bn sin

(
π(2n− 1)x

2L

)
for n = 1, 2, 3, . . . .

Where K = π2(2n−1)2

4L2 . The dependence on n is once more reflected in K and thus T (t) = exp
(

−π2(2n−1)2t
4αL2

)
.

The product solutions un(x, t) = Xn(x)Tn(t) have the form

un(x, t) = Bn sin

(
π(2n− 1)x

2L

)
exp

(
−π2(2n− 1)2t

4αL2

)
.

Case IV.( left end insulated, right end at zero temperature) suppose ux(0, t) = u(L, t) = 0 for t > 0.
I invite the reader to determine the product solution un(x, t) in the same way as the previous three cases.

2why this is reasonable is clear later in the calculation, we introduce constants for the formal solution of X thus
any multiplicative factor in T can be absorbed into those constants
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Of course, in this case you will need to use Proposition 8.3.4.

Let us return once more to the abstract case. Suppose we choose one of the four boundary condition types
as laid forth in Propositions 8.3.1, 8.3.2, 8.3.3, and 8.3.4. Let un(x, t) be the product solution as discussed
above in Cases I-IV for3 n = 0, 1, 2, . . . . Then the general formal solution to uxx = αut subject the given
BVs is formed by:

u(x, t) =

∞∑
n=0

un(x, t).

I say formal as I have no intention of properly analyzing the convergence of the series above. That said, it
is natural to form the solution to the linear PDE uxx −αut = 0 by superposition all the solutions we found.
You might wonder, have we really found all the solutions? It turns out the answer is yes. Once again, the
proof is beyond this course4. Everything we have done thus far required no initial condition be given. We
shall see that the multitude of constants implicit within the formal solution above gives us the flexibility to
match any initial condition which is compatible with the given BV problem. The Fourier technique provides
the necessary formulas to calculate the coefficients in the formal solution and thus we find a unique solution
to a given BV problem paired with an initial condition. Of course, without the initial condition there are
infinitely many product solutions which are allowed by the given BV problem. Rather than attempt some
over-arching Case I-IV description of the Fourier technique I will focus on just one choice and show how it
works out in that case.

Example 8.4.1. We worked through ut = 3uxx in Lecture 4-17-2014. See PH 135-138 for details.

Example 8.4.2. Problem: Suppose ut = 5uxx for 0 ≤ x ≤ π and t > 0. Furthermore, we are given bound-
ary conditions u(0, t) = u(π, t) = 0 for t > 0 and an initial condition u(x, 0) = 1− cos(2x) for 0 ≤ x ≤ π

Solution: we are in Case I hence the n-th eigensolution has the form:

un(x, t) = Bn sin
(nπx

L

)
exp

(
−n2π2t

αL2

)
But, identify L = π and α = 1/5 in the terminology of this section. Therefore, we find total formal solution:

u(x, t) =

∞∑
n=1

Bn sin (nx) exp
(
−5n2t

)
Next we fit the initial condition u(x, 0) = 1 − cos(2x). Notice the exponential function reduces to 1 as we
evaluate at t = 0. It follows that We need

1− cos(2x) =

∞∑
n=1

Bn sin (nx)

Unfortunately, the lhs is the wrong kind of Fourier series, so, we must calculate the sine-series for the
function f(x) = 1− cos(2x). Recall the Fourier sine series for [0, π]

f(x) =

∞∑
n=1

bn sin(nx) & bn =
2

π

∫ π

0

f(x) sin(nx) dx.

Thus, we calculate: (see PH134 for integration details, only n odd is nontrivial, b2k = 0 for k = 1, 2, . . . )

b2k−1 =
2

π

∫ π

0

(
1− cos(2x)

)
sin((2k − 1)x) dx

=
2

π

[
2

2k − 1
− 1

2k + 1
+

1

3− 2k

]
.

3we throw in X0 = 0 for the cases which started at n = 1 to keep this discussion unfragmented
4I can recommend a few texts beyond these notes and your required text which face the needed analysis to give

meaningful critques of these issues
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At this point, we have two5 Fourier series:

∞∑
n=1

bn sin (nx)︸ ︷︷ ︸
from Fourier analysis

=

∞∑
n=1

Bn sin (nx)︸ ︷︷ ︸
from BV analysis

Now, equation coefficients to see bn = Bn for all n. Thus, the solution is simply:

u(x, t) =

∞∑
k=1

2

π

[
2

2k − 1
− 1

2k + 1
+

1

3− 2k

]
sin ((2k − 1)x) exp

(
−5(2k − 1)2t

)
.

