LECTURE Q

1 Relations

A relation is simply some subset of a Cartesian product. This serves to generalize a function. In
fact, a function is a special type of relation.

Many of the constructions we have experience with for functions will also make sense for relations.
For example, we can think about the graph of a relation, the composite of two relations and the
inverse of a relation. We also study how equivalence relations generalize the idea of equality and
order relations generalize the concept of inequality. Equivalence relations are particularly important
since their equivalence classes can be used to forin a natural partition. In fact, equivalence relations
are central to much of modern abstract mathematics,

Let us begin with the definition: f‘ ,)( ﬁ/

Definition 1.1. Let A, B be sets. We say that R is a relation frmn AtoBif R C Ax B. Moreover,
we say that xRy if (z,y) € R. If xRy then we say that x elated to y. On the other hand if
(x,y) € R then we say that x is not related to y and write r}} When we say xRy, I will call
the input of the relation and y the oulputl of R.

Domain(R) = {x € A | y € B such that xRy}

Range(R) = {y € B | x € A such that xRy}
Finally, if R C A x A and dom(R) = A then we say R 1is a relation on A.

Notice that a relation can have more than one output for a given input. This means there are
relations which cannot be thought of as a function'. Let me begin with a silly example:

Example 1.2. (people) Let S be the set of all living creatures on earth. We can say that x is
R-related to y if both x and y are people. In this sense I am R-related to Trump. In contrast, T
am not R-related to Napolean because he’s dead. I am also not R-related to my mom’s dogs. They
may be treated like humans but the fact remains they have tails and other dog parts that necessarily
disqualify them from the calegory of people.

Another silly example:

Example 1.3. (unrelated relation) Let S be the set of all living creatures on earth. We say that
is NR-related to y if x is not the direct decendent of y. In this sense [ am NR-related to Trump. In
contrast, my daughter Hannah is not NR-related to me since she is my direct decendent.

Whenever we have a relation from R to R we can picture the relation in the Cartesian plane. (We
can also do the same for relations from N to N and other subsets of the real numbers)

Example 1.4. (circle) Define R = {(z,y) | * + y* = 1}. This is a relation from R to R. The
graph(R) is clearly a circle.

Example 1.5. (disk) Define R = {(x,y) | 2* +y* < 1}. This is a relation from R to R. The
graph(R) is clearly a circle shaded in; that is the graph is o disk.

'Recall that functions have one output for a given input; that is, functions must be single-valued
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Example 1.6. (positive lattice) Define R = {(x,y) € R x R| @,y € N}. This is a relation from R
to R. The graph(R) is a grid of points. Notice that is is not a relation on R since dom(R) = N.

Example 1.7. (inleger coordinate grid) Define R = {(z,y) | x € Z,y € R}U{(z,y) |z E R,y € Z}.
This is a relation from R to R. The graph(R) is a grid of horizontal and vertical lines.

There is no end to these geometric examples. Let me give a weirder example:

Example 1.8. (rational numbers) Define R = {(x,y) | x.y € Q}. This is a relation from R to
R. For ezample, 3/4 R 13/732. However, m is not related to anything since © ¢ Q. This means
that points in the xy-plane with x-coordinate ™ will not be included in the graph of R. However,
points with © = 3.1415 = 31415/1000 will be included in the graph so it is hard to see the holes
along x = 7. In fact, the graph(R) looks like the whole plane. However, it has holes infinitely close
to any poinl you pick. This i3 a consequence of the fact that there are infinitely many irrational
numbers between any two distinet rational numbers (we discuss this further later in this course)

2 composite relations

Definition 2.1. (composite relation) Let R be a relation from A to B and let S be a relation from
B o C. The composite of R and S is

Se R = {(a,c) | there exists b € B such that (a.b) € R and (b.c) € S}

Example 2.2. Let R = {(1,2),(3,4),(5,6), (7,8)} this is a relation from A = {1,3,5,7} to B =

{2,4,6,8}. Define § ={(2,1),(4,3), (5.4).(7.6)}. We see that S is a relation from B to A. Notice

that S« R is a relation from A to A; SeR: A= B — A: S = { (1.,.)’ (4,2 )l (QI” (3’?“5 BKA
/

SeR={(1,1),(3,3),(5,5),(7,7)} Ch,'é-](."l-,n')

Since 1R2 and 251 we have 15° R1 and so forth... Likewise we can verify ﬂmt Ruéﬁ‘is a relation
from B to B; ReS: B — A— B: Ros- 53— HT@
' s

RS ={(2,2),(4,4),6,6), (8,8)}

The relations we just exhibited are known as the identity relations on A and B respective. We
denote [, = Se R and Iy = R+ S. The relations given in this example are inverses of each other.

