LE(.T'URE 1S : DEFIwa of Muetvariate LevTE GRAL
DoUBLG ENTE'&‘RAL CaLCvL &Ny .

Pgi\ 16S — 285 ia m7 2020 f\ykf.

Chapter 6

integration

In this chapter we study integration of functions of two, three or more variables. The integral is a
continuous summation. In particular, we can begin with a finite summation which approximates
some quantity. However, as the quantity we consider such as area, volume, mass etc. depends on
several variables we have to use a sum which covers some area or volume which describes the possi-
ble values of the variables. It is convenient to write such a sum in terms of a mesh which labels each
approximating region in terms of the variables. For example, if there are two variables the the ap-
proximation is naturally written as a double sum ), > ; Whereas if there are three variables then we
face ), Zj > k- If we allow the number of approximating areas, or volumes, etc. to shrink to zero
as we take the number of such approximating objects to infinity then this brings us to the integral.
This is in direct analogy with our development of the single-variate integral from the Riemann sum.

Let me briefly describe the structure of this chapter. In the first section I give the definitions in
terms of multiple summations and we detail the properties of multiple integrals. Significantly, we
also cover Fubini’s wonderful theorems which allow us to calculate multiple integrals by simple
iteration of ordinary single-variate integrals. The first section concludes by examining a variety of
applications to area, volume and net-quantity as seen from integrals over various area or volume
densities. In Section 2 we study double integrals over TYPE I and II Cartesian domains. In Section
3 we study triple integrals with Cartesian coordinates. Section 4 is largely qualitative, we seek to
describe the motivation for the change of variables theorem for multiple integrals. Then in Sections
5 and 6 we study the analog of u-substitution for double and triple integrals. Coordinate change is
an important tool going forward as the choice of the right coordinate system can sometimes reduce
the computational complexity of a problem by a great measure. Finally, in Section 8 we introduce a
direct geometric method to understand the structure of dA or dV' in non-Cartesian coordinates. In
addition, a novel construction called the wedge product is introduced and we see how it recovers
the calculations of determinants in a simple algebraic fashion.
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6.1 definition and interpretations of integration

We begin by defining the double and triple integrals over rectangular domains as the natural
extension of the single-variate Riemann sum. Recall,
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In other words, the integral is an f(x)-weighted sum. Of course, this represents the signed-area.
But, the essence of the formula is that the integral is a continuous summation. In view of this
observation, the following definitions are natural:

Definition 6.1.1.
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We note that in Cartesian coordinates dA = dx dy = infinitesimal area element in xy-plane.

dV = dz dy dz = infinitesimal volume element. As in calculus I and II, the sample points are chosen
randomly and the method in which they are chosen is washed away in the limit. In practice the
limit is rarely seen, instead the F.T.C or evaluation rule and here the Fubini theorem will keep us
from ever using the definition directly?

Let me expand on the specialization of the definition offered above. I have stated the definition in
terms of rectangular regions, but in general we might like to calculate integrals over more general
regions. For example, we might like to integrate f(z,y) over a disk, or f(z,y, z) over an ellipsoid.
I will not attempt to write the multiple Riemann sum for an integral over such a region, however, I
will make some unjustified claims which relate the rectangular region integrals to the more general
type. The basic idea is this: if S = 51 U Sy then [, gf= | S f+/ s, / where I intend this notation
to include integrals over areas, volumes and even n-volumes for n > 3. In words, the integral over
some region is given by adding the integrals over subregions whose union forms the total region.
It is geometrically evident that a general region can always be written as a union of rectangular
regions. This is not too hard to see in n = 2, 3, however, it is also clear the union may need to be
over an infinity of rectangular regions. If we suppose the integration region is closed and bounded?®
then analysis beyond this course verifies what we have already seen. We can arrange weighted sums
over non-rectangular regions as sums of rectangular regions. Furthermore, as we refine the partition

! THANKFULLY!
2this makes the region compact

dR =\ dxdy
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of the region into finer and finer subregions the approximate sums will coverge® to a unique value
which we call the integral. Fortunately, the subtlety I describe here has little to do with our aims
in this chapter. The properties and theorems which we soon discover allow us to trade the direct
computation of multiple Riemann sums for simple algebraic maniupulation. Moreover, when those
methods fail, in this modern age, we may rely on numerical techniques for problems which defy
algebraic methods.