Example 8.4.3. Problem: Suppose 7ut = uxx for 0 ≤ x ≤ 1/2 and t > 0. Furthermore, we are given
boundary conditions u(0, t) = ux(1/2, t) = 0 for t > 0 and an initial condition u(x, 0) = sin(πx)+42 sin(17πx)
for 0 ≤ x ≤ 1/2

Solution: we are in Case III hence the n-th eigensolution has the form:

un(x, t) = Bn sin

(
π(2n− 1)x

2L

)
exp

(
−π2(2n− 1)2t

4αL2

)
.

Observe L = 1/2 and α = 7 thus the formal solution to the BV problem is

u(x, t) =

∞∑
n=1

Bn sin (π(2n− 1)x) exp

(
−π2(2n− 1)2t

7

)
.

Now we wish to choose B1, B2, . . . to fit the given intial condition. This time the initial data is already
presented as a finite Fourier series so life is easy: just compare the expressions below and equate coefficients
of sine functions,

u(x, 0) = sin(πx) + 42 sin(17πx) =

∞∑
n=1

Bn sin (π(2n− 1)x) .

Evidentally B1 = 1 whereas B9 = 42 and n ̸= 1, 9 yields Bn = 0. Therefore, we obtain the solution:

u(x, t) = sin (πx) exp

(
−π2t

7

)
+ 42 sin (17πx) exp

(
−289π2t

7

)
.

8.5 wave equations

In this section we discuss how one may solve the one-dimensional wave equation by the technique of separation
of variables paired with the Fourier technique.

Problem: Let y = y(t, x) denote the vertical position of a string at position (x, y) and time t
for a length which is stretched from x = 0 to x = L. The motion of the string is modelled by:

∂2y

∂x2
=

1

v2
∂2y

∂t2

where v > 0 is a constant which describes the speed of the wave on the string. If we are given
an initial shape for the string y = f(x) for 0 ≤ x ≤ L and the system is subject to boundary
conditions at x = 0, L of the type studied in Proposition 8.3.1 then find y(x, t) for t > 0 and
0 ≤ x ≤ L.

5equivalently, we could anticipate this step and simply note the Fourier integrals necessarily calculate Bn. I include
this here to help you see the separation between the BV part of the solution process and the Fourier technique.
Calculationally, there is a shorter path.
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I should mention, while I have motivated this problem partly as the problem of a vibrating string the math
we cover below equally well applies to electric or magnetic waves in the vacuum and a host of other waves
which are transversely propagated. I also should confess, this section is a bit more narrow in focus than the
previous section. I consider only the fixed endpoint case.

Let us begin by stating the problem: solve

v2yxx = ytt. ⋆

subject the boundary conditions y(0) = 0 and y(L) = 0 and subject the initial conditions y(x, 0) = f(x)
and yt(x, 0) = g(x) for 0 ≤ x ≤ L. In contrast to the heat equation, we have two initial conditions to match
to our solution. We begin in the same manner as the last section. We propose the solution separates into
product solutions y(x, t) = X(x)T (t). We omit arguments and use X ′ = dX

dx and T ′ = dT
dt then:

uxx = X ′′T, utt = XT ′′

Subsitute the above into ⋆ to obtain:
v2X ′′T = XT ′′

Therefore, dividing by XT yields:
X ′′

X
=

1

v2
T ′′

T

This is an interesting equation as the left and right hand sides are respectively functions of only x or only t.
There is only one way this can happen; both sides must be constant. Once more, I’ll denote this constant
−K hence

X ′′

X
=

1

v2
T ′′

T
= −K ⇒ X ′′ +KX = 0, & T ′′ +Kv2T = 0.

