Lectvae A3 3 3% Derivefn Ted

e pg5 ASA - ALp of 2020 Lectvee Nofy,

fixy) considering it Pt O ) whans VE (%) = Lo 0)

'FKXN) = —Fb(o(":)u) + Q ()(—xuj V‘}"U)u)'i"'-- |
R A, y E‘Ulniu.l‘:w
' )
Q(x-%x9%) = [x—m-v..)[ Frx 'F’“'HX“X“ e 4 ?2 2 .b_a.z
l ’ '("‘1 'Fw 9-9 M + My
VTJ

7\‘ 7\1 20 for Mt:n/mﬂ\x
1‘ 4, x‘ }‘ (Ml'n)
k(!ﬂfmx)

dob [Q) = dub(A) = w //H(m = ety
\\Dh
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5.3 critical point analysis

Let’s focus on the n = 2 casc since that is the only case we can work out in general®. If f :
dom(f) C R? —» R and (24, ¥,) I8 a critical point then fu(%o, Yo) = fy(Te: ¥o) = 0 hence the taylor
expansion at (24, o) provides the following representation of f:

1 1
flao+h,yo+ k) = fao, yo) + ;f:cm(-'l'o: yo)h2 + fmy{mm yo)hk + "Q“fyy(ﬁ':m yn)kg +T

o

"\

QLK)

where T is the tail of the series which factors in higher-derivative corrections. We worked out the
general behaviour of a quadratic form in a previous section. Let me quote the result here: The
graph of z = Q(h, k) = ah® + 2bhk + ck? for some constants e, b, ¢ € R can be categorized by real
solutions A1, Az of the characteristic equation A* — {¢ + ¢)A + ac — 6° = 0. In particular, if
A1 < Ao then M B2 < Q(h, k) < A9R? for all (h, k) on the circle A% + k? = R*. We identify that

i 1 1
a == ‘if:c:l:(mo:yo)s b= é’fxy(irch yo)s = ﬁfyy(ﬂ:m yo)»

Let’s reason through the cases. I Dboth Aj, Ao share the same sign then we can be sure that
R E) >> [T since T depends on third and higher order powers of the coordinates which are
much smaller than quadratic powers near the origin. It follows that 0 < Ay € Ag imply f{z,, yo)
is a local minimum of f. Likewise, Ay < Ay < 0 imply f(24, ¥o) is a local maximum of f. On the
other hand, if A1 < 0 < Ay then the values of @ are sure to increase and decrease near the point of
tangency in such a way that T cannot possibly squelch the behaviour and we find f{z,, %) is not a
local extremum. The case A; = 0 is not as useful since the contributions of T are dominant in the
direction associated to A; = 0, we could find a saddle or a minimum or maximum in such a case,
3¢ the final two cases in Theorem 5.1.13 are silenced by the tailed beast.

Put ali of this together and we have a generalization of the second derivative test for functions of
two variables! We need to work out the formulas for Aq, A2 in our cirrent context to make i useful.
Solutions of the quadratic equation A2 — (a + ¢)A + ac — b% = 0 are given hy

) a+c+/la+c)? —d(ac - b?)
B 2

We have a = %fm:(:ra,ya), b= %fw{wmyo), ¢ = %.ﬂ,?,(wo,yo). To reduce clutter, drop the (x4, %)
for the next few computations, the two’s in «, b, ¢ nicely cancel with the quadratic formula to yield:

e = fra o+ fou U + S = Uz fi = 1)
Let D = forfyy — f2,- We have a few cases to consider:

L. If D < 0 then clearly

fax + Fl = U+ Fi)? < [z + Fi)? = Wy~ 12,

This inequality indicates that the radical dominates the sign of the solution; given D < { we
have AL < 0 and Ay > 0. Hence, the condition D < 0 signifies a saddie shape for graph{f).

* | will work special cases in the n = 3 case, but the genera} problem is too hard w/o the help of linear algebra
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2. If D > 0 then clearly

| fez + fyyl = \/(f:c:c + fyy)2 < \/(f:c:t: + fyy)2 - 4(f:c:cfyy - fa%y)

This inequality indicates that f.; + f,, dominates the sign of the solution; in particular:

(a) if fex + fyy > 0 then At > 0 hence f attains a local minimum at (2, o)
(b) if fzz + fyy < 0 then Ay < 0 hence f attains a local maximum at (2o, Yo)

3. If D = 0 then either Ay = 0 or A_ = 0 hence the quadratic data is inconclusive. The function
may attain a maximum, minimum, a saddle or a trough at the critical point.

Notice that in Case (2.) we can simplify the criteria a bit. If D > 0 then fozfyy — f;‘z‘y > 0 thus
0< fgy < frz fyy. It follows that either both f; and f,, are positive or both are negative. There-
fore, given D > 0, the criteria fyz + fyy > 0 can be replaced with criteria fz > 0 or fy; > 0.
Likewise, given D > 0, the criteria fzz + fyy < 0 can be replaced with criteria fzz < 0 or fy, <O0.