Several properties of the integral follow directly from the properties of the limit itself: let R be a
closed and bounded region in what follows below:

Proposition 6.1.2.

l/‘[_{[,f(.r.-_u) +gle.y)ldA = -/./f{f{;""y)(}‘4 +//};9{:f'.y}rl,4
[ ttepin=e [ ramis

f@y) 2 gV R = / Fla,y)dA > [ [ oz, y)dA
JJIR JJR

Likewise for f(z,y, z) and g(z,y,z) over a closed and bounded solid region. We assume that f, g
are continuous almost everywhere*. Meaning we can integrate f(z,y) if it has a finite number of
curve discontinuities, or f(z,y, 2) if it has a family number of planar discontinuities. We just chop
the integral into a finite number of regions on which f is continuous. The theorem below was known

to Cauchy for continuous f in early 19th century. J
¢ L L&‘bl X [ ‘d
Theorem 6.1.3. Fubini’s Theorem(weak form) : . : 4
L3

a b

Let R = [a,b] x [c.d] and let f be a mostly continuons function of f(x. y)

/[R [, y)dA = [ d([: 1, y)d)dy - [ d([a e y)d:}lar

where the expression on the RHS are “iterated integrals” which you work inside out, treating
the outside variable as a constant to begin.

Example 6.1.4. Let f(z,y) = sin(z)+y and R = [0, 7] x [0, 2] which means (z,y) € Riff0 <z <
and 0 < y < 2. Integrate f over R.

3here is where the analysis is needed both here and in calculus I where we were also vague on this point if you do
some soul searching. Measure theory makes this process careful and general.
4one should study measure theory where this is given a precise meaning, we leave that to a later course in analysis
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R = [Dm]x [0123

™ 2
/ flz,y)dA = / ( / [sin(z) y]dy) dz : (-..) added to emphasize order of /
0 eommeamm—mm
2=y
/ [y sin(z) + y | da . note sin(z) is a constant w.r.t. the dy integration
0=y
=f [2sin(z) + 2]dz
0

= —2cos(2)|§ + 2z|§
= —2cosm + 2cos(0) + 27

-G

A good exercise for the reader: calculate _[02 o (sin(z) +y)da dy and compare with the result above.

Example 6.1.5. Let R = {(r,y) |0 <z < §, 0<y < 2}. Consider the integral of ycos(zy) over

R.
ﬁ
f/}{ycos(my)dfl _ f: (/0 mm) dy : /cos(aa:)d:n = ésin(am) +e

=} : (s'm(wy)) 7/2) dy

' 1
Z/UQ(sin("’;ﬁ)_sin(O))dy = So Stn [F'L_Y)M

_9 2
= = cos (E)
T 27

=— (COS(?T) - cos(()))

SENE

Remark 6.1.6.

Notice, if we had integrated first over dy then dz in the preceding example then the calcula-
tion would have required integration by parts in the dy integration. The point? Swapping
the order of the integration can change the difficnlty of the caleulation.

=

6.1.1 interpretations of integrals

In this section thus far we have gained some basic experience in how to calculate a multivariate
integral. In this subsection we turn to the question of what the integral represents. The answer for
a given integral is far from unique. We must be prepared to think of the integral as a multifaceted
tool which solves more than one problem. Geometrically, integration finds signed areas, volumes
and more generally n-volumes which defy direct visualization. Physically, integration of density
with respect to some quantity over some space yields the total amount of the quantity in the space.
I used the term space to be deliberately vague, it might be one, two, or three or even n-dimensional.
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Let us begin with the basic interpretation:

