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7.2 grad, curl and div Dl or “nablo’

In this section we investigate a few natural derivatives we can construct with the operatm@ Later
we will explain what these derivatives mean. First, the computation:

Definition 7.2.1.

. . ~ . ™ 2 . . i .
Suppose [ is a scalar function on R* then we defined the gradient vector field

.(/7'”(](./-) =Vf= <0.1:./-: ()yf- ():”’

We studied this before, recall that we can compactly express this by
3
V=) (8
i=1

where 0; = 0/0z; and z1 = z,z3 = y and z3 = z. Moreover, we have also shown previously in
notes or homework that the gradient has the following important properties:

Vif+9)=Vf+Vy, & V(cf)=cVf, & V(fg)=(Vfg+ f(Vg)

Together these say that V is a derivation of differentiable functions on R™.

Definition 7.2.2. =
efinition E ‘é?l.Q', R>
Suppose F = (Fy, F», F3) is a vector field. We define:

OFy  0F, 0OF3 _ EE ¢ 9_ 9R
S dx dy o 9z kM 93

More compactly, we can express the divergence by

viF= 2 on V- (Fx &)

=1

?

You can prove that the divergence satisfies the following important properties:

Ve(F+G)=VeF+VeG & Ve(cF)=cV.F, & v(fm VieG+[V.G

For example, E (_FQ : ?; {'G) —-\ i A (‘FGc)

3\J =t

Ve(F+cG)=> 0i(F+cGi) = Z@EHZ@G, =VeF+cV.G.

i=1 =1 i=1

Linearity of the divergence follows naturally from linearity of the partial derivatives.

Definition 7.2.3.

Suppose F' = (F, Fp, F3) is a vector field. We define:

, - - OF: 0Fy OF 0F3 OF: OF
owlifi=gx {2222 21 _TU08 23 2
' dy 0z 0z dr = Ox dy
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-~ C =6 =
More compactly, using the antisymmetric symbol €;;x%, é 13 T3l Y
3 Q - G = el]l -
- < U
x F= E €0 Fy) T M 3
k:

You can prove that the curl satisfies the following important properties:
Vx(F+@) =VxF+VxG & Vx(@F)=cVxF, & Vx(fG)=VfxG+fVxaG.

For example,

3
V x (F4cG)= Z €ijk0i(Fj + cG;) T
i,J,k=1
3 3
= > en@iF)E+c Y e(0iGy)i
i,5,k=1 1,5,k=1

=VxF+¢cVxG.

)]

- - >
Linearity of the curl follows naturally from linearity of the partial derivatives. A ¢ B § A 3 A 2
=+

It is fascinating how many of the properties of ordinary differentiation generalize to &e cﬁse of A' P N
vector calculus. The main difference is that we now must take more care to not commute things g/?/
that don’t commute or confuse functions with vector fields. For example, while it is certainly true “’A’ g&
that A- B = B- A it is not even sensible to ask the question does V - A=A.V 7 Notice V-Aisa

function while A - V is an operator, apples and oranges.

The proposition below lists a few less basic identities which are at times useful for differential vector
calculus.

Proposition 7.2.4.

Let f, g, h be real valued functions on R and F,G. H be vector fields on R then (assuming
all the partials are well defined )

G)V-(FxG)=G-(VxF)-F-(VxG)
(i) V(F - G) = F x (VXG)+G><(vXF)+(“’-V)“+(c3-V)F“
(iti.) Y(F x G) = (G-V)F - (F-V)G+ F(V-G) - G(V - F)
¥
Proof: Consider (i.), let F =Y Fie; and G = ¥ Gie; as usual, E{\\A - - Qt‘\k"&
V- (FxG) = a|(F x Gyl

~ S by, + B Fy Ei

= €Ok l)Gy + £i( 0G5

— E e,-j-k(aiF]—)_'Gk]-;- — F.‘ifikjiain) K\/ mf
=Y Gi(V x F)— F;(V x G);

:C-?'-(VXF')—LF'.ZVX@')_/‘* G‘E)@K(’)t

“4recall we used this before to better denote harder calculations involving the cross-product
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where the sums above are taken over the indices which are repeated in the given expressions. In
physics the Y is often removed and the einstein index convention or implicit summation convention
is used to free the calculation of cumbersome summation symbols. The proof of the other parts of
this proposition can be handled similarly, although parts (viii) and (ix) require some thought so I
may let you do those for homework®. [

Proposition 7.2.5.

