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Abstract

An improper integral is an integral which explicitly involves +oo in the bounds or involves
an integrand which is technically undefined at a finite set of points in the region of integration.
In both types improper behavior we will use a careful limiting process to define the improper
integral as the limit of family of perfectly proper integrals. Therefore, the foundation of this
article is found in the previous articles which covered FTC as well as techniques of integration.
However, we also face limits which are often of indeterminant type thus we will require the
reader to recall limits of functions at oo as well as techniques to calculate limits such as
algebra or L’Hopital’s Rule. Beyond direct calculation, we offer disucssion and theorems of
comparison. When we are merely interested in convergence or divergence of a given integral it
is often convenient to compare to a function whose integral is easier to calculate. We conclude
by examining the application of improper integration to the study of Probability. When a
random variable can take a continuum of values then a probability distribution describes the
likelyhood of measuring that variable within a given range of values. The Gaussian distribution
is discussed as an interesting application of u-substitution.

1 Motivation and Application of Improper Integrals

Improper integrals are important to many applications where the concept of oo is used to imple-
ment some physical idealization. Or in probability, if you have a continuous random variable then
the natural condition for the probability density function ¢ is ffooo ¢(x)dx = 1. In physics the di-
vergence of functions often represents a physically interesting quantity. For example, if F(z) is the
electric field in a one-dimensional system and E(x) — oo as z — x then there is a positive electric
charge at x = x,. The mathematics of improper integrals are all made by combining the concept
of the integral with the concept of a limit at a point or infinity or both. Once you understand the
definitions in this article they are entirely natural, with perhaps the exception of ffooo f(x)dx.

Beyond infinity, or perhaps before it, we can use the concept of improper integration to carefully
define integration of piecewise-continuous functions. The reason is subtle. Riemann integration is
only defined for closed intervals. If f(z) is piecewise defined to be fi(x) for x € [a,c) and on the
other hand fa(z) for z € (¢,b] then many calculus I instructors state that

/abf(x)dx = /acfl(x)dx+ /Cb folz)dz.

However, it is cannot just mean the Riemann integra]lﬂ of fi and fy. At least without some

Inot as we have defined it at least



qualification this equation is nonsensdﬂ because I cannot set up a partitition which allows us to
evaluate f1(c) or fa(c). These points need not be in the domain of f and they certainly cannot be
defined for both f; and fy and yet be distinct (if they were not equal then f would not be function).
So, how should we define such an integral? It’s not hard, we just have to introduce variable bounds
and allow those bounds to tend to the point ¢ rather than actually reach it. In practice, I don’t
force students to write these limits in calculus I because in the case of finite-jump discontinuities
there is no danger of getting the wrong answelﬂ On the other hand, once the integrand has a point
of discontinuity where there is a vertical asymptote the limit is an essential detail as application of
L’Hospital’s rule and other subtle limit calculations are totally possible.

2 divergent integrands

Let me begin with a question: what is the meaning of fol %? Notice it cannot just be the limit
of a Riemann sum since the function is not even defined at the first partitition point z, = a =0
and that point gives division by zero for the integrand 1/y/xz. On the other hand, if we consider
the graph then we’ll note there might be a chance that the area bounded by x =0,z =1,y =0
and y = 1/4/x is finite since the shape gets very very narrow where it gets very very tall.

Furthermore, if £ > 0 then clearly the integral ftl % is meaningful for each such value ¢. I propose
the natural definition for the integral in question is simply as follows:
Uda ) bdx
— = lim

0\/5 t_>0+tﬁ

The expresssion above defines the improper integral on the LHS in terms of concepts on the RHS
which we have already given explicit and rigorous meaning.

Example 2.1.

L dx . b dx
T

1
=i [ =i (2va] )= pim (2vT-2vi)

t—0+
I’ll give a careful definition that covers the preceding example. Again, this is the natural definition
because it extends our concept in a way such that the integral still has the same essential meaning.

%it will make perfect sense soon, we just need a simple definition to fix this hole. Actually, depending on the finer
points of your definition of integration this may already be meaningful. The point I raise here may be too picky for
the integration theory given in calculus I and II.

31 show we were correct later in this article, I show the limits are not really necessary for the bounded piecewise
continuous case.



Definition 2.2. Improper integral with divergence at edge of integration interval.

Assume a < b and (a,b) C dom(f). The integral ff f(x)dx is generalized to mean the
following in the cases that either a ¢ dom(f) or b ¢ dom(f).

