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Abstract

In this supplement it is assumed you have a complete and working knowledge of both basic
antidifferentiation theory and the Fundamental Theorems of Calculus parts I and II. You must
know the basic integrals as a reflex, if you have to look them up then you are not really ready.
In addition, it is assumed you have mastered all the elementary u-substitutions and are ready,
willing and able to solve definite and indefinite integrals which require u-subsitution. If this is
not the case then you need to review.

We study the major techniques of integration in this article. First we study Integration by
Parts (IBP) which is the analog of the product rule for integrals. We’ll see IBP allows us to
solve integrals of inverse functions as well as a number of expressions which were insolvable
by u-substitution alone. Then we turn to review and extend our knowledge of integrals of
trigonometric and hyperbolic functions. I’ll introduce you to the imaginary exponentials which
can be wielded against a vast array of symbolic trigonometric problems. Having established a
mastery of trigonometric and hyperbolic integrals we turn to implicit substitutions known as
trigonometric or hyperbolic substitution. These implicit substitutions allow integration of many
expressions involving radicals. Finally, we turn to our final technique of integration known as
the method of partial fractions. This method allows us to take any rational function and rewrite
it as a sum of basic rational functions for which integrals are known.

The material in this supplement is challenging and it will stretch your knowledge of algebra,
trigonometry and calculus. To master this material is to level-up.
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1 Integration by Parts (IBP)

I’m breaking from tradition a little here. I’ve decided to use U and V as opposed to u and v for
integration by parts. Of course you could use other letters if you don’t like these.

Theorem 1.1. integration by parts.

Suppose that U, V are differentiable functions on some connected subset J ⊆ R. Then,

(1.)

∫
U
dV

dx
dx = UV −

∫
V
dU

dx
dx.

Moreover, if a, b ∈ J then

(2.)

∫ b

a
U
dV

dx
dx = U(b)V (b)− U(a)V (a)−

∫ b

a
V (x)

dU

dx
dx.

Notice that is more common to use the following notation to put this theorem into practice:∫
U dV = UV −

∫
V dU.

here we mean for the expressions to be evaluated at x ∈ J once the integrations are complete.

Proof: Consider that by linearity of differentiation we find

d

dx

[
UV −

∫
V
dU

dx
dx

]
=

d

dx

[
UV

]
− d

dx

[∫
V
dU

dx
dx

]
The rightmost term simplifies to V dU

dx by the definition of the indefinite integral and the other term

gives d
dx [UV ] = dU

dx V + U dV
dx by the product rule. Thus,

d

dx

[
UV −

∫
V
dU

dx
dx

]
=
dU

dx
V + U

dV

dx
− V dU

dx
= U

dV

dx
.

On the other hand, by the definition of the indefinite integral,

d

dx
[

∫
U
dV

dx
dx] = U

dV

dx
.

Therefore, we find the derivatives of the l.h.s and r.h.s. of (1.) agree hence by the definition of
indefinite integration the equality is justified (recall indefinite integration is a shorthand for a whole
class of antiderivative functions which differ by at most a constant). The proof of (2.) follows im-
mediately from (1.) together with FTC part II. 2

Example 1.2. ∫
x sin(x)dx =

∫
x︸︷︷︸
U

sin(x) dx︸ ︷︷ ︸
dV

= UV −
∫
V dU

= −x cos(x)−
∫

(− cos(x))dx

= −x cos(x) + sin(x) + c.
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I observed that V =
∫
dV =

∫
sin(x) dx = − cos(x) + c and dU = dx. You might wonder why I

didn’t have to add a constant to V . Let’s discuss this in general:

Suppose you replace V with Ṽ = V + c for some constant c then the formula for IBP changes to:∫
UdṼ = UṼ −

∫
Ṽ dU

= U(V + c)−
∫

(V + c)dU

= UV + cU − c
∫
dU −

∫
V dU

= UV −
∫
V dU.

Therefore, either V or V + c will yield the same answer under IBP so we are free to choose c
however we do so desire. For example, in the first example I just took c = 0 for convenience. It
is very likely I will continue to do so for the forseaable future. Another way of stating this result
is to comment that when we find V from dV we just need an antiderivative, not the indefinite
integral. We take account of the indefinite integral at the end of the calculation when we add c
in the final step. You may recall from calculus I that the indefinite integral is technically a whole
family of functions whereas the antiderivative is a specific function. Since some of you didn’t have
me for calculus I, I will elaborate a little further: if we were more technical and less traditional
we’d have to write something like

∫
xdx = {12x

2 + c | c ∈ R}. But, to be less notationally obtuse
we have agreed to write

∫
xdx = 1

2x
2 + c to indicate the set of functions. Ok, now that I have you

all properly confused, let’s do some more examples. Come back to this paragraph later if at first it
doesn’t make sense.

Example 1.3. ∫ 1

0
x2x dx =

∫ 1

0
x︸︷︷︸
U

2x dx︸ ︷︷ ︸
dV

= UV

∣∣∣∣1
0

−
∫ 1

0
V dU

=
1

ln(2)
x2x
∣∣∣∣1
0

−
∫ 1

0

1

ln(2)
2xdx

=
1

ln(2)
x2x
∣∣∣∣1
0

− 1

[ln(2)]2
2x
∣∣∣∣1
0

=
2

ln(2)
− 1

[ln(2)]2
(2− 1).

=
2

ln(2)
− 1

[ln(2)]2
.
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Example 1.4. In the calculation below we use IBP twice.∫
x2 sin(x)dx =

∫
x2︸︷︷︸
U1

sin(x) dx︸ ︷︷ ︸
dV1

= −x2 cos(x)−
∫

(− cos(x))2xdx

= −x2 cos(x) +

∫
2x︸︷︷︸
U2

cos(x) dx︸ ︷︷ ︸
dV2

= −x2 cos(x) + 2x sin(x)−
∫

sin(x)2dx

= −x2 cos(x) + 2x sin(x) + 2 cos(x) + c.

The basic idea is that each application of IBP can reduce xn to xn−1. If we know how to calculate∫
f(x)dx then the integral

∫
xnf(x)dx is solvable by repeated application of IBP.

Challenge: show that∫
x3 sin(x)dx = −x3 cos(x) + 3x2 sin(x) + 6x cos(x)− 6 sin(x) + c.

IBP often allows us to integrate inverse functions: in this type of example there is only one reason-
able choice for dV , it must be dx hence V = x.

Example 1.5.∫
sin−1(x)dx =

∫
sin−1(x)︸ ︷︷ ︸

U

dx︸︷︷︸
dV

= x sin−1(x)−
∫

xdx√
1− x2

= x sin−1(x) +
1

2

∫
dw√
w

(here w = 1− x2)

= x sin−1(x) +
1

2

√
w
1
2

+ c

= x sin−1(x) +
√

1− x2 + c.

Challenge: follow the method of the example above to find integrals of cos−1(x) and tan−1(x).
What about x sin−1(x) ? Could you integrate that function? You may not have seen the hyperbolic
trig. functions in calculus I. If that is the case then you should probably ask me in office hours.

Example 1.6.∫
cosh−1(x)dx =

∫
cosh−1(x)︸ ︷︷ ︸

U

dx︸︷︷︸
dV

= x cosh−1(x)−
∫

xdx√
x2 − 1

= x cosh−1(x)− 1

2

∫
dw√
w

(here w = x2 − 1)

= x cosh−1(x)− 1

2

√
w
1
2

+ c

= x cosh−1(x)−
√
x2 − 1 + c.

Challenge: follow the method of the example above to find integrals of sinh−1(x) and tanh−1(x).
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Example 1.7. ∫
ln(x)dx =

∫
ln(x)︸ ︷︷ ︸
U

dx︸︷︷︸
dV

= x ln(x)−
∫
xdx

x

= x ln(x)− x+ c.

The pattern we’ve observed in the last couple examples is something like this:∫
g(x) dx =

∫
g(x)

dx

dx
dx =

∫ [
d

dx
[xg]− xdg

dx

]
dx = xg −

∫
x
dg

dx
dx.

It’s good to remember that all IBP does is to use the product rule. If you forget the formula it
should be easy to find it again from the product rule. The examples that follow here are probably
more like your homework.

Example 1.8. I encourage the use of brackets to eliminate careless sign errors.∫
sin(ln(x))dx =

∫
sin(ln(x))︸ ︷︷ ︸

U1

dx︸︷︷︸
dV1

= x sin(ln(x))−
∫
x

cos(ln(x))dx

x

= x sin(ln(x))−
[∫

cos(ln(x))︸ ︷︷ ︸
U2

dx︸︷︷︸
dV2

]

= x sin(ln(x))−
[
x cos(ln(x))−

∫
x

(
−sin(ln(x))dx

x

)]
= x sin(ln(x))−

[
x cos(ln(x)) +

∫
sin(ln(x))dx

]
= x sin(ln(x))− x cos(ln(x))−

∫
sin(ln(x))dx.

Ok, what’s the answer? You tell me. Hint: let I =
∫

sin(ln(x))dx and solve for I. Don’t forget to
add c to the final result since we’re calculating an indefinite integral.

This pattern of looping back to where we start is found in a number of common integrals.

Example 1.9. I could switch and use the sin(3x+ 1)dx as the dV , but I think it’s easier to choose
dV = exdx since ex is trivial to integrate.∫
ex sin(3x+ 1)dx =

∫
sin(3x+ 1)︸ ︷︷ ︸

U1

exdx︸︷︷︸
dV1

= ex sin(3x+ 1)− 3

∫
cos(3x+ 1)exdx

= ex sin(3x+ 1)− 3

[∫
cos(3x+ 1)︸ ︷︷ ︸

U2

exdx︸︷︷︸
dV2

]

= ex sin(3x+ 1)− 3

[
ex cos(3x+ 1)− 3

∫
− sin(3x+ 1)exdx

]
= ex sin(3x+ 1)− 3ex cos(3x+ 1)− 9

∫
ex sin(3x+ 1)dx

= ex sin(3x+ 1)− 3ex cos(3x+ 1)− 9

∫
ex sin(3x+ 1)dx.
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Therefore, ∫
ex sin(3x+ 1)dx =

1

10
ex
[
sin(3x+ 1)− cos(3x+ 1)

]
+ c.

I’m not sure what will happen in the next example. This is an experiment.

