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Example 6.5.12. Let R = {(z,y)|z® +y% < 4,z > 0}. Convert this region to Polars and integrate

flz,y) = V4 -2 — 32

DEYVEd

It is clear from the plot above that S = {(r,0) | 0<r <2, -5 <0 < §}. Note, we allow 0 to range
outside [0,2m) for our convenience. If we insisted on using only [0,2) then the f-domain would be
built from disconnected intervals [0,7/2] and [37/2,2r). Thankfully, for problems of integration we
consider, we are free to use the more convenient domain. I should warn the reader this difficulty
cannot be avoided in complez analysis and ultimately leads to some rather interesting results. I
digress, let’s get back to the integration:

/2
/ Va—22—92dA= / V4 —12cos20 — r2sin® 07 df dr

—/2 3

d - [ [/ [JA=ra60]
qoxt-y* dddX = /U mry/4 - r2dr

_ w2 213/2. ¢
SNCEYE =—33¢4-7) -
= —30- ()"

8_7r
i3

Example 6.5.13. Let f(z,y) = \/ﬁ find [[p f(z,y)dA where R is the region in zy-plane with
1<r<2and0<0<7/3.

/R \/WM /mfl Lodrap
_ (f;/ddﬂ) (/lzd'r)

4
3
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Example 6.5.14. The wrong way to calculate the area of a triangle: Find the area of the
triangle bounded by x = 0,y = 0 and © +y = 1 using poler coordinates. It’s fairly easy to see that
0 <68 <w/2 on R, however bounding r requires thought,

=<k

N~

fu nuf\l'ms 0“ O

" .
(®=0) ‘
. {
0¢0< T > ssr< i
- 2 T Cer@ +5ing
L e

This is o less trivial polor region, we must put the integration over dr first since its bounds are
f-dependent.

72w
Area(R) =/ / T dr d
0 1

/2 1/[cos 0+sin @]
= / 1 (r2 ) dé
0o 2

0

=1/ﬂ/2(d—9 (}0+sinO = "‘f‘(9+17‘()
0

2 cos @ + sin )2
m/2

/2
= %f %CSCQ(B-I—TT/@
0

0
1 w/2
=3 cot(0 + m/4)

= _Tl (Cot(37l'/ 4) —OCDt(W/ 4))
=i

=4 1-1

|1
|2

At % we noticed sin(f + m/4) = sinf cosm/4 + sinmw/4cosf = v%(sin& + cos @) thus sinf + cosf =

V2(sin(f+m/4). This is a horrible method to find the area of a triangle. But, it illustrates a general
principle which is that coordinates should be chosen to fit the problem. Obviously this problem is
far more natural in Cartesians coordinates.
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Example 6.5.15. Let R = {(z,y)|922 + 4y? < 36}. Calculate [[gz?dA.

Solution: Let z = 2u and y = 3v and observe that 36 = 4(3v) = 922 + 4y? = 9(2u)? + 4(3v)* =
36u2+3602 hence the equation of the ellipse is transformed to the unit-circle u?+v? = 1 in uv-space.
Note,

Nz,y) | 0z/ou Ozfov | _|2 0| _ 2 i
d(u,v) | Oy/Oou Oy/dv —‘O 31_6 _?é__.l-% < [

Let S = {(u,v) | ©? +v* < 1} and calculate:

/:/};1‘sz = /_/S(Qu)z %‘%dudv Vv
=//S24u2dudv g ‘@9“

It is useful to change coordinates once more: let u = rcos and v = rsinf then S transforms to
0<8<2r and 0 <r <1 in rf-space. r— M

//Rmsz:-/01‘/(;%24?2005207“::'!9(17' [G‘ll\f [oian-]
= /1 24r3dr /% %(1 + cos(26))dd
0 0

i 1 1 ) 2w
= | 6r 5(1 + sin(26))
0 0

= (6-0) E (271’ & Singm)) ~ % (O+ %sin(O))]
=

Example 6.5.16. Let R be the region in the zy-plane with 2 <0 and 1 < 22 +y? < 4. Calculate
[[(z +y)dA by changing the integral to polar coordinates.