Given y(x, 0) = 0 and y(L, 0) = 0 we once more conclude from the supposed nontriviality of T (0) that
X(0) = 0 and X(L) = 0 hence we may apply Proposition 8.3.1 to find the family of eigensolutions for X:

Xn(x) = sin
(nπx

L

)
where we find that K = n2π2

L2 for n ∈ N. The time equation also involves the same K. Thus, we solve:

T ′′ +
v2n2π2

L2
T = 0

Let β = πnv
L then it is clear T ′′ + β2T = 0 has solutions (for each n )

Tn(t) = An cos(βt) +Bn sin(βt).

In total, we find the n-eigensolution to the BV problem for the wave-equation with fixed ends is:

yn(x, t) = An sin
(nπx

L

)
cos(βt) +Bn sin

(nπx
L

)
sin(βt)

Thus, the general formal solution of the problem is given by:

y(x, t) =

∞∑
n=1

[
An sin

(nπx
L

)
cos(βt) +Bn sin

(nπx
L

)
sin(βt)

]
⋆ ⋆

The initial conditions will force us to select particular values for the coefficients An and Bn. In particular,
notice how setting t = 0 makes the Bn terms vanish. Thus, from ⋆⋆ we see f(x) = y(x, 0) yields:

f(x) = y(x, 0) =

∞∑
n=1

An sin
(nπx

L

)
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therefore, we will need to find a Fourier sine series for f(x) on 0 ≤ x ≤ L to fit the coefficients An from the
particular shape of f(x). On the other hand, when we calculate ∂y

∂t (x, 0) we find the An term vanishes due
to a sine evaluated at zero and the differentiation and evaluation leaves: (applying g(x) = ut(x, 0) to ⋆⋆)

g(x) =

∞∑
n=1

βBn sin
(nπx

L

)
=

∞∑
n=1

πnv

L
Bn sin

(nπx
L

)
.

Once given a particular g(x) we again see that a Fourier sine series for g(x) on 0 ≤ x ≤ L will solve the
problem. However, note Bn are not the same as the coefficients in the Fourier series. Rather, if the Fourier
expansion for g(x) is found to be g(x) =

∑∞
n=1 Cn sin

(
nπx
L

)
then we need to choose Bn to solve:

Cn =
πnv

L
Bn.

That choice will fit the given initial velocity for the wave and paired with the correct Fourier analysis for An

will produce a solution to the given wave equation.

Example 8.5.1. See PH 145-Ph148 for a complete solution to a wave equation from front to back. Notice,
if you use what we have derived thus far in this section then your work is streamlined a bit in comparison.

Example 8.5.2. Problem: Suppose ytt = 4yxx for 0 ≤ x ≤ π and t > 0. Furthermore, we are given bound-
ary conditions y(0, t) = y(π, t) = 0 for t > 0 and an initial conditions y(x, 0) = x2(π − x) and yt(x, 0) = 0
for 0 < x < π.

Solution: Note v = 2 and L = π and β = 2n for the given problem hence the general solution ⋆⋆ takes the
form:

y(x, t) =

∞∑
n=1

[An sin (nx) cos(2nt) +Bn sin (nx) sin(2nt)]

Observe yt(x, 0) = 0 yields Bn = 0 for all n ∈ N. On the other hand, the coefficients An may be determined
from the Fourier expansion of f(x) = x2(π − x) on 0 ≤ x ≤ π as a sine series. If f(x) =

∑∞
n=1 an sin(nx)

then we can calculate by the sine-series Fourier coefficient formula

an =
2

π

∫ π

0

x2(π − x) sin(nx) dx =
4

n2

[
2(−1)n+1 − 1

]
.

To fit y(x, 0) = x2(π − x) we simply set An = an hence the solution is simply:

y(x, t) =

∞∑
n=1

4

n2

[
2(−1)n+1 − 1

]
sin (nx) cos(2nt).

Example 8.5.3. Problem: Suppose ytt = 4yxx for 0 ≤ x ≤ π and t > 0. Furthermore, we are given
boundary conditions y(0, t) = y(π, t) = 0 for t > 0 and an initial conditions y(x, 0) = sin(x)+ 13 sin(4x) and
yt(x, 0) = 7 sin(5x) for 0 < x < π.