1. If a ¢ dom(f) however b € dom(f) then f;f(l’)d?’ = lim;_,+ ftb f(x)dx.
2. If b ¢ dom(f) however a € dom(f) then f;f(l’)d?’ = lim;_,;- fi f(z)dx.

3. If both a,b ¢ dom(f) then we choose ¢ € (a,b) and define f:f(fr)dr =
limy g [ £(2)d + lim, - [ f(2)dz.

If any of the limits exist then we say the integral converges to the value of the limit.
Moreover, if the integral converges to a value we say it is convergent. However, if any of
the limits above do not exist then we say the integral is divergent. In the case the the
limits diverge to +oo we will denote the divergence by fab f(x)dx = £o0 in cases (1.) and
(2.). However, in case (3.) we say that fab f(z)dz = d.n.e. if one of the limits tends to co

while the other tends to —oo. Finally, if both limits tend oo (—oc) then we say ff f(x)dx
diverges to oo (—00).

You might expect that co and —oo can cancel. While that is possible, it is not possible in the
context of case (3.) above. The divegergence between the upper and lower bound are not connected
in this definition.

Example 2.3.

Lde : Ldx )
— = lim — = lim ( In|z|
0 x t—0t+ Jy t—0+

1
> = lim (21111 21nt> =[00.]

" t—0+

This integral diverged to oo.
Example 2.4.

1 t
/ de_ _ lim de_ _ lim <ln\x—1|
0

r—1 t=1-Jg z—1 t=1-

1

= li 2Injt—1|—-2In|0—-1| ) =
) = jim (2mle -1/ - 210 -1])

t

This integral diverged to oo.

Example 2.5.

1 0.5 s
1 1 1 1 1 1
/ -+ dr = lim —+ —— |dz + lim -+ dx
o \z x-—1 t—0t Jy r x-—1 s=1=- Jos\z -1

0.5

s

= lim <ln|x\ +In|x—1]
o+

t—

+ lim <1n|x| +In|z —1]
s—1—

t 0.5

lim <2ln 0.5 = In|t| +In |t — 1\) + lim <1n\8| +1Injs—1|—2In |0.5|>
t—0t s—1—

=00 — 0

=|d.n.e.

Notice that if we used some other middle point besides 0.5 the answer would not change. Moreover,
if you notice the pattern of the terms following from the 0.5-evaluations it is clear this cancellation



will also occur in the case of integrals which are not divergent. If this were not the case, if the integral
depended on the choice of the middle point, then the definition we gave would be meaningless. [

leave the proof that the ambiguity in the choice of ¢ does not lead to ambiguity in the integral to the
reader.

The area of the shaded region was shown to diverge in the last example.
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Example 2.6. Recall that IBP yields that [ In(z)dx = zln(z) — x + ¢ and consider:

1 1
/ In(z)dz = lim In(x)dx
0

t—0t J¢

t—0t

= lim <1 In(1) =1 —tIn(t) — t)
—t ln(t)) note this is type 0oo

In(t
=—1+ lim ( n(l)> now is type oo /oo thus apply L’Hospital’s Rule.

Next we consider a function with an isolated discontinuity in the domain of integration.

Definition 2.7. Improper integral with discontinuities in the interior of integration interval.

Assume a < ¢ < b and lim,_. f(x) # f(c). If both fcbf(w)d:v € R and [/ f(z)dz € R
then the integral f: f(z)dz is generalized to mean fff(x)dx = [7 f(x)dx + fcb f(z)dx
. If either fac f(x)dx or fcb f(x)dx diverge then we say f;f(:zr)dac diverges. We say that
f: f(x)dx = d.n.e. if one of the improper integrals diverges to oo while the other diverges
to —oo. Finally, if both diverge to oo (—o0) then we say f; f(x)dx diverges to oo (—00).

Suppose {a1,asg,...,a,} is a finite set of discontinuities for an otherwise continuous function
fand a < a; < ag < -+ < an, <b. are points of discontinuities for an otherwise continuous
function f on [a, b] then we define j; flx) = [t fla)de + [72 f(x)de + -+ ffﬂ f(x)dz.




Example 2.8.