Example 1.10.∫
sin2(x)dx =

∫
sin(x)︸ ︷︷ ︸
U1

sin(x)dx︸ ︷︷ ︸
dV1

= − sin(x) cos(x) +

∫
cos(x) cos(x)dx

= − sin(x) cos(x) +

∫
(1− sin2(x))dx

= − sin(x) cos(x) + x−
∫

sin2(x)dx

Therefore, by algebra! , ∫
sin2(x)dx =

1

2
(x− sin(x) cos(x)) + c.

I usually integrate sin2(x) via the trigonmetric identity sin2(x) = 1
2(1 − cos(2x)) from which it is

obvious that
∫

sin2(x)dx = x
2 −

1
4 sin(2x) + c. Can you see the answer we just found from IBP is

the same answer?

A formula which is defined by showing how one step goes to the next step is called a recursive
formula. There are a number of interesting recursive formulas which allow us to integrate arbitrarily
high powers of trigonmetric functions through a simple step-by-step procedure. I don’t expect you
memorize these, but I do expect you could re-derive them if asked. In other words, you should
understand the next example.

Example 1.11. Let k ∈ N and consider:∫
sink(x)dx =

∫
sink−1(x)︸ ︷︷ ︸

U1

sin(x)dx︸ ︷︷ ︸
dV1

= − sink−1(x) cos(x) +

∫
cos(x)(k − 1) sink−2(x) cos(x)dx

= − sink−1(x) cos(x) + (k − 1)

∫
sink−2(x)

[
1− sin2(x)

]
dx

= − sink−1(x) cos(x) + (k − 1)

∫
sink−2(x)dx− (k − 1)

∫
sink(x)dx

Solve for
∫

sink(x)dx (note k 6= 0 since k ∈ N)∫
sink(x)dx =

−1

k
sink−1(x) cos(x) +

k − 1

k

∫
sink−2(x)dx+ c.

We already have integrals for sink(x) in the cases k = 1, 2 so we can use the recursive formula above
to calculate the cases k = 3, 4.
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Example 1.12. Use Example 1.11 to find for the k = 4 case,∫
sin4(x)dx =

−1

4
sin4−1(x) cos(x) +

4− 1

4

∫
sin4−2(x)dx+ c

=
−1

4
sin3(x) cos(x) +

3

4

(
1

2
(x− sin(x) cos(x))

)
+ c

=
3

8
x− 3

8
sin(x) cos(x)− 1

4
sin3(x) cos(x) + c.

Example 1.13. Again, use Example 1.11 in the k = 3 case,∫
sin3(x)dx =

−1

3
sin3−1(x) cos(x) +

3− 1

3

∫
sin3−2(x)dx+ c

=
−1

3
sin2(x) cos(x)− 2

3
cos(x) + c

=
−1

3

(
1− cos2(x)

)
cos(x)− 2

3
cos(x) + c

=
1

3
cos3(x)− cos(x) + c.

2 Integrals of Trigonometric Functions

In this section we return to the problem of integrating trigonometric functions. The tools used
here are a combination of basic u-substitution, judiciously chosen trigonometric identities and as a
last resort IBP. I’ll begin by attacking the problem of sin3(x) which we just solved by IBP in the
previous section. This is an easier way:

Example 2.1. ∫
sin3(x)dx =

∫
sin2(x) sin(x)dx

=

∫ [
1− u2

]
(−du) (where u = cos(x))

= −u+
1

3
u3 + c

= − cos(x) +
1

3
cos3(x) + c

The integral of sin4(x) is not as easy in my view.
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Example 2.2. ∫
sin4(x)dx =

∫ [
sin2(x)

]2
dx

=

∫ [
1

2

(
1− cos(2x)

)]2
dx

=
1

4

∫ [
1− 2 cos(2x) + cos2(2x)

]
dx

=
x

4
− 1

4
sin(2x) +

1

8

∫
(1 + cos(4x))dx

=
x

4
− 1

4
sin(2x) +

x

8
+

1

32
sin(4x) + c

=
3x

8
− 1

4
sin(2x) +

1

32
sin(4x) + c.

I invite the reader to verify that Example 1.12 and the example above are consistent. Actually,
would you know where to start in comparing these answers?

If you ponder the methods we just used to integrate sink(x) you should be able to integrate any sum
or product of sin(x) and cos(x). For example, see if you can calculate the integrals

∫
sin(x) cos(x)dx

or
∫

sin2(x) cos2(x)dx. Sums of products and reciprocals of sine and cosine require more thought
but, many are not too difficult.

Example 2.3. Let let u = cos(x) in the calculation below:∫
sin(x)

cos(x)
dx =

∫
−du
u

= − ln | cos(x)|+ c.

Therefore,
∫

tan(x)dx = ln | sec(x)|+ c.

I hope you can figure out
∫

cot(x)dx with ease. It is important to remember tan2(x) + 1 = sec2(x)
and

∫
sec2(x)dx = tan(x) + c in the examples that follow.

Example 2.4. ∫
tan2(x)dx =

∫
(sec2(x)− 1)dx

= tan(x)− x+ c.

Example 2.5. We let u = tan(x) so du = sec2(x)dx,∫
sec2(x) tan2(x)dx =

∫
u2du

=
1

3
u3 + c

=
1

3
tan3(x) + c.
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Example 2.6. ∫
tan4(x)dx =

∫
tan2(x)(sec2(x)− 1)dx

=

∫
tan2(x) sec2(x)dx−

∫
tan2(x)dx

=

∫
tan2(x)d(tan(x))−

∫
tan2(x)dx

=
1

3
tan3(x) + tan(x)− x+ c.

The notation used in the third line of the calculation above is a slick implicit notation for indicating
a u = tan(x) substitution. Every so often I make use of this notation. In any event, you should
be able to integrals of expressions like

∫
sec6(x)dx or

∫
cot2(x)dx or

∫
cot2(x) csc2(x)dx using

arguments paralelling the previous triple of examples. What lies beneath is scarier.

Example 2.7. Observe that if u = sec(x) + tan(x) then du
u = sec(x)dx (work it out for yourself !).

With this bit of trivia in mind note:∫
sec(x)dx =

∫
du

u

= ln |u|+ c

= ln | sec(x) + tan(x)|+ c.

Ok, by now you should expect me to ask if you can integrate
∫

csc(x)dx given the patterns above.
Given our work thus far it ought to be clear that integrating even powers of secant is actully pretty
easy. On the other hand, the first odd power above required a stroke of genious. If you try to
convert to a sine/cosine integral it does not help much if you were wondering. Maybe we’ll return
to secant in a future section and I’ll show you a less clever way of calculating the integral. For now
we move on to the dreaded sec3(x).

Example 2.8. I use the result of the previous example to go from the 4th to the 5th line of the
calculation below.∫

sec3(x)dx =

∫
sec(x)︸ ︷︷ ︸
U1

sec2(x)dx︸ ︷︷ ︸
dV1

= sec(x) tan(x)−
∫

tan(x) sec(x) tan(x)dx

= sec(x) tan(x)−
∫

(sec2(x)− 1) sec(x)dx

= sec(x) tan(x)−
∫

sec3(x)dx+

∫
sec(x)dx

= sec(x) tan(x) + ln | sec(x) + tan(x)| −
∫

sec3(x)dx.

Therefore, ∫
sec3(x)dx =

1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|+ c.

Given the example above you ought to have a shot at completing integrals like
∫

sec5(x)dx or∫
csc3(x)dx. The integrals that follow in this section require a review of further trigonometry.
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2.1 how to derive trigonometric formulas in a few easy steps

We study two methods to derive identities in trigonometry. Let us begin with the less elegant
method. With a little trouble and ingenuity you can use the Law of cosines applied to certain
pictures to deduce the fundamental identities which I refer to as the adding angles identities

cos(θ + β) = cos θ cosβ − sin θ sinβ

sin(θ + β) = sin θ cosβ + cos θ sinβ

With these two identities we can derive most anything we want. The examples that follow are in
no particular order. I only use the adding angle identities and the definitions of tangent plus a
little algebra.

Example 2.9.

tan(θ + β) =
sin(θ + β)

cos(θ + β)

=
sin θ cosβ + cos θ sinβ

cos θ cosβ − sin θ sinβ

=

sin θ cosβ
cos θ cosβ + cos θ sinβ

cos θ cosβ

cos θ cosβ
cos θ cosβ −

sin θ sinβ
cos θ cosβ

⇒ tan(θ + β) =
tan θ + tanβ

1− tan θ tanβ

While we are on this example, note if θ = β then we find

tan(2θ) =
2 tan θ

1− tan2 θ

Example 2.10. The case θ = β gives interesting formulas for sine and cosine,

cos(θ + θ) = cos θ cos θ − sin θ sin θ ⇒ cos(2θ) = cos2 θ − sin2 θ.

Likewise,

sin(θ + θ) = sin θ cos θ + cos θ sin θ ⇒ sin(2θ) = 2 sin θ cos θ.

Since cos2 θ + sin2 θ = 1 thus sin2 θ = 1− cos2 θ it follows that cos(2θ) = 2 cos2 θ − 1 hence

cos2 θ =
1

2

(
1 + cos(2θ)

)
Similarly we can solve for sin2 θ to obtain,

sin2 θ =
1

2

(
1− cos(2θ)

)
Naturally, we can continue in this fashion to derive a great variety of trigonometric identities. There
is something somewhat unsatisfying about this method. The calculation is indirect. Suppose we
wanted to simplify the expression sin(θ) cos(4θ). How would we do it? To be fair, there are
identities for sin(θ) sin(β), cos(θ) cos(β) and sin(θ) cos(β) so we could just look those up and go
from there. But, is there a better way to remember all these facts? Is there some elegant formula
which encapsulates all these trigonometric identities and reduces these problems to little more than
algebra? In fact, yes. However, it comes at the price of understanding a bit of basic complex
variables. I would argue that this is a worthy price since most students need to learn more about
complex numbers anyway.
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Definition 2.11. imaginary exponential.

Let θ be a real number then we define the imaginary exponential to be the complex
number eiθ given by eiθ = cos θ + i sin θ.

I invite the reader to verify the following identity hold for the imaginary exponential:

eiθeiβ = ei(θ+β)

The above identity simultaneously contains both the adding angles formula for sine and cosine.
Using cos(−θ) = cos(θ) and sin(−θ) = − sin(θ) we can calculate:

eiθ + e−iθ = cos θ + i sin θ + cos θ − i sin θ = 2 cos θ ⇒ cos θ =
1

2

(
eiθ + e−iθ

)
and

eiθ − e−iθ = cos θ + i sin θ − cos θ + i sin θ = 2i sin θ ⇒ sin θ =
1

2i

(
eiθ − e−iθ

)
The boxed formulas above show we can trade sine and cosine for imaginary exponentials. This is
of great algebraic advantage since imaginary exponentials obey simple rules of algebra much like
real exponentials1.

