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7.4. CONSERVATIVE VECTOR FIELDS

7.4 conservative vector fields

In this section we discuss how to identify a conservative vector field and how to use it. There are
about 5 equivalent ideas and our job in this section is to explore how these concepts are connected.
We also make a few connections with physics and it should be noted that part of the terminology is
borrowed from classical mechanics. Let us begin with the fundamental theorem for line integrals.

Theorem 7.4.1. Fundamental Theorem of Calculus for Line Integrals.

Suppose [ is differentiable on some open set containing the oriented curve C' from P to QQ
then
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Proof: let 7: [a,b] = C C R™ parametrize C and calculate: C
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The two critical steps above are the application of the multivariate chain-rule and then in the next
to last step we apply the FTC from single-variable calculus. O

Definition 7.4.2. conservative vector field

Suppose U C R then we say F is conservative on U iff there exists a potential function

f such that F' = Vf on U. Moreover, if F' is conservative on dom(F) then we say F is a

conservative vector field.
The beauty of a conservative vector field is we trade computation of a line-integral for evaluation
at the end-points.

Example 7.4.3. Suppose F(z, Yy z) = (2x,2y,3) for all (z,y,2) € R3. Suppose C is a curve from
(0,0,0) to (a,b,c). Calculate [, F «dF. Observe that

(b0 )

flz,y,2) =22 +4*+32 = F=Vr.

Therefore,
/ Fedi = f(a,b,c) — £(0,0,0) = a® +b% + 3c. ("ﬂm)
C

Notice that we did not have to know where the curve C went since the FTC applies and only the
endpoints of the curve are needed. In invite the reader to check this result by explicit computation

along some path.
Why ”conservative”? Let me address that. The key is a little identity, if m is a constant,
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If F is the net-force on a mass m then Newton’s Second Law states F' = ma therefore, if C is a
curve from 7 to 75

. t2 | dr t2 tz g 1
/F-d'F'= Fo—dt = (m(i-f;’)dt:/ —{—mv2]dt=K(t2)—K(t1)
C 151 dt t1 t1 dt|?2

where K = %mv2 ES the kinetic energy. 2[‘his result is known as the work-energy theorem. It does
not require that F' be conservative. If F is conservative then it is traditional to choose a potential
energy function U such that F = —VU. In this case we can use the FTC for line-integrals to once
more calculate the work done by the net-force,

/F"-dF=—/VU-dF= ~U(%) + U(7)
C c

It follows that we have, for a conservative force, Ko — K1 = —Us + Uy hence Ky + Uy = Ky + Us.
The quantity F = U + K is the total mechanical energy and it is a constant of the motion when
only conservative forces comprise the net-force. This is the reason I call a vector field which is a
gradient field of some pontential a conservative vector field. When viewed as a net-force it provides
the conservation of energy®. It turns out that usually we can find portions of the domain of an
arbitrary vector field on which the vector field is conservative. The obstructions to the existence of
a global potential are the interesting part.

Definition 7.4.4. path-independence P é\wc

Suppose U C R" then we say F is path-independent on U iff Je, Fedi = fo F o di for

each pair ()i curves C'1, Cy C U beginning at P and terminating at Q

It is useful to examine a web of concepts which all serve to characterize conservative vector fields.

Proposition 7.4.5.

Suppose U is an open connected subset of R™ then the following are equivalent
1. Fis conservative; F=V fonall of U
2. Fis path-independent on U
3 35(, «di” = 0 for all closed curves C in U

!J_:.

(add precondition n = 3 and U be simply connected) V x F=0onU.

Proof: We postpone the proof of (4.) = (1.). However, we can show that (1.) = (4.). Suppose
F=vV f- Note that V x F =V x Vf = 0. I included this here since we can quickly test to see if
Curl(F) # 0. When the curl is nontrivial then we can be certain the given vector field is not conser-
vative. On the other hand, vanishing curl is only useful if it occurs over a simply connected domain®

%it is worth noticing that while physically this is most interesting to three dimensions, the math allows for more

10, simply connected domain is a set with no holes, any loop can be smoothly shrunk to a point, it has a boundary
which is a simple curve. A simple curve is a curve with no self-intersections but perhaps one in the case it is closed.
A circle is simple a figure 8 is not.

F=-QV
U=he
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(1.) = (2.). Assume F = V. Suppose Cy,C, are two curves which both start at P and end at Q
in the set U. Apply the FTC for line-integrals in what follows:

[ Fedr= [ vrear=p@) - 1P)

Likewise, fc,z Fedi= fc2 Vfedr= f(Q) — f(P). Therefore (2.) holds true.

(2.) = (1.). Assume F' is path-independent. Pick some point A € U and let C be any curve in U
from A to B = (z,y,2). We define f(z,y,2) = [, F «df. This is single-valued since we assume F'

is path-independent. We need to show that Vf = F. Denote F = (P, Q, R). We begin by isolating
the z-component. We need to show a% fcﬁ-dF = P(z,y,2z). We can write C as curve C; from
A to By = (z0, ¥, z) with z, < z pasted togther with the line-segment L, from B, to B. Observe
that the curve C; has no dependence on z (of the B point)

o = ,. 0 o, = .} 3 T
%/c-F.dr_Bx[/:F.dr_!_ LIF-dr} -am[/zF-dr}

The line segment L, has parametrization 7{t) = (t,y, 2) for z, <t < 2. We calculate that

T T
Fedi= [ F(t,y,2)+(1,0,0)dt = / P(t,y,z)dt
/:: Lo ( < To U

Therefore,

3] = .0 [T _
b—lj/CF-dr— 63’/:,, P(t,y, z)dt = P(z,y, z).

We can give similar arguments to show that

We find F is conservative.
(2.) = B.). Assume F is path-independent. Consider a closed curve C in U. Notice we can pick

any pair of points P, Q on C and write C; from P to ¢ and Cs from Q to P such that C = CyUCs.
Furthermore, note that —Cs also goes from P to Q. Path independence yields

/ Fedi= Fedii = 0= F-df‘—/ Fedi= | Fedi+ p dr~j{p &
(o5 Ca C1 Co (&1

Conequently (3.) is true.

(8.) = (2.). Suppose §, Fedi =0 for all closed curves C in U. Suppse C; and Cj start at P and
end at Q. Observe that C = C; U (—C?) is a closed curve hence

o=fﬁ-df = ozj[ﬁ’.dr*zf Fedi+ Fedi= | Fedif— | Fedr
&4 C (&1 —Cs C1 C>

Clearly (2.) follows.
C.
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To summarize we have shown (1.) < (2.) & (3.) and (1.) = (4.). We postpone the proof that
8)={¢)and 4} = (1.). 1

The point A where f{A4) = 0 is known as the zero for the potential. You should notice that the
choice for f is not unique. If we add a constant ¢ to the potential function f then we obtain the
same gradient field; Vf = V(f + ¢). In physics this is the freedom to set the potential energy to
be zero at whichever point is convenient. :

Example 7.4.6. In electrostatics, the potential energy per unit charge is called the voltage or simply
the electric potential. For finite, localized charg distributions the electric potential is defined by

(=.9.2)
V(x,y,z)=~f Eedi

o0

The electric field of a charge ot the origin is given by E= fgfo\ We toke the line from the origin to
spatial infinity!! to calculate the potential.

? k k
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The notation [ }9 indicates the line integral is taken over a path from P to Q. This notation is only
unambiguous if we are working with a conservative vector field.

Hhe claim implicit within such a convention is that it matters not which unbounded direction the path begins,
for convenience we usually just use a line which extends to co