./31 l/odx 3 dx

Zdr= | =4+ =

_2.%' —9 X 0 X
t

. dx ) 3 dx

= lim — + lim —

t—0~ J_o T s—=0t Jg T
= lim (Inlt|—In|—2]) + lim (In|3| —1In|s
Jim (e = n| = 2)) + lim (ln[3] ~In s)

= —00+ 00

=[dn.e]

Some students incorrectly think ff’2 %dx is calculated by lim;_,o+ ( :; df + ft?’ ”ff) Note:

—t 3
lim </ dx+/ Cm)zlim (ln|t|1n2\+1n|3\ln|t|>:ln31n2
t—0t\J_2o T t T t—0+

However, while this calculation is interesting, it is not the improper integral at zero. It is incorrect
to assume that we approach zero in the same way from the left and right. These are independent
limits.

Example 2.9.

/ 3 dx B / L dx N / 3 dx
o (=12 Jo (z—1)2 )i (x—1)?
t dx 3 dx

= lim ——— + lim —_—
t—1- Jo (33*1)2 s—1+ Jg (xf1)2

= him (b ) i (o
TSI o) TR\ 3T T s o

= —(—00) + 0

Example 2.10.

3,2 1,2 t2 .2 3.2
3 —2 3 —2 2 3 — 2 3r—2
L/$+*”M:1m AT T2 fim R B R TN B ol
0 z(x?—4) -0t Jy,  x(z? —4) to—2- )1  x(x? —4) ts—2t Jy, (22 —4)
Note that x = —2,2,0 are all points where the integrand is not defined due to division by zero hence

we can only approach these points. However, only 0 and 2 are within the integration region.



Example 2.11. Recall 7/2 ~ 1.57 and sec(z) = 1/ cos(x) to understand what follows:

/12 sec(z)dzr = /1”/2 sec(z)dr + /752 sec(z)dz. k;

2.1 on the integration of finite jump discontinuous functions

Example 2.12. Notice f(z) = z/|z| is discontinuous at v = 0 since f(x) =2/ —x = —1 forx <0
and f(x) =x/x =1 for x> 0.

d 3 d t 3
/ [l / z 1:+/ T~ lim (—dx)+ lim dx = lim (=2—1¢)+ lim (3—s) = 1.
0

2 |x| |:E| t—0t J_o s—0" Jg t—0t s—0~

Compare the example above to the following:

/Zf(m)de/(;ﬁJF/ogﬁZ/(;(—dff)Jr/Ogdx:—x

The calculation following the example is what is more common to find in calculus texts and courses,
we ought to wonder if both of these procedures always yield the same result. The answer, in the
case the function is bounded piecewise continuous, is yes. I explain why below: Suppose f has
a finite jump-discontinuity at = ¢ and is otherwise continuous on [a,b] where ¢ € (a,b). This
means that lim,_,.—- f(z) = L1 and lim,_,.+ f(z) = L2 where L1, Ly € R and L; # Lg. Define ¢
by g(x) = f(z) for x € [a,c) and g(c¢) = Ly. Observe that the function g is continuous on [a, c].
Apply FTC part I to obtain the existence of an antiderivative GG for g then apply FTC part II to
find f(fg(x)dm = G(t) — G(a) for any t € (a,c|.

0

+x
-2

3
=0-2+3-0=1.
0

Next, define h by h(z) = f(x) for x € (¢,b] and define h(c) = La. Observe that the function h is
continuous on [¢,b]. Apply FTC part I to obtain the existence of an antiderivative H for h then

apply FTC part II to find fb h(z)dx = H(b) — H(s) for any s € [¢,b). Connsider,

/f m_/f m+/f

= lim / f(z)dx + lim f(a:)dx

t—ct s—c~
b
= lim [ g(z)dz+ lim h(z)dx

t—ct Jg s—=c” Jg

= Jim (G(1) ~ G(a) + Tim (H(B) ~ H(s)
=G(c) —G(a)+ H(b) — H(c)

= /acg(af)da: + /Cb h(z)dz.

Therefore, to integrate a piecewise-defined function with simple jump-discontinuities we can break
the integral into a sum of integrals where each integral is not of the function itself, but rather the



continuous extension of the function onto the closure of the subinterval. Pragmatically, this means
we need not write limits in the case of improper integrals of the finite-jump-discontinuity type. We
can calculate the antiderivative of each piece, and simply sum the sub-integrals.

The especially picky reader will question how I made the first equality in the argument above.
In truth, to really understand such questions we need a more careful theory of integration. The
question I raised on this page probably is better left to a real analysis course.