Geometry: the double integral of f(x,y) over R is the volume of the solid bounded by z = f(z,y)
and z = 0 for (z,y) € R. The theorem of Fubini can be seen as merely saying you can slice up the

volume along x or y crossections. Infinitesimally .\I‘lﬁ-
f]“"' v
V = (Ziop — Zhase) drdy S (\(x YIJR j’ t - 4 lx'
—_—
height of box area of box o U u

below the xy-plane as negative so the integral calculates the “signed” volume

Example 6.1.7. Let B = {f(2,y,2)[0<2<a,0<y<b,0<2< ¢} /
¢ rb ra
/f dV=/ / / dz dy dz
0o Jo Jo
c pb @
L e
0 JO 0
c b
=/ (/ ady)dz
0 \Jo
B i “
=f abdz —
0 4
b /
(=7 J

So if Zpgse = 0 and Zy,p > 0 then we get the volume, however as in f f(z d.’L we count volumf ( Y, bﬂw

dy dz

- Eph oo

If we Thtegrate 1 over B we find the volume of B. Likewise if we integrate 1 over a rectangle R C R?
we obtain the area.

Example 6.1.8, Let B = [0,1] x [0,2] x [0,3], Let p = ¥ = zyz. Consider, note, generally the
step made in the second equality is only allowed if the integrand f factors into a product of functions
of one variable: f(z,y,2) = fi(z)f2(y) f3(2),

/f/:cyde ///:cyzda:dydz dm-;po\’\/'
.:fo zdz/o ydyfo zdz :X‘{)z- dv

)

What is the meaning of such an integration? Well, if p denotes mass density then p = dm/dV and
it follows pdV = dm. Therefore, an object occupying the space B with density p = xyz has mass

m as calculated below:
m—fd.m ///pdV—E
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Or you could interpret it as p = dq/dV where dq is the tiny bit of charge in the tiny volume dV
hence the total charge in B is ¢ = [ pdV = 27/2. I'm sure you could imagine other densities.

Example 6.1.9. Another interpretataion of ], g f(x,y)dAis that f(x,y) represents an area density.
So say f(x,y) = o(z,y)

oz,y) = g—i = g= ]f o(z,y)dA = charge on the planar region R.
R
o(z,y) = Z—j = m= f/}{a(w,y)dA = mass of the rectangle R.

Students often insist that [ i’ f(z) dx represents a signed-area. This is true, but, it is not the only
interpretation. Consider:

Example 6.1.10. Another interpretation of fab f(z)dx is that f(z) reoresents a linear density. So
say f(z) = A(z) and,

b b
A(z) = % = q =/ Alz)dz & X= cfl_T =m =f Az)dz.
a a

Remark 6.1.11.

Linear density is more exciting once we know abont line-integrals. At the moment, we just
have the technology to caleulate the total amount of some substance whose density is given
along a line-segment. The integral with respect to arclength we discuss later will allow ns

to generalize such calculation to cirves.

6.2 Double Integration over General Regions

Given an arbitrary connected region in the xy-plane there are two primary descriptions of the
region, say R (not necessarily a rectangle anymore). We define TYPE I and II as follows:

vy a9,

JYPET: [ asxsb ’ @ JF\‘(g;'ﬂ,)dx

\: 'Ddl(k}é 1"3 ‘..:": %Z("‘:) X .
t g e ) al\ [3_—,)(
Tyee T [ c 2y<qd 4
=) % | [ -
l}; h,[‘ﬁ]-g, Wz *r!zfu'} S R @1 dﬂ th L\dd‘g’

Of course, you can imagine region which don’t conveniently fit either TYPE. On the other hand
a rectange is both TYPE I and II at once. Observe, for a rectangle R = [a,b] x [c,d] we have
g1(z) = ¢, g2(x) = d to show R is TYPE I and we set h1(y) = a, ha(y) = b to show R is TYPE IL
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Theorem 6.2.1. (Fubini, Strong version): Suppose f is mostly continuous.

