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these are equivalent views of the integration region. Therefore, by Fubini’s Theorem:

1 opl pley 1 eyt pl-y
/ / / fdzdyd;v-—:f / [ fdzdxdy
o JUEJo o Jo Jo
1 pl=-z py?
:—_/ [ / fdz dy dz
0 JG G
1 pl-y P
m/ / f Fdzdz dy
o Jo 0
1 p1-% pl-z
:/ / / fdydzdx
0 Jo VT
1 p{l-z)? plez
:m/ f / fdy dx dx.
a0 JO VT

Remark 6.3.15.

We have studied how to mtegrate in Cartesian Coordinates in some detall. I8 turns ot
that this is quite Hmiting. 1o do many interesting problems with better efficiency i pays
to mmploy cvlindrical or sphevical coordinates. Before getting to those special choices we
consider a general coordinate change briefly and in the process derive what we later use for

the eylindrical and spherical coordinates.

6.4 Change of Variables in Multivariate Integration

Our goal in this section is to give partial motivation for the analog of u-substitution for multiple
integrals. In the one-dimensional case, we have to substitute the new variables for the old in the
integrand, change dz to a corresponding expression with du, and we must change the bounds to
the u-domain. We expect all three of these to appear in the multiple integral problem. It turns out
the probiem of substitution and bound-changing is nearly the same as in one-dimension. However,
the method to change the measure offers a little surprise.

6.4.1 coordinate change and transformation

To begin, 1 encourage the reader to revisit Section 1.6 where we introduced polar, cylindrical and
spherical coordinates. In general, a coordinate change on R™ is given by some mapping T R® - R"
which is locally invertible at most points. Sometimes this is written as:

r1 = a1{ul, ua, ..., Un)y Tp = Zo(u1, Uz, Un)y oo Tn = T (U1, U2, .o Un)
Invertibility means we can also solve for u; as a function of z;:
uy = uy (w1, g, ..., Tn), Ug = ug(@y, o, -, Tn)y -0 U = wp(T), 2,0 Tn )

We don’t insist on strict injectivity since polar, spherical and cylindrical coordinates all lack injec-
tivity in their usual use. In particular, here are the usual polar coordinate transformations as well
as the inverse transformations which apply to the half-space z > 0

z=rcosf, y=rsind & o /22 4%, 6 = tan”Hy/x).
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We prefer to identify angles which correspond geometrically and the origin has p = 0 yet the polar
and azmuthial angle of the origin is undefined. Fortunately, we are primarily interested in inte-
gration and the ambiguities of these standard coordinate systems do not change integrals. For a
double integral, the addition or removal of a one-dimensional space does not change the integral.
For a triple integral, the addition or removal of a two-dimensional space does not change the inte-
gral, To verify these agsertions in general is beyond this course and properly belongs to the topic
of measure theory. In addition, the more careful concept of a coordinate chart belongs to
manifold theory where injectivity is required and some examples we consider here no longer fit the
abstract definition of coordinate system.

We primarily discuss the problem of coordinate change in B2, It is a fortunate fact that the higher-
dimensional problem admits almost the same analysis so little is lost by focusing on this readily
visualized case. Let us begin with an example:

Example 6.4.1. § = {(u,v) | v? +2v* < 1} and z = au,y = bv. Notice 22/2* + y*/b* =
a*u?fa? 4+ b B = u? 4 v® < 1. Thus if we define T(u,v) = (au, bv) we find

i W

J‘f.
Ye's |
the transformations T deforms o disk to an oval.

6.4.2 determinants for good measure

Consider two planes, the {z, y)-plane and the (u. v)-plane, the coordinate change map T takes (u, )
to T(u,v) = (z(u,v), y{u,v)). In particular, we study 7 : S ¢ R? — R ¢ R? and we insist that
T be invertible, except possibly on the boundaries. This means the equation relating »,y and u., v
can be solved for either o,y or u,v locally. In the diagram below I llustrate how T might map a
rectangle in the wuv-space to a curved region in zy-space.