The overall lesson I'd like you to take here is that we can ignore the contribution of a few points
if the points are merely finite-jump-discontinuities. On the other hand, if the points are genuine
divegences for the integrand then we have seen that more care is required.

Those points of discontinuity are on the edge of the subintervals so it also occured to me that if
we did not use the edges for our integral then we might be able to get around the problem. For
example, the midpoint rule would never sample the endpoints so it would be well-defined even if the
endpoints were not given for the integrand. It turns out that this is precisely the reason that the
midpoint rule is interesting for numerical methods. If you want to calculate an improper integral
then the midpoint rule is a nice choice because it does not sample endpoints where the function is
often not even defined. In constrast, left, right, trapezoid and Simpsons all use boundary points of
the integration region to approximate the integral.

3 divergent bounds

The other type of improper integral is where the bounds are infinite. The question we begin with
is what should we mean by faoo f(x)dx 7 The natural interpretation is to use this to denote the
signed area bounded bounded by y = f(x) for > a. We can calculate the area out to = =t by
f(f f(x)dx. We want to let ¢ — oo to catch all the signed-area bounded by y = f(z). This brings
us to the definition below:

Definition 3.1. Integrals with infinite bounds.

(1.) If f is continuous on [a,c0) then we define

/ fa m—hm/f

(2.) If f is continuous on (—oo, a then we define

/fdw—hm/f

(3.) If f is continuous on R then we define
/OO f(z)dx = tl&l_noo/t f(z)dx + Shjgo/a f(z)dx.

In each case if the limit exists then we say the integral is convergent, whereas if the limit does not
exist then we say it diverges. If the limit tends to +o00 in cases (1.) or (2.) then we say the integral
diverges to +oo. In case (3.) if both limits tend to oo (—o0) then we say the integral diverges to
00 (—00). In case (3.) if one of the limits id divergent and the other is convergent then the integral




diverges. Finally, if the function in question is not continuous at some finite number of points we
combine this definition with the previous definition for improper integrals at points of discontinuity.

Sorry for the abundance of words, I'm simply trying to cover all the bases. One of the concepts I'm
trying to impress on you is that the words ” convergence” and ”divergence” are now also applicable
to improper integrals. Moreover, the actual calculation of of these improper integrals amounts to
performing an integral with a variable bound(s) followed by taking the limit as that bound tends
to +o0o. Graphically the idea is simple enough: note below that the entire area, if it is finite, is
found from adding the two areas together

/Z fz)de = /100 fz)dz + /loo f(z)dz

Note the choice of x = 1 as the divinding line was simply a choice. Fortunately, the result will not
change for different choices since an alternate choice amounts to cutting the same area into two
different sized pieceg]

Example 3.2.
o0 ‘ t 1,
/0 a:dx:tli)rglo ; a:dx:tliglobt —O} =[o00.]
Example 3.3. . .
/_oo e’dr = t_l}r_noo t e’dr = tliglo [eo — et] =
Example 3.4.

* dx . b dx ) . . -
| Hx?—tl%o/()%—tg@o[tan (t) — tan (0)}_ .

Please graph y = tan~!(x) if you don’t understand the claim above. Notice that the integrand

ﬁ — 0 as * — 00. One is tempted to suppose this is enough for such an improper integral to

exist. However, the next example shows that life is not so easy.

Example 3.5.

/1°de T A, [ln(t) —ln(l)} =[]

xT t=oo J1 T t—o00

Example 3.6. Let p > 1 and consider:

de . [tdz 1 1 1
— = lim — = lim + = .
1 aP tooo i aP tooo| (—p 4+ 1)tP7l p—1 p—1

a more careful proof of this claim is left to the interested reader.

4



The preceding pair of examples prove the nontrivial portion of the proposition below:

Theorem 3.7. p-test for improper integrals.

> dx
(1.) If p > 1 then / — diverges.
1 P
* dzx 1
(2.) If p <1 then / — = —— hence the integral converges.
1 P p-—1

The case p = 1 is important and we will see it again.

Example 3.8. We calculated [ W

5 the previous article. We use that result below:

> dx . t dx
T = lim o o
o 4r°+8x+9 tooo o dr° 4+ 8x+9
. 1 _ 2(t+1)> 1 (2)}
= lim | —— tan~" - tan~ ! —
HooL\/E ( NG 25 V5
| 2vB |2 NGyAR

Example 3.9. In the Integration Techniques article we showed:

1
/e"’” sin(3z 4+ 1)dz = 1—0693 [sin(3z + 1) — cos(3z + 1)] +c.