Solution: to begin R is easily seen to have 1 <1 <2 and § < 637”. See the crude sketch below:

Ih

. 1

=2
/‘ X :g- £

e
&=3

I

3n/2 p2
// (z+y)dA = f (rcos@ + rsin f)rdr df
R /2 1

3w/2 2
=/ (cosﬂ—i—sin@)d@/ r2dr
/2 1
3m/2
L
w/2 3

—(-1-1) (%(8—1)) =5

= ([sinﬂ — cos ]
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Example 6.5.17. Let R = {(z,y) | 1 < 2?2 +3% < 4,0 <y < 2}. Calculate [ tan™*(y/z)dA by
changing the integration to polar coordinates. 2
| 27 € Y

Solution: usually, the lg&si approach is to draw a picture. Consider,
0 | << 2
_‘—-F ¢

@“;

y=x

R={(re)| icrea, 'of_ggg}
/9-0 fan (/) = ha' (B2 ) = dai(tun ) = ©

Therefore,

//Rtan_l(y/m)dA=/UWM/lzBrdrdB dﬂ =rdr db

wf4 2

1
1.2

0 2 1

(5o

372

64

Example 6.5.18. Find volume bounded by z = 18 — 22 r»Oyg and z =0.

Solution: The double integral will yield the volume. First convert to polars,

2

2=18-2r2 = 9=7r* = r=3.

the surface intersection with z = 0 in a circler =3 and R = {(r,0) |0 <7 < 3,0 < f < 2w}.
Therefore, the volume is found by calculating

2 3
= // zdA = / / (18 — 2r®)rdr df
R 0 0
2 3
=(2m) (91"2 — ZLTA)

0
= (2m)(8L - %(81))
>
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Example 6.5.19. Find volume bounded by z = /2* + 4% and 22+ y? + 2% = 1. This is a cone
bounded by o sphere. The equations are symmetric in x and y hence we deduce 0 < 8 < 2w, The
intersection of these surfoces has x* 4+ 4y + (/2?2 + y2)?2 = 1 hence 2r° = 1 from which we find
r = 1/y/2 on the intersection. It follows that 0 < v < 1/+/2. Naturally, you could use o three-
dimensicnal graphing wiility for further cowﬁ:r:rnatzon of our claim. To set up the volume, we need

to identify that the shape has /22 +y2 <z < /1 — 2% —y? for
AV = (Ziop = Zbase) dA + (typital infinitesimal volume.)
= (\/1 —a? — % = /22 +y2) da dy

= (m- r) 7 dr df

Thus,

2 12
V= /dV = / (-r\/I -2 'r’g)dr dg
. S0 4]

¥3

2

—1 ,
== 27 ?(1 — )32 %r‘}

0

HONCIRD

= 1"5(2_ V)
f dV = j -t:‘rc:l%chr dé

Example 6.5.20. Convert jﬂ jﬁ \mm ydz dy to polar coordinates and calculate the integral.

H

Solution: from the given integral we deduce the integration region is given by 0 < y < a and
—/a?— g2 < x € 0. It follows the region is the top left quarter of the disk z% +y° < a®

Therefore,

m a T 23
f / (r% cos® 6)(r sin 8)rdr df = / cos® B sin fdf / rdr
#/2 S0 Sfwf2 0

A PV R WA
- (Ferd ) (%)
~
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22

Example 6.5.21. Convert fnz 0 Va? +y2dy dx to polar coordinates and calculate the infe-

gral.

Solution: let D be the region of integration. If (x,y) € D then we may read from the given integral
that 0 <y £ V22 -2 = /r{2—2) and 0 < x < 2 for the integration region. This is pictured
below:

41

H
§

o AEERTST = e g
B 2K 4w O

. I, 4 v . .
% = {”}‘i-ﬂ’i} RS ) {lw & Cifpiv g*‘:‘ toaftig
mae ot {1 6} -

i should be clear that D has 0 < 8 < w/2. It is also clear that the bound on r must depend on
6 since we have differing radii for differing 8 (for example, v = 2 gives 0 = 0 while r = 0 gives
= m/2). We need to convert y = V22 — 22 to o more useful Jorm. Note that z° — 22 +¢* = 0
yields % +y° = 2z. However, this yields r> = 2r cos @ hence we obtain the equation of the half-cirele
asr=2cost for 0 < 8§ < #/2. Therefore,

w/2 p2cosl
// Va4 y2dA = / f r2dr dg
D 0 0

w/2 )
/ §cos3 a2do
5 3

i

1 ) /2
(Sén g — 3 sin® 9)

by [
3/ 19

4]