Given Ry ={(z,y) |a <ax < b.gi(2) <y < go(x)}a TYPE I region,

: b pga(e)
/ fla,y)dA = / / fla, y)dyde
+4 J Ry Ja Jg(x)

Given Ry = {(z,y) | c <y < d,hi(y) < 2 < ha(y)}a TYPE II region,

h:w)
// (i, y n’A“/ [ (z,y)drdy
Rii ha(y)

Geometric Proof: A justification of the Theorem above is given by the following geometric
argument. Suppose R is TYPE [ with ¢ < 2 < band g1(z) < y < gg( )) for each x € [a,b].
Furthermore, suppose f(x,y) > 0 for (z,y) € R. In such a case, [[, f(z,y)dA represents the
volume bounded by z = 0, z = f(z,y) and the cylinder R x R. If we slice such a shape by
cross-sections which are parallel to the yz plane then we may form the volume as the union of slices
each with thickness dz. In particular, at fixed = z, we obtain dV = A(z,)dz where A(z,) is the
area of the slice of the volume by © = z,,. Observe, g1(z,) < y < g2(z,) and dA = zdy = f(z,,y)dy

thus
g2(o)
A(zo) = / f(zo,y)dy
g

1(zo)

Now, replace z, with z and note to find the net-volume we simply sum the volumes of each slice
which amounts to integrating dV = A(z)dz from z = a to x = b

v ([ )

But, the volume V is also given by [[g f(x,y)dA therefore we find the theorem true for TYPE I
regions where f(z,y) > 0. A similar argument supports the theorem for TYPE II regions.

Of course, we also must consider functions which take negative values. We extend our argument
thus far to functions which take negative values. We just chop the given region into smaller TYPE
I and II regions on which f is nonzero on the interior of each region. Then apply the argument
we already offered to the positive value regions and likewise apply the same argument to —f on
the subregions on which f < 0 hence —f > 0 and we may yet again recycle the argument above.
Finally, sum the integrals on each subregion to obtain the desired result. Technically, there could
be infinitely many regions on which f is negative so we omit a nontrivial analysis here. Indeed, this
assertion that the calculation by cross-sections must yield the same value also hides a nontrivial
analysis. Anytime we make some argument involving a rearrangement of infinitely many things
we should pause to check our assertions. Unfortunately, the refined, technically correct analysis is
beyond this course. Indeed, the argument I present here you'll find in many calculus texts.
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Example 6.2.2. Let R={(z,y) | 0<z<1,0<y <z}
2 L x .’112
//Redq.:/U fﬂ e’ dydz
1
<y <| - [ vl
|

= XR = /1 ze® da
0

k-

Remark 6.2.3.

We could just as well describe R as a TYPE II region. However, then we’d be forced with
[ ¢ dx . This is not an elementary integral.

Example 6.2.4. Using R from Ezample 6.2.2 calculate [[p ev’dA. Since treating R as TYPE I

leads us to [ e¥’ dy we need to make dx appear first in the integration. Thus, convert R toa TYPE
II region. A picture helps:

Y

4

S—
V'}""? =X Riger = % @
Dot = 0 Kpgur = 1 —
R = {(xn|oexsl, 0egsx] R-.—{m}os?ﬂi%sxsﬁ
. “TYPE Iv_., Tm?

Thus, note the second equality below follows as the integral of the constant e¥* is the product of the
integration region length (1 —y) and the constant,

//ey"’dA=/01/1yey2dwdy E- OPPS ( ‘{]5)(‘.5 l
=/01(1—y)ey2dy? 'Eb( CC R l
=/Dle?”2dy—/01yey2dy

1
1
= / e¥’ dy — 5(8 -1) : curses, I had hoped for better
0

~ 1.463 — %(e ~7
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In the last step, fol ey2dy required a numerical integration. Sometimes, even swapping the order of
the bounds does not make the integral uccessible to elementary integration techniques.

Remark 6.2.5.

£ e

Not all integrals result in pretty siuns and products, if we just make up some examples on

a hunch then it can get ugly. Incidentally while indefinites integrals of ¥ are not known

2
€£r=

in terms of elementary functions. there are improper integrals of ¢ which do come out

\qnife nicely. See Ex 77 . We need a few ways to make it easier.
e e EESeEEES—

Example 6.2.6. Another application of double integrals is finding the area of a region. For exam- R)”X

ple, S={(z,y) | 0<z <R, 0<y<VR>—2?} - )¢
R pVRT=ZZ
aw) = [[aa= [7 [T ayas Raexef{
R
- | VR = Qm_:o

The integration technigue to tackle integrals which contain a squareroot is known as trigonometric
substitution®. We set x = Rcos@ so dr = —Rsinfdf and VR? — z2 = Rsinf. We also must
change the bounds. In particular, t =R — 60 =0 and 2z =0— 0 =7/2. Thus,

0
A(R) = / —R?sin® 8d
/2

/2
= R? / %(1 — cos 29) df ‘we know sin® 0 = %(l — cos 219)
Jo

2 /2
= i (6’ - lsin?ﬂ)
2 2 0
R?
= 7(5)
[
| 4

If you realized S is a quarter-circle then you should have expected this result.

