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6.8 algebra and geometry of area and volume elements

In this section we take another look at how we can understand dA and dV. I present two methods
which complement the Jacobian-based derivation we have thus far considered. Geometrically, we
consider infinitesimal area elements or volume elements and direct geometric investigation yields
the volume which correspond to small changes in the curvelinear coordinates. Algebraically, we
introduce the wedge product and show by example how it also allows us to calculate the Jacobian
factor. We do not attempt a general treatment here so we investigate only polar, cylindrical and
spherical coordinates.

Let us begin with the two-dimensional case. For polar coordinates, we can derive dA = rdr df by
examining the area of the sector pictured below:

W dg&r =dr
, | d AQ@ = (\d@
ok 44 = Al dly =rdrdo

B e —— e

W (D

The region above is an infinitesimal polar rectangle (not to scale !). Formally,
dA = %(r + dr)?df — é—ﬂde = %(rz + 2rdr + (dr)? — r?)df = |rdrdf = dA

We neglect the term %(lerG as it is much smaller than the other terms as we consider dr,df < 1.
Of course, this notation is just a formalism which we use in place of a careful argument involving
finite differences. Yowll find the finite argument and how it passes to an integral in any number of
standard texts. Here, we embrace the infinitesimal method and forge ahead. '!: {‘

© d = ‘Fx d){ + 9 AY

The algebraic method to derive these is given by differential forms and the wedge product. The
basic rules are that d on a function gives the total differential and the wedge product is denoted
A which is an associative product with the usual algebraic rules except, it is not commutative in
general. For differentials, df Adg = —dgAdf. In particular, this means dzAdz = 0 and dyAdy =0
as well as dr Adr = 0 and dd A df = 0. Let us proceed with these basic ideas in mind. We use

z =rcosf and y = rsin @ in the second equality:
dA = dz A dy dA = dxd% ;&,&
= d(r cos ) A d(rsinf)
= [cos fdr — rsin §d6)] A [sin Odr + 7 cos 0db)
= sin f cos 9Mr°—i— rcos® 0dr A df — rsin® dd A dr — r®sinf cos § df
= 7 cos? fdr A df + rsin® Odr A df m L) O

=|7”dr/\d9 = dfT,|-= - rde,\dr

Here dA = —r df A dr also, in contrast to our usual dA = rdr df = r df dr the minus sign encodes
the orientation. The distinction between dz A dy and dz dy is important. The scalar quantity
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dz dy has no sense of up or down whereas the fact that dz A dy = —dy A dz allows us to identify
dz Ady as the area element for the upwards oriented zy-plane. A little later in this course we discuss
the vector area element. Essentially my comment here is that dz A dy is naturally identified
with the vector area element of the plane oriented with Z.

Wedge products and determinants are closely related. In particular:

} COQ A) = Aelb

LA&:}/\A@/\---/\A’fn=det(A)§1/\ To A\ Zn.

The identity above allows us to calculate determinants implicitly from wedge products. Some texts
take this as the definition of the determinant of a matrix. Let us work out the 2 x 2 case. Let

A=1]7 G ] then observe:
c d
A,\_ab 1_a_,\+ :[21
I = e d 0 = ¢ = a2 cx2
~ a b 0 3 N -
sz_[cd}[l}_[d}_bxl-l_de"[d]
Therefore,

AT1NATy = (aml+cmg)A(bm1+dx2)

)
=acmo+adx1/\ To+cbTo A zl+ch
= (ad — cb) T1 A T Z—VCC‘W

Thus, (ad — ¢b)T1 A Tp = det(A)Z1 A To thus comparing the coefficient of Z1 N\ Zo we find
ret =ad — cﬂ This is the usual formula for the 2 x 2 determinant. There is much more
to say about the algebraic significance of the wedge product beyond this course. We simply intro-
duce the reader to some of the basic benefits of the A-product.

We now turn to the three dimensional case. I attempt to illustrate typical infinitesimal solid regions
for cylindrical and spherical coordinates below: '

™
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The algebraic method for volume elements follows the natural pattern we already saw for arca ele-
ments. Again the wedge product yields something a bit different than a simple dV. I will denote the
object calculated by dv to emphasize there is a distinction. For example, dV' = dxdydz = dydz dz
and the distinction is merely the indicated order of an iterated integration. In contrast, by defini-
tion, dV = dz AdyAdz = —dy Adx Adz and the sign indicates that dz A dy Adz orients a volume in
an opposite sense to dy A dz A dz. If we could visualize four dimensions (z,y. z,w), then we could
envision dz A dy A dz as giving the hyperplane w = k an upward orientation whereas dy A dz A dz
gives the hyperplane w = k a downward-pointing orientation. In any event, we will think more
on orientation when we study line and surface integrals which are both defined with respect to
oriented objects. That said, I hope you can appreciate the following calculations. They are a large
part of what sparked my initial interest in the topic of differential forms.

The cylindrical volume form follows from the work we already did to calculate the polar area form:

dV = dz A dy A dz = d(rcos0) Ad(rsind) A dz = |rdr Adf Adz.

