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Chapter 5
optimization

The problem of optimizing a function of several variables is in many ways similar to the problem
of optimization in single variable calculus. There is a fermat-type theorem; extrema are found at
crtical points if anywhere. Also, there is an analogue of the closed interval method for continuous
functions on some closed domain; the absolute extrema either occur at a critical point in the interior
or somewhere on the boundary. However, there is no simple analogue of the first derivative test.
In higher dimensions we can approach a potential extremum in infinitely many directions, in one-
dimension you just have left and right approaches. The second derivative test does have a fairly
simple analogue for functions of several variables. To understand the multivariate second derivative
test we must first understand multivariate Taylor series. Once those are understood the second
derivative test is easy to motivate. Not all instructors emphasize this point, but even in the single
variable case the Taylor series expansion is probably the best tool to really understand the second
derivative test. As a starting point for this chapter I assume you know what a Taylor series is,
have memorized all the standard expansions and tricks, and are ready and willing to think. To
the more mathematical reader, I apologize for the lack of rigor. I will not even discuss finer points
of convergence or divergence. The theory of multivariate series is found in many good advanced
calculus texts. I'll break from my usual format and offer the main terms in this overview:

Definition 5.0.1.

(x,y) in some disk centered at (@, b). Likewise, [(a.b) is a local minimum if there exists
some disk D centered on (a,b) for which (x,y) € D implies f(2,y) > f(a.b). If S C dom([f)
and f(a,b) > f(x,y) for all (z,y) € S then f(a,b) is a maximum of f on S. Similarly. if
S € dom(f) and f(a,b) < f(w.y) for all (z,y) € S then f(a,b) is a minimum of f on S.
If f has a maximum or minimum on dom(f) then f is said to have a global maximum or
minimum. Maximum and minimum values are collectively called extreme values.

A function f : dom(f) € B? — R has a local maximum at (a.b) if f(x,y) < f(a.b) for all

Given the terms above, let me briefly outline the chapter. In the first section we study Lagrange
Multipliers which gives us a method to find extrema on constraint curves or surfaces. These
constraint curves or surfaces can often be thought of as boundaries of areas or volumes. The
problem of finding extrema in the interior of areas or volumes is revealed by the theory of critical
points. In short, the structure of the quadratic terms in the multivariate Taylor series expanded
about a critical point classify the type as maximum, minimum or saddle. However, degenerate cases
such as troughs or constants require a more delicate analysis. In the second section we introduce
multivariate power series and in the third section we study the second derivative test for functions
of two variables. Our derivation of the second derivative test is partially based in a Lagrange
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232 CHAPTER 5. OPTIMIZATION

multiplier argument to circles of arbitrary radii about the critical point. See Theorem 5.1.12 and
5.1.13. This allows us to avoid some linear algebra. However, we describe in Subsection 5.1.4 how
the theory of quadratic forms in linear algebra allows vast generalization of our two-dimensional
result. Finally, in the fourth section we discuss the closed set test which unifies the efforts of the

first two sections into a common goal. .
£ objective function

5.1 lagrange multipliers /

The method of Lagra,nge [ultipliers states the followmg for smooth functions f,g with non-
vanishing gradients! on’g = 0) &= o Agtraand g,e’\.

If f(p) is a maximum/minimum of f on the level-set g = ( then for some constant A

Vf=\Vg.

Notice that the method does not provide the existence of maximums or minimums of the objective
function f on the constraint equation g = 0. If no max/min for f exists on g =0 then it may be
possible to solve the Lagrange multiplier equation V f = AVg and find points which do not provide
extrema for f on g = 0. We'll see examples that show that when g =0 1is a closed and bounded
set then the extrema for f do exist. We return to this subtle points in the examples which follow
the proof. Finally, I apply the method to a whole class of functions on R2. The last subsection is
difficult but it lays the foundation for the two-dimensional second derivative test we derive later in
this chapter. The logic of the test rests on a combination of the final subsection in this section and
the multivariate taylor series discussed in the next section.