Definition 2.3. (inverse relation) Given a relation R from A to B we define the inverse relation
R~ to be the relation from B to A defined by R™! = {(y,z) | (z,y) € R}

Theorem 2.4. The inverse relation of a relation is a relation. Moreover, domain(R™') = range(R)
and range(R™1) = domain(R).

Proof: immediate from definition of R~! O.
The concept of an inverse relation is nice in that it avoids some of the rather cumbersome restrictions
that come with the idea of an inverse function. We'll get into those restrictions soon, but you

probably recall from precalculus courses that in order for the inverse function to exist we need the
function’s graph satisfy the horizontal line test. Inverse relations have no such restriction.
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Anti-Symmetric: R is anti-symmetric iff for all 2,y € X, if # Ry and y R x, then 2 = y.
Transitive: R is fransitive iff for all z.y,z € X, R y and y R z implies z R z.

Here are a few special types of relations:

a—— '—"‘—-\--.\
g Equivalence Relation: A is an equivalence relation iff it is reflezive, symmetric, and transitive.

Partial Order: X is partially ordered by R (or R is a partial order on X) iff R is reflexive, anti-
symmetrie, and transitive.

Total /Simple/Linear Order: X is totally ordered by R (or simply ordered or linearly ordered) iff
R is a partial order and in addition for each =,y € X we have z Ry or y R z.

Let me note that partial and total orders have many variant definitions. These differences are either
superficial and in the end, logically equivalent to our definition, or sometimes alternate definitions
capture orderings more like “<" rather than “<". In such a case, when "z R y" is replaced with
“z Ry orx=y" our notions of partial order and total order are recovered.

Notice that regular old equality (on some fixed set) is an equivalence relation?,

Example 3.2. (equality) Suppose that S =R. Let z,y € S, define xRy iff v = y. Observe that
r etk Sqmaating - Aeunfibive

T=% Z=y = E=1 IT=yauly==2= r=2=
Therefore, R is reflexive, symmetric and transitive. Hence equality is an equivalence relation on R.

We will introduce more interesting equivalence relations below. Next, < on the set of real numbers
R is a total ordering (thus also a partial ordering).

Example 3.3. (total order relation) Suppose that S = R. Forx,y € R, define xRy iff v < y. Since
x = x for all v € R we see R is reflexive. If v <y and y < x then v = y hence R is antisymmetric.
Transitivity is also clear since x < y and y < z vmplies x < z. Finally any pair of real numbers
z,y € R has either x < y or y < x hence < is a total ordering. This is not surprising as the

abstract definition of total ordering was designed precisely to abstract <. -~ 1ac lusim

Finally, given a set X, P(X) (the power set of X') is partially ordered by C. Note that this is

not a total order when X has at least 2 elements since in this case we can finds subsets of X, A
and B, such that AZ B and B € A.

Example 3.4. Let X be a non-empty set and define R = {(A,B) e P(X)xP(X) | AnB =0}. So
in other words, AR B iff A and B are disjoint subsets of X. This relation is not reflevive: X I X
since X N X = X # (. This relation is symmelric since A and B are disjoint if and only if B and
A are disjoint. This relation fails to be anti-symmetric since just because A and B are disjoint does
not mean that A = B. Also, this relation fails to be transitive since if A and B are disjoint as well
as B and C are disjoint, then it does not follow that A and C are disjoint (consider A = C).

Now let us turn our attention more fully to equivalence relations.