Example 2.12. Suppose you want to derive a nice formula for the square of cosine. Just plug in
the boxed formula and use the laws of exponents for imaginary exponentials:

cos2 θ =

[
1

2

(
eiθ + e−iθ

)]2
=

1

4

(
eiθeiθ + 2eiθe−iθ + e−iθe−iθ

)
=

1

4

(
e2iθ + 2 + e−2iθ

)
=

1

2
+

1

2

1

2

(
e2iθ + e−2iθ

)
=

1

2
+

1

2
cos 2θ

=
1

2

(
1 + cos 2θ

)
.

Naturally, we could also apply the method to calculate formulas for higher powers or products of
sine and cosine. Just for a flavor:

Example 2.13.

cos3 θ =

[
1

2

(
eiθ + e−iθ

)]3
=

1

8

(
e3iθ + 3eiθ + 3e−iθ + e−3iθ

)
=

3

4
sin(θ) +

1

4
sin(3θ).

1not exactly the same, the one-to-one property does not hold for the imaginary exponential, instead eiθ = eiβ

implies θ − β ∈ 2πZ
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Example 2.14. Suppose you want to derive a nice formula for the square of sine. Just plug in the
boxed formula and use the laws of exponents for imaginary exponentials

sin2 θ =

[
1

2i

(
eiθ − e−iθ

)]2
=
−1

4

(
eiθeiθ − 2eiθe−iθ + e−iθe−iθ

)
=
−1

4

(
e2iθ − 2 + e−2iθ

)
=

1

2
− 1

2

1

2

(
e2iθ + e−2iθ

)
=

1

2
− 1

2
cos 2θ

=
1

2

(
1− cos 2θ

)
.

The identities above you should have memorized anyway, but I don’t have to memorize them since
I can derive them in a pinch. In contrast, the next example is not one for which I could typically
quote the answer off the top of my head:

Example 2.15. Same method again. Covert given functions to imaginary exponentials and do
algebra until you see sines and cosines again. Simple as that.

cos(x) sin(4x) =
1

2

(
eix − e−ix

)
1

2i

(
e4ix − e−4ix

)
=

1

4i

(
e5ix − e−3ix − e3ix + e−5ix

)
=

1

2

[
1

2i

(
e5ix − e−5ix

)
+

1

2i

(
e3ix − e−3ix

)]
=

1

2
sin(5x) +

1

2
sin(3x)

You could calculate identities for cos(ax) cos(bx), sin(ax) sin(bx) by much the same calculation and
you’d find a sum of cosines for each:

cos(ax) cos(bx) =
1

2
cos[(a+ b)x] +

1

2
cos[(a− b)x]

sin(ax) sin(bx) =
1

2
cos[(a+ b)x]− 1

2
cos[(a− b)x]

On the other hand, generally cos(ax) sin(bx) yields a sum of sines,

cos(ax) sin(bx) =
1

2
sin[(a+ b)x] +

1

2
sin[(a− b)x]

The product formulas are very important to the study of constructive and destructive inteference
in waves. They explain where beats come from among other things. Also, it is worth mentioning
that if you remember one of these carefully then you can get others from differentiating. Try dif-
ferentiating sin(a+ x) to derive the adding angles formula for cos(a+ x).
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DeMoivres’ theorem in complex notation is simply (eiθ)n = einθ. When you unfold this into sines
and cosines the result is amazing:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

You can try plugging in n = 2 or n = 3 and you’ll find yet more identities which are less than
obvious from other approaches.

Example 2.16. ∫
cos(3x) sin(5x)dx =

∫ [
1

2
sin(8x) +

1

2
sin(−2x)

]
dx

=
1

2

∫
sin(8x)dx− 1

2

∫
sin(2x)dx

=
−1

16
cos(8x)− 1

4
cos(2x) + c.

Example 2.17. ∫
cos(3x) cos(5x)dx =

∫ [
1

2
cos(8x) +

1

2
cos(−2x)

]
dx

=
1

2

∫
cos(8x)dx+

1

2

∫
cos(2x)dx

=
1

16
sin(8x) +

1

4
sin(2x) + c.

Example 2.18. ∫
sin(3x) sin(5x)dx =

∫ [
1

2
cos(8x)− 1

2
cos(−2x)

]
dx

=
1

2

∫
cos(8x)dx− 1

2

∫
cos(2x)dx

=
1

16
sin(8x)− 1

4
sin(2x) + c.

What about
∫

sin(x) cos(3x) cos(6x)dx? How would you attack such a problem?

Example 2.19. Here we use the adding angles identity for tangent followed by a u = cos(4x)
substitution. ∫

tan(x) + tan(3x)

1− tan(x) tan(3x)
dx =

∫
tan(4x)dx

=

∫
sin(4x)

cos(4x)
dx

=

∫
−du
4u

=
−1

4
ln | cos(4x)|+ c.

Finally, I would just comment that there are many integrations of the hyperbolic trigonometric
functions which follow arguments paralell to those given in this section. I’ll illustrate a few such
calculations in the next subsection.

13



2.2 hyperbolic functions: calculus and algebra

Hyperbolic sine and cosine are defined by coshx = 1
2 (ex + e−x) and sinhx = 1

2 (ex − e−x) thus
ex = coshx+sinhx and as cosh(−x) = coshx and sinh(−x) = − sinhx we find e−x = coshx−sinhx
and observe

1 = exe−x = (coshx+ sinhx)(coshx− sinhx) = cosh2 x− sinh2 x

which is the analog of the Pythagorean identity for sine and cosine.

Example 2.20. Let u = sinhx in what follows:∫
cosh3 xdx =

∫
(cosh2x) coshxdx =

∫
(1 + sinh2 x) coshxdx

=

∫
(1 + u2)du

= u+
1

3
u3

= sinhx+
1

3
sinh3(x) + c

Also, we find an analog of the double-angle formula for cosine:

cosh2 x =

(
1

2

(
ex + e−x

))2

=
1

4

(
e2x + 2 + e−2x

)
=

1

2
(1 + cosh(2x)) .

Differentiate with respect to x to find 2 coshx sinhx = sinh(2x).

Example 2.21. ∫
2 cosh2 x =

∫
(1 + cosh(2x))dx = x+

1

2
sinh(2x) + c

Also, since cosh2 x− sinh2 x = 1 we find

sinh2 x = cosh2 x− 1 =
1

2
(1 + cosh(2x))− 1 =

1

2
(cosh(2x)− 1) .

Moreover, dividing cosh2 x− sinh2 x = 1 by cosh2 x reveals 1− tanh2 x = sech2x. Note

cosh(A+B) =
1

2

(
eA+B + e−(A+B)

)
=

1

4

(
eA + e−A

) (
eB + e−B

)
+

1

4

(
eA − e−A

) (
eB − e−B

)
= cosh(A) cosh(B) + sinh(A) sinh(B).

Differentiate with respect to A to derive

sinh(A+B) = sinh(A) cosh(B) + cosh(A) sinh(B).

Divide the identities above and derive the addiing angles formula for hyperbolic tangent:

tanh(A+B) =
sinh(A) cosh(B) + cosh(A) sinh(B)

cosh(A) cosh(B) + sinh(A) sinh(B)
=

tanhA+ tanhB

1 + tanhAtanhB

I’ll stop here, but it should be apparent by now that to every calculation in trigonometry there is
a dual calculation in hyperbolic trigonometry. They’re not exactly the same, but if we understand
the analogies at play here we understand both trigonometry and hyperbolic trigonometry more
deeply. This dualism plays out more powerfully in its application in the next section.
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3 implicit substitutions

All of the substitutions made thus far have been explicit. This means the new substituted variable
is defined explicitly as a function of the given variable of integration. An implicit substitution may
give the change of variables in many other forms. Most common among these is the so-called trig-
substitution where we usually either use x = a cos(θ) or x = a sin(θ) or x = a sec(θ) or x = a tan(θ).
In each of these cases the new variable which is analogous to the u of our earlier work is played by
the variable θ. We’ll also look at substitutions based on the inverse hyperbolic functions. We will
need the techniques of the previous section to properly complete many of these problems. It really
is a beautiful chapter in the theory of calculation, an art which is slowly but surely being lost to
the ever encroaching hob-goblin of mediocrity in the calculus sequence.

Let me begin by collecting three main trigonometric substitutions:

(1.) If x = R sin θ then dx = R cos θ dθ and R2 − x2 = R2 cos2 θ hence
√
R2 − x2 = R cos θ.

From the diagram above we see tan θ =
x√

R2 − x2
and cos θ =

√
R2 − x2
R

.

(2.) If x = R tan θ then dx = R sec2 θ dθ and x2 +R2 = R2 sec2 θ hence
√
x2 +R2 = R sec θ

From the diagram above we observe sin θ =
x√

x2 +R2
and cos θ =

R√
x2 +R2

.

(3.) If x = R sec θ then dx = R sec θ tan θ dθ and x2 −R2 = R2 tan2 θ hence
√
x2 −R2 = R tan θ

From the diagram above we find tan θ =

√
x2 −R2

R
and sin θ =

√
x2 −R2

x
.

The key concept behind all the substitions is that we wish to use cos2 θ+ sin2 θ = 1 or tan2 θ+ 1 =
sec2 θ in order to consolidate two terms into a single term. Let’s see how the trigonometry and
calculus aids our solution to a number of tricky integrals.

15



Example 3.1. We wish to calculate
∫ √

4− x2 dx. The squareroot is trouble. One sneaky way to
eliminate it is to let x = 2 sin(θ) thus 4−x2 = 4−4 sin2(θ) = 4 cos2(θ) and dx = 2 cos(θ)dθ. Hence,∫ √

4− x2dx =

∫ √
4 cos2(θ)2 cos(θ)dθ

=

∫
4 cos2(θ)dθ

=

∫ [
2 + cos(2θ)

]
dθ

= 2θ +
1

2
sin(2θ) + c

= 2 sin−1
(
x

2

)
+

1

2
sin

(
2 sin−1

[ x
2

])
+ c.

The careful student will have questioned how I knew that
√

4 cos2(θ) = 2 cos(θ). After all, alge-
braically we ought to have

√
4 cos2(θ) = 2| cos(θ)|. The answer is simply that we insist θ be chosen

such that cos(2θ) ≥ 0, otherwise we’d have to introduce a sign in that step. Similar comments
apply to future examples, but I will not belabor this point further.