However, if we focus on a very small region then a little rectangle is essentially sent to a little
parallelogram. Relating the areas of the rectangle and parallelogram will provide the relation
between the measure in zy versus uv-coordinates. Furthermore, since we consider very small
rectangle the first order approximation of T suffices. Recall, in our discussion of differentiability
we learned 7' may be approximated by the Lnearization” of T

Our Opx ] [ w ~ }

R(a, v) = T(uy, vp) + [ By By v

Ttechnically, this is an affine approximation of T'
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where the 2 x 2 Jacobian Matrix is evaluated at {u,, vo). A parallelogram at (u,. o) is transported
by h to a new parallelogram at T(u,, ve) whose area.is distorted according to the structure of the
Jacobian matrix. You can prove the following for some extra credit if you wish:

Proposition 6.4.2. {based on 5.1 of Colley’s Veclor Calewlus )

x [ [ a b ,
Let h{u, o) = | 77 | + A where A = | 1 det 4 # 0 and x4, yo are constants,
Yo K e a

then if D* is a parallelogram then h(D*) = D is also a paraliclogram and

Aveal D) == ldet AlArea(D)7).

If T maps Au, Av at {ug,v,) to Ax, Ay at T{u,.v,) then as Au, Hv -» 0 the proposition above
applied to the linearization yields:

d,r Ow

By Dy } FACTRAYE

Hx Ay = det [

For finite changes this is an approximation since the real changes in x and y respective are based
on the generally nen-linear nature of 7. However, as the size of the rectangles is reduced the
approximation improves. We ultimately apply the boxed formula inside an integral where the
approximating rectangles are made arbitrarily small and consequently the result above is made
exact. Of course, I have omitted some careful analysis here. There are many excellent advanced
caleulus texts which justify the multivariate change of variables theorem. For example, you might
look at Munkres Cealeufus on Manifolds. Tt contains a lengthy justification of multivariate u-
substitution. Finally, let us conclude with the generalization to n-dimensions. We again find the
determinant of the Jacobian matrix gives the necessary volume rescaling factor. In particular,
if T(uy,...un) = (21,...,%q) is an invertible coordinate map which maps Ouy, Dug, ..o, Huy to
Axq, Drs, ... Az, then the volumes® of the parallel-n-pipeds are related by:

Ax1Aag - Az = det{ DT} A Dug - - - Dy
where det(D7T) is the the determinant of the Jacobian matrix. For example, if n = 3 then

B Oyr Oz
AadyAz =det | Oy Sy Oy | Audvdw.
Ouz Opz Oyz

You may find the rows and columns of the matrix above reversed in some calculus texts. That
operation of changing rows into corresponding columns is called transposition. You should learn
in your linear algebra course that det A = det A7 where AT is the transpose of A. It follows the
formula above can also be written with the transpose of the Jaccbian matrix. In any event, you
should appreciate this section gives (without proof) an indication of the geometric significance of
the determinant; the determinant quantifies generalized volume. The work which follows from here
is merely a synthesis of the geometry of determinants with calculus.

%t0 be careful, the magnitude of these expressions are volumes, it is possible the expression is negative i which
case the volume is given by the absolute value of the expression.
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6.5 double integrals involving coordinate change

It is convenient to set some standard notation which helps us set-up the calculation of the Jacobian.

Definition 6.5.1.

The Jacobian of the transformation T(u, v) = (x(u, v), y(u, v)) is,

(. y) g Ox
N Y) _ get |8 & | = 2oyy — 2ow
Alu. ¢) § dy  dy ulh Uyl

o o

The “Jacobian™ is the determinant of what I called the “Jacobian matrix”.

Example 6.5.2. Consider polar coordinates: T(r,0) = (rcos@,rsinf). Let’s calculate the Jaco-
bian, note x = rcosf and y = rsind

Bzyy) | & & | |cosd —rsind 3 e
a(r,0) % g_g_ =\l sl wasgl | o0 0+ rsin”f =[]

Example 6.5.3. Find Jacobian of the following transformation

rT=5u—v = Tu=D5, zy=-1

y=u-+3v = Yu=1, Yo =3

Therefore,

o(z,y) Tu Be | 5 =11 _ _
B(u,v)_dEt[yu Yo = det 1 3 =15+1=|16.

Example 6.5.4. Find the Jacobian of the transformation z = u + 4v and y = 3u — 2v
By definition,

o(z,y) fz/Ou Ozfov | _ 1 4]

Example 6.5.5. Let z = arsin 8 and y = acos B find the Jacobian of (z,y) — (a, B)
By definition,
e, B) dy/fa By/0B cosB —asinf

The proof of the following is a simple consequence of the general chain rule. It is also very useful
for certain problems where finding the inverse transformations is troublesome.

