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£
5.4 closed set method 'F: [alb] <y IR —— §lb) ;
TN whee 1) =0,

The analog of the extreme value theorem of first semester calculus is given below.

Theorem 5.4.1.

. ] - . . 2
Il D is a closed and bounded subset of R then a continnous function f: D ¢ R — R
attains a global maximum and global minimum somewhere in D.

To say D is closed means that it has edges which are not fuzzy in our usual contexts. There is a
better topological method to describe such terms® but I leave that for another course. To say D
is bounded simply means we can find a point (z,,%,) € D and € > 0 such that D C Be(20,%0) =
{(z,y) € R? | /(. — 20)2+ (¥ — %)% < €}. In other words, D is bounded if there exists a finite
open disk which properly contains D. Or, in plain-English, if you can draw a circle big enough
to enclose D). These terms don’t usually bother students in practice, if anything, the attempt to
define them here is the most troubling part. Common examples of closed and bounded sets are:
disks, rectangles, areas bounded by curves which we studied in first semester calculus, polygons
regular or otherwise.

The extreme value theorem told us that the maximum and minimum values of a continuous function
on a closed interval [a,b] were attained somewhere in [a,b]. That data motivated the closed-
interval test which said, given a continuous function on a closed interval [a, b],

(i.) find any critical numbers for f in the interval
(ii.) evaluate the function at critical numbers and endpoints
(iii.) select the minimum and maximum from the values found in step (ii.)
The theorem that follows is the analog of the closed interval test for functions of several variables.

Theorem 5.4.2.

——_— I ——————
Suppose D is a closed and bounded subset of R? and f : D ¢ R? — R is a continuous
function. Extreme values of f on D may be [ound as [ollows:

(i.) find the value of [ at any critical points in the interior of D
(ii.) find any extreme values for f on the houndary of D

(iii.) select the minimum and maximum on D from the values found in steps (i.) and (ii.)
#ﬁ R ——
I leave the proof of this assertion to another course. That said, it is useful to think about the two
cases®. As we consider closed and bounded D it follows D = int(D)U&D. The boundary dD is the
edge whereas int(D) is D with the edge removed. The basic idea is that we can apply the theory
of local extrema to the interior; that is, use the second derivative test to classify any critical points
in the interior. On the other hand, the boundary is a curve or set of curves where we might apply
the method of Lagrange multipliers. However, sometimes the boundary admits a better solution in
terms of a parametric formulation. We’ll see that techinque in the examples to follow below.

Sindeed, you may learn later that closed and bounded is synonomous with compact
51 should admit, I assume f is continuously differentiable in this discussion as to avoid certain pathological cases.
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Example 5.4.3. Let f(z,y) = z* + y* — 4zy + 1. Find the mazimum and minimum of f(z,y) on
the half-disk H = {(z,y) | 2> +y* < 4, y > 0}. xzi"[lf\{
Solution: we begin by searching for local mazima and minima. Consider,
Vf(z,y)= (42:3 — dy, dy® — 4z) = (0,0) = y=z & z=19°
It follows 2® = x. This is solved by factoring, 'ﬁ )
0=2-z=2(8-1)=z*+1)* - 1) =2@* + 1)@+ 1)(z+ 1)(z - 1) {_.\‘_1] ¢ H

Hence x =0,1,—1 and we find critical points (0,0), (1,1) and (—1,-1). Note, (—1,—1) ¢ H hence
we ignore it. Notice frp = 1222 and fyy = 12y% and fzy = —4 give Hessian D = 144x2y? — 16.
Hence,

critical point D Sz conclusion
(0,0) —16 | no need f(0,0) =1 is a saddle
(1,1) 128 12 f(1,1) = —1 s local minimum

Logically, we do not need the Hessian or the analysis of the table above ( In include it here for
curtousity alone). It suffices to calculate f(0,0), f(1,1) and f(—1,—1) for future comparison to
extreme values on the boundary OH. There are two cases in the boundary:

(i.) the diameter of the half-circle boundary is given by y = 0 and —2 < z < 2. Let g(z) =
f(z,0) = z* +1. We analyze the behaviour of g on [—2,2] by the closed interval test. Notice
g'(z) = 42® hence x = 0 is the only critical number. Observe,

g(-2)=17, g(0)=1, g(2)=1T.

Thus, f(—2,0) =17, f(2,0) = 17 are two new candidates we should consider as we seek the
extreme values of f on H.