Solution: Note v = 2 and L = π and β = 2n for the given problem hence the general solution ⋆⋆ takes the
form:

y(x, t) =

∞∑
n=1

[An sin (nx) cos(2nt) +Bn sin (nx) sin(2nt)]

Plug in the initial condition y(x, 0) = sin(x) + 13 sin(4x) to obtain:

sin(x) + 13 sin(4x) =

∞∑
n=1

An sin (nx)
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we find A1 = 1, A4 = 13 and otherwise An = 0. Differentiate and evaluate y(x, t) at t = 0 to apply the
initial velocity condition to the general solution:

7 sin(5x) =

∞∑
n=1

2nBn sin (nx) .

we find 7 = 10B5 thus B5 = 7/10 and Bn = 0 for n ̸= 5. In total, the given initial conditions leave just three
nontrivial terms in the infinite sum which formed the general solution. We find:

y(x, t) = sin (x) cos(2t) + 13 sin (4x) cos(8t) +
7

10
sin (5x) sin(10t).

It is interesting to animate the solution on 0 < x < π to see how the string waves. Finally, I should mention
there is much more to learn about the wave equation. For waves on an infinite string there is even a simple
solution with no need for Fourier analysis. See PH148-PH149 for an example of D’Almbert’s solution.

8.6 Laplace’s equation

Laplace’s equation arises in the study of fluid flow as well as electrostatics. In the context of electrostatics
ϕ is the voltage. Indeed, it is one of the fundamental problems of mathematical physics to solve Laplace’s
equation in various contexts.

Problem: Let R be a rectangle in the xy-plane. We seek to solve

ϕxx + ϕyy = 0

given various conditions for ϕ and ϕx on ∂R.

We just study an example here. I make no claim of generality. That said, what we do here is largely
analogous to our work on the heat and wave equation. The main idea is separation of variables.

Example 8.6.1. Problem: Let R = [0, π]× [0, 1] be a rectangle in the xy-plane. We seek to solve

ϕxx + ϕyy = 0

subject the boundary conditions: ϕ(x, 1) = 0 and ϕ(x, 0) = f(x) for x ∈ [0, π] and ϕ(0, y) = ϕ(π, y) = 0 for
y ∈ [0, 1]. I leave f(x) unspecified for the moment.

Solution: we propose ϕ(x, y) = X(x)Y (y) and note ϕxx = X ′′Y whereas ϕyy = XY ′′. Thus,

X ′′Y +XY ′′ = 0 ⇒ X ′′

X
= −Y ′′

Y
= −K ⇒ X ′′ +KX = 0, Y ′′ −KY = 0.

Again, the only option above is that both quotients be constant as the l.h.s. is just a function of x whereas
the r.h.s. is just a function of y. Notice that ϕ(0, y) = X(0)Y (y) = 0 and ϕ(π, y) = X(π)Y (y) = 0. Thus
X(0) = X(π) = 0 hence we apply Proposition 8.3.1 to find the family of eigensolutions for X:

Xn(x) = sin (nx)

where we find that K = n2 for n ∈ N. Thus Y ′′ − n2Y = 0 and we find6 eigensolutions for Y

Yn(y) = An sinh(ny + Cn)

We also have ϕ(x, 1) = 0 hence X(x)Y (1) = 0

Yn(1) = An sinh(n+ Cn) = 0

6here I follow Ritger and Rose page 466 where a similar problem is solved, alternatively you could work this out
with Yn(y) = An cosh(ny) +Bn sinh(ny)
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hence n+Cn = 0 and we find Yn(y) = An sinh(n(y − 1)). We form the general solution which solves all but
the last boundary condition in terms of a formal sum over the product solutions Xn(x)Yn(y).

ϕ(x, y) =

∞∑
n=1

An sin (nx) sinh(n(y − 1)).

The remaining boundary condition involves f(x). In particular, ϕ(x, 0) = f(x) yields

f(x) = ϕ(x, 0) =

∞∑
n=1

An sin (nx) sinh(−n)

Thus, to solve such a problem we need only find the Fourier expansion for f(x) =
∑∞

n=1 cn sin(nx) and
observe that cn = − sinh(n)An so we can easily assemble the solution.

Example 8.6.2. See PH 151-155 for more explicit calculation of Laplace Equation solutions in Cartesian
coordinates.

In PH157-161 I explore how to solve Laplace’s Equation in polar coordinates. Indeed, there are many more
techniques which are known for this problem. In particular, in complex analysis one learns how conformal
mapping allows elegant solutions of problems far more complicated than those we consider here.
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