LECTURE 14: TOPOLOGY OF IR (metric)

55

2.6 OPEN SETS, CLOSED SETS, COMPACT SETS, AND LIMIT POINTS

The *open ball* in \mathbb{R} with center $a \in \mathbb{R}$ and radius $\delta > 0$ is the set

$$B(a; \delta) = (a - \delta, a + \delta).$$

Definition 2.6.1 A subset A of \mathbb{R} is said to be *open* if for each $a \in A$, there exists $\delta > 0$ such that

$$B(a; \delta) \subset A$$
.

Example 2.6.1 (1) Any open interval A = (c, d) is open. Indeed, for each $a \in A$, one has c < a < d. Let

$$\delta = \min\{a-c, d-a\}.$$

 $\frac{c}{(a)}d\delta=d-a$

Then

$$B(a;\delta) = (a-\delta,a+\delta) \subset A.$$

6= q-c

Therefore, A is open.

(2) The sets $A = (-\infty, c)$ and $B = (c, \infty)$ are open, but the set $C = [c, \infty)$ is not open. The reader can easily verify that A and B are open. Let us show that C is not open. Assume by contradiction that C is open. Then, for the element $c \in C$, there exists $\delta > 0$ such that

$$B(c;\delta) = (c - \delta, c + \delta) \subset C.$$

of d

However, this is a contradiction because $c - \delta/2 \in B(c; \delta)$, but $c - \delta/2 \notin C$.

C∈ [c,d]

Theorem 2.6.1 The following hold:

- (a) The subsets \emptyset and \mathbb{R} are open.
- (b) The union of any collection of open subsets of $\ensuremath{\mathbb{R}}$ is open.
- (c) The intersection of a finite number of open subsets of $\mathbb R$ is open.

45>0(c-8,c+5) \$ (c,d] ∴ \$500+ 8(c) €

:. \$ \$>0 s.t. B_s(c) ⊆ [e,d] :- [c,d] not open.

Proof: The proof of (a) is straightforward.

(b) Suppose $\{G_{\alpha} : \alpha \in I\}$ is an arbitrary collection of open subsets of \mathbb{R} . That means G_{α} is open for every $\alpha \in I$. Let us show that the set

$$G = \bigcup_{\alpha \in I} G_{\alpha}$$

is open. Take any $a \in G$. Then there exists $\alpha_0 \in I$ such that

$$a \in G_{\alpha_0}$$
.

Since G_{α_0} is open, there exists $\delta > 0$ such that

$$B(a;\delta) \subset G_{\alpha_0} \subseteq \bigcup_{\alpha \in \Gamma} G_{\alpha} = G$$

This implies

$$B(a;\delta)\subset G$$

because $G_{\alpha_0} \subset G$. Thus, G is open.

Lenma: if $\delta_1 < \delta_2$ then $B_{\delta_1}(a) \subset B_{\delta_2}(a)$

2.6 OPEN SETS, CLOSED SETS, COMPACT SETS, AND LIMIT POINTS 56

(c) Suppose G_i , i = 1, ..., n, are open subsets of \mathbb{R} . Let us show that the set

$$G = \bigcap_{i=1}^{n} G_i$$

is also open. Take any $a \in G$. Then $a \in G_i$ for i = 1, ..., n. Since each G_i is open, there exists $\delta_i > 0$ such that

$$B(a; \delta_i) \subset G_i$$
.

Let $\delta = \min\{\delta_i : i = 1, ..., n\}$. Then $\delta > 0$ and

 $B(a;\delta)\subset G$. $[R-[c,d]=(-\infty,c)\cup(d,\infty)$

Thus, G is open. \square

Definition 2.6.2 A subset S of \mathbb{R} is called *closed* if its complement, $S^c = \mathbb{R} \setminus S$, is open.