5.1.1 proof of the method

Proof: (n =2 case) Suppose f has a local maximum at (2,,Yo) on the level curve g(z, y) =0. Let
I be an interval containing zero and 7: I C R — R?2 be a smooth path parametrizing g(z,y) = 0
with 7(0) = (o, o). This means g(7(t)) = 0 for all t € I. It is intuitively clear that the function
of one-variable h = f o7 has a maximum at ¢t = 0. Therefore, by Fermat’s theorem from single-
variable calculus, #/(0) = 0. But, h is a composite function so the multivariate chain rule apgies.

In particular, qq (p)

%[f(f‘(t))] = ViG0)- Ty =0 g=0

But, we also know g(7(t)) = 0 for all ¢ € I hence

d

& [atren] = vatrien -G =0 W

Vf= AV9%.

for each ¢ € I. In particular, put ¢ = 0 in the equatioh above to find

& ||

We find that both Vf(ze,s) and Vg(zo,y,) are orthogonal to the tangent vector d—’"(O). In two
dimensions geometry forces us to conclude that V f(z,, o) and Vg(z,,y,) are colinear? thus there

= Vg(r(0)) - 5 (0) = 0.

t=0

1this means there are no critical points for f and g on the region of interest
2] assume V (2o, yo) # 0 and Vg(zo, yo) # 0 as mentioned at the outset of this section.
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exists some nonzero constant A such that Vf(zo,y0) = AVg(Z6, Vo). O

Proof: (n =3 case) Suppose f has a local maximum at (2o, Yo, 2o) on the level surface g(z,y, z) =
0. Let I be an interval containing zero and 7: I € R — R? be a smooth path on the level surface
g(z,y,2) = 0 with 7(0) = (20, Yo, 20). This means g(7(t)) = 0 for all ¢ € I. It is intuitively clear
that the function of one-variable h = f o7 has a maximum at t = 0. Therefore, by Fermat’s theorem
from single-variable calculus, h/(0) = 0. But, h is a composite function so the multivariate chain
rule applies. In particular, v %

& s

But, we also know g(7(¢)) = 0 for all ¢ € I hence

= VF(7(0))- T(0) = 0.

t=0

=

£ [ottn) = vatrn- o o z

t %

for each t € I. In particular, put t = 0 in the equation above to find

& aton]

We find that both V (24, Yo, o) and Vg(Zo, Yo zo) are orthogonal to the tangent vector d—': (0). We
derive this result for every smooth curve on g(z,y,2) = 0 thus Vf(zo,¥o, 20) and Vg(Zs, Yo, 20)
are normal to the tangent plane to g(z,y,2) = 0 at (%o, Yo, 20). It follows that V f(zo, Yo. zp) and
Vg(zo, Yo, 20) are colinear thus there exists some nonzero constant A such that Vizs,96.20) =
AVg(Zo, Yo, 20). O

In advanced calculus I discuss an more general version of the Lagrange multiplier method which
solves a wider array of problems. I think these two cases suffice for calculus III. If you are curious
about the general method then perhaps you should take advanced calculus.

5.1.2 examples of the method

Example 5.1.1. Suppose we wish to find mazimum end minimum distance to the origin for points
0 2 _ 42 = 1. In this case we can use the distance-squared function as our objective
(flz,y) = z>+12 hind the single constraint function is g(z,y) = z2—y2. Observe that Vf = (2z,2y)
whereas Vg = (2z,—2y). We seek solutions of Vf = AVg which gives us (2z,2y) = A(2z, —2y).
Hence 2z = 2\z and 2y = —2X\y. We must solve these equations subject to the condition z2—y? =1.

Observe that x = 0 is not a solution since 0 — y* = 1 has no real solution. On the other hand,
y =0 does fit the constraint and z* — 0 =1 has solutions x = =1. Consider then

2z = 2Xz and 2y = -2Xy =i z(1-A) =0 and y(1+A)=0_

Since © # 0 on the constraint curve it follows that 1 — A = 0 hence A = 1 and we learn that
y(1+1) = 0 hence y = 0. Consequently, (1,0) and (—1,0) are the two point where we ezpect to find
extreme-values of f. In this case, the method of Lagrange multipliers served it’s purpose, as you
can see in the left graph. Below the green curves are level curves of the objective function whereas
the particular red curve is the given constraint curve.