/2
// §(1—sin‘-’-9)cosad9
o 3
8
3
8
3
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Example 6.5.22. Let DD, be disk of radius a ceniered at origin, define

Im/] e VA= lim [ e V4
Rz [r2as 36 o] Du
= lim f / = e df
Qoo
- “1‘1‘{3‘3 ((27‘) 2 110)

=11m {e“

it

Alternatively, we could coleulate the integral of g vy by a limit of rectangular integrals: let
Se = [~a,a} x [—a, a]

I=/ eV A = lim // e™ ¥ gA
®2 13O0 S
- Iimf / e~ eV drdy
= gy f ry
= lim ([ fz‘”"zda) (/ e"yzdy>
a—300 — -l
= lim (/ e"xzds,r) lm (/ e"yzdy)
[2 5 J0- 93 —a (3O —a
a R 2
== l:lgn (/ e"’”_d:ﬂ)} = T

a
lim (/ e""gda:) = /7.
a~roc —a

Example 6.5.23. A shghf modification of the previous evamples shows j e~ dy = \/_— As-

sume that 3% _]'Oc —a® dy = [ o 5; —a2* Jp to derive many nice formulas for integrals of the form:
oo -2
/ 2"e” " .
Lade s}

If you want to know a lot more about the idea of this example, you might search for the excellent
paper by Keith Conrad DIFFERENTIATING UNDER THE INTEGRAL SIGN. In fact, you'll find
many interesting expository papers at Professor Conrad’s website. \ "

Blurbs

.




308 CHAPTER 6. INTEGRATION
6.6 triple integrals involving coordinate change

The change of variables theorem for triple integrals and higher integrals is essentially the same as
we just saw for double integrals. We begin by extending the definition of the Jacobian to three
variables:

Definition 6.6.1.

Let T'(y, v, w) = (x(w. v, w). y(u,v,w). 2(u.v,w)) be a differentiable function from B¥ —
R? the Jacobian of T is

AMu,v,w) |58 5 B

|5 T owl

Example 6.6.2. Cylindrical coordinates: @ = rcosf, y = rsin 8, z==z.

9z, v, 2) Tr Tg T cosf —rsingd 0
ﬁ— =det |yr o y.| =det |[sind rcos® 0| =(r cos® @ + rsin® ) =
(r.6,2) Zr 28 2z 0 0 1

@V:Mdz = ("(ll'('.wd%

Example 6.6.3. Spherical coordinates: © = pcosfsing,y = psinfsing, 2 = pcos¢. where
0<0<2r and0< ¢ < and p* =22 +y* + 2%

_ 2XY,2) %ind
— z, T0 T4 — Sin
B(p0,) |l b o6 40) e

i st e (A7 = (ng dpdpd

=det |sinfsing pcosfsing psinbcose
cos ¢ 0 —psing

= cos 0 sin ¢(p cos § sin ¢)(—psin ¢) — sin 6 sin #(p* sin f sin® ¢)
+ cos ¢(—p? sin” O sin ¢ cos ¢ — p? cos® fsin ¢ cos @)

— —p? sin® ¢(cos? § + sin? §) — p? cos® #(sin® 4 + cos® §) sin ¢

= —p”sin ¢(sin® ¢ + cos? ¢)

=|—p*sing

Notice that ggg;; = p*sin ¢ thanks to the fact that swapping a pair of columns in a determinant
changes the sign of the result.
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Example 6.6.4. Let x = e* ™,y = e¥t¥, 2 = e¥*V* find Jacobian. By definition,

Ty Ty Ty

d(z,y,2)
—2 = det !
d(u, v, w) ?iu Zt gw
L ~u v w
B 8u—'u _eu—'u 0
=det | ¥tV eutv 0

eu+v+w eu+v+w eu-?-v+w
— eu+v+w(eu—veu+u S eu+veu—v)
= Ei*u+v+'w(e2u)

- 631L+‘1J+1'U

I should mention, Proposition 6.5.6 generalizes to three or more variables.