Let us collect these thoughts for future use.

Theorem 5.3.1.

Suppose f : dom(f) € R? — R is smooth and (x,,y,) is a critical point of f.
i D = feal@s. ¥o) Sy (#e, Vo) — Tog(@e o) then

1. D <0 implies f(20,4,) is not a local extrema,
2. D> 0and for(xo,y0) > 0 (or fyy(xe.yo) > 0) implies f(x,.y,) is a local minimum,

3. D >0 and [p(20,y0) < 0 (00 fyy(xoe. yo) < 0) implies [(z,.y0) is a local maximum,

Example 5.3.2. Suppose f(z,y) = 2+ 2zy +2y? then Vf = (2z+ 2y, 2z +4y). The origin (0,0)
is a critical point since Vf(0,0) = (0,0). Let’s use the theorem to test what type of critical point
weve found. We should calculate all the second derivatives,

fz:c =2, fzy =2, fyy =4.

Calculate D = foq fyy — fgy =8-4 =nd note fzx =2 > 0 hence f(0,0) is a local minimum.
The graph z = f(z,y) opens upward at the origin.

Example 5.3.3. Suppose f(z,y) = —22 + 2zy — 2y? then Vf = (=22 + 2y, 2z — dy). The origin
(0,0) is a critical point since V f(0,0) = (0,0). Let’s use the theorem to test what type of critical
point we've found. We should calculate all the second derivatives,

Sz =2, fﬂ:y =2, fyy =—4.

Calculate D = fezfyy — ffy =8—-4 =4 >0 and note fzrz = —2 < 0 hence f(0,0) is a local
mazimum. The graph z = f(z,y) opens downward at the origin.

Example 5.3.4. Suppose f(z,y) = 2> + 22y +y> then Vf = (2z + 2y, 2z + 2y). The origin (0,0)
is a critical point since V f(0,0) = (0,0). Let’s use the theorem to test what type of critical point
we 've found. We should calculate all the second derivatives,

f:r::r: =2, fzy =2, fyy = 2.
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£ ) =K+ 44 = (x69)°

Ceoleulate D = foofyy ~ ffy =4 ~ 4 = 0. The multivariate second derivafive test fails. We can
easily see why in this case. Note that the formula for f{z,y) factors f(x,y) = {x +v)*. The graph
z= {1+ )2 is zero all along the line y = —x,z = 0 and it opens like a parabola in planes normal
to this line. In other words, this is just = = x° rotated 45 degrees around the z-azis. It’s a parabolic

trough. Notice there are infinitely many critical points in this example.

Let us constrast the graphs of the past three examples: I plot the graphs over the unit-disk z%+y? <
1 for Examples 5.3.2, 5.3.3 and 5.3.4 from left to right respective:

Example 5.3.5. Let f{x,y) = 2% — 122y + 8y°. Find and classify any local extrema of f-

Solution: begin by locating all critical points:
Vflz,y) = (327 ~ 12y, ~12z + 24y%) = (0,0}

thus, 302 — 12y = 0 and —122 + 24y? = 0. Hence, 4y = 2% and o = 2y° from which we obtain
dy = (25°)% = dy*. Therefore, 0 =y —y=y(y® = 1) hence y = 0 ory = 1 and s0 z = 2(0)* = 0
and z = 2(1)* = 2 respectively. We find critical points (0,0) and {2,1). The Hessian at {x,y) is
calculated:

Jro =8z, [y =48y, [fpy=-12 = D =288ry - 144 = 144{2zy - 1).

Consider the

critical point D Jrx conclusion
(0,0 —144 | no need saddle at (0,0)
(2,1) 432 12 f{2,1) = —8 is local minimum

Therefore, we conclude, by the second derivative test, there is only one local extrema. The local
mintmum value of —8 is attained af (2,1). Graphically, you could eastly miss this valley. Consider:
the plots below are centered about (2,1) and zoomn out as you read from left to right:

It only gets worse as we zoom out further. Thankfully, we need not rely on grophs. I use them to
check the answer, not to find it. I think the reader can appreciate why.
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Example 5.3.6. Suppose f(r,y) = (22 — 22}(2y —v?). Find and classify any local extrema of f.

Solution: we must find the critical points where Vf = 0. Consider,

(fo fy) = ((2 = 22)(2y ~ %), (22 —~ 27)(2 - 2))

Factoring 2,y, v reveal:

for 20-2y@-y) =0 & fy: 202-n(1-3) =0

We must simultaneously solve the egquations above. To solve fp = 0 we have three cases:

(i.) Ifax =1 then we require y == 1 to solve fy, = 0.
(ii.) Ify =0 then we either need x = 0 or x = 2 to solve f, = 0.

(iii.) Ify =2 then we either need x =0 or 2 = 2 to solve f, = 0.

