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2.4 integration of scalar function along a curve

In this section we learn how to sum a quantity along some curve. Let’s begin by reviewing
some terminology. A path in R? is a continuous function ¥ with connected domain I such that
¥:ICR— R If 8] = {a,b} then we say that (a) and F(b) are the endpoints of the path 7.
When 7 has continuous derivatives of all orders we say it is a smooth path (of class C), if it has
at least one continuous derivative we say it is a differentiable path( of class C*). When I = [a, b
then the path is said to go from F(a) = P to §(b) = @ and the image C = 5([a. b]) is said to be an
oriented curve C' from P to (. The same curve from () to P is denoted —C. We say C and —C'
have opposite orientations.

Hopefully most of this is already familar from our earlier work on parametrizations. I give another
example just in case.

Example 2.4.1. The line-segment L from (1,2,3) to (5,5,5) has parametric equations x = 1 +
dt,y=2+3t,z=3+2t for 0 =t < 1. In other words, the path ¥(t) = (1 + 4t,2 + 3¢,3 + 2t)
covers the line-segment L. In contrast —L goes from (5,5,5) to (1,2, 3) and we can parametrize it by
z = 5—4u,y = 5—3u,z = 5-2u orin terms of a vector-formula Yreverse (1) = (5—4du, 5—3u,5—2u).
How are these related? Observe:

Freverse(0) = F?(l) & ;n;‘i"f'!‘llP.T‘.'il‘!(l) = "?(0)
GCRCT&H% '_T"reugrae (t) = ’?(1 - t).

We can generalize this construction to other curves. If we are given C from P to () parametrized
by 7 : [a,b] = R? then we can parametrize —C by Freverse : [a,b] — R® defined by Freverse(t) =
Y(a+ b —t). Clearly we have Jreuerse(2) = ¥(b) = Q whereas Fyeperse(b) = F(a) = Q. Perhaps it is
interesting to compare these paths at a common poeint,

"r’(f-) = ’_frmmrse(a +b- t)
The velocity vectors naturally point in opposite directions, (by the chain-rule)

&

= (t) _ _d’)'reverse (c; T, - t).

dt
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Example 2.4.2. Suppose j(t) = (cos(t),sin(t)) for m <t < 2w covers the oriented curve C. If we
wish to parametrize —C' by  then we can use

Simplifying via trigonometry yields 5(!.) = (—cos(t), —sin(t)) for 7 <t < 2m. You can easily verify
that B covers the lower half of the unit-circle in a C'W-fashion, it goes from (1.0) to (—1,0)

What I have just described is a general method to reverse a path whilst keeping the same domain
for the new path. Naturally, you might want to use a different domain after you change the
parametrization of a given curve. Let’s settle the general idea with a definition. This definition

describes what we allow as a reasonable reparametrization of a curve.
porametriazy = Wik =3T-x

— du - -

Definition 2.4.3. 'Yl l":\ - Yl. (u (*')

e

Let % @ [a.bi] — RY be a path. We say another path 5y (w2.b] — B* is a
reparametrization of 5 if there exists a hijective (one-one and onto), continuons fune-
tiog ¢ o [a s Jag.by] with continnons inverse u Ly (anibe]l — [m. by sneh that
() = Fo(w(t))lor all ¢ € [ay. by]. L the given enrve is smooth or k-times differentiable then
e e insist That the transition hietion « and ifs inverse be likewise smooth or k-times
differentiable.

In short, we want the allowed reparametrizations to capture the same curve without adding any
artificial stops, starts or multiple coverings. If the original path wound around a circle 10 times
then we insist that the allowed reparametrizations also wind 10 times around the circle. Finally,
let's compare the a path and its reparametrization’s velocity vectors, by the chain rule we find:

. du d~:
AO=REE) = DO =G ).

This calculation is important in the section that follows. Observe that:
1. if du/dt > 0 then the paths progress in the same direction and are consistently oriented
2. if du/dt < 0 then the paths go in opposite directions and are oppositely oriented

Reparametrizations with du/dt > 0 are said to be orientation preserving.

2.4.1 line-integral of scalar function

These are also commonly called the integral with respect to arclength. In lecture we framed
the need for this definition by posing the question of finding the area of a curved fence with height
F(a,y). It stood to reason that the infinitesimal area dA of the curved fence over the arclength ds
would simply be dA = f(z,y)ds. Then integration is used to sum all the little areas up. Moreover,
the natural caleulation to accomplish this is clearly as given below:

. y plm) = Y1) = Li,0)
B(t) = (37 — t) = (cos(3m — t),sin(37 — 1)) ( (ar) 27y (n) = ("';U)

d

\
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Definition 2.4.4.