Example 6.6.5. Letz =%,y = ,2=1 then

; Ty Ty Tw
—"a(l,y’Z) =det | Yu Yo Yuw
(u, v, w) fy Po
v —ufv? 0
= det 0 1w —vfw?
| —w/u? 0 1/u
il uvw

ww  ulvw?
=

The transformation studied in the example above would not be allowed if we wish to use the change
of variables integration Theorem. The everywhere vanishing Jacobian suggests the transformation
is not invertible. The theorem below is completely analogous to what we saw already in n = 2:

Theorem 6.6.6. Coordinate Change in Triple Integrals:

Suppose T : R ¢ B* - § € R? is a differentiable. mostly invertible mapping where
T(y vow) = (a(u,v,w), y(u,v.w), 2(u, v,w)). Also, suppose f is continuous on S, and
T(S) = R then

// fle,y. 2)dedydz = /// F(T(w,v,w))
JJI s

Notice the notation f(T(u,v,w)) is simply notation for saying that f is to be written in terms of
u,v,w as indicated by the formulas z = z(u,v,w), y = y(u,v,w) and z(u,v,w). The following
pair of examples give the most common applications of the change of variables theorem for triple
integrals in this course:

0(1J z)

@(u o) du dv dw

Example 6.6.7. Cylindrical change of variables: in view of Ezample 6.6.2 and the change of

variables theorem:
// f(a;,y,z)dV=]f/ f(rcosf,rsind, z) - rdrdf dz
R )

The set S is simply R ezpressed in cylindrical coordinates.
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Example 6.6.8. Spherical change of variables: in view of Ezample 6.6.3 and the change of
variables theorem:

// f(m,y,z)dV:/f f(pcos@sin g, psin@sin ¢, pcos ) - p?sin¢ dpdf de
R S

The set S is simply R expressed in spherical coordinates.

Example 6.6.9. Evaluate [[[.(2® + 2y*)dV where E is the solid in the first octant which lies
beneath the paraboloid z = 1 — z? — y2.

Solution: This problem suggests a cylindrical approach, notice

2% + 2y? = 2(2? + ¢?) = ar?

=r3cosf whereas z=1-2°—y?=1-r2 X 068‘5%
Also, the “first octant” is defined by z > 0,y > 0 and z > 0. On z = 0 we find the intersection of
z=1-r*=0=1r?=1. Recall dV = rdrdfdz for cylindrical coordinates. Also, we arrange the

iterated bounds to reflect the description we found for E in cylindrical coordinates: 0 < z < 1 — 72

for 0 <r <1 where 0 < @ <7/2. Therefore,

w2 pl pl-r?
/// (z® + zy?)dV =] / / (r? cos B)r dz dr df
E 0 0o Jo
w/2 1
:/ cosBdB/ r3(1 = r?)dr
0 0

Tr/2(_r4 ‘J"B) 1
0 4 6 0

1 1 2 1
-0-9(3-5) =55

Example 6.6.10. Consider f(z,y,z) = %ﬁﬂ— ‘w Find [[[5 fdV where

- >R
E={(z,y,2)|]1<z —:3 + z* < 9}. %1
Solution: clearly thz’s_problem s best approached in spherical coordinates. Begin by noting that
E may be described in spherical coordinates by 1 < p < 3 and 0 < 0 < 27 with 0 < ¢ < 7.
The formula for the integrand is likewise transformed to e /p®. Finally, the Jacobian for spherical
coordinates tells us how the volume element transforms to dV = p®sin ¢ dp df do

JJ e = [T [T [ Gepsmespaag
- ( I smqsdcb) ( fo cw) ( /1 epdp)

(—cos + cos0) (27)(e2 — 1)

= sinf

Il

= |dn(e® —e)
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Example 6.6.11. Find the volume and center of mass of the region E which is abouve the cone

z = 1/ 2%+ y? and below the sphere 72+ 4% 4+ 2% = 1. We assume that E has a constant density'®
0.