(ii.) curved part of the half-circle has parameterization x = 2cost and y = 2sint for 0 <t < 7.
Let h(t) = f(2cost,2sint) which gives h(t) = 16(sin* t +cos* t —sint cost). We find extrema
of h on [0, 7] by the closed interval test. Consider,

R (t) = 16(—4sint cos® ¢t + 4 costsin®t — cos? t + sin®¢t).
thus h'(t) = 0 yields:
—(cos(t) — sin(t))(sin(t) + cos(t)) (4 sin(t) cos(t) + 1) =0

or,
tant =1, tant=—1, sin(2t) =—1/2.

We seek solutions on [0,m]. Observe, t = m/4 give tan(m/4) = 1. Also, t = 3w/4 gives
tan(37/4) = —1. Solutions of sin(2t) = —1/2 are 2t = Tn/6 and 2t = 117/6 hencet = Tmw /12
and t = 11w /12. These four values of t yield points:

(V2,V2), (-v2,v2), (2cos(7r/12),2sin(77/12)), (2cos(11m/12),2sin(117/12)).
Or, approzimately,
(1.41,1.41), (-1.41,—1.41), (—0.52,1.93), (—1.93,0.52).
These yield (approzimate) values:

F(1.41,1.41) = 0.31, f(—1.41,—1.41) =11.6, f(—0.52,1.93) = 19.0, f(—1.93,0.52) = 19.0.
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Of the nine possible extrernal points, we observe the minimum value is —1 which is attoined ot (1,1)
and the mazimum velue is approzimately 19 which is aftained at (2cos(Tn/12). 2sin(7w/12)) and
(2cos(117/12),2sin(2in/12}). The graph below illustrates our analysis:

Example 5.4.4. Consider f{x,y) = 1+ 4o — by. Find the absolute extrema of f on the set &
pictured below: I have taken the step of labeling the edges for convenience of discussion.

(6,3} 85 = boundiry of §

2y __

(o0l

To begin note that ¥V f(x,y) = (4,5} # 0 thus there is no local extrema in the interior of S. We
need only consider 88

(L) 2 =0 and y € [0,3]. Let g(y) = f(O,y) = 1 — 5y. Note ¢'(y) = —~5 # 0 hence the closed
interval test need only consider g{0) = 1 and g(3) = —14. For future reference, we should
remember to consider f(0,0) =1 and f{0,3) = —14 as possible extremn on S.

(I1.) y = 0 and z € [0,2]. Let h{z) = f(x,0) == 1 +4dx. Note h'(x} = 4 # 0 hence the closed
interval test faces no critical numbers. We consider the endpoints; h(0} = f(0,0) = 1 and
h(2) = f(2,0) = 9. This shows 1 € f(z,0} <9 for0 <z <2,

(1) y= 2z +3 forz € [0,2]. Letl{z) = flz,—32+3) = 14 + Z2. Once again, I'(z) =
-—%‘5 # 0 hence 1(0) = —14 and 1(2) = 9 are possible extrema for [ on {0,2]. Once more, we
are prompled to consider (0.0} = —14 and f(2,0) = —14 as possible extreme values for 5.

In suramary, only the vertices of the triangular region eppear as possible extrema and we conclude
the maximum of f on S is 9 which is aftained at {2.0) and the minimum of f on S s —14
which is attained at (0,03). Geometrically, our analysis is easy to see: here I plot z = 1 4+ 4r — Sy
for(z,y) e S
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The result above generalizes to any closed polygon in the plane. If we find extrema of f(x,y) =
ax + by + ¢ for some a, b with ab # 0 then we need only consider vertices of the polygon. This well-
known result is often taught in high-school algebra as linear programming. If we consider the
higher-dimensional problem with linear constraints in three variables which enclose some polyhedral
surface then almost the same analysis shows the vertices must provide extreme values. Graphically,
three or move variables is difficult, however if you take a course in Qperations Research it is
likely you will learn the simplex method which provides an algebraic method to find the vertices
through the introduction of so-called slack variables.

Example 5.4.5. Let flz,y} = 22° + 4% Find the absolute extrema of f on the unit-disk D =
{o9) 22412 < L.