Example 3.2. We wish to calculate
∫ √

x2 − 9 dx. The squareroot is trouble. One sneaky way to
eliminate it is to let x = 3 sec(θ) thus x2− 9 = 9 sec2(θ)− 9 = 9 tan2(θ) and dx = 3 sec(θ) tan(θ)dθ.
Hence, ∫ √

x2 − 9dx =

∫ √
9 tan2(θ)3 sec(θ) tan(θ)dθ

=

∫
9 sec(θ) tan2(θ)dθ

=

∫
9 sec(θ)(sec2(θ)− 1)dθ

= 9

∫
sec3(θ)dθ − 9

∫
sec(θ)dθ

=
9

2
sec(θ) tan(θ) +

9

2
ln | sec(θ) + tan(θ)| − 9 ln | sec(θ) + tan(θ)|+ c

=
9

2
sec(θ) tan(θ)− 9

2
ln | sec(θ) + tan(θ)|+ c

We can simplify this answer nicely if we think about the substitution in terms of a triangle. Note

that if x = 3 sec(θ) then sec(θ) = x
3 = hyp

adj hence opp =
√
x2 − 9 and so tan(θ) =

√
x2−9
3 . We find,∫ √

x2 − 9 dx =
1

2
x
√
x2 − 9− 9

2
ln

∣∣∣∣x3 +

√
x2 − 9

3

∣∣∣∣+ c.

Example 3.3. The fundamental identity for hyperbolic trigonometry is cosh2(φ) − sinh2(φ) = 1.
We can rearrange this to give cosh2(φ)− 1 = sinh2(φ). This suggests we might be able to work the
previous example by making a x = 3 cosh(φ) substitution. If x = 3 cosh(φ) then dx = 3 sinh(φ)dφ
and x2 − 9 = 9 sinh2(φ). Hence, ∫ √

x2 − 9 dx =

∫
9 sinh2(φ)dφ.
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I need an identity for sinh2(φ), let’s derive it from scratch,

sinh2(φ) =

[
1

2

(
eφ − e−φ

)]2
=

1

4

[
e2φ − 2 + e−2φ

]
=

1

2
cosh(2φ)− 1

2

Returning to our integration with this new-found insight,∫ √
x2 − 9 dx =

∫ (
9

2
cosh(2φ)− 9

2

)
dφ =

9

4
sinh(2φ)− 9φ

2
+ c.

Note that 2 sinh(φ) cosh(φ) = 1
2(eφ − e−φ)(eφ + e−φ) = 1

2(e2φ − e−2φ) = sinh(2φ). Furthermore, we

began by supposing that x = 3 cosh(φ) hence cosh(φ) = x
3 and sinh(φ) =

√
x2 − 9. We find that

9
4 sinh(2φ) = 9

2
x
3

√
x2−9
3 = 1

2x
√
x2 − 9. On the other hand, in our current formalism we are led to

write 9φ
2 = 9

2 cosh−1(x3 ). Thus,∫ √
x2 − 9 dx =

1

2
x
√
x2 − 9− 9

2
cosh−1

(
x

3

)
+ c.

I should mention there are fascinating expressions which recast the inverse hyperbolic functions as
the composite of a logarithm and an algebraic function. In particular:

cosh−1(x) = ln
(
x+

√
x2 − 1

)
for x ≥ 1. (1)

sinh−1(x) = ln
(
x+

√
x2 + 1

)
for x ∈ R.

tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
for |x| < 1.

We can understand the previous pair of examples are in agreement if we sort through how the
identity above for inverse hyperbolic cosine connects to the log of an algebraic function.

Example 3.4. We wish to calculate
∫ √

4x2 + 9 dx. The squareroot is trouble. One sneaky way to
eliminate it is to let 2x = 3 tan(θ) thus 4x2 + 9 = 9 tan2(θ) + 9 = 9 sec2(θ) and 2dx = 3 sec2(θ)dθ.
Hence, ∫ √

4x2 + 9 dx =

∫ √
9 sec2(θ)

3 sec2(θ)dθ

2

=
9

2

∫
sec3(θ)dθ

=
9

4
sec(θ) tan(θ) +

9

4
ln | sec(θ) + tan(θ)|+ c

We can simplify this answer nicely if we think about the substitution in terms of a triangle. Note

that if 2x = 3 tan(θ) then tan(θ) = 2x
3 = opp

adj hence hyp =
√

4x2 + 9 and so sec(θ) =
√
4x2+9
3 . We

find, ∫ √
4x2 + 9 dx =

1

2
x
√

4x2 + 9 +
9

4
ln

∣∣∣∣
√

4x2 + 9

3
+

2x

3

∣∣∣∣+ c.

Notice, we can simplify this answer by factoring out a 1/3 in the natural log argument,∫ √
4x2 + 9 dx =

1

2
x
√

4x2 + 9 +
9

4
ln
∣∣√4x2 + 9 + 2x

∣∣+ c.
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Example 3.5. Another way to calculate
∫ √

4x2 + 9 dx is to make a hyperbolic substitution. Ob-
serve that cosh2(φ) − sinh2(φ) = 1 gives cosh2(φ) = sinh2(φ) + 1. This suggests we can make a
2x = 3 sinh(φ) substitution. If 2x = 3 sinh(φ) then 4x2 + 9 = 9 sinh2(φ) + 9 = 9 cosh2(φ) and
2dx = 3 cosh(φ)dφ. ∫ √

4x2 + 9 dx =

∫ √
9 cosh2(φ)

3 cosh(φ)dφ

2

=
9

2

∫
cosh2(φ)dφ

I need an identity for cosh2(φ), let’s derive it from scratch,

cosh2(φ) =

[
1

2

(
eφ + e−φ

)]2
=

1

4

[
e2φ + 2 + e−2φ

]
=

1

2
cosh(2φ) +

1

2

Returning to our integration with this new-found insight,∫ √
4x2 + 9 dx =

9

4

∫ (
cosh(2φ) + 1

)
dφ

=
9

8
sinh(2φ) +

9

4
φ+ c.

=
9

4

2x

3

√
4x2 + 9

3
+

9

4
φ+ c.

=
1

2
x
√

4x2 + 9 +
9

4
sinh−1

(
2x

3

)
+ c.

I used the identity sinh(2φ) = 2 sinh(φ) cosh(φ) to help simplify the answer.

Again, you can consult Equation 1 to help see why the last two examples are in fact consistent.
Also, by now you should start to appreciate that both the hyperbolic and the trig. substitutions
have pros and cons. I believe a healthy approach is to be ready to apply either approach to a given
problem. Knowledge of this mathematics will also aid you in interpreting Mathemtatica or other
C.A.S. outputs. Mathematica might give the answer in terms of hyperbolics whereas you know the
answer for other reasons in terms of logarithms. Hopefully as you work the problems in this section
you’ll start to understand that hyperbolic functions and trigonmetric functions are intrically linked.
The explicit connection and ultimate synthesis for these functions is largely covered in the complex
variables course. The following triple of examples all invoke a bit of algebra which is commonly
called ”completing the square2”.

Example 3.6. To begin I simplify the quadratic by completing the square:∫
dx

x2 + 4x+ 5
=

∫
dx

(x+ 2)2 + 1
.

Remember that tan2(θ) + 1 = sec2(θ) so this makes me think a x + 2 = tan(θ) substitution will
simplify this problem. If x+2 = tan(θ) then (x+2)2+1 = tan2(θ)+1 = sec2(θ) and dx = sec2(θ)dθ.

2if you don’t already know this algebra, now is the time to learn it
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Thus, ∫
dx

x2 + 4x+ 5
=

∫
sec2(θ)dθ

sec2(θ)

= θ + c

= tan−1(x+ 2) + c.

Example 3.7. To begin I simplify the quadratic:∫
dx

4x2 + 8x+ 9
=

∫
dx

4(x+ 1)2 + 5
.

Remember that tan2(θ) + 1 = sec2(θ) so this makes me think a 4(x + 1)2 = 5 tan2(θ) substitution
will simplify this problem. If 2(x + 1) =

√
5 tan(θ) then 4(x + 1)2 + 5 = 5 tan2(θ) + 5 = 5 sec2(θ)

and 2dx =
√

5 sec2(θ)dθ. Thus,∫
dx

4x2 + 8x+ 9
=

∫ √
5 sec2(θ)dθ

2(5 sec2(θ))

=
1

2
√

5
θ + c

=
1

2
√

5
tan−1

(
2(x+ 1)√

5

)
+ c.

Example 3.8. To begin I simplify the quadratic by completing the square:∫
dx

x2 + 6x+ 5
=

∫
dx

(x+ 3)2 − 4
.

Remember that tan2(θ) = sec2(θ) − 1 so this makes me think a (x + 3)2 = 4 sec2(θ) substitution
will simplify this problem. If x + 3 = 2 sec(θ) then (x + 3)2 − 4 = 4 sec2(θ) − 4 = 4 tan2(θ) and
dx = 2 sec(θ) tan(θ)dθ. Thus,∫

dx

x2 + 6x+ 5
=

∫
2 sec(θ) tan(θ)dθ

4 tan2(θ)

=

∫
sec(θ)dθ

2 tan(θ)

=
1

2

∫
csc(θ)dθ

=
−1

2

∫
du

u
let u = csc(θ) + cot(θ) hence −du/u = csc(θ)dθ

=
−1

2
ln | csc(θ) + cot(θ)|+ c

We let x + 3 = 2 sec(θ) thus sec(θ) = x+3
2 = hyp

adj . The other side of the substitution triangle is

found by the pythagorean theorem; opp =
√

(x+ 3)2 − 4. Observe that cot(θ) = adj
opp = 2√

(x+3)2−4
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and csc(θ) = hyp
opp = x+3√

(x+3)2−4
. Therefore,

∫
dx

x2 + 6x+ 5
=
−1

2
ln

∣∣∣∣ x+ 3√
(x+ 3)2 − 4

+
2√

(x+ 3)2 − 4

∣∣∣∣+ c.

Let’s attack the preceding example once more, but this time from the angle of a hyperbolic substi-
tution.