Solution: the center of mass is found by toking o total-mass-weighted average of x,y,z over the
given solid. In particular, essentially by definition, the center of mass al {ZTem, Yem, Zem) 15 given

by:
CL‘.:m:"\—Q;/// xd dV ymmm /// yé dV, Zem = M/‘/];?*c‘idv

where § = WL gives M = [dM = [[[;dV. In all four of the integrals we face, a spherical
coordinate choice is convendent. Let us begin by picturing the solid:

Thus. pulling out the constant é,

wi4 2w
M“a/ f / p2sin¢ df dp dé
:5/ I dp/ sin ¢ d¢ dﬁ
0
= § (3) (w(Ob( w/4) + 1)977

03

Since § is a constant density i follows that & = %‘%—L = i\% hence the volume of E is given by

V=M= 232 (‘i - T}_—i) If § is not constant then the volume and mass are not proportional in

general. That said, let us continue to the calculation of the coordinates of the center of mass. Begin
by using symmetry to see that Ten, = Yem = 0 hence all we need to explicitly calculale i85 zem.

& 2m
Zem = —f%f/// 20dV = EV—I {) [ f (ppcos ¢)(p? sin ¢ d dp dBY)
v 1 w /4
)
o) (00 T

el
M

-5 () (3) -5

107 ofien use p for density in physics, but, it seems that would be a bad notation here
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Thus.
T R N 32
em =701y 7 1w Va-1 82-1)
In summary, the center of mass is at (0,0, S(iff"fl))'

Sometimes we are interested in the geometric center or centroid of an object. This can be found
in the same manner as the preceding example. We simply set § = 1 and find the center of mass.
This is merely a convenience, if we set 0 to any nonzero constant then the resulting center of mass
would still be the same. Only in the case that the mass density is variable do we find a possible
distinction between the centroid and center of mass.

Fxample 6.6.12. Find the kinetic energy of a ball with radius R and mass m that spins with
angular velocity w and moves linearly with speed .

Solution: [t is shown in physics that KEye = KEro + K Eirans- Where K Enans = %mvz and
KE o = %I w? where I is the moment of inertia measured with respect to the azis of rotation. We
take the {moving) z-azis to be the rotation axzis. From physics,

m
aR3

I.= / ] 6(z,y, 2)(a* + yH)dV constand density has 6 = 3
E

4

2r v R Im 21 2
m/ / f Y1 [(pcos @sin é)? + (psinfsin @) p° sin o dp do df
0 g Jo

3 e © R
= R / cEG/ / glsin® 6 dp do : /s'm3 oda = [(1 — cos? ) sin g
7O Jo ¢ Jo
5

_dmm) (1 e
= m (30{)5 ¢ —cos ¢ 0( : ED)
am -1 1 RS
e ?,n s —— + < et
Tl T)( 5t Coq{0)> ( 5 )
_ 3m(2m) 4 E
T 4xR® 3 B

2
= ~ '5‘7”}?»2 = Isphere

Hence, we find:
. i 1
KB = §m'u2 + gm}i’?w?

If the ball is rolling without slipping then w = v /R
1 . .
K Eipta) = =mR2w? + %mRz 2= L mpns,
2 3] 10

The formulas for center of mass or moment of inertia for a given solid all required multivariate
integration. In physics, I usually begin by describing the concepts for a finite set of particles then
we imagine how as the number of particles increases we can pass £o the continuum. In that smearing
process the finite sums elevate to continuous surns which we know and love as integrals. I forego
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this argument from the finite to the continuum as the content is mostly physical. In this course, in
these notes, [ merely supply some formulas given to us by the subject of physics and we use them
as interesting problems to hone our integration skill.

Example 6.6.13. Let E = {(z,y,2) | 2*/a® + y*/b? + 2%/c% < 1} calculate the volume of E.

—
Solution: by making the change of coordintedx = au, y = bv and z = cw.| Under this change of
coordinates E morphs from an ellipsoid to a sphere By=— e ~

#?[a® + y? 0% + 22 [c* = (auw)?/a® + ()2 /b7 + (cw)?/c? = u® +v° + w?

