Prove that the equation

$$\sum_{k=0}^{n} a_k \cos(2k+1)x = 0$$

has a solution on $(0, \frac{\pi}{2})$.

4.2.7 Let $f:[0,\infty)\to\mathbb{R}$ be a differentiable function. Prove that if both $\lim_{x\to\infty}f(x)$ and $\lim_{x\to\infty}f'(x)$ exist, then $\lim_{x\to\infty} f'(x) = 0$

4.2.8 \triangleright Let $f: [0, \infty) \to \mathbb{R}$ be a differentiable function.

- (a) Show that if $\lim_{x\to\infty} f'(x) = a$, then $\lim_{x\to\infty} \frac{f(x)}{a} = a$.
- (b) Show that if $\lim_{x\to\infty} f'(x) = \infty$, then $\lim_{x\to\infty} \frac{f(x)}{x} = \infty$.
- (c) Are the converses in part (a) and part (b) true?

LECTURE 21: APPLICATIONS OF

4.3 SOME APPLICATIONS OF THE MEAN VALUE THEOREM

In this section, we assume that $a, b \in \mathbb{R}$ and a < b. In the proposition below, we show that it is possible to use the derivative to determine whether a function is constant. The proof is based on the Mean Value Theorem.

Proposition 4.3.1 Let f be continuous on [a,b] and differentiable on (a,b). If f'(x)=0 for all $x \in (a,b)$, then f is constant on [a,b].

Proof: Suppose by contradiction that f is not constant on [a,b]. Then there exist a_1 and b_1 such that $a \le a_1 < b_1 \le b$ and $f(a_1) \ne f(b_1)$. By Theorem 4.2.3, there exists $c \in (a_1, b_1)$ such that

$$f'(c) = \frac{f(b_1) - f(a_1)}{b_1 - a_1} \neq 0,$$

which is a contradiction. \square

The next application of the Mean Value Theorem concerns developing simple criteria for $t_1(0) = 0$ $t_1(x) = 3X_1$ $t_2(x) = 3X_1$ $t_3(x) = X_3$ $t_3(x) = X_3$ monotonicity of real-valued functions based on the derivative.

Proposition 4.3.2 Let f be differentiable on (a,b).

(i) If f'(x) > 0 for all $x \in (a,b)$, then f is strictly increasing on (a,b). (ii) If f'(x) < 0 for all $x \in (a,b)$, then f is strictly decreasing on (a,b)

Proof: Let us prove (i). Fix any $x_1, x_2 \in (a, b)$ with $x_1 < x_2$. By Theorem 4.2.3, there exists $c \in (x_1, x_2)$ such that

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0. \implies f(x_1) - f(x_1) > 0$$

This implies $f(x_1) < f(x_2)$. Therefore, f is strictly increasing on (a,b). The proof of (ii) is similar. \square

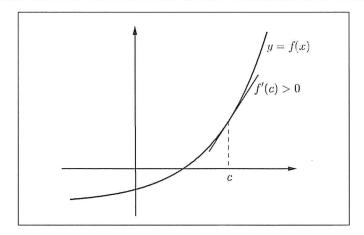


Figure 4.5: Strictly Increasing Function.

Example 4.3.1 Let $n \in \mathbb{N}$ and $f: [0, \infty) \to \mathbb{R}$ be given by $f(x) = x^n$. Then $f'(x) = nx^{n-1}$. Therefore, f'(x) > 0 for all x > 0 and, so, f is strictly increasing. In particular, this shows that every positive real number has exactly one n-th root (refer to Example 3.4.2).

Theorem 4.3.3 — Inverse Function Theorem. Suppose f is differentiable on I = (a,b) and $f'(x) \neq 0$ for all $x \in (a,b)$. Then f is one-to-one, f(I) is an open interval, and the inverse function $f^{-1}: f(I) \to I$ is differentiable. Moreover,

$$(f^{-1})'(y) = \frac{1}{f'(x)}, = \frac{1}{f'(f^{-1}(y))}$$

fine \Rightarrow $f(a_1b) = (f(a_1) f(b))$ fue \Rightarrow $f(a_1b) = (f(b), f(a))$

where f(x) = y.

Proof: It follows from Theorem 4.2.5 that

$$f'(x) > 0$$
 for all $x \in (a,b)$, or $f'(x) < 0$ for all $x \in (a,b)$.

Suppose f'(x) > 0 for all $x \in (a,b)$. Then f is strictly increasing on this interval and, hence, it is one-to-one. It follows from Theorem 3.4.10 and Remark 3.4.11 that f(I) is an open interval and f^{-1} is continuous on f(I).