Example 3.9. If cosh2(φ) − sinh2(φ) = 1 then dividing by sinh2(φ) reveals the hyperbolic cotan-

gent/cosecant identity: coth2(φ)−1 = csch2(φ) where by definition coth(φ) = cosh(φ)
sinh(φ) and csch(φ) =

1
sinh(φ) . In view of the identity above, the integral

∫
dx

x2+6x+5
=
∫

dx
(x+3)2−4 is likely simplified by an

(x+3)2 = 4 coth2(φ) substitution. If x+3 = 2 coth(φ) then (x+3)2−4 = 4 coth2(φ)−4 = 4csch2(φ)
and 3 dx = −2csch2(φ)dφ. ∫

dx

x2 + 6x+ 5
=

∫
dx

(x+ 3)2 − 4
.

=

∫
−2csch2(φ)dφ

4csch2(φ)
.

=
−1

2
φ+ c.

=
−1

2
coth−1

(
x+ 3

2

)
+ c.

I show how
∫

dx
x2+6x+5

= −1
2 tanh−1

(
x+3
2

)
+ c in the next example.

Example 3.10. If cosh2(φ)− sinh2(φ) = 1 then dividing by cosh2(φ) reveals the hyperbolic cotan-

gent/cosecant identity: 1−tanh2(φ) = sech2(φ) where by definition tanh(φ) = sinh(φ)
cosh(φ) and sech(φ) =

1
cosh(φ) . In view of the identity above, the integral

∫
dx

x2+6x+5
= −

∫
dx

4−(x+3)2
is likely simplified by an

(x+3)2 = 4 tanh2(φ) substitution. If x+3 = 2 tanh(φ) then 4−(x+3)2 = 4−4 tanh2(φ) = 4sech2(φ)
and4 dx = 2sech2(φ)dφ. ∫

dx

x2 + 6x+ 5
= −

∫
dx

4− (x+ 3)2
.

= −
∫

2sech2(φ)dφ

4sech2(φ)
.

=
−1

2
φ+ c.

=
−1

2
tanh−1

(
x+ 3

2

)
+ c.

3just use the quotient rule; coth(φ)′ = cosh(φ)
sinh(φ)

′
= sinh2(φ)−cosh2(φ)

sinh2(φ)
= −1

sinh2(φ)
= −csch2(φ)

4just use the quotient rule; tanh(φ)′ = sinh(φ)
cosh(φ)

′
= cosh2(φ)−sinh2(φ)

cosh2(φ)
= 1

cosh2(φ)
= sech2(φ)
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Example 3.11. We wish to calculate
∫

x3dx√
9−x2 dx. The squareroot is trouble. One sneaky way to

eliminate it is to let x = 3 sin(θ) thus 9−x2 = 9−9 sin2(θ) = 9 cos2(θ) and dx = 3 cos(θ)dθ. Hence,

x3dx√
9− x2

=

∫
27 sin3(θ)(3 cos(θ)dθ)

3 cos(θ)

=

∫
27 sin3(θ)dθ

=

∫
27
(
1− cos2(θ)

)
sin(θ)dθ

=

∫
[27u2 − 27]du let u = cos(θ)

= 9 cos3(θ)− 27 cos(θ) + c

Note that x = 3 sin(θ) gives sin(θ) = x
3 = opp

hyp where we have in mind a triangle which represents

the subsitution. Applying the pythagorean theorem we calculate adj =
√

9− x2 hence cos(θ) =
adj
hyp =

√
9−x2
3 and we can simplify our answer nicely: 9 cos3(θ) = 9(

√
9−x2)3
27 = 1

3(9−x2)
√

9− x2 and

9 cos3(θ)− 27 cos(θ) = 1
3(9− x2)

√
9− x2 − 1

327
√

9− x2,

∫
x3dx√
9− x2

=
−1

3
(18 + x2)

√
9− x2 + c.

Remark 3.12.

If we have an integral with bounds then we change the integrand, measure and the bounds
under an implicit substitution. We have not faced that difficulty in this section so far
because I have focused on indefinite integration. Also, once bounds enter in then one may
hope for an explicit geometric interpretation of the substitution. I have emphasized an
algebraic understanding in this section because I believe it will lead less students astray.
In my experience, few students understand geometry well enough to appropriately modify
it for the solution of nonstandard problems. That said, I will invoke a geometry-based
substitution in the final example that follows.

Example 3.13. Find the area bounded by b2(x− h)2 + a2(y − k)2 = a2b2 where a, b, h, k ∈ R and
it is given that a, b > 0. This is an ellipse. Note if (x, y) is a solution to the given equation then it
is also a solution to

(x− h)2

a2
+

(y − k)2

b2
= 1

and we identify that the area is an ellipse centered at (h, k). We can view this ellipse as two graphs

pasted together; note (y − k)2 = b2
[
1− (x−h)2

a2

]
= b2

a2

[
a2 − (x− h)2

]
has solutions

yT = k +
b

a

√
a2 − (x− h)2 and yB = k − b

a

√
a2 − (x− h)2.

These solutions have domains which are governed by the inequality a2 − (x − h)2 ≥ 0 hence a2 ≥
|x− h|2 and as a > 0 we find |x− h| ≤ a which is equivalent to h− a ≤ x ≤ h+ a.
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At each x ∈ [h−a, h+a] we can envision an infinitesimal rectangle of width dx and height yT−yB =
2 ba
√
a2 − (x− h)2 hence the typical infinitesimal area is given by dA = 2 ba

√
a2 − (x− h)2 dx (I’ll

let you draw in the dA) and we can calculate the total area by integration:

A =

∫
ellipse

dA =

∫ h+a

h−a
2
b

a

√
a2 − (x− h)2 dx

This is a nontrivial integration. However, we can do it. We let x = h + a cos(θ) hence x − h =
a cos(θ) and a2− (x−h)2 = a2−a2 cos(θ) = a2 sin2(θ) and dx = −a sin(θ)dθ. Consider the bounds:

(1.) if x = h+ a = h+ a cos(θ) then we find cos(θ) = 1 hence θ = 0 (our choice)

(2.) if x = h− a = h+ a cos(θ) then we find cos(θ) = −1 hence θ = π (our choice)

I say ”our choice” because once I state these bounds I am clarifying that we made the substitution
for 0 ≤ θ ≤ π. Other intervals are possible, however this one will suffice. We calculate,

A =

∫ 0

π
2
b

a

√
a2 sin2(θ) (−a sin(θ)dθ)

Now, our choice of 0 ≤ θ ≤ π indicates the sine function is non-negative and as a > 0 was given it
follows

√
a2 sin2(θ) = a sin(θ). Flipping the bounds to remove the minus we find,

A =

∫ π

0
2ab sin2(θ)dθ =

∫ π

0
ab
[
1− cos(2θ)

]
dθ = ab

[
θ − 1

2
sin(2θ)

]∣∣∣∣π
0

= πab.

In the case a = b we usually say a = r and we find A = πr2. Only in that special case is the ”angle”
θ technically an angle in the geometric sense. For a 6= b the quantity θ is simply a parameter which
does not match the polar angle as measured from the center of the ellipse.

There are more exotic trigonometric substitutions. For example, there is a well-known substitution
that allows one to integrate a fraction of sines and cosines:

∫ a cos(x)+b sin(x)+c
d cos(x)+e sin(x)+gdx. The fact that this

is solvable means that there are corresponding algebraic functions which become solvable under
a substitution which brings the integral to the fraction of sines and cosines. I may assign such a
problem concerning the Weierstrauss substitution in homework as a challenge.

Remark 3.14. To conclude this section I illustrate the hyperbolic substitutions using a triangle on
hyperbolic space which satisfies a2 − b2 = c2 where a is adjacent the hyperbolic angle ϕ and b is
opposite and c serves as the hypotenuse. There is a whole theory of hyperbolic trigonometry where
the triangles have less than 180o because the space has negative curvature. This is an example of a
non-Euclidean geometry. Ask me more in office hours if you wish.

22



(1.) If x = R tanhϕ then dx = sech2ϕdθ and R2 − x2 = R2 sech2ϕ hence
√
R2 − x2 = R sechϕ.

Here we have coshϕ =
R√

R2 − x2
and sinhϕ =

x√
R2 − x2

. As a check on my claims, notice

cosh2 ϕ− sinh2 ϕ =
R2

R2 − x2
− x2

R2 − x2
= 1.

(2.) If x = R sinhϕ then dx = R coshϕdϕ and x2 +R2 = R2 cosh2 ϕ hence
√
x2 +R2 = R coshϕ.

Here we have tanhϕ =
x√

x2 +R2
and sechϕ =

R√
x2 +R2

. As a check on my claims, notice

tanh2 ϕ+ sech2 ϕ =
x2

x2 +R2
+

R2

x2 +R2
= 1.

(3.) If x = R coshϕ then dx = R sinhϕdϕ and x2 −R2 = R2 sinh2 ϕ hence
√
x2 −R2 = R sinhϕ.

Identify tanhϕ =

√
x2 −R2

x
and sechϕ =

R

x
. As a check on my claims, notice

tanh2 ϕ+ sech2 ϕ =
x2 −R2

x2
+
R2

x2
= 1.

The key concept behind all the substitions is that we wish to use cosh2 ϕ− sinh2 ϕ = 1 or
tanh2ϕ− 1 = sech2ϕ in order to consolidate two terms into a single term. Of course, in application
it’s a bit more tricky since we also have to face various multipliers and it may be necessary to
complete the square to see clearly the correct course of action.

23



4 partial fractions

If we can find a formula in terms of finitely many elementary functions for
∫
f(x) dx then I say the

integral is solvable. In constrast, I would say f is integrable if there exists an antiderivative function
F ′(x) = f(x) for all x ∈ dom(f). This criteria of integrable is much weaker than solvable. You
should recall that the FTC part I proves that any continuous function is integrable. However, the
FTC just provides the existence of the antiderivative, it does not explain how to find its formula.
While it is not at all an easy thing to prove, there are many continuous functions which have
insolvable integrals. For example,

∫
e−x

2
dx or

∫ sin(x)
x dx cannot be solved in terms of elementary

functions alone5. Given all of this, you might be surprised by the following claim:

the integral of any rational function is solvable.

I will attempt to illustrate a partial proof of this claim in this section. After many examples I’ll
outline the general procedure which proves the claim above.