In summary, we find critical points (1,1),{0,0),{2,0),(0,2),(2,2). The Hesstan is derived below:

D(l':y) = f:n:cfyy . f’.;)y
= [(~2)(2y ~ y)][(22 ~ 2¥){=2)] = {2 = 22)(2 = 2)]°
= dzy(2 — ) (2 — 2} — 16(1 — 2)*(1 — y)°

Therefore, we find:

eritical point D Jaz conclusion
(1,1) 4 -2 F(1,1) = 1 is local mazimum
(0,0) -16 | no need saddle at (0,0)
(2,0) ~16 | no need saddle at (2,0)
{0,2) ~16 | no need saddle at (0,2)
{2,2) —-16 | no need saddle at (2,2)

The plot below uses the “zhue” option lo indicate z-values by color. You con clearly see which poini
is {1,1) and the saddle points are situated symmetrically about the point as our anelysis predicted:
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Example 5.3.7. Suppose f(x,y) = e~ coleulate Vf = (——‘Z;Ie""”z"‘yg,nge“zzﬂz) and note the
origin is the only critical point since exponential functions are strictly positive. Once more we use
the multivariate second derivative test ot the origin, We need to calculate second derivatives,

Jaz = (=2 = 4x2)5mm2+y2= fay = —drye™ VTV f, = (24 dg? e Y
Hence, fr(0,0) = —2, fu, =0 and fyy = 2. Note then that
D = foefyy — f_;zu = —4 <0

Therefore, f(0,0) is not a local extremum. The graph of z = f(z,y) is saddle shaped over (0,0).

6
€=+« 10"~

6= -X*y

Notice that in the last example it is easy to see why we find the result we did since

2 . 1
f(:r,y) = +y? e ] - yl . 1_2 + 5(3’2 o :[:2)2 R
The fourth order and higher terms are very small compared to the quadratic terms near the origin
hence to a good approximation the graph z = f(z,y) looks like z = 1 + y% — %, This is the type
of function we can analyze without the help of linear algebra. Let me illustrate by example.

Example 5.3.8. Suppose f{x,y,z) = sin{x? + y? + 2%) then you can calculate that V f(0,0,0) =
{0,0,0) hence the origin is a eritical point. Applying the power series expansion for sine,

1
flay,z) =a? 4y 2% = o(e® + "+ 27 4o

clearly £(0,0,0) is a local minimum for f since the values clearly increase. This is clear because
the quadratic terms dominate near (0,0,0). On the other hand, if g(z,y, z) = sin(2* + y? — 2%) then

1
gla,y.2) = +y — 2"~ g(x2+3;?m22)3+---

and it is clear that the values of g both increase and decrease near (0,0,0). For ezample, g(2,0,0) =
2%+ - whereas g(0,0,2) = ~2% + ... It follows that g(0,0,0) is neither o mazimum nor a
MIRIMUM.

The logic used in the example above is net so easy if there are cross terms. For example, f(x,y, 2} =
22 4 y% + 2% 4+ 22y + 222 has critical point (0,0, 0) but I wouldn’t ask you to ascertain the behaviour
of f at {0,0,0) because we need linear algebra to understand clearly how f behaves.
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5.3.1 a view towards higher dimensional critical points*

If the function f : dom{f) € R™ — R is analytic at 7 then that means it is well-approximated by
its multivariate Taylor series near §. For such a function f the statement 7 is a critical point is to
say V f{p) = 0. It follows the taylor series at 7 has the form

FE+R)y = f(5) +QR)+T

where [T is usually smaller than }Q(K}E We call T the tail of the expansion. To judge if Q or T
dominates the behaviour of f near § we must calculate the spectrum of 2. If the spectrum consists
of all positive eigenvalues then f(7) is a local minimum. If the spectrum consists of all negative
eigenvalues then f(7} is a local maximum. If the spectrum consists of both positive and negative
eigenvalnes then f(P) is a not a local extrema. If zero is an eigenvalue of ¢ then further analysis
bevond quadratic data may be needed to ascertain the nature of the critical point.

Incidentally, there is a way to visualize maxima for functions of three variables in terms of level
surfaces. It's the analogue of using two-dimensional contour plots for finding max/min of & three-
dimensional graph. For example, the function f{z,y, z) = 2% + 2y* + 32? has level surfaces which
are ellipsoids centered at the origin.

You can see how the ellipsoids enfold the origin. The larger ellipsoids correspond to higher levels
and there does not exist a negative level surface. Intuitively if is clear that f(0,0,0) = 0 is a local
minimum of the function [ near the origin. I don’t teach this as a method because few of us are
capable of mastering such visualization with any reliability. On the other hand, contour plots are
extremely useful because our minds are much more adept at handling two-dimensional data.

Consider f{x,y,z) = xyz. The origin (0,0,0) is a critical point. Plotted below arc the level surfaces
a2yz =1 and zyz = —1. In this case f{0.0,0) is not a local extreme.

e i

Intuitively, if we have a critical point where f has a frivial quadratic term and a nontrivial cubic
term then I expect it is not a local extreme. On the other hand, if the first nontrivial term beyond
the constant term is fourth order then max/min or saddle-type points ocught to exist. For example,

Flay) =27 flz.y) = ~2%°, flay) =z’