= Ve(0) - 50 =0 Nf= 109.
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The picture on the right above is a screen-shot of the Java applet created by David Lippman and
Konrad Polthier to explore 2D and 3D graphs. Especially nice is the feature of adding vector fields
to given objects, many other plotters require much more effort for similar visualization. See more
at the website: http://dlippman.imathas.com/gl/GrapherLaunch.html. Note how the gradient
vectors to the objective function and constraint function line-up nicely at those points.

In the previous example, we actually got lucky. There are examples of this sort where we could get
false maxima due to the nature of the constraint function.

Example 5.1.2. Suppose we wish to find the points on the unit circle g(z,y) = 22 + 9% = 1 which
give eztreme values for the objective function f(z,y) = a* —y?. Apply the method of Lagrange
multipliers and seek solutions to Vf = AVg:

(2z, —2y) = A(2z,2y)

We must solve 2z = 2z which is better cast as (1—A)z = 0 and -2y = 2y which is nicely written
as (1+ A)y =0. On the basis of these equations alone we have several options:
D s e = Y

LifA=1then 1+1)y=0hencey=0 => X4o=y\ = X=£{ : (%\0]
9 ifA=—1then (1— (1))z =0 hencez =0 > O = > P7H <. (o,£1)
But, we also must fit the constraint 2> + y> = 1 hence we find four solutions:
1. if A=1theny=0thusz’=1 = z=+1 = (£1,0)
2. ifA=—1thenz=0thusy’=1 = y==x1 = (0,%1)
We test the objective function at these points to ascertain which type of extrema we’ve located:
F0,£1) =02 — (x1)2=-1 &  f(£1,0)=(£1)*-0*=1
When constrained to the unit circle we find the objective function attains & mazimum value of 1 at
the points (1,0) and (—1,0) and a minimum value of —1 at (0,1) and (0,—1). Let’s illustrate the

answers as well as a few non-answers to get perspective. Below the green curves are level curves of
the objective function whereas the particular red curve is the given constraint curve.
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The success of the last example was no accident. The fact that the constraint curve was a circle
which is a closed and bounded subset of R? means that is is a compact subset of R2. A well-known
theorem of analysis states that any real-valued continuous function on a compact domain attains
Jboth maximum and minimum values. The objective function is continuous and the domain is
compact hence the theorem applies and the method of Lagrange multipliers succeeds. In contrast,
the constraint curve of the preceding example was a hyperbola which is not compact. We have
no assurance of the existence of any extrema. Indeed, we only found minima but no maxima in
Example 5.1.1.

The generality of the method of Lagrange multipliers is naturally limited to smooth constraint
curves and smooth objective functions. We must insist the gradient vectors exist at all points of
inquiry. Otherwise, the method breaks down. If we had a constraint curve which has sharp corners
then the method of Lagrange breaks down at those corners. In addition, if there are points of dis-
continuity in the constraint then the method need not apply. This is not terribly surprising, even in
calculus I the main attack to analyze extrema of function on R assumed continuity, differentiability
and sometimes twice differentiability. Points of discontinuity require special attention in whatever
context you meet them.

At this point it is doubtless the case that some of you are, to misquote an ex-student of mine, “not-
impressed”. Perhaps the following examples better illustrate the dangers of non-compact constraint
curves.

Example 5.1.3. Suppose we wish to find extrema of f(z,y) = z when constrained to zy = 1.
Identify g(z,y) = zy = 1 and apply the method of Lagrange multipliers and seek solutions to
Vf=AVyg:

(1,LO)=Xy,z) = 1=Xy and 0= Az

If X\ =0 then 1 = Ay is impossible to solve hence A\ # 0 and we find x = 0. But, if x = 0 then
zy = 1 is not solvable. Therefore, we find no solutions. Well, I suppose we have succeeded here
in a way. We just learned there is no extreme value of © on the hyperbola zy = 1. Below the
green curves are level curves of the objective function whereas the particular red curve is the given
constraint curve.

min 5 -{ ok (o £1).