T i . : 3 o |
Let = ¢ facb] — € C B" he a differentiable path and suppose that C C don(]) lor a
contimons function [ dom(f) — B then the scalar line integral of  along €' is

/'{_." ds = ./':fﬁ(m 15(t)| dt. &= .H )dmfd_t

——
We should check to make sure there is no dependence on the choice of parametrization above. If
there was then this would not be a reasonable definition. Suppose 71(t) = Fa(u(t)) for a1 <t < by
where u : [a1, b1] = [ﬂg, bs| is differentiable and strictly monotonic. Note

by 7

f L) Hd’n” dt= | fFu) ‘ %%(u(t))”dt
by 1
f('?g(u() n;? “ dr

If u is orientation preserving then du/dt > 0 hence u(a1) = ap and u(by) = ba and thus

b

( 1(t) ik

d"yz du
dt = — dt
e k= f Fa(ult))) H H @

bz

= | f(F()

2

d.

a7
du

On the other hand, if du/dt < 0 then |du/dt| = —du/dt and the bounds flip since u(a1) = b and

u‘(bl) =as
dv by » ,
/ t-)) H 2L f(;h('ll(f‘))) ‘ %(TL(?‘))‘ % di
_ 0y . @
B Mf (7a(w) ‘ T | |4
lin 5
S(Fa(u) Eﬂf‘ i

Note, the definition requires me to flip the bounds before I judge if we have the same result. This
is implicit in the statement in the definition that dom(¥) = [a, b] this forces a < b and hence the
integral in turn. Technical details aside we have derived the following important fact:

][;J'd.vs:/_cfds éy-f;'olrf = ___S,CE.C‘F

The scalar-line integral of function with no attachment to C' is independent of the orientation of the
curve. Given our original motivation for calculating the area of a curved fence this is not surprising.
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One convenient notation calculation of the scalar-line integral is given by the dot-notation of New-
ton. Recall that do/dt = & hence 7 = (z,y, z) has /() = (2,9, £). Thus, for a space curve,

/ flq_ff13;, V2 + 2 + 22 dt.

We can also calculate the scalar line integral of f along some curve which is made of finitely many
differentiable segments, we simply calculate each segment's contribution and sum them together.
Just like calculating the integral of a piecewise continuous function with a finite number of jump-
discontinuities, you break it into pieces.

Furthermore, notice that if we calculate the scalar line integral of the constant function f = 1 then
we will obtain the arclength of the curve. More generally the scalar line integral calculates the
weighted sum of the values that the function f takes over the curve C'. If we divide the result by
the length of C then we would have the average of f over C.

Example 2.4.5. Suppose the linear mass density of a heliz = = Rcos(t),y = Rsin(t), z = t is given
by Calculate the total mass around the two twists of the heliz given by 0 <t < 4.
4
dm Miotal on C = / zds = aVER PR+ 22 dt (2:)
—_— 2 [ 0

4w
as ds =/ tvVR?+1dt
- 0
di = 2 _eVEEEI

2
W+ 2 Sdm -
Tothe ~ I, =|8n2V/R2 + 1.

In contrast to total mass we could find the arclength by simply adding up ds. the total length L of
C 15 quuen by

L=/ds~ Vit 9?4 2% de
JC
= \/Rz-l-ldt
0
=|dwry/R2 + 1.

Definition 2.4.6.

Let ¢ be a enrve with length L then the average ol f over s given by
: L.

Example 2.4.7. The average mass per unit length of the heliz with dm/dz = z as studied above

s given by
Mgy = / fds= = \/_h 7V R? + 1 =[2r]

Since z =t and 0 = t = 4w over C this result is hardly surprising.
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Another important application of the scalar line integral is to find the center of mass of a wire.
The idea here is nearly the same as we discussed for volumes, the difference is that the mass is
distributed over a one-dimensional space so the integration is one-dimensional as opposed to two-
cdimensional to find the center of mass for a planar laminate or three-dimensional to find the center
of mass for a volume.

Definition 2.4.8.

Let O be a cnrve with length L and suppose dM /ds = 8 is the mass-density of ¢ The total
mass of the enrve foimd by M = [r dids, The eentroid or center of mass for O s fonnd
at (T, 9. Z) where

I f . o [
Fo= E./C'H\' s = _f\»f.‘/r-{wj ils. ¥ 7 /(".ﬂ ils.

[ =
Often the centroid is found off the curve.

Example 2.4.9. Suppose # = Rcos(t),y = Rsin(t),z=h f{ 0<t<m ’or a curve with 6 = 1.
Clearly ds = Rdt and thus M = [, 6ds = fo Rdt = mR. Constler,

1 1 [T,
2= '—/c;.rde WRA R*cos(t)dt =0

whereas,

p— .o o LI S s
y—wR/Cyds—WRfﬂ R Sln(t)dt_ﬂ'R( R c.us(t)u =

(_o{o, h)

Of course there are many other applications, but 1 believe these should suffice for our current
purposes. We will eventually learn that fc,ﬁ « Tds and fﬂ.ﬁ-ﬁ ds are also ol interest, but we
should cover other topics before returning to these. Incidentally, it is pretty obvious that we have
the following properties for the scalar-line integral:

‘/{;‘(f+c:57)d-‘i=/(;fds.-+r:/‘cgcis & -/;.'ué'fds=/(;'fds+,/;‘;fds

in addition if f < g on C then [, fds < [ gds. Tleave the proof to the reader.

The reader can easily verify that Z = h hence the centroid is at (0, 22 h).

Remark 2.4.10.

I have a few solved problems on integrals along a curve and centroids. They are attached
to a later Chapter. See Problems 187, 188, 189,

2.5 Problems

Problem 46 Calculate the following:
(a.) £(% €', In(t))
(b.) 4 (cosh(t?),sinh(In(t)))
(c.) [(1,¢,sin(t))dt