Let B = {(u,v,w)[u® +v? + w? < 1} and calculate:

/ / = / f | deayd

(z,5,2 0(z,y, 2) g 00
// L) du v du P =% W Yu|=1[0 b O
O(u, v, w) o(u, v, w) 00 ¢

= abe du dv dw i F R,
=a/b{[8/5dudvdw Vol Show = Sc:r So S"f sk d(’:‘f’
— = (§7ao)(sn4e) (¢
-5 =@r)a) (F4)
The volume of the unit sphere is calculated as follows, = 53— 1 ﬂg

u = pcosfsin¢g

> 8(u, v, w)
dudvdw-/ / / [d&d dp ¢ v=psinfsin
/1], 5(0.0.9)| " peinfsing
W = pcos
Calculate the Jacobian,
0(u, v, w) Up Up U cosfsing —psinfsing pcosfcosgd
m =|v, vy vy|=|sinflsing pcosfsing psinfcose
(P, 1 4 ) Wp Wo We COS¢ 0 —pSiIlQ')
= —p®cos? @sin® ¢ + p®sin fsin dl— sin® ¢ sin § — cos® ¢ sin 8] — p* cos” 6 cos” ¢ sin ¢
= —p%cos?@sin¢g — p®sin? fsin &
= —p’sing
Thus,

1 p 2w 311 ™
/f/ duclvdw:/ / f P2 sin pdf dp = 27 (p_ ) (—cosqb ) = 4—”
B o Jo Jo 3 1o 0 3

In general, the detail given at the end of the previous example is not required. The volume of a
sphere is known for future reference. However, you ought to be able to work out the details.
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Example 6.6.14. Let E be the finite cylinder defined by 72+ 92 <16 and ~5 < 2 £ 4. Calculate

[[fp Va2 T g2 dV.

Solution: ohserve E is 0 < r < 4 and =5 < z < 4. Moreover, as there is no restriction on 8 we
have 0 < 0 < 2% for E.

2w pd 4
/// Vat+yidV = f / / ridr dz df : recall dV = rdrdz df
E 0 J-sJo

ook Bz, y.2)|
= d9/ rzz/ P2dr - osince| 2 =y
/() . . (T snce 8(1’, z, 9) T
= (2m)(9)(16/3)

384w
3

Example 6.6.15, Let £ = {{z,,2) |0 S zSe+y+5, 42 22+ 4% < 9). Caleulate [[[pzdV

Solution: We can converi E to cylindrical coordinates via x = rcos8,y = rsiné and of course
z =z, Observe 2% + 4% =12, E becomes:

<8< 2n

4<r?<9=2<r<3

D<z<rcosfd+rsind+5.

Thus motivating,

fl

2% 3/«r(cosﬁ+sin8)+5
o

(7% cos 0)dz dr d8, dV = rdzdrdf

r{cos 0-+sin #)+5

J
J

) 7% cos @ dr df
0

2w p3
= / / [7"3 (cos? § + sin B cos §) + 512 cos 9] dr df
2

3 3
cos@ |1 df
2

(}_ + —,13005(23) + %sin(?é’)) + %ECOS 9] g *

=

) (cos® § + sinfcosd) + (%-r3

In the  step I observe all terms, except the first constant term. integrate away due es o sinusoidal
wave-form has equal areas above and below the x-axis during any integer multiple of periods. This
observation can be very labor saving in problems such as this.
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Example 6.6.16. Find mass M of a ball B which is the set of all points (z,y, z) such that
22+ 4+ 22 < a2 where a is some constant and the mass-density at (z,y,2) is given by:

p=kvVa2+y?>=kr (proportionality constant is k)

Note 22 + 2 + 22 < a2 implies 7> + 2° < a® hence z° < a? — 12 and consequently the sphere p < a
in cylindrical coordinates is:

- -y deseriptan
Cotran vorme wmsnsvas D ol
Recall p = %TV'"" thus dm = pdV . Therefore, we may calculate M by integrating pdV : Sf}\j’m '}\

;e d.
M':/dm=///5r°dv f‘jIMHJ e
=[)2ﬂfoa[gkr2dzdrd9

a v O.E —il‘i
= / orkr? | z dr
0 —VaZ—r?