Example 4.1. The calculation of
∫

dx
x2+6x+5

is greatly simplified by the algebra below:

1

x2 + 6x+ 5
=

1

(x+ 1)(x+ 5)
=

A

x+ 1
+

B

x+ 5

⇒ 1 = A(x+ 5) +B(x+ 1)

evaluating at x = −1 ⇒ 1 = −4B ⇒ B = −1/4

evaluating at x = −5 ⇒ 1 = 4A ⇒ A = 1/4

⇒ 1

x2 + 6x+ 5
=

1/4

x+ 1
− 1/4

x+ 5

We say the algebraic technique above is performing the partial fractal decomposition of the rational
function. In other words, I take the given rational function and try to write it as a sum of more
basic rational functions which happen to have nice integrals. Observe that∫

dx

x2 + 6x+ 5
=

1

4

∫
dx

x+ 1
− 1

4

∫
dx

x+ 5

Therefore, ∫
dx

x2 + 6x+ 5
=

1

4
ln |x+ 1| − 1

4
ln |x+ 5|+ c.

Remark 4.2.

Why is it ok to plug in x = −1 and x = −5? Shouldn’t this lead to an error since the
integrand is not even defined at those values? But, there is no error, the algebra is correct,
why?

A rational function f is by definition the quotient of two polynomials p and q; f is rational iff there
exist polynomials p, q such that f = p/q. Moreover, we say f = p

q is proper iff deg(p) < deg(q).

On the other hand, we say f = p
q is improper iff deg(p) ≥ deg(q). In the case f is improper we can

always find a proper rational function r and a polynomial g such that f = p
q = g+ r

q . The polynomial

5there are techniques to find approximations for the antiderivatives, this is one of the reasons we cover power
series expansions later in this course.
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r is sometimes called the remainder and it is calculated in general by long-division of polynomials.
If you can do long-division for integers then you should be able to do it for polynomials. I do
not use synthetic division because it is neither necessary or general. The algorithm and logic for
polynomial long-division is essentially the same as the process we were taught as children. We
systematically subtract multiples of the divisor from the numerator until we can no longer subtract
whole copy from what remains. For example,

2x2 − 5x+ 18

x+ 3
)

2x3 + x2 + 3x + 5
− 2x3 − 6x2

− 5x2 + 3x
5x2 + 15x

18x + 5
− 18x− 54

− 49

The example below makes use of the division above.

Example 4.3.∫
2x3 + x2 + 3x+ 5

x+ 3
dx =

∫ (
2x2 − 5x+ 18− 49

x+ 3

)
dx =

2

3
x3 − 5

2
x2 + 18x− 49 ln |x+ 3|+ c.

We can have higher degree polynomials in the denominator and still perform long-division.

2x − 7

x2 + 4x+ 3
)

2x3 + x2 + 3x + 5
− 2x3 − 8x2 − 6x

− 7x2 − 3x + 5
7x2 + 28x+ 21

25x+ 26

Again, I use this long-division to begin the next example.

Example 4.4.∫
2x3 + x2 + 3x+ 5

x2 + 4x+ 3
dx =

∫ (
2x− 7 +

25x+ 26

x2 + 4x+ 3

)
dx = x2 − 7x +

∫
25x+ 26

x2 + 4x+ 3
dx.

Calculation of the remaining integral is accomplished with the partial fractions idea once more:

25x+ 26

x2 + 4x+ 3
=

25x+ 26

(x+ 1)(x+ 3)
=

A

x+ 1
+

B

x+ 3

⇒ 25x+ 26 = A(x+ 3) +B(x+ 1)

evaluating at x = −3 ⇒ −75 + 26 = −2B ⇒ B = 49/2

evaluating at x = −1 ⇒ −25 + 26 = 2A ⇒ A = 1/2

⇒ 25x+ 26

x2 + 4x+ 3
=

1/2

x+ 1
+

49/2

x+ 3
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Hence, ∫
25x+ 26

x2 + 4x+ 3
dx =

1

2

∫
dx

x+ 1
+

49

2

∫
dx

x+ 3
=

1

2
ln |x+ 1|+ 49

2
ln |x+ 3|+ c.

Therefore, ∫
2x3 + x2 + 3x+ 5

x2 + 4x+ 3
dx = x2 − 7x+

1

2
ln |x+ 1|+ 49

2
ln |x+ 3|+ c.

Example 4.5. Some problems are sufficiently simple that I don’t have to do the long-division.∫
1− 2x

3− 2x
dx =

∫
3− 2x− 2

3− 2x
dx.

=

∫ (
1− 2

3− 2x

)
dx.

= x+ ln |3− 2x|+ c.

Again, I avoid long division with an appropriately added zero:

Example 4.6. ∫
3x2

x2 + 1
dx =

∫
3(x2 + 1)− 3

x2 + 1
dx

=

∫ (
3− 3

x2 + 1

)
dx.

= 3x− 3 tan−1(x) + c.

What if we have denominators of larger degree than two? I’ll begin with a long division just to
emphasize once more it’s importance.

x3 − 4x2 + 13x− 38

x3 + 4x2 + 3x
)

x6 + 2x3 + 2x + 7
− x6 − 4x5 − 3x4

− 4x5 − 3x4 + 2x3

4x5 + 16x4 + 12x3

13x4 + 14x3

− 13x4 − 52x3 − 39x2

− 38x3 − 39x2 + 2x
38x3 + 152x2 + 114x

113x2 + 116x + 7

Example 4.7. We wish to calculate
∫
x6+2x3+2x+7
x3+4x2+3x

dx. Note from the long-division above,∫
x6 + 2x3 + 2x+ 7

x3 + 4x2 + 3x
dx =

∫ (
x3 − 4x2 + 13x− 38 +

113x2 + 116x

x3 + 4x2 + 3x

)
dx

=
1

4
x4 +

4

3
x3 +

13

2
x2 − 38x+

∫
113x2 + 116x

x3 + 4x2 + 3x
dx
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The denominator factors into three linear factors x3 + 4x2 + 3x = x(x+ 1)(x+ 3). This factoring
is what leads us to the decomposition beneath:

113x2 + 116x

x3 + 4x2 + 3x
=
A

x
+

B

x+ 1
+

C

x+ 3

Multiply by the denominator, nice cancellations occur:

113x2 + 116x = A(x+ 1)(x+ 3) +Bx(x+ 3) + Cx(x+ 1)

Now, since all three linear factors correspond to distinct roots we can plug in the roots to obtain
solutions for A,B,C, if we had repeated roots then we’ll see this system breaks down, but let’s finish
this example for now,

x = 0 ⇒ 0 = 3A

x = −1 ⇒ 113− 116 = −2B

x = −3 ⇒ 113(9)− 3(116) = 6C

Hence, A = 0, B = 3/2 and C = 223/2 (the fact that A = 0 was obvious from the outset)∫
x6 + 2x3 + 2x+ 7

x3 + 4x2 + 3x
dx =

1

4
x4 +

4

3
x3 +

13

2
x2 − 38x+

∫
113x2 + 116x

x3 + 4x2 + 3x
dx

=
1

4
x4 +

4

3
x3 +

13

2
x2 − 38x+

3

2

∫
dx

x+ 1
+

223

2

∫
dx

x+ 3

=
1

4
x4 +

4

3
x3 +

13

2
x2 − 38x+

3

2
ln |x+ 1|+ 223

2
ln |x+ 3|+ c.

Ok, I think we’ve seen enough long-division examples for this section. Keep in mind that we could
add that wrinkel to the examples that follow, but it just adds one extra step at the beginning of
the calculation.

Example 4.8. We wish to calculate the integral below:∫
2x2 + 3x− 9

x4 + 4x3 + 5x2 + 9x2 + 36x+ 45
dx.

This is a proper rational function so we don’t have to do any long division. Our first task is to
factor the denominator. Note x4 + 4x3 + 5x2 + 9x2 + 36x+ 45 = x2(x2 + 4x+ 5) + 9(x2 + 4x+ 5)
hence ∫

2x2 + 3x− 9

x4 + 4x3 + 5x2 + 9x2 + 36x+ 45
dx =

∫
2x2 + 3x− 9

(x2 + 9)(x2 + 4x+ 5)
dx.

I cannot factor further over the real numbers because these quadratic factors have complex roots.
The partial fractions requires two unknown coefficients for each quadratic factor:

2x2 + 3x− 9

(x2 + 9)(x2 + 4x+ 5)
=
Ax+B

x2 + 9
+

Cx+D

x2 + 4x+ 5

⇒ 2x2 + 3x− 9 = (Ax+B)(x2 + 4x+ 5) + (Cx+D)(x2 + 9)

⇒ 2x2 + 3x− 9 = Ax3 +Bx2 + 4Ax2 + 4Bx+ 5Ax+ 5B + Cx3 +Dx2 + 9Cx+ 9D
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⇒ 2x2 + 3x− 9 = x3(A+ C) + x2(B + 4A+D) + x(4B + 5A+ 9C) + 5B + 9D

Two polynomials are equal iff they have matching coefficients. We equate coefficients of x3, x2, x1andx0:

(i.) 0 = A+ C (ii.) 2 = B + 4A+D (iii.) 3 = 4B + 5A+ 9C (iv.) − 9 = 5B + 9D

We have four linear equations and four unknowns. We procede by elimination: using i. and ii.,

A = −C, A = (2−B −D)/4, ⇒ (2−B −D)/4 = −C ⇒ 2−B −D + 4C = 0 (v.)

Next eliminate A from ii. and iii.

A = (2−B−D)/4, A = (3−4B−9C)/5 ⇒ (2−B−D)/4 = (3−4B−9C)/5 ⇒ 5(2−B−D) = 4(3−4B−9C)

Simplifying gives 11B + 36C − 5D − 2 = 0 (vi.) so equations iv., v and vi. involve only the vari-
ables B,C,D. We have reduced the problem to 3 equations and 3 unknowns:

5B + 9D = −9, −B + 4C −D = −2, 11B + 36C − 5D = 2

We can finish by elimination, but for a change of pace I’ll use Kramer’s rule from high-school
algebra II, we write the system as a matrix problem: 5 0 9

−1 4 −1
11 36 −5

 B
C
D

 =

 −9
−2
2


Then, Kramer’s rule says:

B =

det

 −9 0 9
−2 4 −1

2 36 −5


det

 5 0 9
−1 4 −1
11 36 −5

 =
−9(−20 + 36) + 9(−72− 8)

5(−20 + 36) + 9(−36− 44)
=
−864

−640
=

27

20
.