Solution: note V f(x,y) = {627, 4y%) hence (0,0) is the only critical point of f. Note £{0,0) = 0.
Continuing, we analyze the boundury 8D where y> = 1 — 2° hence

‘fi@D{m’y) =225+ (1-2 P =2+ 2% - 2% + 1.
let this be g{x)

Note,
§{z) = 42® + 622 — 4z = 2{22% + 32 — 2) = 22(22 — (v +2).

Thus x = 0,1/2, =2 are critical numbers for g. Note 2% +y? = 1 yields points (0,1), (1/2,4/3/2)
wherens x = —2 gives no solutions i the unit-cirele. We calculate,

O£ =200 + (1) =1 & f(1/2,2v3/2) = 2(1/2)% + (v3/2)* = 13/16.

A subtle point’ which matters to this problem, y is not a differentiable function of x on an open
set centered about v = ®1. Note the points (£1.0} are on the unit-circle and we obtain f(1,0) = 2
and f{—1,0) = 2. We find the mazimum of [ is 2 is attained at (1,0). Whereas the mininum of
Fis 2 which is attained at (—1,0}. Below I plot 2 = f(x,y) for (x.y) € D:

"this is a good example of why you ignore the implicit function theorsin to your own peril. Look at my old notes
{0 see 1 speak from experience here.
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To deal with @D in the problem above we could have studied Vf = AVy for g{z,y) = 2% + % or
we could have set & = cost and y = sint and sought out extreme values of hl{t) = 2cos®t + sin*t.
There are several ways to analyze the boundary in a given problem.

5.5 Problems

Problem 124 Suppose that the temperature T in the xy-plane changes according $o

ar ar
— =8z — 4 & — = 8y — dz.
dx y Sy y
Find the maximum and minimum temperatures of T on the unit circle 22 +¢? == 1. This time

use the method of Lagrange multipliers. Hopefully we find agreement with Problem 107.

Problem 125 Use the method of Lagrange multipliers to find the point on the plane 42y — 3z =
10 which is closest to the point {8,8,8).

Problem 126 Apply the method of Lagrange multipliers to solve the following problem: Let a,b
be constants. Maximize xy on the ellipse b%2% + o®y? = a?b%.

Problem 127 Apply the method of Lagrange multipliers to solve the following problem: Find the
distance from (1,0) to the parabola z* = 4y.

Problem 128 Apply the method of Lagrange multipliers to solve the following problem: Suppose
the base of a rectangular box costs twice as much per square foot as the sides and the top of
the box. If the volume of the box must be 12f#* then what dimensions should we build the
box to minimize the cost? [Please state the dimensions of the base and altitude clearly. Include
a picture tn your solution to explain the meaning of any variables you introduce, thanks!]

Problem 128 Taking a break from the method of Lagrange. Assume «, b, ¢ are constants: Show
that the surfaces xy = az?, 22 + 4% + 2% = b and 2% + 2% = ¢(2? + 2y%) are mutnally
perpendicular.

Problem 130 Apply the method of Lagrange multipliers to derive a formula for the distance from
the plane ax + by + ¢z + d = 0 to the origin. H necessary, break into cases.

Problem 131 Suppose you want to design a soda can to contain volume V of soda. If the can
must be a right circular cylinder then what radins and height should you use to minimize the
cost of producing the can? assume the cost is directly proportional to the surfoce area of the
con
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Problem 132 Find any exireme values of 2y%z on the sphere 2% + y? + 2%, note the sphere is
compact and the function f{z,y,z) = zy’z is continuous so this problem will have at least
fwo inferesting answers

Problem 133 Again, breaking from optimization, this problem explores a concept some of you
have not yet embraced. Find the point(s) on z* + y* + 2% = 4 which the curve 7{t) =
{sin(t}), cos(t), 1) intersects.

Problem 134 Consider f(z,y) = 2%~ 3z — y2. Find any critical points for f and use the second
derivative test for functions of two variables to judge if any of the critical points yield local
extrema.

Problem 135 Consider f(z,y) = 2% — y?. Find any critical points for f and use the second
derivative test for functions of two variables to judge if any of the critical points yield local
extrema.

Problem 136 Consider f{z,y) = z° -+ y® — 3zy. Find any critical points for f and use the second
derivative test for functions of two variables to judge if any of the critical points yield local
extrema.