Example 2.6.2 The sets [a,b], $(-\infty,a]$, and $[a,\infty)$ are closed. Indeed, $(-\infty,a]^c=(a,\infty)$ and $[a,\infty)^c=(-\infty,a)$ which are open by Example 2.6.1. Since $[a,b]^c=(-\infty,a)\cup(b,\infty)$, $[a,b]^c$ is open by Theorem 2.6.1. Also, single element sets are closed since, say, $\{b\}^c = (-\infty, b) \cup (b, \infty)$.

Theorem 2.6.2 The following hold:

 $\mathbb{R}-\{b\}=(-\infty,b)\nu(b,\infty).$

- (a) The sets \emptyset and \mathbb{R} are closed.
- (b) The intersection of any collection of closed subsets of \mathbb{R} is closed.
- (c) The union of a finite number of closed subsets of \mathbb{R} is closed.

Proof: The proofs for these are simple using the De Morgan's law. Let us prove, for instance, (b). Let $\{S_{\alpha} : \alpha \in I\}$ be a collection of closed sets. We will prove that the set

$$S = \bigcap_{\alpha \in I} S_{\alpha}$$

is also closed. We have

$$S^{c} = \left(\bigcap_{\alpha \in I} S_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} S_{\alpha}^{c}.$$

Thus, S^c is open because it is a union of opens sets in \mathbb{R} (Theorem 2.6.1(b)). Therefore, S is closed. \square

■ Example 2.6.3 It follows from part (c) and Example 2.6.2 that any finite set is closed. $\{\alpha_{i_1}\alpha_{2_{i_1}}, \alpha_{i_n}\} = \{\alpha_{i_1}\alpha_{2_{i_1}}, \alpha_{i_n}\}$ Theorem 2.6.3 A subset A of \mathbb{R} is closed if and only if for any sequence $\{a_n\}$ in A that converges $\{a_n\}$

Proof: Suppose A is a closed subset of \mathbb{R} and $\{a_n\}$ is a sequence in A that converges to a. Suppose by $\beta_{\delta}(a) = \beta(a;\delta)$ contradiction that $a \notin A$. Since A is closed, there exists $\varepsilon > 0$ such that $B(a; \varepsilon) = (a - \varepsilon, a + \varepsilon) \subset A^c$. Since $\{a_n\}$ converges to a, there exists $N \in \mathbb{N}$ such that

$$a - \varepsilon < a_N < a + \varepsilon$$
. $\Leftrightarrow (|\alpha_N - \alpha| < \varepsilon)$

This implies $a_N \in A^c$, a contradiction.

Let us now prove the converse. Suppose by contradiction that A is not closed. Then A^c is not open. Since A^c is not open, there exists $a \in A^c$ such that for any $\varepsilon > 0$, one has $B(a; \varepsilon) \cap A \neq \emptyset$. In particular, for such an a and for each $n \in \mathbb{N}$, there exists $a_n \in B(a; \frac{1}{n}) \cap A$. It is clear that the sequence $\{a_n\}$ is in A and it is convergent to a (because $|a_n - a| < \frac{1}{n}$, for all $n \in \mathbb{N}$). This is a contradiction since $a \notin A$. Therefore, A is closed. \square

Theorem 2.6.4 If A is a nonempty subset of \mathbb{R} that is closed and bounded above, then $\max A$ exists. Similarly, if A is a nonempty subset of \mathbb{R} that is closed and bounded below, then $\min A$ exists

Proof: Let A be a nonempty closed set that is bounded above. Then $\sup A$ exists. Let $m = \sup A$. To complete the proof, we will show that $m \in A$. Assume by contradiction that $m \notin A$. Then $m \in A^c$, which is an open set. So there exists $\delta > 0$ such that

$$(m-\delta,m+\delta)\subset A^c$$
.

This means there exists no $a \in A$ with $a \in (m-8, m+8) \longrightarrow \exists a \text{ with } m-8 < a < m+8$

$$m - \delta < a \le m$$
.

This contradicts the fact that m is the least upper bound of A (see Proposition 1.5.1). Therefore, max A exists. \square

Definition 2.6.3 A subset A of \mathbb{R} is called *compact* if for every sequence $\{a_n\}$ in A, there exists a subsequence $\{a_{n_k}\}$ that converges to a point $a \in A$.