At which point finding D is easy from iv.,

D = −1− 5

9
B = −1− 5

9
· 27

20
=
−7

4

Find C with ease from v. next,

C =
1

4
(−2 +B +D) =

1

4
(−2 +

27

20
+
−7

4
) =
−3

5

Hence, returning to i., clearly A = 3
5 . As a check on the algebra, I’ll solve the problem again from

the start using technology: the row reduced echelon form of the augmented coefficient matrix will
reveal the solution (if it exists) of any linear system: the first row comes from A + C = 0 then
equations ii.,iii. and iv. follow in their matrix notation:

rref


1 0 0 1 0
0 5 0 9 −9
0 −1 4 −1 −2
0 11 36 −5 2

 = rref


1 0 0 0 3/5
0 1 0 0 27/20
0 0 1 2 −3/5
0 0 0 1 −7/4


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Which confirms the algebra of the last page. Pragmatically speaking, if you are not taking a test
and don’t need to practice your algebra then the reduced row echelon form (a.k.a. Gaussian elimi-
nation) is hard to beat. We examine the logical underpinnings of both Kramers rule and Gaussian
elimination in the linear algebra course6 (Math 321). Let’s collect our thoughts. We have shown
that

2x2 + 3x− 9

x4 + 4x3 + 5x2 + 9x2 + 36x+ 45
=

3
5x+ 27

20

x2 + 9
+

−3
5 x−

7
4

x2 + 4x+ 5

Observe we can integrate using u-substitution on the A-term and trig. substitution on the B-term7

∫ 3
5x+ 27

20

x2 + 9
dx =

3

10

∫
2xdx

x2 + 9
+

27

20

∫
dx

x2 + 9

=
3

10

∫
du

u
+

27

20

∫
3 sec2(θ)dθ

9 sec2(θ)

=
3

10
ln |u|+ 9

20
θ + c1 (where u = x2 + 9 and x = 3 tan(θ))

=
3

10
ln |x2 + 9|+ 9

20
tan−1

(
x

3

)
+ c1

?

Next, turn to the C and D terms, a little creative algebra from the outset makes life easier,∫ −3
5 x−

7
4

x2 + 4x+ 5
dx =

∫ −3
5 (x+ 2) + 6

5 −
7
4

x2 + 4x+ 5
dx

=
−3

5

∫
(x+ 2)dx

(x+ 2)2 + 1
− 11

20

∫
dx

(x+ 2)2 + 1

=
−3

10

∫
du

u
− 11

20

∫
dw

w2 + 1

=
−3

10
ln |u| − 11

20
tan−1(w) + c2 (where u = (x+ 2)2 + 1 and w = x+ 2)

=
−3

10
ln |x2 + 4x+ 5| − 11

20
tan−1(x+ 2) + c2

??

Therefore, using ? and ?? we find
∫

2x2+3x−9
x4+4x3+5x2+9x2+36x+45

dx is

3

10
ln |x2 + 9|+ −3

10
ln |x2 + 4x+ 5| − 11

20
tan−1(x+ 2) +

9

20
tan−1

(
x

3

)
+ c.

At this point, we have seen examples of how to integrate rational functions with denominators
that consist of a linear factor, a pair of linear factors, a triple of linear factors or a pair irreducible
quadratic factors. I know consider an example where we have a mixture of linear and irreducible
quadratic terms. Again, the heart of the solution is the partial fractal decomposition.

6however, linear algebra is about a lot more than just solving linear equations, you are really supposed to know
what I’ve shown here from highschool. Granted many of you have forgotten. Now is time to remember. As you work
the homework you should not use technology to solve all the algebra, instead, use technology to check your answers.
I have links on my website to free online calculators which will do partial fractions and/or the rref calculation. Make
use of them wisely.

7I do not expect you to memorize these formulas, I expect you to be able to derive them!
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Example 4.9. We wish to calculate
∫

3x2−3x−8
x3−3x2+x−3dx. Note that x3− 3x2 + x− 3 = (x− 3)(x2 + 1)

hence we propose the following decomposition:

3x2 − 3x− 8

x3 − 3x2 + x− 3
=

A

x− 3
+
Bx+ C

x2 + 1

Multiply by the denominator, nice cancellations occur:

3x2 − 3x− 8 = A(x2 + 1) + (Bx+ C)(x− 3)

I’ll plug in the real root and one of the complex roots8 to obtain:

x = 3 ⇒ 3(9)− 3(3)− 8 = 10A ⇒ A = 1.

x = i =
√
−1 ⇒ 3i2 − 3i− 8 = (iB + C)(i− 3) ⇒ −11− 3i = −B − 3C + i(C − 3B)

The beautiful thing about complex equations is they do twice the work of real equations. This is
due to the fact that the real and imaginary parts of a complex equation must separately balance. In
particular,

−11− 3i = −B − 3C + i(C − 3B) ⇒ −11 = −B − 3C and − 3 = C − 3B

Multiply −11 = −B − 3C by −3 to find 33 = 3B + 9C then add this to −3 = C − 3B to obtain
30 = 10C hence C = 3 and it follows B = 11 − 3C = 2. In summary, A = 1, B + 2 and C = 3.
Finish it. ∫

3x2 − 3x− 8

x3 − 3x2 + x− 3
dx =

∫
dx

x− 3
+

∫
2xdx

x2 + 1
+ 3

∫
dx

x2 + 1

= ln |x− 3|+ ln |x2 + 1|+ tan−1(x) + c.

Example 4.10. We wish to calculate
∫

2
x4−1dx. Well, this is easy to factor: x4−1 = (x2+1)(x2−1).

The partial fractions decomposition with respect to this factoring is

2

x4 − 1
=
Ax+B

x2 + 1
+
Cx+D

x2 − 1

Multiply by the denominator, nice cancellations occur:

2 = (Ax+B)(x2 − 1) + (Cx+D)(x2 + 1)

I’ll plug in the real roots and one of the complex roots to obtain:

x = 1 ⇒ 2 = 2C + 2D.

x = −1 ⇒ 2 = −2C + 2D.

x = i =
√
−1 ⇒ 2 = (Ai+B)(i2 − 1) ⇒ 2 = −2B − 2Ai

The real and imaginary parts of a complex equation must separately balance. In particular,

2 = −2B − 2Ai ⇒ 2 = −2B and 0 = −2A

Therefore, A = 0 and B = −1. Adding and subtracting the x = ±1 equations yields C = 0 and
D = 1. ∫

2

x4 − 1
dx =

∫
dx

x2 − 1
−
∫

dx

x2 + 1
= − tanh−1(x)− tan−1(x) + c.

8yes, you could also multiply the polynomials out and equate coefficients as we did in a previous example.
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In the preceding example I made use of the inverse hyperbolic tangent integral. If you don’t like
the inverse hyperbolic function then you could just as well break the 1/(x2− 1) term into a sum of
reciprocals of (x− 1) and (x+ 1). You can show that

1

x2 − 1
=

1

2

[
1

x− 1
− 1

x+ 1

]
.

Or, you could at least check that I am correct by making a common denominator of the RHS to
recover the LHS. In any event, integration will yield natural logs from this algebraic approach:∫

dx

x2 − 1
=

1

2

∫
dx

x− 1
− 1

2

∫
dx

x+ 1

=
1

2
ln |x− 1| − 1

2
ln |x+ 1|+ c.

There are identities which connect this expression and − tanh−1(x). If nothing else, we know they
have to be different formulas for the same function since

1. d
dx [− tanh−1(x)] = d

dx [12 ln |x− 1| − 1
2 ln |x+ 1|] = 1

x2−1

2. tanh−1(0) = 0 and 1
2 ln |0− 1| − 1

2 ln |0 + 1| = 0

Recall that if f ′(x) = g′(x) for all x ∈ J (a connected interval) then f(x) = g(x) + c on J . If we
also know f(0) = g(0) then it follows c = 0 hence f = g, provided the domain of both functions
is J . Now perhaps my argument is less than satisfying, after all I didn’t really explain how these
rather different looking formulas are the same. See Stewart around page 466 for more on how to
connect these algebraically.

Example 4.11. We wish to calculate
∫

x2+5
x4+8x2+16

dx. This integral contains a new difficulty, it has

a irreducible quadratic repeated in the denominator since x4 + 8x2 + 16 = (x2 + 4)2. The partial
fractions decomposition for a repeated quadratic is as follows:

x2 + 5

x4 + 8x2 + 16
=
Ax+B

x2 + 4
+

Cx+D

(x2 + 4)2
.

I invite the reader to verify that the usual algebra yields A = 0, B = 1, C = 0 and D = 1. I know
this will happen since the following algebra leads to the same conclusion:

x2 + 5

x4 + 8x2 + 16
=
x2 + 4 + 1

(x2 + 4)2
=

1

x2 + 4
+

1

(x2 + 4)2

If x = 2 tan(θ) then x2 + 4 = 4 tan2(θ) + 4 = 4 sec2(θ) and dx = 2 sec2(θ)dθ. We will make use of
this substitution in the integral below:∫

x2 + 5

x4 + 8x2 + 16
dx =

∫ [
1

x2 + 4
+

1

(x2 + 4)2

]
dx

=

∫ [
1

4 sec2(θ)
+

1

(4 sec2(θ))2

]
(2 sec2(θ)dθ)

=

∫ [
1

2
+

1

8
cos2(θ)

]
dθ

=

∫ [
1

2
+

1

16
+

1

16
cos(2θ)

]
dθ

=
9θ

16
+

1

32
sin(2θ) + c
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Recall that sin(2θ) = 2 sin(θ) cos(θ) and note tan(θ) = x
2 hence sin(θ) = x√

x2+4
and cos(θ) = 2√

x2+4

thus, sin(2θ) = 4x
x2+4

. Therefore,

∫
x2 + 5

x4 + 8x2 + 16
dx =

9

16
tan−1

(
x

2

)
+

x

8(x2 + 4)
+ c.

Example 4.12. We wish to calculate
∫

2x3+3x2−x+1
(x−2)(x+1)3

dx. To begin we need to work out the partial

fractions decomposition. Given the factoring of the denominator we propose:

2x3 + 3x2 − x+ 1

(x− 2)(x+ 1)3
=

A

x− 2
+

B

x+ 1
+

C

(x+ 1)2
+

D

(x+ 1)3

Multiply by the denominator to find:

2x3 + 3x2 − x+ 1 = A(x+ 1)3 +B(x− 2)(x+ 1)2 + C(x− 2)(x+ 1) +D(x− 2)

We can evaluate at x = −1 to find that −2 + 3 + 1 + 1 = −3D hence D = −1 . Likewise, evaluate

at x = 2 to obtain that 16 + 12− 2 + 1 = 27A hence A = 1 . To find B and C we need additional
equations. One easy choice is to evaluate at x = 0 which gives 1 = A−2B−2C−2D = 1−2B−2C+2
hence −2 = −2B − 2C. Next, I evaluate9 at x = 1 to obtain 2 + 3 − 1 + 1 = 8A − 4B − 2C −D
hence 5 = 8 − 4B − 2C + 1 thus 4 = 4B + 2C and dividing by two gives 2 = 2B + C. Collecting
our thoughts,

−2 = −2B − 2C added to 2 = 2B + C ⇒ 0 = −C ⇒ C = 0 and B = 1 .