I use the indefinite integral above to calculate the improper integral below:

0 0
/ e’ sin(3x + 1)dx = lim e’ sin(3x 4+ 1)dx

— o t——o0 t

= t_lgr_noo [11060 [sin(1) — cos(1)] — %et [sin(3t + 1) — cos(3t + 1)]

sin(1) — cos(l).
10

The area illustrated below is calculated by the integral above.

v




Example 3.10. Note that [ ze *dx = —ze ™ + [ e *dx = —e *(x + 1) + ¢ by IBP. Thus,

[e%e] t
/ ze *dr = lim ze Tdx
0

t—o00 0

= lim |- f(t+1) +e 20+ 1)}

t—o00

= lim |—e ' (t + 1)} +1

t—00 L
t+1
= lim |— + } +1
t—o00 L et
o1
= lim _t] +1
t—o0 L e

SN

We used L’Hospital’s rule to simplify the limit of type oo/oo going from the 4" to 5™ line. The
area illustrated below is calculated by the integral above.

v

Theorem 3.11. Comparison test for improper integrals.

Let f and g be continuous functions on [a, c0) such that 0 < f(z) < g(x) for all z > a.
(1.) If [ g(z)dx converges then [*° f(x)dx converges and [ ° f(x)dx < [ g(x)dx.
(2.) If [ f(z)dx diverges then [° g(x)dx diverges.

Proof: To prove (1.) we remind the reader that a property of definite integrals is that they preserve
inequalities. In particular, 0 < f(z) < g(x) implies 0 < f; f(z)dz < fcf g(x)dx. Then, the limiting
process likewise preserves this inequality hence 0 < limy o fat f(x)dx < limy_soo fj g(z)dz. Note
further that fj f(z)dz is an increasing function of ¢ since % f; f(z)dr = f(t) > 0 for t > a. We
have that f;’ f(x)dz is an increasing function of ¢ which is bounded between 0 and [ g(z)dz € R.
It follows that lim;_ fj f(x)dx exists. Therefore, the convergence of [ g(x)da implies the con-
vergence of [ f(z)dz. I leave the proof of (2.) to the reader. In fact, the reader may also need to

supply the lemma which proves the limit of a bounded increasing function exists. I don’t believe
we have proved that result in these notes. O

Example 3.12. Does floo x‘_igﬁ converge or diverge? Notice that 0 < % < x%% for all x > 1.

Furthermore f(z) = 1 and g(z) = —= are clearly continuous on [1,00). Observe that [ d% = 00

10



by the p = 1 test hence by the comparison theorem we find floo 1%5 diverges. The area illustrates the

comparison theorem in action, the integral of the lower function diverges by the p-test for improper
integrals thus the integral of the larger function must likewise diverge.

@4,,@%
L .-

Example 3.13. Notice that —e® < ?12 for x > 1. Furthermore, note that floo i—%’ converges by the

p = 2 improper integral test. Therefore, the integral of a function larger than —e® converges hence
by the comparison test floo —e®dx converges. Yet this is clearly false: note the area is obviously
unbounded for the graph y = —e® for x > 1. What is the flaw in my logic? Fix this argument. Here
s a picture of the problem:

Theorem 3.14. Tuail of integral is key for improper integrals.

Suppose that f is a continuous function on [a,c0) and b > a then
(1.) [ f(z)dz converges iff [, f(z)dx converges.

(2.) [ f(z)dx diverges iff [ f(x)dz diverges.

Notice that the assumption of continuity is important since for a discontinuous functions we can

find divergence at finite points. For example, floo @dfii)? diverges whereas f5°° (:ﬁiﬁ)? converges. We

cannot just discard the low values of z in the convergence analysis for [ loo (xdjl)g . Ok, enough about

what we can’t do let’s see what we can dd’}

Example 3.15. Does flo; i—?ﬁ converge or diverge? Notice

/oodx_/lodx_‘_/oodl,
@ 1 2 0 23

1/2 99,/200

Sproof of the tail theorem is left to the reader, I don’t think this is a hard one

11



Furthermore, it is clear that 1/x® is continuous on [1,00) hence we conclude that this integral is
just the tail of the p = 3 integral which converges hence flo; % converges. Moreover, in a case such

as this we can even calculate its value indirectly by [i7 if =1/2-99/200 = 1/200.