In contrast, the spherical volune element requires some effort!?:

dV = dz Ady A dz
= d(psin ¢ cos ) A d(psin sinf) A d(pcos @)
= [sin ¢ cos dp + pcos ¢ cos Bdd — psin @ sin Odf]
A [sin ¢ sin 0dp + p cos ¢ sin fd¢ + psin ¢ cos 6do)
A [cos ¢dp — psin ¢dg]
= [sin ¢ cos Odp + pcos ¢ cos fd¢p — psin ¢ sin 6dbIA
lpsinfdo A dp + p? sin ¢ cos ¢ cos 8df A dp — p? sin® ¢ cos 0d6 A dg]
= —p? sin® dcos? fdp A df A dd + p? cos® gsing cos? 8dg A dO A dp-+
P2 sin® ¢ sin26df A dp A d — p?sin ¢ cos® ¢sin? 0df A do A dp
= [—p? sin® ¢ cos? 8 — p? cos® psin @ cos? § — p?sin® ¢sin® 6 — p? sin ¢ cos® ¢ sin? 8]dp A df A d¢
= p?sin ¢[sin” ¢ cos? 0 + cos 0 cos® ¢ + sin” ¢sin® 6 + sin® @ cos® Bldp A dp A df
= p? sin ¢[cos? A(sin® ¢ + cos® ¢) + sin? 6 (sin ¢ + cos® ¢)]dp A do A df

=|p?singdp A dp A df ‘

If you would like to learn more about differential forms then you might read my Advanced Calculus
notes. In my current formulation, I spend about half the course developing and applying differential
forms. A treatment with just calculus III in mind can be found in Susan Colley’s Vector Calculus.
She devotes a whole chapter to the exposition of basic differential forms.

6.9 Problems

Problem 151 Calculate

2 4
/ / (3z+4y) dz dy
o Jo

2y0u could try to follow this line by line, but, if you do attempt it, it is better to try your own path
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Problem 152
w/2 pu/2
/ / sin(z) cos(y) dx dy
J0 0

Problem 153

1 1
/ / sin®(x) cos*? (y) dy dx
-1Jo

Problem 154 Calculate the average of f(z,v) = 22 + y? on the unit-square.
Problem 155 Calculate the average of f(z,y) = 2% + %2 on the region bounded by 2% + 32 = R2.
Problem 156 Calculate the average of f(z,y) = a2y on [1,2] x [3,4].

Problem 157 Show that

11
lim / / "y dzdy = 0.

Problem 158 Calculate

In(2) ,la(3)
/ / e*da dy
0 0

Problem 159 Suppose [ [, fdA = fol fx‘g/i(l + z)dy dz. Calculate the given integral.

Problem 160 For the integral given in the previous problem, explicitly write R as a subset of R?
using set-builder notation. In addition, calculate the integral once more with the interation
of the integrals beginning with dz. Draw a picture to explain the inequalities which form the
basis for your new set-up to the integral.

Problem 161 Reverse the order of integration in order to calculate the following integral:
VT VT
/ / sin(z?) dz dy.
0 y

Problem 162 Reverse the order of integration in order to calculate the following integral:

S I
dx dy.
/D/yl%—x‘*ly

Problem 163 Find the average of f(z,y) = zy over the triangle with vertices (0,0),(3,1) and
(—2,4).

Problem 164 Find volume bounded by z = y + €® and the zy-plane for (z,y) € [0,1] x [0,2].

Problem 165 Find the volume bounded inside the cylinder > + y? = 1 and the planes z =z + 1
and z =y — 3.

Problem 166 Find the volume bounded by the coordinate planes and the plane 3z 4+ 2y + 2 = 6.
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Problem 167 Calculate the integral (use polars):
2 pV4-z? .
/ / (1‘2—1-?;2)‘3/2 dy dz.
0 JO

Problem 168 Calculate the integral (use polars):

1 1
/ / (2*+y*)3 dy dz.
0 Jx

Problem 169 Suppose R is the region bounded by y + |z| and 2 + (y — 1)2 = 1. Express R
in polar coordinates. In other words, draw a picture and indicate how the points in R are
reached by particular ranges of 7 and 8.

Problem 170 Find volume bounded by the paraboloid = = y% + 222 and the parabolic cylinder
=2y

Problem 171 Find the volume bounded by the cylinder 22 +y?> =1 and z = 2+z+y and 2z = 1.

Problem 171 Find the volume bounded by the cones z = y/z2 + y? and z = 2¢/22 + y? and the
sphere p = 3.

Problem 172 Let B be a ball of radius R centered at the origin. Calculate [ [ [ =P v

Problem 173 Let v = Ey%g and v = E;—%%g calculate ggzz;

Problem 174 Suppose 6(x,y,2) = 1 = dM/dV for z,y,z > 0. Find center of mass for a sphere
with this density & centered at (1,2,3).

Problem 175 Suppose 6(z,y, 2) = zyz = dM/dV for z,y,2 > 0. Find center of mass for a sphere
with this density centered at (1,2, 3).

Problem 175+i Suppose you have a cylindrical oil tank which is placed on a hill close to your
house. After some time the land settles and the oil tank is not level. Suppose you read a
dip-stick which is designed for a level-set-up and find the tank is half-full. Suppose the tank
is slanted at 20 degrees relative to the true horizontal. In other words, suppose the axis of
the cylinder makes and angle of 70 degrees with the vertical. Fortunately, the tank is only
tilted along that direction and the perpendicular direction to the central-axis remains at a
right angle to the vertical. If you have a 1000gallon tank then how much oil do you really
have?
numerical integration. is totally fine here, although, this may have a closed-form solution.

Problem 176 Calculate [ /z + 2ysin(z—y) dA where R = [0,1]x 0, 1] by making an appropriate
change of variables.

Problem 177 Find the center of mass for a laminate of variable density d(r,8) = rsin®(f) which
is bounded by r = sin(26)



