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6.3 Triple Integration over General Bounded Regions in R3

Rather than explicitly stating the Fubini Theorem for triple integrals I will simply illustrate with
a few examples. Usually we can bound z in terms of z and y, then we can bound y in terms of
7 or vice-versa, that gives two orders of integration. Then other problems allow = to be bound in
terms of y and z or possibly y in terms of z and z, in total there are six ways to write a particular
integral. I don’t give general advice on how to rewrite and switch bounds, it’s a subtle business
and there are far too many cases to enumerate. Generalities aside, let’s do a few typical problems.

Example 6.3.1. Let us find the volume of the region between z = y? and the zy-plane bounded by
2=0,2=19=1 andy = —1. Notice dV = dadydz so integrating dV gives volume V,
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- we work inside out as usual
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= y2dzdy : back to 2-d integrals
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Example 6.3.2. Consider the cylinder z24y? = 1, let 2 = 0 bound it from below and let z = z+y+1
bound it above, call this solid B. A sketch of B reveals the inequlities to the right of it.
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With the geometry settled, we are free to calculate integrals of functions over B. For example, we
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can wntegrate f(x,y,z) =z over B as follows: ~.\.§._ )(é_ \
a+14y N L é ,i —t
///uzv / / / " 2 dzdyda ~JiI-x* 44 I-x
' 0<% TS x|
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/ / (2 + 2 + ay)dydz
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note, the integral of y on the symmetric interval —/1 — 22 < y < /1 — 22 is zero since the integral
of an odd function over a symmetric interval about the origin is zero. Continuing,
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[l = [ 4o
B -1 —/1=22
1
:/ 221 — 22 da
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1
::4/ 221 — 22 dz
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The last step was justified because the integrand is even in x and the integral of an even function
about a symmetric interval of the origin is simply twice the integral of the left or right half of the
integral. The remaining intergral can be calculated by a trigonometric subsitution. In particular,
let x = sin# thus do = cos8df and 1 — 2% = cos? 8 and V1 — 22 = cos b

/mQ\/ 1—22dr = /sin2 @ cosfcosfdb
= /(sin2 g — sin* ) df
1 1 ,
= 5(1 — cos(26)) — Z(l — 2cos(26) + cos*(26)) |df

V1-z?
> dzx

(1 1 11 1,
= /(2 5 cos(26) 1 + 5 cos(26) 7 608 (29)) do
1 1
= [ [ 2= Z(1—cos(4
/<4 £ (1~ cos( 9))>d9
0 sin(40)
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Change bounds on z fromz =00 =0andz=1—0= 3
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Example 6.3.3. Let B be bounded by coordinate plane and the plane possing through (0,0, 1), (0, 1,0),
and (1,0,0). We find the equation of this plane to begin, note ¥ and 1 are on the plane

7=(0,0,1) = (0,1,0) =< 0, —1,1 >

2
@ = (0,0,1) — (1,0,0) =< —1,0,1 > W
T ¥ Z
Ixw=| 0 -1 1|=(-1,-1,-1)
-1 0 1 ((o,0)
%Y
Use normal (—1,—1,—1) and basepoint (0,0, 1) to give plane equation: ‘t‘,‘ "

—z—y—(2-1)=0 = z=1l-z-—y

Let’s plot it. Note z =1— x —y intersects z = 0 on the line y = 1 — z in the zy-plane and we find
the inequalities to bound each coordinate of (x,y, z) found within the pictured solid:
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We calculate the volume of B by integrating dV over B:

1 l-z pl—-z-y
Vz// dV:/ / / dz dy dx
B 0 JO 0
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= / / (1-z-y)dydx
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1
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) dzx
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Notice, the bulk of the difficulty is usually in setting-up the integral. The process of calculating an
iterated integral is (for most of us) the easy part.
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Example 6.3.4. Find the average value of f(z,y,2z) = x on the solid region from Example 6.3.5.
The average is defined to be.

1
faug - ’l’Ol(B) // Bf(ilT,(Y/,Z)dV

We just found vol(B) = 1/6, let’s focus on the [[[5 fdV.
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Thus, f(gg = 11/—3—64 = :11— Notice, the result seems reasonable in view of the picture in Example 6.3.5.

Example 6.3.5.