Remark 3.16. alternate solutions possible.

When analyzing convergence and divergence it is often possible to argue a point many
different ways. In this section, I do not always seek an optimal solution. Instead, I am
trying to illustrate the theorems with examples that are not overly difficult. One side-
effect of this approach is that currently we have no need to use the Tail theorem or the
comparison theorem for the examples above. We could have just straight calculated the
improper integrals and came to the same conclusion with less thinking. However, we will
soon consider examples where the integral is simply not calculatable in closed form. Instead
our approach will be to see how it is like something we can calculate then use the tail,
comparison and/or the linearity theorem (given later in this section) to circumvent direct
calculation of the improper integral.

Example 3.17. Does f m converge for a sufficiently large choice of a? Note, x*+8x%+3 >
0 thus we can choose a = 1 in this case. The integrand

Moreover, notice that for x > 1

1 . .
—Trss7y3 18 clearly continuous on [1,00).

1 1

P —— < i [think about it, I made the denominator smaller].

Observe floo g—ff converges because it is the p = 4 integral which we know converges. Furthermore,

0< dx

=1 hence the comparison theorem applies and we find fl T g7

W converges.

The inequality in the last example was pretty easy to see. The next example, which concerns
faoo :64_‘;% is much harder due to the change of sign. We would like to compare this integral to
the p = 4 integral. However, the approach used in the last example doesn’t quite work because we
have the wrong inequality. Notice that for x > a

1 1 . . .

=< 04— [think about it, I made the denominator smaller on the RHS].

xt T xt —822 -3
This inequality is correct, it’s just not what we need for our comparison theorem argument. The
fact that the integral of the LHS converges doesn’t say anything about integral of the RHS. We
need to find a different argument for the example below.

Example 3.18. Does f m converge for a sufficiently large choice of a? Consider that

— 822 — 3 =0 is a quadratic equation in x> and the solutions are

$2:8+\/64+12 9 8—1064+12

B or r = 9

Note that 8"'27\/% > 0 whereas % < 0 thus we find only two real solutions to the equation

xzt — 822 — 3 =0. I'll give them labels for our convenience:

8+ 76 \ 8+ /76
\/ 2 \/ 2

12



We can calculate A1 < 3. Thus, we know there is no zero for the denominator of m on [3,00)
hence the function is continuous and positive. Moreover, if x > 3 then clearly x> — \; > 1 thus

I 1 11
4 —822 -3 (22— A)(22—N2) 22—y a2

We apply the comparison theorem to argue that f3oo ﬁ converges since f;o % 1s the tail of

the p = 2 integral which is known to converge. We can apply the comparison theorem because we
have shown the integrands are continuous and positive on [3,00) and satisfy the needed inequality
Ofm < % for all z € [3,00).

There are many techniques to use here. Certainly factoring polynomials is a great tool and sign
charts help to unravel the non-linear inequalities. The idea that, for a positive fraction, increasing
the denominator makes a fraction smaller whereas decreasing the denominator makes it larger is
very important to keep in mind. Finally, the goal to reduce to a p-type integral for the purpose
of comparison saves us the trouble of integration. However, there are other examples where an
integration is likely the only way to go. For example:

Example 3.19. Does the integral below converge or diverge?

/OO etdx
1 e* +sin(x)

If £ > 1 then €* > €2 > 1 hence e** + sin(x) > 1+ sin(z) > 0 since sin(x) is not smaller than
—1. Furthermore, —1 < sin(x) implies e** — 1 < e** 4 sin(x). Thus suppose x > 1 to obtain the

following inequalities:

x x

e e
e tsin(z) T e —1°

Notice that we can integrate the function above by making a u = e* subsitution:

eTdx du 1 1 1 1 1 1
L _ [ 2 - du==Inlu—1|—=1 Ute==1
/621—1 /u2—1 2/[u—1 u—i—l} u=ghnfu=l=ghnfutlil+e=7ln

Hence we calculate

et —1
et +1

’—i—c.

/ * eTdx . bt eTdy
= lim _
1

e2r —1 tooo )] e —1

. 1 et — 1 1 e—1
=lim |=In|——|—=1n
t—oo|2 |et+1| 2 |e+1
1 e+1
=—In .
2 e—1
Since zz;% — 1 as t — oo the first term in the limit above vanishes as In(1) = 0. Therefore,
floo ;;;d_xl converges. It follows by the comparison theorem that floo %ﬁ(x) converges. Moreover,

e+1

due to our calculations here we also know that 0 < floo etdr Ly =5l

e2?+sin(x) — 2
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Theorem 3.20. Linearity for improper integrals.