Remark 6.2.7.

It would be a good exercise to rework this example using polar coordinates. We learn how
to change variables in multiple integrals towards the end of this chapter.

=—.————————

Example 6.2.8. We nay also define the average of a function over R as

o= 775 [ f@)as

5hyperbolic substitution also solves most of the same problems.
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Consider f(z, y) =zy. If R=1[0,1] x [0,1] and S the quarter circle with R=1 from Ezample 6.2.6.
Do you think m. > f,ft,g or vice-versa?

1 1 i 1 11 1
mdA://a;d:r:d =/ :Bd.’l?/ dy=--=-=-.
f/;iy o Jo var ey 0 Dyy 2 2 4

whereas,
Vi—z? q\
/f xydA = ] f zydydx
) Vi—z?
= b ) dz |
LG, )
'l
= / ~(z—2%)da
0 2
R
“2\2 4) 8
Thus S S l/:
[ SR VL S VS U SO /SO V/ S § .._:_F B
ws T AR) T 1 4 “9T(@AR) T 2w O\Vb P\(S)
In conclusion, the average of zy is larger on the unit-square since % > 5=
Remark 6.2.9.
Notice [[,rydA was considerably easier than [ dA.

Example 6.2.10. Calculate fgr f; SY gudz. Notice we need reverse the order of integration to do
a TYPE II integration (has dzx dy instead). Our given integral suggests 0 <z <7 andz <y < 7.

g 0€Xx<4%
peysr( X
NIET

It is graphically clear the region can be recast as type I with 0 <y <7 and 0 <z <y. Thus,

f/ SmydA / / smyd dy—f siny da ——cosy =.
Example 6.2.11. Calaulate, \_/

3/2 p9—dx? 3/2 ,
= lﬁa:dyd:c=/ 162(9 — 4a%)dx  *
Miox = [ e [

3/2
S = / (144z — 642%)dx
0
=722°[3/% — 162%|3/*
=T72(3/2)% —16(3/2)*

=162 — 81 =[81]
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At (x) we noted that 16z is a constant w.r.t. the dy integration. Hence, we simply multiply by the
length of the integration region which is 9 — da®.

Nezxt, let us reverse the order of integration for fun. Consider the graph:

i | (-3 -\"‘
9y q 1T fo—
‘ \‘ =N
M=p
3 i 3/
= fz S - 3 wen
J=0 :
Type Tt fnd 9 TYWE T i had X
I&bl-ﬁnJl ia ‘f"’-"-’ X/‘ ' bounds n feans of 9

Note 9 — 42 =ilies g? = 4,y = 9 — 42? is o parabola 'wﬁth z-intercepts x + 3/2 and y-intercept 9.
Solve z* ( —y) for = and keep positive root: z = \/ — 1. Thus,

9 r3VI-u
/:/ lﬁmdA=/ f 162dxdy
R 0 JO

N
2
0

= 18y -7,
= 18(9) —

-

Example 6.2.12. Calculate /_\ }
/-1/16 / | /Z

cos(16mz”)dzdy. \ e X
=
<

Seems changing bounds may be helpful here. To begin 0 < y < 1/16 and y*/* < x
II, lets graph to guide our conversion to TYPE I,

. f"} y ¢ v
0<Y=X
oecxtYe

X - W " = v = {’—L“
> d

Alug X= wrd x:‘:‘éj"v interrect
b Ak pmm‘f_ t\/‘_ﬂgl ‘/g&} af c:]('alsnr.i{:} Q

csx< Y

(12
ot
i
X
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1/2 px?
// cos(lﬁ'fr:r;E)dA=/ f cos(16mz®)dyda
R 0o Jo

1/2 x4
= / cos(167z°) / dy) dx
0 0

1/2
= / 2* cos(16m2°)da
0

1/2
sin(16mz)

= %on .