If f is a differentiable R-valued function and F is a differentiable vector field then + L’odpto"(‘m’\
- "~
(i) V- (VxF)=0 Sl It 9"
(i) VxVf=0 LI D NS g}
(i) V x (V x F) = V(V - F) - V2F \) = 2] m
Before the proof, let me briefly indicate the importance of (iii.) to physics. We learn that in the
absence of charge and current the electric and magnetic fields are solutions of A
’___________,.-—J

VeE=0, VxE=-8B, VeB=0, VxB=/pue,E

WV @ckw-t\un

If we consider the curl of the curl equations we derive,

M
Vx(VxE)=Vx(~8B) = V(V-E)-V2E=-0,(VxB) = V2E = p,e,dE. \
VX (VX B) =V x (oo E) = V(V-B) = V2B = poe,h(Vx E) = V2B =pe,2B. . @Eo

These are wave equations. If you study the physics of waves you might recognize that the speed = 3)“05 Mg
of the waves above is v = 1/,/fio€,. This is the speed of light. We have shown that the speed
of light apparently depends only on the basic properties of space itself. It is indpendent of the
z, Yy, z coordinates so far as we can see in the usual formalism of electromagnetism. This math was
only possible because Maxwell added a term called the displacement current in about 1860. Not
many years later radio and TV was invented and all because we knew to look for the possiblility
thanks to this mathematics. That said, the notation used above was not common in Maxwell’s
time. His original presentation of what we now call Maxwell’s Equations was given in terms of 20
scalar partial differential equations. Now we enjoy the clarity and precision of the vector formalism.
You might be interested to know that Maxwell (like many of the greatest 19-th century physicists)
was a Christian. Like Newton, they viewed their enterprise as revealing God’s general revelation.
Certainly their goal was not to remove God from the picture. They understood that the existence
of physical law does not relegate God to non-existence. Rather, we just get a clearer picture on
how He created the world in which we live. Just a thought. I have a friend who used to wear a
shirt with Maxwell’s equations and a taunt "let there be light”, when he first wore it he thought
he was cleverly debunking God by showing these equations removed the need for God. Now, after
accepting Christ, he still wore the shirt but the equations don’t mean the same to him any longer.
The equations are evidence of God rather than his god.

Proof: 1 like to use parts (i.) and (ii.) for test questions at times. They're pretty easy, I
leave them to the reader. The proof of (iii.) is a bit deeper. We need the well-known identity

Srelax fall 2011 students this did not happen to you
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3 = 6
> =1 Eikj€imj = t0km — Okidim

3
Vx(VxF)= > e;di(V x F)Z
1,3.k=1
3 3
= Z Gijkai( Z El'm.jall;‘m.)a:\k
1,7,k=1 Iim=1
3
= Z €ijk€lm; (Gi0LFm )Tk,
1,5k, m=1
3
= z —€ikj€lmj (aial F, m)-'lfk
1,7k, l;m=1

3
= Y (~0uabtm + 0ua0im) (301 Fm)Zr

1,k d,m=1
3 3
= Y, (OabmddFn)B+ Y (ubimO:dFm)Tn
2,k 1, m=1 2,k I,m=1
3 3
=Y -0%(FE) + ) (0:0:F)zn
3,k=1 i,k=1
3 3 3 3
=D 80:(Y_ FiEi) + Y 0u(d_ aF)E
=1 k=1 k=1 =1

& =-V2F+V(V-F). O
L,
; \ o)
P- Xt 2 = 2«2 (7] 725 (2)
= 11X f‘5"/()1+ \‘{23

&) SR

Tx 92, = M| % T
3y (3) - 9313) % (v‘)—'D\,\(r) ) 00-0Y
= -1,0,-18)

Sthis is actually just the first in a whole sequence of such identities linking the antisymmetric symbol and the
kronecker deltas... ask me in advanced calculus, I'll show you the secret formulas

),