If [* f(z)dz and [ g(z)dz converge then for each ¢ € R we find [ °[f(z) + cg(x)]dz

converges and
g /aoo [f(x) + cg(x)} de = /aoo f(z)dx + c/aoo g(z)dz.

On the other hand, if [ f(z)dx diverges then [ ¢f(z)dx also diverges for any ¢ € R such
that ¢ # 0. If ¢ > 0 and [ f(z)dz = £oo then we likewise find [° f(z)dz = +oo. If ¢ <0
and [ f(z)dz = oo then we find [ cf (z)dz = Foo.

I just made use of the mathching + with F convention. As an alternate example of its use note
you can express cos(A + B) = cos(A) cos(B) — sin(A) sin(B) and cos(A — B) = cos(A) cos(B) +
sin(A) sin(B) with just a single equation in the matching 4+ notation: cos(A+ B) = cos(A) cos(B)F
sin(A) sin(B). Notations aside, I hope the theorem above is entirely reasonable in your opinion.
The proof stems primarily from the corresponding linearity rules for limits at co and the details
are left to the reader. This is a very useful theorem. We could take any pair of examples and splice
them together with this theorem. I conclude with just one such example:

Example 3.21. Does the integral below converge or diverge?

[l
1 1322 sin(z) + e2*

We know this converges because this is just a linear combination of the example above the theorem
and a simple p = 2 integral multiplied by 1/3. In particular, using our work in the previous example,

/°° 1 n 2e” d l/oodas+2/°° e’ d <1+1
—t+ ———|dx. = = — —————dr < -+1In
1 [32%2  e2* +sin(x) 3J)1 22 1 sin(z) + e 3

The misuse the linearity theorem is often a source of logical weakness for students. For a bad

example:
/ <—:c>dx:/ m—/ xdr = —00 + 00
1 x 1 T 1

At which point some students will choose 0 and others will choose —oo, yes others —oo/2. There
are many wrong choices, but they all stem from the assumption that you can apply the linearity
theorem in the divergent case and it is simply false. We can only split an improper integral into
a sum of new improper integrals when the new integrals actually converge. Otherwise, we beg all
sorts of questions about how we should go about defining arithemetic for co. We will not engage
in such a discussion. Well, I think this is a good start. I hope you learn more as you work the
homework.

e+1
e—1|"

Example 3.22. By the way, here’s a problem I don’t know how to solve with our current methods:

/OO dx
1 wsin(x)’

I want to say it is convergent, but, the nonlinearity of the % threatens the symmetry of the sin(z)-
induced cancellation. On the other hand, what happens with

/°° sin(z)dz ,,
1

T

Both of these are in some sense on the bubble of the p = 1 case which is where many of the most
fascintating and challenging examples emerge.
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4 Probability

Probabilities should fall between 0 and 1. When the event described involves a variable which takes
on a continuum of values then we need integration to properly define the concept of probability.

Definition 4.1. Probability Density Function

Let = be a random real variable then we say f is a probability density for z if f(z) > 0
and j f(x)dx = 1. Furthermore, the probability that x is measured in some interval of
values is given by the integral of f(z) over the given interval. For instance, the probability
a < x <bis denoted P(a < x <b) and it is given by

Pla<xz<b) = bf(x)d:v

In addition the mean value of = is denoted p is given by

W= /OC xf(x)dx

—00

Example 4.2. Suppose f(x) = Ae 312721 for all x € R. What value we must give A in order that
f(x) is a probability distribution ? Also, find the mean of the distribution.