Therefore,∫
2x3 + 3x2 − x+ 1

(x− 2)(x+ 1)3
dx =

∫ [
1

x− 2
+

1

x+ 1
− 1

(x+ 1)3

]
dx

=

∫
du

u
+

∫
dw

w
−
∫
dw

w3
let u = x− 2 and w = x+ 1

= ln |x− 2|+ ln |x+ 1|+ 1

2(x+ 1)2
+ c.

Example 4.13. We wish to calculate
∫

dx
(x2+6x+13)3

. Note that x2 + 6x+ 13 = (x+ 3)2 + 4 hence

the denominator cannot be further reduced. This is already a basic rational function. We make a
x+ 3 = 2 tan(θ) substitution hence (x+ 3)2 + 4 = 4 sec2(θ) and dx = 2 sec2(θ)dθ. Observe∫

dx

(x2 + 6x+ 13)3
=

∫
2 sec2(θ)dθ

64 sec6(θ)

=
1

32

∫
cos4(θ)dθ (the next step is nontrivial)

=
1

32

[
3θ

8
+

1

8
sin(θ) cos3(θ)− 1

8
sin3(θ) cos(θ) +

1

2
sin(θ) cos(θ)

]
+ c

9because the arithmetic is easy and multiplying out to equate coefficients looks like more work here
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We know tan(θ) = x+3
2 hence sin(θ) = x+3√

(x+3)2+4
and cos(θ) = 2√

(x+3)2+4
. Thus,

∫
dx

(x2 + 6x+ 13)3
=

1

32

[
3θ

8
+

1

8
sin(θ) cos3(θ)− 1

8
sin3(θ) cos(θ) +

1

2
sin(θ) cos(θ)

]
+ c

=
1

32

(
3

8
tan−1

(
x+ 3

2

)
+

1

8

x+ 3√
(x+ 3)2 + 4

[
2√

(x+ 3)2 + 4

]3
− 1

8

[
x+ 3√

(x+ 3)2 + 4

]3 2√
(x+ 3)2 + 4

+
1

2

x+ 3√
(x+ 3)2 + 4

2√
(x+ 3)2 + 4

)
+ c

After a some algebra the expressions above ought to simply to the following:∫
dx

(x2 + 6x+ 13)3
=

282 + 202x+ 54x2 + 6x3

(13 + 6x+ x2)2
+

3

256
tan−1

(
3 + x

2

)
+ c.

Remark 4.14.

I think we’ve seen enough. At this point we can make a few observations:

(1.) when integrating a rational function we can always reduce the problem to
integrating a proper rational function and a polynomial because we know
long division for polynomials.

(2.) any proper rational function can be decomposed into a sum of basic rational
functions which either have the form 1

(x−a)k or 1
[(x−α)2+β2]k

for k = 1, 2, ...

(3.) we can integrate any basic rational function, we have the methods, we just
need paper and perservance.

(4.) the partial fractions decomposition of a proper rational function with de-
nominator of degree N will have N -unknown coefficients in its decomposi-
tion.

I seek to sketch a proof of (2.) and (4.) in the section that follows. The proofs of (1.) and
(3.) are left to the reader.

Beyond these comments, we also observed that the inverse hyperbolic functions allow us to treat
reducible reciprocal quadratic factors in much the same way as we treat the irreducible reciprocals.
This led to a great diversity in the appearance of answers.
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4.1 existence of partial fractions decomposition

Remark 4.15.

Read if interested. Ask me questions if want further detail. Pragmatically speaking, if you
understand the examples before this subsection you should do just fine. This section does
contain useful comments about algebra in general and a few complex calculations that all
electrical engineers should be eager to master.

Suppose we have a rational function f(x) = P (x)
Q(x) . Suppose further that deg(Q) = N and deg(P ) = n

and n < N so this rational function is proper. A fundamental theorem of algebra states that any
polynomial with real coefficients can be written as a product of linear factors which may be repeated
and/or correspond to complex roots. However, the complex roots must come in complex conjugate
pairs which once multiplied give irreducible quadratic factors. That said, I will give an argument
which allows complex notation. We know that Q factors as

Q(x) = A(x− a1)k1(x− a2)k2 · · · (x− ar)kr

where A 6= 0 and aj ∈ C and k1 + k2 + · · ·+ kr = N . We claim that f can be written as a sum of
the reciprocals (x− a1)k1 , (x− a2)k2 , · · · , (x− ar)kr . That is, we claim that the following equation
has a solution for some A1, A2, . . . , Ar ∈ C,

f(x) =
P (x)

Q(x)
=

A1

x− a1
+

A2

(x− a1)2
+ · · ·+ Ak1

(x− a1)k1
+ · · ·+ AN−kr

x− ar
+
AN−kr+1

(x− ar)2
+ · · ·+ AN

(x− ar)kr

Multiply both sides by Q(x) to obtain ?:

P (x) = A1

[
(x− a1)k1−1(x− a2)k2 · · · (x− ar)kr

]
+ · · ·

· · ·+Ak1
[
(x− a2)k2 · · · (x− ar)kr

]
+ · · ·

· · ·+AN−kr
[
(x− a1)k1−1(x− a2)k2 · · · (x− ar)kr−1

]
+ · · ·

· · ·+AN−kr
[
(x− a1)k1−1(x− a2)k2 · · · (x− ar−1)kr−1

]
Observe that if we plug in x = a1 into ? then we find

P (a1) = Ak1(a1 − a2)k2 · · · (a1 − ar)kr ⇒ Ak1 =
P (a1)

(a1 − a2)k2 · · · (a1 − ar)kr

Next, we can plug in x = a2 into ? and all terms drop to zero except one

P (a2) = Ak2(a2−a1)k1(a2−a3)k3 · · · (a2−ar)kr ⇒ Ak2 =
P (a2)

(a2 − a1)k1(a2 − a3)k3 · · · (a2 − ar)kr

Continue in this fashion and we find solutions for Akj for j = 3, 4, . . . , r. However, this is only a
subset of the coefficients since we allow kj > 1 since we want to treat the case of repeated roots.
Differentiate ? and call it d?

dx . Plug x = a1 into d?
dx and note that just one term remains. The

derivative of the term with coefficient Ak1−1 produces many terms, however only one remains after
the evaluation. The term that remains is the one which (x− a1) was differentiated hence

P ′(a1) = Ak1−1(a1 − a2)k2 · · · (a1 − ar)kr ⇒ Ak1−1 =
P ′(a1)

(a1 − a2)k2 · · · (a1 − ar)kr

Then, if we differentiate twice then evaluate more we find a formula for Ak1−2. Continuing in this
fashion we find formulas for A1, A2, . . . , Ak1 . To complete the argument simply apply the procedure
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for the first root to the remaining roots a2, a3, . . . ar. Finally, note in the case of complex roots we
must have a conjugate pair. Observe that for such a pair we can reproduce the form we’ve used in
this section:

A

x− α− iβ
+

B

x− α+ iβ
=
A(x− α+ iβ) +B(x− α− iβ)

(x− α− iβ)(x− α+ iβ)
=

(A+B)x− α(A+B) + iβ(A−B)

(x− α)2 + β2

This is precisely the form we used, just written with ugly coefficients. You might worry that the
rational function is complex so that will not match the manifestly real partial fractions decompo-
sition. However, the fact that f = P/Q is real implies certain reality conditions on A and B hence
the imaginary term will vanish. Rather than work this out in general let me illustrate how the real
and complex form of the partial fractions work out in a specific case:

2x+ 6

x2 + 4x+ 5
=

x+ 3

(x+ 2)2 − i2
=

A

x+ 2− i
+

B

x+ 2 + i

Multiply both sides by the denominator to find 2x+ 6 = A(x+ 2 + i) +B(x+ 2− i). Thus,

2x+ 6 = (A+B)x+ 2(A+B) + i(A−B)

Equating coefficients gives 2 = A+B and 6 = 2(A+B) + i(A−B) which yields 6 = 4 + i(A−B).
It follows that 2 = i(A − B) thus A − B = 2/i = −2i. Add A − B = −2i and A + B = 2 to find
2A = 2− 2i thus A = 1− i. Likewise, subtract A−B = −2i from A+B = 2 to find 2B = 2 + 2i
thus B = 1 + i. We have derived the complex partial fractions decomposition

2x+ 6

x2 + 4x+ 5
=

1− i
x+ 2− i

+
1 + i

x+ 2 + i
.

In general, one can prove that if A+B ∈ R and A−B ∈ iR and it follows that expression on the
far right below is manifestly real once the imaginary terms are cancelled

A

x− α− iβ
+

B

x− α+ iβ
=

(A+B)x− α(A+B) + iβ(A−B)

(x− α)2 + β2
.

In any event, I include these general comments for those students who wonder about why this
method works in general. The algebraic technique of partial fractions extends beyond calculus, but
it is seldom proved in any course. It is doubtful I lecture on this stretch of the notes.

Lemma 4.16. equating coefficients.

Suppose F,G and Q are continuous functions and Q(x) = 0 has finitely many solutions. If
F (x)
Q(x) = G(x)

Q(x) for all x ∈ R such that Q(x) 6= 0 then F (x) = G(x).

Proof: Note that if x ∈ R such that Q(x) 6= 0 then it is clear that F (x) = G(x). Suppose xo ∈ R
such that Q(xo) = 0 and consider that F (x) = G(x) for all x ∈ Bδ(xo)o ( a deleted nbhd of radius
δ > 0 must exist on which Q(x) 6= 0 throughout since the zeros of Q are finite in number so we can
separate them) but then

lim
x→xo

F (x) = lim
x→xo

G(x)

since the limit considers only points near the limit point. But, F and G are continuous hence

lim
x→xo

G(x) = G(xo) and lim
x→xo

F (x) = F (xo).

Therefore, F (xo) = G(xo) and as this was an arbitrary zero of Q the lemma follows. 2

This was ≈ exercise 69 of page 519 of Stewart’s Ed. 6, however I proved it in more generality. Note
that polynomials have finitely many zeros so they are covered by the lemma.
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