¢ xtroms
VA
,rhl“:
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| ]| xe=t ==

Example 5.1.4. Suppose we wish to find extrema of f (z,y) = = when constrained to g2 —=qf = 1.
Identify g(x,y) = z% — y? =1 and apply the method of Lagrange multipliers and seek solutions to
Vf=AVg:

(1,0) = A(2z,—2y) = 1=2Xz and 0= -2y

If X = 0 then 1 = 2)x is impossible to solve hence A\ # 0 and we findy =0. Ify =0 and 22—yt =1
then we must solve 22 = 1 whence z = +1. We are tempted to conclude that:

1. the objective function f(z,y) = z attains a mazimum on z®—y? =1 at (1,0) since i, 0p=1

2. the objective function f(z,y) = z atiains a minimum on 22—y% =1 at (-1,0) since f(1,0) =
-1

But, both conclusions are false. Note \/2_2 — 12 = 1 hence (£V/2,1) are points on the constraint
curve and f(v/2,1) = V2 and f (——\/.‘5, 1) = —\/2. The error of the method of Lagrange multipliers
in this context is the supposition that there exists extrema to find, in this case there are no such
points. It is possible for the gradient vectors to line-up at points where there are no eztrema. Below
the green curves are level curves of the objective function whereas the particular red curve is the
given constraint curve.

(1)

v fle =

l
) 1

Incidentally, if you want additional discussion of Lagrange multipliers for two-dimensional prob-
Jems one very nice source I certainly profitted from was the YouTube video by Edward Frenkel of
Berkley. See his website http://math.berkeley.edu/ frenkel/ for links.
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Example 5.1.5. Suppose we wish to find extrema of f(z,y) = z® +3y?% on the unit circle g(z,y) =
22 + y2 = 1. Identify that f is the objective function and g is the contraint function for this
problem. The method of Lagrange multipliers claims that extrema for f subject to g =1 are found
from solutions of Vf = AVyg. In particular we face the algebra problem below:

(2a,6y) = A(2z,2y)
Therefore, = Az and 3y = Ay. We must solve simultaneously
z1-X) =0, y(3—-X) =0, z°+y*=1

If z = 0 then A = 3 and hence 22 + 4% = 1 implies y = £1. On the other hand, if A =
1 then y = 0 hence 2% + y®> = 1 implies ¢ = +1. Thus. we find the four extremal points:
(0,1), (0,-1),(1,0),(~1,0) and evaluation will reveal which is maz/min

F0,+£1)=3  f(+1,0)=1

Therefore, f restricted to the unit circle 2® + y*> = 1 reaches an absolute mazium value of 3 at the
points (0,—1) and (0,1) and an absolute minimum of 1 at the points (1,0) and (—1,0).

I know we found the absolute maximum and minimum because the constraint curve is closes and
bounded and the objective function is smooth with non-vanishing gradient near the constraint
curve. These two criteria imply that extreme values exist and the method of Lagrange can find
them.

Example 5.1.6. Problem: find the closest point on the plane 2z — 2y + 6z = 12 to the point
w‘

(2,3,4). B0t )

Solution: we wish to minimize the distance between the (z,y, z) on the plane and the point (2,3,4).
This suggests our objective function is f(z,y,2) = (z — 2)? + (y — 3)> + (2 =4)2. The constraint
surface is simply g(x,y, z) = 2o — 2y + 6z — 12 = 0. Ezamine the lagrange multiplier equations:

Vf=AVyg =% { 2(z—2), 2(y—3), 2(z—4) ) = X2,-2,6) (113’.*)

Therefore, zT= 2—-A, y= 3+)\‘, g= 44-3)\. Substituting into the plane equation 2z —2y+6z t/é:/

22— A)—2(3+A)+6(44+3)) =12 = 2-A-3-A2+12+9A=6
Hence, TA=6 — 11 so A = —5/7. We deduce that the closest point at

$—2+§—19
- ¥ T

The closest point is mg/’{, 16/7, 13/7)

The plane 2z — 2y + 62 = 12 is not a bounded subset of B3 so we shouldn’t necessarily expect to
find extrema for the objective function in the last example. In fact, we found no maximally distant
point. In a case such as the last example we use common sense to supplement the method. Proof of
that a closest point exists involves a bit more than common sense. I'll leave it to your imagination,
or a future course.
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Example 5.1.7. Let f(z,y) = e®¥ then find the extrema of f on the curve z3 + y® = 16.