Solution: Notice that |v — 2| = —(z — 2) for x < 2 whereas |v — 2| = x — 2 for x > 2. Thus:

1:/_Zf(x)dx:/2 f(x)d:v+/oof(x)d:v
/ A3 2dm+/ Ae 32 gy

=A lim @D dr + A lim e 3@ gy

S§——00 t—o0 2
1 2 ~1
=A lim <e3(m_2)> + A lim (63($_2)>
s——oo \ 3 s t—o0 3 9

11 569 o (TLo-sey 1
=A hm <3 36 —i—Atlggo 3 e —|—3

t

Thus select A = % to properly normalize f. To calculate the mean it is useful to note that IBP
with U = x and dV = e 3@ dz yields V = _?16_3(:0_2) hence

/xe_g(x_z)dx = %1286_3(:0_2) + / %e_g(x_z)dx = %12126_3(:0_2) — ée_s(x_z) +c

Likewise,
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Notice we used L’Hopital’s Rule to eliminate the limits involving +00. The result p = 2 indicates
the center of the distribution is at x = 2 which is quite reasonable given the formula. We could
calculate P(x > 2) = 0.5 whereas P(x < 2) = 0.5. If we were to make repeated measurements of
this system then the average result should be close to x = 2.

Example 4.3. Suppose

0 T
flz)=<¢ Az :0<z<1
H% rx>1

for all x € R. What values we must give A and B in order that f(x) is a continuous probability
distribution ¢

Solution: we need ffooo f(x)dx = 1. Begin by noting fi)oo f(z)dx = 0. Next, calculate the integral

on [0,1], 1 1
/ flx)dx = / Az dr = éZEQ
0 0 2

The integral on [1,00) requires a little more thought,

00 t Bd
/ f(z)dz = lim ’
1

t—oo Jq 1+ x2

P4
)

0

t
=B tliglo (tan™'(z))

1
=B lim (tan™'(t) — tan~' (1))

—B<§‘§)

B
4
Thus we need A 2 = 1. Continuity gives us another equation which relates A and B. Since
lim, ;- f(x) = hmx_> f(x) we find A = 1+12 = E thus 4 5= Z and substituting yields %—i—% =1
4 2
thus B(14+7) =4 and |B = thus | A = .
147 147
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There are many different probability distributions which arise in nature, but certainly the most
famous and commonly discussed such distribution is the Gaussian Distribution. It is a bell-
shaped curve characterized by its standard deviation ¢ and mean p. In particular:

o) = - 127TeXp (—(962;2/02)

It is possible to show f_oooo f(z)dz = 1 using a change to polar coordinates in Calculus III. However,

it is not possible to solve f: f(z)dz for finite values of a, b using a formula with elementary functions
such as the exponential. This may be the most well known example of a function which is integrable
yet fails to have a nice antiderivative. Interestingly, this function is of such importance that we
insist on explaining how to find the area bounded by y = f(z) for a < x < b. How is this done ?
What dark magic achieves this mathematical slight of hand ?

Definition 4.4. z-score

Let = be a random real variable governed by a normal distribution with standard deviation
o and mean p then the z-score of z is defined as z = ©=£

Let’s try changing variables from z to z and see what happens. Notice dz = dgl hence dz = od=z.
2
Also observe exp (ﬂ> = exp (‘TZ2> hence

202

b 2

1 —(x—

P(agxgb):/ exp( (z 'u))dm
a O

2p 1 _22
= ex odz

/Za oV p( 2 )

21 < _22 > J
= €x —_— z
ra V2T PA72
— A, — A,

where z, = “=F and z, = bTT“ and we define the area function A, = [ ¢(z)dz where the standard

normal distribution ¢ is defined by ¢(z) = \/%exp (%) The standard normal distribution

has a standard deviation of 1 and a mean of 0. This calculation shows that the area bounded by
the distribution f(z) naturally corresponds to the area bounded by the normal distribution where
the correspondance is given by the z-score conversion.

Notice there is just one standard normal distribution. It is a specific function whose area function
A, can be numerically calculated to arbitrary precision. In introductory Statistics books there is
typically a sheet of values given for A, so students don’t need to calculate the integral directly,
they just look up values for A, on the reference sheet. The beautiful thing is this single reference
sheet can be used to calculate probabilities for an infinite variety of different normal distributions.
All thanks to the technique of u-substition. Well, in this case, z-substitution.

Fun facts A; =~ 0.3413 and Ay ~ 0.4773 and A3 =~ 0.4987. Since A_, = —A, we find P(—1 <
z < 1) ~ 0.682 and P(—2 < z < 2) ~ 0.955 and P(—3 < z < 3) ~ 0.997. This means there is
a 99.7% chance that a gaussian random variable will be measured within +30. Events beyond 3o
are exceedingly rare and are known as outliers.

There is of course more to say, I'll let you read Stewart on this topic. He has a bit more than I
offer here. I hope the calculation above helps you with the assigned homework.
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