(z,y) _ det [ dz/0a Ox/0B ] - [ sinf «acosf ] _ —asinzﬁ-acosg,6’=

Proposition 6.5.6.

Given the transformation T(u,v) = (2(u, v), y(u,v)) is differentiable and invertible,

e.y) [8(-u,1.=}]_l
a(u_"f_)) o ()(11}) l

O(u,v) d(z,y)

= 1 which gives

A, y) O(u.v)

\

Now that we have a little experience with Jacobians, let us return to the problem of integration.
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In terms of our new-found notation the central point of the last section reads:

Az Ay = 0(z,v) Au Av

A(u,v)
As Az Ay — 0 this formula above intuitively tells us that:
9(z,y)
dz dy = ———=dudv.
xdy 3w, v) du du

This is how we change the measure of integration in double integrals. Naturally, we also have to
modify the integrand and bounds. The absolute value bars are needed as the sign of the integral
arises from the integrand not dA for a double integral®. In particular:

Theorem 6.5.7. Changing variables in double integrals:

Suppose T : S — R is a differentiable mapping that is mostly invertible (except possibly
on the boundary) from TYPE T or II region S to TYPE I or 11 region R and suppose that
fis a continuous function whose domain includes R,

J[ rtwmdzay = / A Fa(u,v).ylu >>|g§t v

where the | - | on the Jacobian are absolute value bars.
e

du dv

Example 6.5.8. Let’s apply this Theorem to Polar Coordinates, suppose [ is continuous etc. ..
// f(z,y)dzdy = /f f(rcosf,rsinf) o(z,v) drdf = f/ f(rcosf,rsint)rdrdf

R s d(u,v) s

Example 6.5.9. Using Bz.1.4.5 calculate the area of a circle of radius A, call it R

’ T pA 27
/j dwdy=//.'rdrd9=/a / rdrdé’:/ La2gp = La2 on = [ a?]
R s 0o Jo 0o 2 2

Remark 6.5.10. S - [Dt”qx [%m

This is considerably easier than the direct Cartesian calculation of area. although the same
geometry makes both solutions work. Notice “mostly invertible” is a needed qualifier since
the angle # doubles p on # = 0 and 27 given (x, y) along # = 0 should we say it corresponds
{0 6 =0 or 6 = 21?7 Fortunately a curve or two will not change double integral’s result.

Example 6.5.11. Evaluate the integral by performing an appropriate coordinate change,

1 prl-x
I= f VT Fyly — 22)%dy da
o Jo

This suggests we choose u = x+y and v = y—2z. Solving for z,y yieldsz = 5 — % andy = %u +iz
Thus

T(u,v) = (%(u il %(m P 'u)).

IfT: S — R than what is S in this case? We are interested in R that is indicated by the integral
I, namely R={(z,y) ER* |0<y<1l-2&0<2 < 1}. The graph is justified by the analysis
below the graph:

9vou may recall, as we calculated TYPE I or TYPE II regions the construction of dA requires it be positive. This
was implicit within the definitions of TYPE I and IL.
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To figure out the boundaries in the wv-triangle we are guided by the knowledge that for a simple
linear T as we have here triangles go to triangles, vertices to vertices.

(L) m+y=%u—§v+§u+§v= u=1
( IL.) O=w—%u—%'u=>
2
(IIL) 0=y =3u+

Thus, S = {(u,v) € R? | —2u < v <u & 0 < u < 1} Notice then, for z = 3(u—v) and
y= %(Z’M +v) we calculate the Jacobian: —
f

Ox,y) _0zdy 0dzdy (l (l _(—_1 2\ _3_1
B(w,v) Oudv 0Ovdu 3/\3 3 J\3/ 9 3

Apply what we’ve learned.

1 pl-zx
I= / [ VT Fy(y — 22)%dyda

0
- | v s

(7

u

dv du

Il

1
0 —2u
1
=/ r\/—a(ua — (—2u)®)du
o 9
1
=/ Y
0
2 g1
=4 f lo

SEn

Acknowledgment: this example borrowed from Thomas’ Calculus 10th Ed, pg 1040.