Solution: identify our constraint as the level curve g(x,y) = 16 for g(z,y) = ¥ +y3. The method
of Lagrange multipliers suggests we solve simultaneously g = 16 and Vf = AVyg. Ezplicitly, this
yields,

(e, we™) = A(32?, 3?)

Therefore, if we solve both component equations for A we obtain

3 3

e™  ze™ T
=¥ = A _ 2 = g3,

T 322 32 22 32 y

Now, return to g(z,y) = 2° +y® to see 22% = 16 hence x = /8 = 2. It follows that y* = 8 hence
y = 2. Thus f(2,2) = e. This is the global mazimum of f(z,y) = e®¥ on 23 +y> = 16. This claim
is seen from examining the exponential function in each quadrant as the point gets far away from
the origin on the given constraint curve. The constraint curve plotted with Wolfram Alpha is given
below:

Notice in both quadrants II. and IV. we have xy < 0 hence e™V < 1. It follows the mazimum found
is indeed the global mazimum. Also, asymptotically, the values of f approach 0 as we travel along
the constraint curve far from the origin.

Example 5.1.8. Let f(z,v, z) = xyz find the extreme values of f on the surface z*+2y>+32% = 6.

Solution: let g(z,y,2z) = 22 + 24> + 322 hence the constraint surface is given by the solution
set of g(z,y,2z) = 6. Apply the method of Lagrange multipliers to solve g = 6 and Vf = AVyg
simultaneously. Explicitly,

(yz,zz, zy) = A(2z,4y,62)

Thus,
yz =2Xz, zz=4\y, zy=06Az.

If any of the variables are zero then the equations above force the remaining two variables to be zero
as well. Therefore, as (0,0,0) is not a solution of g(z,y,z) = 6 we may assume z,y,z # 0 in the
algebra which follows. Multiply the equations by x,vy, z respectively to obtain:

zyz = 2Xz?, zyz =4\?, ayz = 6)22

From which we find 2® = 2y* = 322 hence g(x,y,2) = 2% + 2y* + 322 = 32? = 6. We find 2* =2
thus = £v/2 and it follows 2y = 2 hence y = +1 and 322 = 2 thus z = i%. It follows we have
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eight points to consider:

fV2,L,%) =% fVa1-B)= -2
fV2,-1,%) = -% f(V2,-1,-%) =
f(=V2,1,2)=-% f(-v2.1,-) = %
f(—v2,-1,9) =% f(-v2,-1,-B) = -2,

The mazimum value % 1is attained on the surface at the four points which have either all positive

or just two negative coordinates. The minimum value —% is attained on the surface at the four

points which have an odd number of negative components. Our analysis is illustrated in diagrams
below. The blue ellipsoid is the constraint and the green and red illustrate surfaces on which the
objective function takes its mazimum and minimum values respective:

{ (vve) =x92

Example 5.1.9. Find the point on the plane x — y + z = 8 which is closest to (1,2,3).

Solution: we seek to minimize f(z,y,2) = (z — 1)?2 + (y — 2)%2 + (2 — 3)? subject g(2,y,2) =
T —y+ 2z =2. Lagrange’s method gives us:

20x-1)=A
Vf=Ag = 2y-2)=-)\
2(z—=3)=A

Thus,

%zm-—1=2—y=z—3

hence t =3 —y and z = 5 — y and we can substitute these into the plane equation to find 3 —y —
y+5—y=-3y+8=8 thusy =0 and we find x =3 and z = 5. Therefore, the closest point on
the plane is (3,0,5). A silly picture of this is as follows: the green point is (1,2,3) and the red is
(3,0,5)
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Example 5.1.10. A rectangular boz without a lid is made from 12 square feet of cardboard. Find
the mazimum volume of such a boz.

Solution: letx,y, z be the lengths of the sides of the boz then V = zyz is the volume. The contraint
is given by g(z,y, z) =22z + 2yz + 2y = 12. The zy is the area of the base and the top is open so
this distinguishes the term from the sides of the box. We apply the method of Lagrange: consider
VV = A\Vyg yields

(yz,z2,2y) = M2z + y,22 + 7,27 + 2y).