■ Example 2.6.4 Let $a, b \in \mathbb{R}$, $a \le b$. We show that the set A = [a, b] is compact. Let $\{a_n\}$ be a sequence in A. Since $a \le a_n \le b$ for all n, then the sequence is bounded. By the Bolzano-Weierstrass theorem (Theorem 2.4.1), we can obtain a convergent subsequence $\{a_{n_k}\}$. Say, $\lim_{k\to\infty} a_{n_k} = s$. We now must show that $s \in A$. Since $a \le a_{n_k} \le b$ for all k, it follows from Theorem 2.1.5, that $a \le s \le b$ and, hence, $s \in A$ as desired. We conclude that A is compact.

Theorem 2.6.5 A subset A of \mathbb{R} is compact if and only if it is closed and bounded.

Proof: Suppose A is a compact subset of \mathbb{R} . Let us first show that A is bounded. Suppose, by contradiction, that A is not bounded. Then for every $n \in \mathbb{N}$, there exists $a_n \in A$ such that

$$|a_n| \geq n$$
.

Since A is compact, there exists a subsequence $\{a_{n_k}\}$ that converges to some $a \in A$. Then

$$|a_{n_k}| \ge n_k \ge k$$
 for all k .

Therefore, $\lim_{k\to\infty} |a_{n_k}| = \infty$. This is a contradiction because $\{|a_{n_k}|\}$ converges to |a|. Thus A is bounded.

Let us now show that A is closed. Let $\{a_n\}$ be a sequence in A that converges to a point $a \in \mathbb{R}$. By the definition of compactness, $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ that converges to $b \in A$. Then $a = b \in A$ and, hence, A is closed by Theorem 2.6.3.

For the converse, suppose A is closed and bounded and let $\{a_n\}$ be a sequence in A. Since A is bounded, the sequence is bounded and, by the Bolzano-Weierstrass theorem (Theorem 2.4.1), it

¹This definition of compactness is more commonly referred to as sequential compactness.

has a convergent subsequence, $\{a_{n_k}\}$. Say, $\lim_{k\to\infty} a_{n_k} = a$. It now follows from Theorem 2.6.3 that $a \in A$. This shows that A is compact as desired. \square

Definition 2.6.4 (cluster/limit/accumulation point). Let A be a subset of \mathbb{R} . A point $a \in \mathbb{R}$ (not necessarily in A) is called a *limit point* of A if for any $\delta > 0$, the open ball $B(a; \delta)$ contains an infinite number of points of A.

A point $a \in A$ which is not an accumulation point of A is called an *isolated point of A*.

- **Example 2.6.5** (1) Let A = [0,1). Then a = 0 is a limit point of A and b = 1 is also a limit point of A. In fact, any point of the interval [0,1] is a limit point of A. The set [0,1) has no isolated points.
 - (2) Let A = Z. Then A does not have any limit points. Every element of Z is an isolated point of Z.
 (3) Let A = {1/n : n ∈ N}. Then a = 0 is the only limit point of A. All elements of A are isolated
 - (3) Let $A = \{1/n : n \in \mathbb{N}\}$. Then a = 0 is the only limit point of A. All elements of A are isolated points.
- Example 2.6.6 If G is an open subset of \mathbb{R} then every point of G is a limit point of G. In fact, more is true. If G is open and $a \in G$, then a is a limit point of $G \setminus \{a\}$. Indeed, let $\delta > 0$ be such that $B(a; \delta) \subset G$. Then $(G \setminus \{a\}) \cap B(a; \delta) = (a \delta, a) \cup (a, a + \delta)$ and, thus $B(a; \delta)$ contains an infinite number of points of $G \setminus \{a\}$.

The following theorem is a variation of the Bolzano-Weierstrass theorem.

Theorem 2.6.6 Any infinite bounded subset of \mathbb{R} has at least one limit point.