- Soiﬂ (sin (1;—;) - sin({)))

1

807"

Remark 6.2.13.

The geometric arguments to set-up TYPE I or I should be familiar from vomr study of areas
bounded by curves in single variable calenlus. We said TYPE 11 regions needed horizontal
slicing whereas TYPE T were vertically sliced. Notice. for TYPE It where yjas:(0) < y <
Yiop(x) fora < < b

b o) b
A= / / dy&r:_/ (mmiwl~UMmVU)dr
S S ypgse(a) a

Whereas for TYPE II: where 2.5, (y) < & < &pgni(y) for e <y <d

d pTini el ) .
A:// m@=/@wmw-WMW@
Je o Jr e

te ft{u)

Thus, in retrospect, we calculated double integrals in disguise in_our previous course. _‘J
=y - s ==

Example 6.2.14.

w/2 5 7w/2
/ f cos(y)dz dy = / cos(y)z
/6 J-1 /6

/2
= / 6 cos(y)dy
w/6

/2

= 6sin(y)
/6

= 6sin(7/2) — 6sin(r/6) =6 — 3 =
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Example 6.2.15.

1 r3 1 ,3
/ / e dady = / f e“e3Vdady
0 Jo 0 JO

3 0
3 _
- (e (" - 1))
=3t -1y

Example 6.2.16. Find volume of the solid under the plane 3z 42y +2 = 12 and above the rectangle
£z -
R={(z,50) | 0<z<1,-2<y <3} - 3%-24 ...Fm,/

Solution: We ought to integrate z = 12 — 3z — 2y = f(x,y) on R. This gives the sum of volumes
with height Z. Well, let’s be careful, it gives the signed volume hopefully f(z,y) > 0 for (z,y) € R.
Let’s pause to verify the geometry is arranged as the problem statement suggests.

As you can see the graph z = 12 — 3z — 2y is entirely above the zy-plane for the given region. In
particular, 0 < z < 1 with —2 < y < 3 puts z = f(a,y) > 0. Therefore, to find the volume of the
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solid we integrate:

V:tﬁéfdA

3 1

= j f (12 — 3z — 2y)dz dy
-240
3 3 1

= /2[121' — 5:1;2 — Zyar]

3

3
=/ [12—5—2y]dy

-2

 rn
—/_Z(T%’)‘@

- R
-(5-v)

105 105-10 |95

B A ] I

0

Example 6.2.17. Find the volume of the tetrahedron enclosed by coordinate planes z =0, y =0,

2=0 and the plane 2z +y + 2 =4. 2=4Y-"Ix -9 = -F(WJ

Solution: the plane z = 4 — 2z — y intersects the zy-plane along the line given by z = 0 and
y =4 — 2z. Thus the tetrahedron has 0 < z < 4—2zx —y and 0 < y < 4 — 2z. Finally, when
z=y =0 we obtain 0 = 4 — 2z hence x = 2. It follows 0 < < 2 for the tetrahedron. Therefore,

the integration below gives the volume: %
v://@_%~mw1
D
2 pd-2z
[_0‘%0) = f / (4 -2z —y)dydz
o Jo
V? 2 4—2zx

1 2
=/0 ((4-—2:c)yw§y20 )dw

= /ﬂj ((4— 2) (4 — 21) — %(4 - 29:)2) dx

=f~1(4—2x)2d$
0 2

2
e 16 — 162 + 42°%)dx
D
0

2 0<Y
= [ (8—8z+22%)dz
0

2
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2
dy
0

Example 6.2.18. Calculate the double integral below:

/] T+'\/—d1‘d?j——-/ (é m—I-J\/“

mfl'(z-w\/@>dy

a2\ 1
:(2+ Jg)

1

|2t + 3037 -2+ 5]

Example 6.2.19. Integrate.