= drk f r2y/a? — rdr
0 —_—

not an obvious integral

. the 8 integral yields 27

We can make a v = asinb substitution then a® —r? = a®(1 — sin?b) = a®cos®b. Moreover,

dr = acosbdb hence r2Va? — r2dr = a* sin2 beos? bdb. I like to use imaginary exponentials to work
out the trigonometry here. Note sinb = %;(eib — e~ and cosb = 1(e® + e~) hence

1N\2/1\* ., o _
sin?bcos® b = (—2—) (ﬂ) (e‘b = e‘”‘b)z(e‘b + e—zb)Q

1, 5 L _
== E(e%b — 2 + 8—216)(621b + 2 + efzﬂ,)

1, . , _ | |
= —lg(e*“" + 220 414 26% — 4427 41— 2672 &™)
L1 aiby L
- 82 (™ + e ) + 8

= %(1 _ cos(4b))

Furthermore, note r = a gives b= 5 whereas 7 =0 yields b= 0. Therefore,

ks

7 a4 mkat w km2at
=drk —(1 - b= B = :
M ﬂ’k/o z (1 — cos(4b))d "5 1

Naturally, you might use a table of integrals or a computer algebra system to tackle the integral in
the precious example if you did not know how to calculate it from base principles. It is often the case
that a given integral is easier if you choose natural bounds. The last example had a integrand
which was manifestly cylindrical and bounds which were simplest in spherical coordinates. The
example below shows how the integration simplifies if we change the integrand to sphericals rather
than changing the bounds to cylindricals as in the preceding example.
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Example 6.6.17. Calculote M from Ezample 6.6.16 via spherical coordinates: note that'! r =

psing connects the spherical radius p and the cylindrical radius 7.
by ?: ke = \LQS(M#
o= /// pdV
B
W p27 po
= / / [ kpsin ¢p? sin ¢ dp df do
b Jo O
b
mk/ sinqud@f df)/ piidp
9

il

Moral of story: coordinate choice matters. %

Exaraple 6.6.18. Let B : (z,y.z) with 22 +y* + 22 < 25. Caleulate [f[z(a® + y* + 2%)%dV.

Solution: Recall dV = p?sin¢df dé dp and note B is clearly p < 5 in spherical coordinates where
8 and & are free to range over their entire domains:

27
/// 22+t + 29 ciV—-/ / / o sing df do dp
2 X
=/ rl@/ blnéricz)/ tdp

- 2)(@) (;;) _ 312,750017‘

The integration of the above example is a [fairly typical of integration over spheres. When the
integrand has no angular dependence the § and ¢ integrations produce a factor of 47 in total over a
spherical region. The solid angle {2 measures both the polar and azmuthial angular displacements.
In particular, d§) = sin ¢d¢pdf and over a sphere we find the total solid angle is 4m.

Example 6.6.19. Let E be the region described in spherical coordinates by 1 < p <2 and0 < §<3
where 0 < ¢ < 7. Caleulate Sz zdV.

U geometrically obvious, algebraically follows from 72 = 2 + y* = p? cos® sin® ¢ + p* sin® ¢ sin’ b = pisin ¢



6.6. TRIPLE INTEGRALS INVOLVING COORDINATE CHANGE 317

Solution: we use spherical coordinates to caleulate the integral.

///ﬁ mf[/_/‘"r/?/w/Z/‘ {pcoso)p szn@dpdgbdé’)
:/ d@/wzs:m@cos@dqﬁ/
=2\ (1 7\ (1]
(o) (") (31
-()(2) (%)

16

Example 6.6.20. Find volume of part of ball p < a that lies between ¢ = 7 /6 and ¢ = 7 /3.

a p2n pRf3
V://dex/ / / o sin ¢ de dé dp
¢ JO /6

part of ball

a 2w T3
- / Pdp / a9 / sin édo
[ G w/6
1 a i w3
- (_p3 ) ] — oS
3 0 o = /6
= EKLS (2m) ( COC;( ) + cos(
3 3
awad [ -1 V3
=73 (?*7)