Proof: Let A be an infinite subset of \mathbb{R} and let $\{a_n\}$ be a sequence of A such that

$$a_m \neq a_n$$
 for $m \neq n$

(see Theorem 1.2.7). Since $\{a_n\}$ is bounded, by the Bolzano-Weierstrass theorem (Theorem 2.4.1), it has a convergent subsequence $\{a_{n_k}\}$. Set $b = \lim_{k \to \infty} a_{n_k}$. Given $\delta > 0$, there exists $K \in \mathbb{N}$ such that $a_{n_k} \in B(b; \delta)$ for $k \ge K$. Since the set $\{a_{n_k} : k \ge K\}$ is infinite, it follows that b is a limit point of A. \square

The following definitions and results provide the framework for discussing convergence within subsets of \mathbb{R} .

Definition 2.6.5 Let D be a subset of \mathbb{R} . We say that a subset V of D is open in D if for every $a \in V$, there exists $\delta > 0$ such that

$$B(a;\delta) \cap D \subset V$$
.

Theorem 2.6.7 Let D be a subset of \mathbb{R} . A subset V of D is open in D if and only if there exists an open subset G of \mathbb{R} such that

$$V = D \cap G$$
.

Proof: Suppose V is open in D. By definition, for every $a \in V$, there exists $\delta_a > 0$ such that

$$B(a; \delta_a) \cap D \subset V$$
.

Define

$$G = \bigcup_{a \in V} B(a; \delta_a)$$

Then G is a union of open subsets of \mathbb{R} , so G is open. Moreover,

$$V \subset G \cap D = \bigcup_{a \in V} [B(a; \delta_a) \cap D] \subset V.$$

Therefore, $V = G \cap D$.

Let us now prove the converse. Suppose $V = G \cap D$, where G is an open set. For any $a \in V$, we have $a \in G$, so there exists $\delta > 0$ such that

$$B(a; \delta) \subset G$$
.

It follows that

$$B(a; \delta) \cap D \subset G \cap D = V.$$

The proof is now complete. \square

■ Example 2.6.7 Let D = [0,1) and $V = [0,\frac{1}{2})$. We can write $V = D \cap (-1,\frac{1}{2})$. Since $(-1,\frac{1}{2})$ is open in \mathbb{R} , we conclude from Theorem 2.6.7 that V is open in D. Notice that V itself is not an open subset of \mathbb{R} .

The following theorem is now a direct consequence of Theorems 2.6.7 and 2.6.1.

Theorem 2.6.8 Let D be a subset of \mathbb{R} . The following hold:

- (a) The subsets \emptyset and D are open in D.
- (b) The union of any collection of open sets in D is open in D.
- (c) The intersection of a finite number of open sets in D is open in D.

Definition 2.6.6 Let D be a subset of \mathbb{R} . We say that a subset A of D is *closed in* D if $D \setminus A$ is open in D.

Theorem 2.6.9 Let D be a subset of \mathbb{R} . A subset K of D is closed in D if and only if there exists a closed subset F of \mathbb{R} such that

$$K = D \cap F$$
.

Proof: Suppose K is a closed set in D. Then $D \setminus K$ is open in D. By Theorem 2.6.7, there exists an open set G such that

$$D \setminus K = D \cap G$$
.

It follows that

$$K = D \setminus (D \setminus K) = D \setminus (D \cap G) = D \setminus G = D \cap G^c$$
.

Let $F = G^c$. Then F is a closed subset of \mathbb{R} and $K = D \cap F$.

Conversely, suppose that there exists a closed subset F of \mathbb{R} such that $K = D \cap F$. Then

$$D \setminus K = D \setminus (D \cap F) = D \setminus F = D \cap F^c$$
.