1 z -tz 1 pz rtz=y
/ / / Brzdydrdz = / / (Gzyz ) dzx dz
0o Jo Jo 0 Jo D=y
1 prz
= / / 6z(x + 2)zdr dz
o Jo

= / /k (61‘22: -+ Gzzz) drdz
0 JO

1
1 =z
= / (2w3z+3x2z2 )
z=0

Jo
= /(2z4 +32%)dz

i
= / 5z%dz
0
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= 2"[p

=[1]
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Example 6.3.6. Let E = {(z,9,2)[0<2<1,0<y<z,z< 2z < 2z}

yzcos(z®)dV = 1 ~2$ xyzcos(x')dy dz | dx
E 0 x 0 |

1
= / x* cos(z%)dx w=z° du = 5rtdr,u(l) = 1,u(0) =0
0

= [ = cos(u)du
0
= %(sin(l) —sin(0)) = 35;%(1)

Example 6.3.7. Evaluate the integral three different ways. The region of integration is
E={(zy2 | -1<2z<1,0<y<20<2<1}-

///E(wz—yg)dV:/jl foz /ol(fzwyg)dzdyda: ‘/AI;O
S ()
- / ( B %“6)) dz = —4(2) =

In what follows below, xz is an odd-function integrated over symmetric interval about zero vanishes.

12 g1
/// (zz —y*)dV = / / / (22 — y)da dy dz
JJJE Jo Jo J-1
1,2 .
[ [
o Jo
1 2
:/ / —2y3dydz
0 Jo

12
:/0 + (@'dz = 82| =[-8

There are four other ways to interate the integral. Each will yield —8. This is Fubini’s Theorem

for [[] in action.

1
dydz)
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Example 6.3.8. The notation on the evaluation bars in this example is optional. You may find it

helpful as you begin your study of multivariate integration. You can contrast this notation with the
less explicit notationin the example which follows.

3,1 /1222 3 1l T=V1-27
/ / / ze¥dz dz dy = / / zeVa
Jo JO JO JO JO x=0

3,1
/ 2V 1 — 22e¥dzdy
0 JO
3 z==1
/
0 z=0
3
-/ (& - 1)
0

dz dy

W=1-%

——1

_3_ z2)3/2ey

7/dy —

Wi —

Example 6.3.9. Calculate the integral below:

Example 6.3.10. E be the solid region in R3 bounded by the parabolic cylinder y = 2% and the
planes t =z, x =y and z = 0. Calculate [[[.(z + 2y)dV.

Solution: we bound z to begin, 0 < z < x. Then a two-dimension picture will do:
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Note (z,y,z) € E implies 0 < z < z for 2?2 <y < x where 0 < x < 1. Hence, integrate:

1 px px
///(a;+2y)dV=/ / / (z + 2y)dz dy dx
E 0 Jz2 JO
1 pz
:/ / (2? + 2yz)dy dz
0 Jz2
T
)dm
22

Example 6.3.11. E = {(z,y,2) | 0 < 2 < 1,0 < y < z,z < z < 2z}. We must integrate
with respect to dz then dx. That is the natural order here. For ezample, to integrate f(z,y,z) =
yzcos(z®) on E we calculate as follows:

Y ¥y
/// yz cos(2%)dV = /// vz cos(2®)dz dy da (,w»{l*‘l'
:/1cos (z°) (/ / yzdzdy) dz Vj‘n\
(%) (/0 5[(22)" - = ])ydy> 0y .
22 cos(z®) ( /O ’ ydy> dz X

2 cos(z) (ly2 > dz
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0= 23—0 sin(1).
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Example 6.3.12. Calculate [[[,ydV where E is the solid region in the first octant bounded by
r=0,y=0,2=0and 2z +2y+22=4.
(i.) (z2)-plane (y = 0) : 2z 4 z = 4 yields z = 4 — 2z,
(ii.) (zy)-plane (z =0): 224+ 2y =4 yieldsy =2 — x,
(iii.) (yz)-plane (z =0):2y+ 2z =4 yields z =4 — 2yt.
these details are not strictly speaking necessary but sometimes it helps to get some additional details
to help insure graph is correct.
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Example 6.3.13. Find volume enclosed by z* + 4> =9 and y+2=5,2=5-y andz = 1

In view of the diagrams above,

Vi=2Z 5y V=2
/ / / dzdydz—-/ / (4-y)dydz
V=22

= / 8v9 — x2dx
-3

If we substitute x = 3sinf then 9 — 2% = 9 — 9sin’ @ = Ycos® 6 and dx = 3cosfdl. Also z = 3
corresponds to § = w/2 whereas x = —3 corresponds to § = —w /2. Consequently,

w2
V o= / 72 cos® 0db

—7/2

w/2 1
= 72/ 5(1 + cos 26)do

-7 /2

=367

Example 6.3.14. Consider fo f\/— fol Y f(z,y,2)dzdydz. Find five other orders of iterating this
integral. Let us consider the cases:
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