’F{LS\/“
= ™ (vE-1)

e

)

=g

Example 6.6.21. Let E be the region with 0 < p< 1 and 0 < ¢ < #/2 with 0 < 6 < 2w,

1 pw/f2 p2n . \ . )
/ / (2% + )V = / / [p? sin® ¢ cos® 6 + p° sin? ¢ sin® 8)p? sin odfdedp
E ¢ Jo 0

1 prf2 piw
- / / / psin® ¢d8dedp
P
x/ 4dp] dé’/ (1 — cos” $) sin ¢do
0

1 w2
=5 2 - (Scos q&-cosg‘))

0




318 CHAPTER 6. INTEGRATION

Example 6.6.22. Let | = fja N 9=z I —ty ST y2dzdyde. Caleulate I by changing to
eylindrical coordinates.

Solution: notice the integration region has ~3 <o <3 and 0 Sy < VI — x4 whereas 0 < 2 <
9 2% — 4% . Thus:

A2

3 ‘*'.7 A )
A AT =y
11%

=‘}1

A

TR g -, -
& =3 %2, Gsred
X T8 £ T4

Hence integrate, notice dV = r dr d dz whose product with the integrand of v yields r?,

/2 3 phr?
I / / / r2dzdrdd cuseddV = rdrdfdz and V2? +y* = ViZmr
2o Jo

w2 r3
- / / (92 — +%)drdf
-nf2J0

-7 /2 5 0

- (81»~ %(243)) . (405~»243> - 1627

5

6.7 integration in n variables

Let R™ have Cartesian Coordinates{z:,x2, - , &s) and suppose T'(z1, xa, - ) =Yy )
where 1; is a funetion of 21,3, ,z,. For each i and we suppose T has DT invertible over the
domain of integration below,

[ [ s awa= [[ o f s a0y

where d*z = dzydrs - - - don, and d™y = dyydya - - - dy,. The meaning of the n-foid integration should
be an easy generalization of 7 = 2 and n = 3 which we have already treated in some depth.

Example 6.7.1. The Hypersphere: (z,y,z,w) € R4 such that 22 +y* + 22 +u? < R?. Generalized
Spherical Coordinates are

r=rcosbsingdsing

b3

= rginfsin g siny

R

Z == reosdsing

W = T Cos Y
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Where 0 < 0 < 2% and 0 < ¢,v < w. You can check that 224yt 4+ 2%+ w? = 1%, Then it’s a

long but straightforward calculation,

%%—%%i = r3gin? Wsing And consequently if we integrate

diz = du dy dz dw in generalized spherical coordinates then we find:

7t R?

2

R 2z pm W
Voly( Hypersphere) = / / / / rPsin® ¢ sinod dpdf dr =
0 o Jo JO

I used this result to help calculate Guass’ Law in 4 spatial dimensions in my Math 430 notes.

Example 6.7.2. Find the volume bounded by 2+ = R2 and 0 < z,w < h. This gives a
finite hypercylinder. We calculate diy = dedydzdw = rdrdfdedw by introducing cylindrical
coordinates & = recosf and y = rsinf whereas 2 = z and w = w. Thus, the hypervolume of the
generalized cylinder is calculated by the following integral:

h ph p2% R
Vi == / / / / rdr df dz dw
o Jo Jo Jo
h I 27 R
:f d‘w/ dz/ 539/ rdr
] ] 0 A

= wh?R2.

Example 6.7.3. Consider E = {{z,y,2,1) | 2?4 y? + 22 < R?, 0 <t < h}. This hypervolume
consists of o solid sphere of radius R attached at each t along [0,R]. The hypervolume is found by
changing the .y, z to spherical coordinates where are earlier work still applies:

V4m//// diz
E
k In W R
:/ f / f pzsing‘odpdgf)(iﬂdt
o Jo Jo Jo
i D pT R
= / di f / / pg'sinqbdpd@dé
0 0o Jo Jo

ArhR?
T

You might find my examples here a bit contrived. However, if application to the real world is
what you seek then be assured that integrals over spaces with more than three variables are found
in physics. In particular, if you study statistical mechanics of n-particles then you will face such
integrals.