It remains to prove the differentiability of the inverse function f^{-1} and the representation of its derivative (4.7). Fix any $\bar{y} \in f(I)$ with $\bar{y} = f(\bar{x})$. Let $g = f^{-1}$. We will show that

$$\lim_{y\to \bar{y}} \frac{g(y) - g(\bar{y})}{y - \bar{y}} = \frac{1}{f'(\bar{x})}. \quad \text{for } x = f^{-1}(\bar{y}) \quad \text{for } x = f^{-1}(\bar{y})$$

Fix any sequence $\{y_k\}$ in f(I) that converges to \bar{y} and $y_k \neq \bar{y}$ for every k. For each y_k , there exists $x_k \in I$ such that $f(x_k) = y_k$. That is, $g(y_k) = x_k$ for all k. It follows from the continuity of g that $\{x_k\}$ converges to \bar{x} . Then

$$\lim_{k \to \infty} \frac{g(y_k) - g(\bar{y})}{y_k - \bar{y}} = \lim_{k \to \infty} \frac{x_k - \bar{x}}{f(x_k) - f(\bar{x})}$$

$$= \lim_{k \to \infty} \frac{1}{\frac{f(x_k) - f(\bar{x})}{x_k - \bar{x}}} = \frac{1}{f'(\bar{x})}.$$

$$\frac{1}{z} = \lim_{k \to \infty} \frac{x_k - \bar{x}}{f(x_k) - f(\bar{x})} = \lim_{k \to \infty} \frac{1}{\frac{1}{f(x_k) - f(\bar{x})}} = \frac{1}{f'(\bar{x})}.$$

$$= \lim_{k \to \infty} \frac{1}{\frac{f(x_k) - f(\bar{x})}{x_k - \bar{x}}} = \frac{1}{f'(\bar{x})}.$$

$$3 \cdot f = i d_{\underline{x}} \qquad f'(y) = \frac{1}{y'(y)}$$

$$3 \cdot f = i d_{\underline{x}} \qquad f'(y) = \frac{1}{y'(y)}$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y)$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y)$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y)$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

$$3 \cdot f(x) = x \qquad \forall x \in \underline{x} \qquad f'(y) = x$$

The proof is now complete. \Box

■ Example 4.3.2 Let $n \in \mathbb{N}$ and consider the function $f: (0, \infty) \to \mathbb{R}$ given by $f(x) = x^n$. Then f is differentiable and $f'(x) = nx^{n-1} \neq 0$ for all $x \in (0, \infty)$. It is also clear that $f((0, \infty)) = (0, \infty)$. It follows from the Inverse Function Theorem that $f^{-1}: (0, \infty) \to (0, \infty)$ is differentiable and given $y \in (0, \infty)$

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{n(f^{-1}(y))^{n-1}}.$$

Given y > 0, the value $f^{-1}(y)$ is the unique positive real number whose *n*-th power is y. We call $f^{-1}(y)$ the (positive) *n*-th root of y and denote it by $\sqrt[n]{y}$. We also obtain the formula

$$(f^{-1})'(y) = \frac{1}{n(\sqrt[n]{y})^{n-1}}.$$

Exercises

- **4.3.1** (a) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Prove that if f'(x) is bounded, then f is Lipschitz continuous and, in particular, uniformly continuous.
 - (b) Give an example of a function $f:(0,\infty)\to\mathbb{R}$ which is differentiable and uniformly continuous but such that f'(x) is not bounded.
- **4.3.2** \blacktriangleright Let $f: \mathbb{R} \to \mathbb{R}$. Suppose there exist $\ell \ge 0$ and $\alpha > 0$ such that

$$|f(u) - f(v)| \le \ell |u - v|^{\alpha} \text{ for all } u, v \in \mathbb{R}.$$

$$(4.8)$$

- (a) Prove that f is uniformly continuous on \mathbb{R} .
- (b) Prove that if $\alpha > 1$, then f is a constant function.
- (c) Find a nondifferentiable function that satisfies the condition above for $\alpha = 1$.
- **4.3.3** \triangleright Let f and g be differentiable functions on \mathbb{R} such that $f(x_0) = g(x_0)$ and

$$f'(x) \le g'(x)$$
 for all $x \ge x_0$.

Prove that

$$f(x) \le g(x)$$
 for all $x \ge x_0$.

4.3.4 Let $f,g: \mathbb{R} \to \mathbb{R}$ be differentiable functions satisfying

(a)
$$f(0) = g(0) = 1$$

(b)
$$f(x) > 0$$
, $g(x) > 0$ and $\frac{f'(x)}{f(x)} > \frac{g'(x)}{g(x)}$ for all x .

Prove that

$$\frac{f(1)}{g(1)} > 1 > \frac{g(1)}{f(1)}.$$