Thus,
yz=A2z+y) = ayz= (222 +2y)
zz=A22+12) = ayz=M2zy+ay) '9
zy = A2z +2y) = ayz= A(2zz+ 2y2)

Hence,

AM2zz + zy) = AM22y + zy) = M(2z2 + 2y2)

From which we find,
ZT = 2y Yy = 2xz

Thus y =z and y = 2z hence z = 2z (note z,z = 0 are not interesting physically). The constraint
equation can be reduced to an egquation in z:

12=2zz+2yz+ay =422 +422 + 422 =122 = =1.

Therefore, * = y = 2 and we conclude the boz should have dimensions 2 x 2 x 1 in feet. Thus
V = 4ft? is the mazimum volume.

The answer above comes as no surprise, there is no difference between z,y in the problem thus by
symmetry z = y.
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Example 5.1.11. Let f{x.y) == y. Find the extrema of f on the ellipse 2% /8 -+ y*/2 = 1.

Solution: identify the constraint function g(x,y) = x2/8 + 42/2 = 1. Note, V[ = A\Vg yields

o) =Aa/dy) = dy= & z=Xy = y=—

Therefore, y(1 ~ ﬁ) =1 from which we find solutions y =0 or A = £2.

4

Ify=0 then x = Ay = 0 but {0,0) iz not on ithe ellipse.

If A== 2 then z = 2y and 4y = 22 and thus 2 = 4 hence © = +2 and y = 1 hence (=2, —1) and
(2,1) are solutions. Note f(£2, 1) = (4£2)(£1) = 2.

If M= =2 then v = -2y and 4y = -2z hence y = w;l_;a; thus 2? = 4 and © = +2. However,
y = —3(£2) = F1. The solutions (~2,1) and (2, -1) follow. Note f{+2,7F1) = (£2)(F1) = —2.
In summary, we find the maximum of 2 is atteined af {—2,—1) and (2,1) whereas the minimum of
~2 1% attained at (2, —1) and {=2,1). The picture below illustrates why:
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5.1.3 extreme values of a quadratic form on a circle

In the next example we generalize the results of several past examples. In particular we intend to
find the max/min for an arbitrary quadratic function in z,y on a circle of radius R. The result of
this discussion will be of great use later in this chapter.

Problem: Suppose Q(z,y) = az? + 2bay + cy® for some constants a, b, ¢. Determine general for-
mulas for the extrema of @ on a circle of radius R given by g(z,y) = 2% +y*> = R>.

Solution: Apply the method of Lagrange, we seek to solve VQ = AVyg subject to g(z,y) =
2 402 2
z* +y* = R?,

(2az + 2by, 2bx + 2cy) = A2z, 2y) = ar+by = Ar, br+cy = Ay
We must solve simultaneously the following triple of equations:
(a=Nz+by=0, b+ (c—Ny=0, z>+y?>=RZ

As a matrix problem, setting aside the circle equation for a moment,

a-x b J[z] _[oO
b e—A | [ Y ] - [ 0 ]
If (a— A)(c— ) — b # 0 then the inverse matrix of the 2 x 2 exists and multiplication by of
[ c— )
| b
However, in that case there is only a solution to the circle equation z? +y? = R? if it happens that
R =0, we are more interested in the case R # 0 so we must look for solutions elsewhere. In other

words, for interesting solutions we must insist that (a — A\)(¢c — A) — b> = 0. The constants a,b,c
are given so we face a quadratic equation in A:

the equation above by the matrix T A)((}_ =5 aib,\ ] vields the solution z = y = 0.

M-(a+cr+ac—0* =0 *

Completing the square yields sclutions:

_atct/(a+c)?—4(ac—b?)

A 2

What type of solutions are possible from this expresssion? Simplify the expression in the radical,

5= a+cx+/(a—c)?+ 4b?
B 2

The radicand is manifestly non-negative, there is clearly no way to obtain a complex solution for real
values of a, b, c. Values of A are either zero, positive or negative. This is an important observation
once we pair it with the calculation that follows. Casewise logic is needed:
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Case 1. Suppose b= 0 then (@ — A){e — A) = 0 and there are three ways to solve this:

1. a = )\ # ¢ hence y = 0 and it follows x = £R. Therefore, extreme values of Q(£R,0) = aR?
are attained at (+R,0).