2The choice of § = B could be modified and the caleulations in the above example would still work
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Example 3.5. (Rational Numbers) X =Z x Zy. Let (a,b),(c,d) € X. (Ch ) . il
Define (a,b) ~ (c,d) iff ad = be. ted) = 5 il w be

e (a.b) ~ (a,b) since ab = ba. Therefore, ~ is reflexive.
o [f(a,b) ~ (c,d), then ad = be. Thus cb = da so (¢,d) ~ (a,b). Thus ~ is symmetric.

e Suppose (a,b) ~ (e.d) and (¢.d) ~ (e, f). Then ad = be and c¢f = de. Multiplying the
Jirst equation by f and the second equation by b, we get that adf = bef and bef = bde.
Thus _alg! = bed. Now recall that d # 0 (since (¢,d) € X = Z x Zyy) s0 af = be. Thus

——r

(a,b) ~ (e, f). Therefore, ~ is transitive.

We have jusl proved thal ~ is an equivalence relation. This really isn’t that surprising considering
that 2 d iff ad = be. Qur relation is merely encoding equality of fractions. No wonder so many
elementary and middle school students have troubles with fractions. Equivalence of fractions is
many students’ first exposure to a non-trivial mathematical equivalence relation.

Definition 3.6. Suppose that ~ is an equivalence relation on X. For each a € X, let [a] = {x €
X | & ~ a}. Thus [a] is the set of all the elements of X which are related to a. We call [a] the
equivalence class of a, and we say that a is a representative of this equivalence class. The set of all

equivalence classes is often denoted X/ ~.
——

At this point it is worth mentioning that there is no standard notation for equivalence classes.
Another choice which might be convenient for equivalence relation R on X is that 2/ R denotes the
equivalence class containing = € X and X/R = {z/R | z € X}.

e
Definition 3.7. Let P C P(X) and suppose that O &€ P (P is a collection of non-empty subsets 017

X ). Neat, suppose that UP = X. This means that for each x € X there exists some A € P such
that © € A. Finally, suppose that given A, B € P, either ANB =0 or A= B. This means that
distinet elements of P are disjoint. In such a case, we call P a partition of X.

X. Conversely, giwen a partition P of X, define a ~ b iff there exists some E € P such that a.b € E.
Then ~ is an _equivalence relation on X whose equivalence classes are precisely the elements of P.

Theorem 3.8. Lel ~ be an equivalence relation on X. Then the equivalence classes of ~ pmtmon]

Proof: Let ~ be an equivalence relation on X. Let « € X. Then ~ is reflexive so a ~ a. Thus
a € [a]. This means that every equivalence class is non-empty. Also, this shows that every element
of X belongs to some equivalence class. Therefore to establish that the equivalence classes of ~
partition X it only remains to show that distinct equivalence classes are disjoint.

Suppose a,b € X and [a] N [b] # 0. We must show that [a¢] = [b]. Note that since [a] N [b] # 0,
there exists some ¢ € [a] N [b]. Thus ¢ ~ @ and ¢ ~ b. Our relation is symmetric so we also have
a ~ ¢. Then since a ~ ¢ and ¢ ~ b by transitivity we have a ~ b. Again by symmetry we have
b~ a.

Suppose that 2 € [a]. Then, by definition, z ~ a. So since 22 ~ a and a ~ b, hy transitivity we
hiave & ~ b. This means x € [b] and so [a] C [b]. Likewise, suppose = € [b]. Then x ~ b and b ~ a
so x ~ a, Thus z € [a] and so [b] C [a]. Therefore, [a] = [b].

Conversely, suppose P is a partition of X. Define a ~ b.iﬂ’ there exists some F € P such that
a.beFE.
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Example 2.5. Let S = {(z,sin(z)) | « € R}. This is a relation from R to R. We can visualize S
as the graph of the sine function in the xy-plane. The inverse of S is

S7' = {(sin(y).y) | y € R}.

Consider that S~ should be the same as the graph of the sine function except that x = sin(y) instead
of y = sin(x). If you think about this for a moment or two you'll see that the graph of S~ is the
same as the graph of S just instead of running along the x-axis it runs up the y-azis.