Problem 13641 An armored government agent decides to investigate a disproportionate use of
electricity in a gated estate. Foolishly entering without a warrant he find himself at the merey
of Ron Swanson (at (1,0,0)), Dwight Schrute (at (—1,1,0)) and Kakashi (in a tree at (1,1,3)
Supposing Ron Swanson inflicts damage at a rate of 5 units inversely proportional from the
square of his distance to the agent, and Dwight inflicts constant damage at artate of 3 in a
sphere of radius 2. If Kakashi inflicts a damage at a rate of 5 units direcily proportional to
the square of his distance from his location (because if you flee it only gets worse the further
you run as he attacks you retreating) then where should you assume a defensive position as
you call for back-up? What location minimizes your damage rate? Assume the ground is
level and you have no jet-pack and/or antigravity devices.

Problem 137 Find global extrema for f{z,y) = exp(z? — 2z + y* — 6y) on the closed region
hounded by 22/4 +4?/16 = 1.

Problem 138 Find the maxirmum and minimum values for f(z,y) = 2% 4 y* — 1 on the region
bounded by the triangle with vertices (—3,0),(1,4) and (0, -3).

Problem 139 Find the maximum and minimum values for f(z,y) = 2% — 2% + 3% ~ 2 on the
closed disk with boundary 2® + 3% = 9.

Problem 140 Find the multivariate power series expansion for f(z,y) = ye“sin(y) centered at
(0.0)

Problem 141 Expand f(z,y,z)} = zyz +2° about the center (1,0,3).

Problem 142 Given that f(z,y) = 3+ 2¢? + 3% — 22y + - determine if (0,0} is a critical point
and is f(0,0) a local extremum.

Problem 143 Use Clairaut’s Theorem to show it is impossible for F={f+a12+y) =V/f

Problem 144 Suppose F = (P, Q) and suppose P, = @ for all points in some subset U ¢ R%
Does it follow that F = Vf on U for some scalar function f? Discuss.
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Hint: the polar angle 0 has total differential df = d(tan™{y/z)) = Wdr - ~2«-—~2—rh think

This function has domain U = R? — {( 0,0)}. can

about the czample F = (st o T )

you find f such that F= Vi onallof U?

Problem 145 We say [ C R" is path-connected iff any pair of points in U can be connected by a
polygonal-path {this is a path made from stringing together finitely many line-segments one
after the other} . Show that if Vf = 0 on a path-connected set U € R™ then f{¥) = ¢ for
each ¥ € U. You may use the theorem from calculus I which states that if f/{t) = 0 for all ¢
in a connected domain then f = ¢ on that domain.

Problem 146 Show that if Vf = Vg on a path-connected set 7 € R™ then f(¥) = ¢(%) + ¢ for
cach ¥ € U. Hint: you can use Problem 145.

Problem 147 Prove the mean-value theorem for functions R” LR W particular, show that if
[ is differentiable at each point of the line-segment connecting P and @ then there exists a
point € on the line-segment PQ such that V’f(C) (G- P)= Oy~ F(P).

Hint: parametrize the line-segment and construct a function on R fo which you can apply the
ordinary meen value theorem, use the multivariate chain-rule and win.

Problem 148 The method of characteristics is one of the many calculational techniques suggested
by the total differential. The idea is simply this: given da/dt = f(z,y) and dy/di = g(z,v) we
can solve both of these for df to eliminate time. This leaves a differential equation in just the
cartesian coordinates z, 1 and we can usually use a separation of variables argument to solve
for the level curves which the solutions to dx/dt = f(z,y) and dy/dt = g(z.y) parametrize.
Use the technique just described to solve

dax: ey
@ <Y at

Problem 149 Suppose that the force F = g(7x B +E) is the net-foree on a mass m. Furthermore,
suppose B = BZ and E = E7 where F and B are constants. Find the equations of motion
in terms of the initial position 7, = (:Lo,yo, 7o) and velocity Ta = (Vog, Vay: Voz) by solving the
differential equations given by F=mi %. If £ = 0 and v,; = 0 then find the radius of the
circle in which the charge ¢ orbits.

Hint: first solve for the velocity components vie the technique from Problem 148 then integrate
to get the components of the position vector.

Problem 150 Suppose objective function f(wz,%) has an extremum on g{x,y) = 0. Show that F
defined by F(x,y.\) = f(z.y) — Ag{x,y) recovers the extremum as a critical point. From this
viewpoint, the adjoining of the multiplier converts the constrained problem in n-dimensions
to an unconstrained problem in (n + 1)-dimensions (you can easily generalize your argument
to n > 2).



