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Prove that the equation

n
Y axcos(2k+1)x=0
k=0

has a solution on (0, Z).

4.2.7 Let f: [0,%0) — R be a differentiable function. Prove that if both limy—e. f(x) and limy— ' (x)
exist, then lim,_,. f'(x) =0

4.2.8 > Let f: [0,00) — R be a differentiable function.
f(x)

(a) Show that if limy_ye f'(x) = a, then limy_yeo ——= = a.
x

(b) Show that if limy_. f/(x) = oo, then limy_, £
X

(c) Are the converses in part (a) and part (b) true?
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In this section, we assume that a,b € R and a < b. In the proposition below, we show that it is
possible to use the derivative to determine whether a function is constant. The proof is based on the
Mean Value Theorem.

Proposition 4.3.1 Let f be continuous on [a,b] and differentiable on (a,b). If f/(x) = 0 for all
x € (a,b), then f is constant on [a, b].

Proof: Suppose by contradiction that f is not constant on [a,b]. Then there exist a; and by such
thata < a; < by < band f(a1) # f(b1). By Theorem 4.2.3, there exists ¢ € (a;,b;) such that

rio =100 o,

which is a contradiction. [J

The next application of the Mean Value Theorem concerns developing simple criteria for
monotonicity of real-valued functions based on the derivative. ] Al

- ,g (X) =X o -41)
Proposition 4.3.2 Let f be differentiable on (a,b). ‘Fl ( ) 3)(1

X) ™=

@) If f'(x) > 0 for all x € (a,b), then f is strictly increasing on (a,b). ol = O
(i1) If f'(x) < O for all x € (a,b), then f is strictly decreasing on (a, b). £ l"l -

Proof: Let us prove (i). Fix any xj,x; € (a,b) with x; < x,. By Theorem 4.2.3, there exists
¢ € (x1,x2) such that

Fe2)=S0) _ iy so = F )= &) >0

X2 —X1

This implies f(x1) < f(x2). Therefore, f is strictly increasing on (a,b). The proof of (ii) is similar. [J
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Figure 4.5: Strictly Increasing Function.

= Example 4.3.1 Letn € Nand f: [0,%0) — R be given by f(x) = x". Then f'(x) = nx"~!. There-
fore, f’(x) > 0 for all x > 0 and, so, f is strictly increasing. In particular, this shows that every
positive real number has exactly one n-th root (refer to Example 3.4.2).

Theorem 4.3.3 — Inverse Function Theorem. Suppose f is differentiable on I = (a,b) and
f(x) #0for all x € (a,b). Then f is one-to-one, f(I) is an open interval, and the inverse function
f~1: f(I) — I is differentiable. Moreover,
, 1 o ’in\(. 5-5 ’F(a(h)':@(d(f(”)
+ (57 1) Frae o $op) =8, £6))

where f(x) =y.

Proof: It follows from Theorem 4.2.5 that
f'(x) >0 forall x € (a,b), or f/(x) <0 forall x € (a,b).

Suppose f’(x) > 0 for all x € (a,b). Then f is strictly increasing on this interval and, hence, it is
one-to-one. It follows from Theorem 3.4.10 and Remark 3.4.11 that £(I) is an open interval and f~!
is continuous on f(I).
It remains to prove the differentiability of the inverse function f~! and the representation of its
derivative (4.7). Fix any y € f(I) with y = f(%). Let g = f~!. We will show that
N~—~—

_ ~{

. g0)—8() _ 1 =_ ™G s = -

lim = . = Xu) =Y X, = f V.= 9
=y y—3 176 x=£19) FO) =y " ( o) =)

Fix any sequence {y,} in f(I) that converges to y and yj # y for every k. For each y, there exists

xi € I such that f(x;) = yx. That is, g(yx) = x for all k. It follows from the continuity of g that {x;}

converges to X. Then Y -
i 800 —80) _ . m—F ° — G“”(‘O)—:‘?
A R A 1C feq = gy s gilial
A ‘ £(%) 919) = |
= 0 P L) of = \Ag !
Xp—X
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The proof is now complete. U

u Example 4.3.2 Let n € N and consider the function f: (0,e0) — R given by f(x) = x". Then f
is differentiable and f(x) = nx"~! # 0 for all x € (0, ). It is also clear that £((0,)) = (0,). It
follows from the Inverse Function Theorem that f~1 : (0,00) — (0,0) is differentiable and given
Y € (0,%)

1 1
FUTO) o)

Given y > 0, the value f~!(y) is the unique positive real number whose n-th power is y. We call
F~(y) the (positive) n-th root of y and denote it by /Y. We also obtain the formula

Yo =

SN
o) T

Exercises

43.1 (a) Let f: R — R be differentiable. Prove that if f’(x) is bounded, then f is Lipschitz
continuous and, in particular, uniformly continuous.

(b) Give an example of a function f: (0,e0) — R which is differentiable and uniformly continuous
but such that f'(x) is not bounded.

4.3.2 » Let f: R — R. Suppose there exist £ > 0 and o > 0 such that
I7() — F()] < LJu—v|* for all u,v € R. (4.8)

(a) Prove that f is uniformly continuous on R.
(b) Prove thatif @ > 1, then f is a constant function.
(¢) Find a nondifferentiable function that satisfies the condition above for o = 1.

4.3.3 > Let f and g be differentiable functions on R such that f(xp) = g(xp) and
F(x) < g (x) for all x > xp.

Prove that
f(x) < g(x) for all x > xp.

4.3.4 Let f,g: R — R be differentiable functions satisfying

@ f(0)=g(0)=1

) _ gk)
(b) f(x) >0, g(x) >0and e > () for all x.

Prove that

f(n &(1)
FORRO)