2. ¢= A # a bence x = 0 and it follows y = +R. Therefore, extreme values of Q{0, +R) = cR?
are attained at {0, +R).

3. a=c= Xhence (a— Ayr+by = 0 and bz + {¢~ Ay = 0 are solved, this leaves only the circle
equation 27 + > = R?. We find infinitely many solutions. A% each point of the unit circle
the value Q(z,y) = ax® + cy® = a{z® + y*) = «R? is attained.

To summarize the results above, if b = 0 and a # ¢ then the extreme values of aR? and ¢R* are
attained at the points (£ R,0) and (0, £R). However, if b= 0 and a = ¢ then @Q is constant on the
radius R circle with value aR?.

Case II: Suppose b 5 0. We already worked out that

P + ok /(o - ) + 4b?
N 2

solves
(a—Nx+by=0, br+{c—Ny=0 z+y*>=R"

Our current goal is to solve the equations above for x,y. Solve for y, T'll aim for selutions in terms
of A since we have a clear method to calculate it already,

y=%0—®
Substitute into 2% + 3% = R? to find
2, A-ap? , 2 b2
o el = R T = Ry e
T+ i 1 = T4 bz—iw()\wa)?
Return ence more to y = £(A - ) to find:
A - [£2 bQ
= b R :
b= { b } B+ (A—a)?

Therefore, the points {z_,y_ ) and (24, y+) are solutions to the Lagrange multiplier equations for
each A. Moreover, the extreme values attained via these points are given by:

Qlas,ys) = azh + 2baiys + eyt

; p2 A—aq b3 N g 9 b2
o B ) 2
=aR 52+(a\wa)2‘$“2bR [ b ]b2+(Amcz)2 +cR [ 5 j! BNy
Rp? 3 5= a2
_W-Q+Q(A—(1)TC[ 2 ]}
R, 2
= m Ab -+ b (A - (L) -+ (‘,(,\ — Q.) :*
R? (s \
=i W Ao —ac )]
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From % we know b* — ac = A? — (a4 ¢)A = A% — a) — ¢A hence,

RQ ¢ 9
Rg 2 2

- /\R2 .

T invite the reader to prove that b # 0 implies solutions of the equation (@ — X)(c ~ A) — &% =
are distinct, That is, given b # 0, the solutions A1, A2 must have Ay # Ao, If we label these with
A < s then it follows that A1 &2 is the minimumn value whereas A R? is the maximum value of Q
on the circle 2% +y® = R*.

The theorem below summarizes our analysis thus far

Theorem 5.1.12.

Suppose Q(r. y) = ax? -+ 2bry+4cy® for some constants a,b, ¢ € B, Let B > 0 be the radius of
the circle 85 with equation #24y? = R?. The characteristic equation (a—\){c—A\)—b? =
0 has only real solutions. Furthermwore, the extreme values of ¢ on the circle are simply
given by AR? where X is a solution of the characteristic equation.

There are several cases implicit within the theorem above: let’s denote the solutions to the charac-
teristic equation by A1, Az,

1. if Ay == A then the @ is constant on Sg.
2. if Ay # Ao and A;(\g then Qumin = A1 R? whereas Qmax = A2 R

Case (1.} is when the level curves of @ are circles. The graph z = Q{z,y) = a(x? +y?) cither opens
up (a > 0) or down (¢ < 0) from the origin where {0,0) = 0 is either the minimum or maxium
of @ on any disk of radins R. Think geometrically for the moment, imagine shrinking 8 — 0 to
obtain this result on the disk.

Part of Case (2.} is almost the same as Case {1.) if As, Ay share the same sign. For instance, if
0 < A1y < Ag then z = @z, y} cpens upward with each contour being an ellipse and clearly ¢{0,0)
is & minimum. On the other hand if A\ < Az < 0 then z = Q(x,y) opens downwards and each
contour is an ellipse and (0,0} is a maximum.

However, when Case (2.) has A1, A2 with different signs we find A; < 0 < A2. Inthis case z = Q(x,y)
opens upward in the direction associated with Ao and it opens downward in the direction associated
to A1. It has a saddle shape, and the contours of the graph are hyperbolae.

