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7.5 green’s theorem

The fundamental theorem of calculus shows that integration and differentiation are inverse pro-
cesses in a certain sense. It is natural to seek out similar theorems for functions of several variables.

We begin our search by defining the flux through a simple closed planar curve'?. It is just the
scalar integral of the outward-facing normal component to the vector field. Then we examine how
a vector field flows out of a little rectangle. This gives rises us reason to define the divergence. In
some sense this little picture will derive the first form of Green’s Theorem.

Being discontent with just one interpretation, we turn to analyze how the vector field circulates
around a given CCW curve. We again look at a little rectangle and quantify how a given vector field
twists around the square loop. This leads us to another derivation of Green’s Theorem. Moreover,
it gives us the reason to define the curl of a vector field.

Finally, we offer a proof which extends the toy derivations to a general Type I & II curve. Past
that, properties of the line-integral extend our result to general regions in the plane. Applications
to the calculation of area and the analysis of conservative vector fields are given. I conclude this
section with a somewhat formal introduction to two-dimensional electrostatics, I show how Green’s
Theorem naturally supports Gauss’ Law for the plane.

7.5.1 geometry of divergence in two dimensions

A curve is said to be simple if it has no self-intersections except perhaps one. For example, a circle
is a simple curve whereas a figure 8 is not. Both circles and figure &’s are closed curves since they
have no end points (or you could say they have the same starting and ending points). In any event,
we define the number of field lines which cut through a simple curve by the geometrically natural

definition below: \\
Definition 7.5.1. fluz of F through a simple curve C. ‘-_)—\ ("

Suppose F' is is continuous on a open set containing the closed simple curve C. Deﬁn{t

b = % (Fei)ds
S

S

<
- -
Where 71 is the outward-facing unit-normal to C. Mo P(dx

Recall that if 7(s) = (z(s), y(s)) is the arclength parametrization of C then the unit-tangent vector
of the Frenet frame was defined by T'(s) = gs—F.B For the sake of visualization suppose C is CCW
oriented calculate 7. Since T'+7i = 0 there are only two choices once we calculate 4. We choos
the 7 which points outward.

= [ dz dy L, [ dy dz
T_<ds’ ds> = n_<ds’ ds> pa— E—

2these are known as Jordan curves
13 yes the unit normal is defined by and N (s) = ;1—,,3(;5%. However, this is not the 7 which we desire because

N sometimes points inward. Also, direct computation brings us to second derivatives and the geometric argument
above avoids that difficulty
14if & = (a, b) then ¥ = (b, —a) or ¥ = (—b,a) are the only perpendicular unit-vectors to &
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The picture below helps you see how the outward normal formula works:
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Let’s calculate the flux given this identity. Consider a vector field F= (P, Q) and once more the
Jordan curve C with outward normal 7, suppose length of C is L,

@C=j(c(ﬁ'ﬁ}df
= [P L -2 yas
=/0L(Pg—z—* %)ds
- [-an (& L
=£de——Qda:. Cb-((m ’H’A\CO(' <? Q&

This formula is very nice. It equally well applies to closed simple curves which are only mostly
smooth. If we have a few corners on C then we can still calculate the flux by calculating flux
through each smooth arc and adding together to find the net-flux. To summarize:

Proposition 7.5.2.

Suppose C is a piecewise-smooth, simple, closed CCW oriented curve. If F' is continuous
on an open set containing C then the flux through C is given by

(I)C:%ﬁtﬁz % Pd@/“Qd’I’
C JC

If you were to consider the CW-oriented curve —C then the cutward-normal is given by @i =
( - %, %ﬁr ) and the formula for flux is

%zf F-ﬁ:}{ Qdz — Pdy.
-C -C

This formula is in some sense left-handed, hence evil, so we whilst not use it hence forth.

Now we turn to the task of approximating the flux by direct computation. Consider a little rectangle
R with corners at (z,y), (z + Oz, y), (z + Az, y + Ay), (z,y + Ay).
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To calculate the flux of F = (P, Q) through the rectangle we simply find the flux through each side
and add it up.