2 -1 il
sdrdy = / Ll dy
//0(7* J1 ((I+y)§o)
-1
= 4+ =) d
/i (y+1 y) Y
2

= (~Infy+ 1 +Injyf}
1

= (lyiflﬂ

= |n(2/3} — In{1/2)

SE]

Example 6.2.20. [ﬂf?_j’n’(l,f(’ fo jﬂ zyv/a? +y2dydr. To begin I make a u = z° +y? substilution
for which y = 0 gives u = 22 whereas y = 1 gives u = z? + 1. Also, du = 2ydy as we hold x-fized
in the initial imtegration.

1 rl : 1 o2
1
/ / xyy/ 22 + y?dyde = [ ( / 5oV du) dx
4] G 0 52
21
- /1 "1" : u’/? ' dx
SRR

e{z? -+ 1)3% - :r(mg)a/z) dz

1 1
/ 1+13/"me/ otz
3 Jy
2
h

9

+ 13 2d(e? + 1) ~ 1 *

S@ -1 - % = %(2&-1).

l
6

At % I made a w = 2% + 1 substitution.
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Remark 6.2.21.

You may find it easier to go off to the side and caloulare diffendt integrals indefinifely.
Otiherwise, yvon do need o change bounds as T have i the example above.

Example 6.2.22. Let R= {{z,y} 1 0< 2 < 7m,0<y < §}. Calculate:

o " w/2
// cosla + 2y)dA = / (/ cos{x + Qy)dy) dx
R Jo /o
w 2=y
1
== / )da:
40 0=y

/ | (Sin(;r,“ + ) - Sin(;r))d,g?
0

(5 sin(z + 2y)
.

B

=z (w cos(z +7) + {:Os(m)io)

(W R

[N

[(w cos{27) + cos(m)) — (— cos(w) + COS(O)}:I

fl
|
o

Example 6.2.23. Iniegrate,

Example 6.2.24.

1 v, H 2 Y 1 s 1 s
/ / e dudy = f (;z:e” ) dy = / ye¥ dy = —e¥
o Jo 0 0 0 2

If we had tried to integrate with respect to y first we would have been stuck since | eygdy is not an
elementary integral, Sometimes reversing the order of integration makes the problem easier.

1
1
=|=(e—~1)
o 12
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Example 6.2.25. R = {(z,y) |0< 2 < 1,0 <y < 1}. Coleulate,

"1+ g2 SR L QR
// . 12(iAm/ / +l,,dyd;y
JIrl+t+y Jo Jo 1T+y°

1

3
= 1+ 2%)da .
/0 ( ) o L+y°

G

{tan™*(1} ~ tan™'(0))

)

Example 6.2.26. Find volume of solid bounded by a top surface of z = 1— 11:2/4_ yg/Q and a base
surface given by R = [=1,1} x [=2,2] on z = 0. This makes the sides at = —T,z =1,y = 2,y =
—2. We view R as a subset of xy-plane; that is, we identify R and R x {0} geometrically. In this
special case the volune is found by integrating z = 1 — 22/4 4 32/9,

V= /R(pmx%wy)m //_D(l~mw*ﬁyj>dyd3

il

27

At « I took advantage of the nature of B and the fact that the integrand was even in both x and y.

Example 6.2.27. The average of f(z,y) = 2’y over some region R is defined to be the Sfn flx y)da
divided by the area of R = [[, dA = A(R). Let R be region with vertices (—1,0),{-1,5),{1,5), (1,0).

?‘f

ng iﬁ"it?]xf‘«?{‘s‘j
AlA} = ﬁf;ea&fﬁ} = 3{8) =

Thus, we calculate:

1 ] 1 ) 1 5 1 B
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Example 6.2.28. Let@m {{z,y) | bounded by y = V= and y = 2%}. Calculate ”Q(T +y)dA

P

Solution: We study ‘g by graphing paired with algebra:

D

bt D o= {ly) ] bsinsted by $ =A% s G=x]

(P v . o J :

gg#& pel H,;'i H {,tmmix m@-’ iﬂ@fgﬁ?@ﬂ by
“x = w?
» = wt

wixeij20 = X=0 sr K=

Thus the region D = {{2,)i0 < 2 < 1,2 < y < /7}. Now we can calculate an integral over the
integration as follows:

0
2.1 1 1
= +--—---—-vi-é
RE
)

Example 6.2.29. D = {(z.y)la? + y* < 4}. Calewate [f,(22 — y)dA.