Since F^c is an open subset of \mathbb{R} , applying Theorem 2.6.7 again, one has that $D \setminus K$ is open in D. Therefore, K is closed in D by definition. \square

Example 2.6.8 Let D = [0,1) and $K = [\frac{1}{2},1)$. We can write $K = D \cap [\frac{1}{2},2]$. Since $[\frac{1}{2},2]$ is closed in \mathbb{R} , we conclude from Theorem 2.6.9 that K is closed in D. Notice that K itself is not a closed subset of \mathbb{R} .

Corollary 2.6.10 Let D be a subset of \mathbb{R} . A subset K of D is closed in D if and only if for every sequence $\{x_k\}$ in K that converges to a point $\bar{x} \in D$ it follows that $\bar{x} \in K$.

Proof: Let D be a subset of \mathbb{R} . Suppose K is closed in D. By Theorem 2.6.9, there exists a closed subset F of \mathbb{R} such that

$$K = D \cap F$$
.

Let $\{x_k\}$ be a sequence in K that converges to a point $\bar{x} \in D$. Since $\{x_k\}$ is also a sequence in F and F is a closed subset of \mathbb{R} , $\bar{x} \in F$. Thus, $\bar{x} \in D \cap F = K$.

Let us prove the converse. Suppose by contradiction that K is not closed in D or $D \setminus K$ is not open in D. Then there exists $\bar{x} \in D \setminus K$ such that for every $\delta > 0$, one has

$$B(\bar{x};\delta) \cap D \nsubseteq D \setminus K$$
.

In particular, for every $k \in \mathbb{N}$,

$$B\left(\bar{x};\frac{1}{k}\right)\cap D\nsubseteq D\setminus K.$$

For each $k \in \mathbb{N}$, choose $x_k \in B(\bar{x}; \frac{1}{k}) \cap D$ such that $x_k \notin D \setminus K$. Then $\{x_k\}$ is a sequence in K and, moreover, $\{x_k\}$ converges to $\bar{x} \in D$. Then $\bar{x} \in K$. This is a contradiction. We conclude that K is closed in D. \square

The following theorem is a direct consequence of Theorems 2.6.9 and 2.6.2.

Theorem 2.6.11 Let D be a subset of \mathbb{R} . The following hold:

- (a) The subsets \emptyset and D are closed in D.
- (b) The intersection of any collection of closed sets in D is closed in D.
- (c) The union of a finite number of closed sets in D is closed in D.
- **Example 2.6.9** Consider the set D = [0,1) and the subset $A = [\frac{1}{2},1)$. Clearly, A is bounded. We showed in Example 2.6.8 that A is closed in D. However, A is not compact. We show this by finding a sequence $\{a_n\}$ in A for which no subsequence converges to a point in A.

Indeed, consider the sequence $a_n = 1 - \frac{1}{2n}$ for $n \in \mathbb{N}$. Then $a_n \in A$ for all n. Moreover, $\{a_n\}$ converges to 1 and, hence, every subsequence also converges to 1. Since $1 \notin A$, it follows that A is not compact.

Exercises

- **2.6.1** Prove that a subset A of \mathbb{R} is open if and only if for any $x \in A$, there exists $n \in \mathbb{N}$ such that $(x-1/n,x+1/n) \subset A$.
- **2.6.2** Prove that the interval [0,1) is neither open nor closed.
- **2.6.3** \triangleright Prove that if A and B are compact subsets of \mathbb{R} , then $A \cup B$ is a compact set.

- **2.6.4** Prove that the intersection of any collection of compact subsets of $\mathbb R$ is compact.
- **2.6.5** Find all limit points and all isolated points of each of the following sets:
- (a) A = (0,1).
- (b) B = [0, 1).
- (c) $C = \mathbb{Q}$.
- (d) $D = \{m+1/n : m, n \in \mathbb{N}\}.$
- **2.6.6** Let $D = [0, \infty)$. Classify each subset of D below as open in D, closed in D, neither or both. Justify your answers.
 - (a) A = (0,1).
 - (b) $B = \mathbb{N}$.
 - (c) $C = \mathbb{Q} \cap D$.
 - (d) D = (-1, 1].
 - (e) $E = (-2, \infty)$.