Theorem 2.6. Let A, B,C, D be sets. Suppose R, S, T are relations with R C Ax B,S C Bx C

andT CC x D Lt RS A%B Xhew, 2
@) (RY'=r < (xy)e R & (%x) € R by defsf R
(b.) TrlSeBf =(Ts8)-R € (xv) ™) by b F avese
of o Bad Bely o g7
(¢.) InsR=R and ReI, =R . T ovpp | red
(d.) (§¢R)"'=R '8! - R "iR ) A

Proof: likely homework or example in my presentation of this topic O

Item (b.) says that we can write 7= 5« B withont ambiguity, composition of relations is associative.
Item (d.) is sometimes called the * socks-shoes principle”. Think of it this way, if I put my socks on
first and then second my shoes then when I take off my socks and shoes I have to take off my shoes
first and then my socks.

3 relations on a set M clu mo.m(.R) =X

Let me restate the definition of a relation on a set here once more for our convenience.

Definition 3.1. Let X be a set. If R C X x X, then R is said to be a relation on X. Instead of
wriling (a,b) € R, we will write a Rb or if (a,b) & R, we will write a I b

Relations abound in mathematics and in regular life too. We could speak of relations on the set of
people like A is a brother of B” or “A is B’s aunt” or “A and B are neighbors”. In mathematics,
we have relations on sets of numbers like “<”, “>", and “sum to a rational munber”. Another
familiar relation is that of “C” when dealing with sets.

It is quite useful to abstract the concept of equality. Relations which behave like “equals” are called
“equivalence relations” (which are defined below). Another important kind of relation abstracts the
properties of < and C. We call such relations “partial orders”. Let us give names to some familiar
properties.

Let R be a relation on a set X.
Reflexive: R is reflexvive iff # R 2 for all 22 € X.

Symmetric: Il is symmetric iff for all z,y € X, x R y implies y R .
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First, let @ € X. Then since P is a partition, there exists some A € P such that a € A. Thus
a,a € A 80 a ~ a (owr relation is reflexive). Next, suppose a ~ b. Then there exists some E € P
such that a,b € E so b,a € E thus b ~ a (onr relation is symmetric). Finally, suppose a_~ b and
b ~ ¢. Therefore, there exists some E, E' € P such that a,b € E and b,c € E'. Thus b€ EN L' so
that £ N E' # (. Now distinct sets in a partition are disjoint. Thus £ = E' so a,b,c € E = E'. In
particular ¢, ¢ € E. Thus a ~ ¢ (our relation is transitive).

Let E € P. Then E # 0 so there exists some a € E. Notice that 2 € F implies a, » € E which
implies 2 ~ a. Thus z € [¢], so E C [a]. Suppose that @ € [a]. Then & ~ a so there exists some
E' € P such that a,z € E'. But a € ENE' so E = E'. Therefore, a,z € E = E’. In particular,
z € E. Thus [a] C E and so E = [a]. We have now shown that the equivalence classes of ~ are the
same as the elements of P. O

So every equivalence relation yields a partition and every partition yields an equivalence relation.
Now we can use these concepts interchangeably.

Example 3.9. Suppose that S = Z. Suppose x,y € Z, define xRy iff v — y is even. This is a
fancy way of saying that even inlegers are related to even integers and odd integers are related to
odd integers. Clearly R is reflevive since x — x = 0 which is even. Let x,y € Z and assume xRy
thus © —y = 2k for some k € Z. Observe y — x = =2k = 2(—k) hence yRx which shows R is
symmetric. Finally, suppose z,y,z € Z such that xRy and yRz. This means there exist m.k € Z
such that x — y = 2k and y — z = 2m. Consider,

= s,
x—z=x—=y+y—=z2=2k+2m=2(k+m)

Hence x — z is even and we have shown xRz so R is transitive. In total we conclude R is an
equivalence relation on Z. Since each integer is either even or odd we have just two equivalence
classes which partition Z; 0/ R = 2Z and 1/R =1 + 2Z.

The notation k+nZ = {k+nz | z € Z}. In fact, if you take a course in abstract algebra or number
theory you will likely learn a generalization of the above equivalence relation where we suppose
integer x is related to y provided y — 2 is a multiple of n. That can be shown to be an equivalence
relation and the set of equivalence classes denoted Z/nZ are known as the modular integers.
These have been used since the time of Gauss to unravel difficult questions in number theory. 1
don’t expect we need them in this course so I merely mention this without proof.