Solution: our first task is to describe D via tnequalities for o typical point in D:
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Now we can integrate,

2 piI=ZE
2o —yldA = / / 2a — y)dy dx
J[ e -vaa= [ [ o

1 VA=
:/ <2mym§y2>

dx
f (41‘\/ 4~ g% %(4 —2?) + %(4 ;1:2)> da

B3y,

L]

i

it

i il
TR 2232
5 (4—z%) .

= 220~ 0) =[5]

This result is completely unsurprising if we consider the arrangement of values for 2 and y over
the disk of radius 2. There is a perfect balance between positive and negative values.

Example 6.2.30. Consider the region R defined by 0 < y < 1 and sin"'(y) < z < #/2. Let
fley) = cos(@)V1+ cos? z and calculate [, fdA.

Solution: we need to reformulate B since integration with respect to x is not obvious. Nofe:

L)

(s, 1) |
5 N E ?@%

;::;&
D&Y & §inlx)

Thus

wf2  psin(z)
// flz,y)dA = / / cos(a)v/ 1 + cos? ady dz
R o 0
w2
= / V' 1+ cos?x sin(z)cos(z) dr
G h ~
Jii

~du/2

n/2

i

~1 )
wgm(l + cos® ;v)d'/2

0

“le o
(1 2%

= %{2\/5— 1)}
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Example 6.2.31. Find volume under z = xy and above the triangle with vertices (1,1,0), (4,1,0) and(1,2,0).

Solution: it is natural to identify the given triangle with T C R? formed by (1,1),(4,1) and (1,2).
We picture T below where the top line is y = 3:;3 and the bottom line isy =1 for 1 <o < 4.

a4

4,1
- %

Notice zy is clearly postive on T = {(z,y) | 1 <2 <4, 1<y < 75"“" } hence the volume is given by:

i
4 pi(r-o)

Vo= ry dy de

1N
4 1 ‘5(7“‘“’3)
= —T d.L‘
/1 2,
4
= /; %.1 (%(’i’ ~z} ~ 1) dx

218/ (7 —a2)* ~ 9]dx

= 18 [407,u14:, +2%dx =

DUt et you fill in the last few details above. Notfice that we can also write T' as

31
T

T={(z,y) 1 1<y <2,1 < <73y}

then we can integrate x first then y.

73y
f f zydzdy
= [ sy’ dy
'/]T 2 :1

=y ({(7T-3y)* ~ 1) dy

D

&

I
;»—ﬂ 1\311—- tol:—- M[i—l:ﬁ____ﬁt\’
I
mlp—-t t\)

y (48 — 42y + 9y%) dy

(48y — 497 +9y ) dy

s3]

24(4 1) - 14(8 ~ g (16~ 1)
-5 )
-

t‘*z,

b
&
b2
{

J.}.

135 1 135 i1 /1044135 31
;)—5( 2““4‘“)*5(““3“““)— T

Ok, its messy onyway you slice it.

72— 98+
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Example 6.2.32. Consider the following integral, f(f foﬁ Flz,y) dy dx this indicates the integral
isover 1 <y < rzandd <z < 4.

@ Y, _ |

Equivalently we could say y° <x <4 and 0 <y <2

4 Vi 2 pd
f / F(x.y) dy da = f f Flx.y) de dy
o Jo 0 Jy2

Jor problems such as this, you just have to draw the picture and sort i out.

Example 6.2.33. Let R be the region in the xy-plane bounded by y = 0, v = 1 and y = 22

Caleulate [ jR Vs 4+ 1d4.

Solution: it is clearly unpleasant to integrate with respect to x fo begin. It follows® we should view
Ras0<y<1,/y<a<1l. Hence, integrate:

1 1 1 px?
/ / Vi + ldrdy = f / v + ldydr
0 J.g o Jo

1 2
:/y ¥4+ 1 dr
o
1
=/ r?y/ 2% 4 1da
0

]
1
9 3/
@+

‘o
(-
2

=|-(2v2 ~ 1)

b

T

WD O

=3}

%i¢ may be helpful for you to draw a picture to verify this claim