Finally, in Case (2.) if A; = 0 and Ay > 0 then z = Q(z,y) is constant along the direction corre-
sponding to A; and it opens upward along the direction corresponding to Ap. Likwise, if Ay = 0 and
As < 0 then z = Q(z,y) is constant along the direction corresponding to Ay and it opens downward
along the direction corresponding to As.

The theorem below summarizes the relation between the characterisiic equation for the quadratic
form Q and its extrema in the plane B?. The values A are usnally called eigenvalues so this
theorem can be essentially suwmmarized as: the eigenvalues determine the nature of the extreme
valueg for a quadratic form:
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Theorem 5.1.13.

The graph of z = Q{a, y} = a4 2bxy+ey? for some constants a, b, ¢ € R can be calegorized
by real solutions of the characteristic equation (@ — A){r — A) — b* = 0. In particular.

1o AL Ay > 0 then Q0.0) is an minimum value for @ {the graph z = Q(x,4) is a
paraboloid which opens up}

Qle,y) is a

2. # A, A < O then Q0,0) is & maxiinum valne for @ (the graph »
parabaloid which opens down)

3.3 A1 < 0 < Ag then Q{0.9) is neither a maximwm or minimum for @ (the graph
z = Q(xz.y) is a hyperbelic paraboloid which opens up and down)

4. if Ay = 0 and A > 0 then (0,0) is a minimum value for ¢} (the graph 2 = (a2, y) is
a parabolic Lrongh which opens upward)

5. if Ay = 0 and Ay < 0 then Q(0,0} is a maximnm value for ¢ {the graph 2 = Qz.y)
is a parabolic trough which opens down)

In cases {4.) and {5.} above the local extrema is not isolated, there is a whole line on which @ is
extremal. In contrast, cases (1.) and (2.) have isolaled local extrema. As we apply this result later
in this section cases (1-3) will play a larger role than cases (4-5).

5.1.4 quadratic forms in n-variables

optional section: I briefly explain how the last section generalizes. a good linear algebra text
will provide further detail for the interested student. Notice that the last section did not use linear
algebraic technique, we just brute-force solved the n = 2 case. To go further it is wise to learn
linear algebraic techniques to organize the calculasion, otherwise it could get difficult.

There is a better way to derive the results of the last section. In linear algebra we define a quadratic
form on B" as a function @ : B" — R defined by Q&) = T AF for a symmetric matrix A, It turns
out that the values of @ on a sphere of radius R in R™ are given by the eigenvalues of A, In
particular, A is a solution to det{A — AT} = 0 and if 7 5 0 solves {4 — A)Z = 0 and [|Z}| = R then
Q(F, &) = AR%. The value X is called an eigenvalue with eigenvector Z. When you work out the
details it becomes clear that det{A—AI) = {} is an n-th order polynomial equation in A and, while it is
not entirely trivial to prove, these solutions are all real. The list of all eigenvalues for @ is called the
specirum. If we order the spectrum in increasing values Ay < Ay < --- A, then M R? is the minimum
value whereas A, B2 is the maxium value of @ on the sphere 27 +22 + - - + 22 = R*> in R". If you
study the equations of the last section once you've studied eigenvectors and eigenvalues then you'll
find that the equations provided by the Lagrange multiplier method are just the characteristic and
a b
b ¢
forms is that they reduce to Qly1, ya, ..\ Yn) = Alyf + Aayh A+ - o)\ﬁyﬁ for appropriate choice of
coordinates (y1.¥2, ..., ¥n). For Q(z,y) = az® + 2bay + cy”, the middle term 2bzy is an artifact of
the cartesian coordinates that framed the given , a simple rotation will remove the non-diagonal
terms in 4 and leave us with Q(y1.y2) = A1y? + Aeg?. Then in the (y3,y2) coordinates it becomes
manifestly obvious that a quadratic form Q(xz,y) = az® + 2bay + cy® has contours which are either
hyperbolas, lines, parabolas or ellipses.

eigenvector equations for 4 = [ } . Moreover, you learn that the big idea is that for quadratic