1. Top: (F.9)Az = Q(z,y+ Ay)Az

2. Base: (F«[-7])Az = —Q(z,y) Az

3. Left: (F«[-%])Ay = —P(z,y)Ay

4. Right: (F« 2)Ay = P(z + Az, y) Ay
The net-flux through R is thus,

®p = (Q(I, y+Ay) — Q(z, y)) Az + <P($ + Az,y) — P(z, y)) Ay

Observe that

Nxly Ay A:c
In this limit Az — 0 and Ay — 0 the expressions above give partial derivatives and we find that:

w000 = 9. ¢,y |08 At

This suggests we define the flux density as V «F = %—i + %‘3. If we integrate this density over a
finite region then we will find the net flux through the region (jump!). In any event, we at least
have good reason to suspect that

Daop = ﬁ-ﬁ':/ V.FdA = Pdy — de—//[aP BQ]
OR R OR

This is for obvious reasons called the divergence form of Green’s Theorem. We prove this later in
this section. As I mentioned in lecture I found these thoughts in Thomas’ Calculus text, however,
I suspect we’ll find them in many good calculus texts at this time.

ipo\“m - [((2e-
R
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7.5.2 geometry of curl in two dimensions

Recall that §, F«dr calculates the work done by F around the loop C. This line-integral is also
called the circulation. Why? If we think of F as the velocity field of some liquid then a positive
circulation around a CCW loop suggests that a little paddle wheel placed at the center of the loop
will spin in the CCW direction. The greater the circulation the faster it spins. Let us duplicate the
little rectangle calculation of the previous section to see what meaning, if any, the circulation per
area has: Once more, consider a little rectangle R with corners at (z,y), (z + Az, y), (z + Az, y +
Ay), (z,y + Ay).

Cyaray)  —Pax Oxrtx wen)
)
—Qsy Y& (94 Qoy
(&)
S
(<,9) Pax (¢, 9 )

To calculate the flow!s of F = (P, @) through the rectangle we simply find the flow through each
side and add it up.

1. Top: (Fs[-%]))Az = —P(z,y + Ay)Az .
2. Base: (F« Z)Az = P(z,y) Az

3. Left: (F«[-§])Ay = —Q(z,y) Ay

4. Right: (Fe §)Ay = Q(z + Az, y) Ay

The net-circulation around R is thus,
Wi = (@ +22,9) - Qe.) ) by - (Pla,y+ B9) = Plawy) ) s

Observe that
Wr _ Q@+ Azy) - Qz,y) P(z,y+Ay) — P(z,y)
AxAy Az Ay

In this limit Az — 0 and Ay — 0 the expressions above give partial derivatives and we find that:

Q}\/ﬁg =%§_%§ - (Qx <P, Qlo? 2({0/0/ Qx F, >)3
aP 3 not QK’P\'.

In the case that %S— — 5y = 0 we say the velocity field is #rrotational since it does not have
the tendency to generate rotation at the point in question. The curl of a vector field measures

5the flow around a closed loop is called circulation, but flow is the term for a curve which is not closed
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how a vector field in R3 rotates about planes with normals Z, 7, Z. In particular, we defined
Curl(F) =V x F. If F(z,y,z) = (P(z,y), Q(z,y),0) then

., BQ oP
and we just derived that nonzero g—g = P will spin a little paddle wheel with axis 2. If Fe 20

and/or P, @ had nontrivial z—dependence then we would also find nontrivial components of the
curl in the Z or 7 directions. If Curl(F)« Z or Curl(F)e+ § were nonzero at a point then that
suggests the vector field will spin a little paddle wheel with axis T or 7. That is clear from simply
generalizing this calculation by replacing z,y with y, z or z,z. Another form of Green’s Theorem
follows from the curl: since dW = (V x F)« ZdA we suspect that

Wg= F-szf/(Vxﬁ)-EdA = Pda:+Qdy~//[a—Q—a—P} dA
oR R 8R Oy

This is the more common form found in calculus texts. Many texts simply state this formula and
offer part of the proof given in the next section. Our goal here was to understand why we would
expect such a theorem and as an added benefit we have hopefully arrived at a deeper understanding
of the differential vector calculus of curl and divergence.

7.5.3 proof of the theorem

It it is a simple exercise to show that the divergence form of Green’s theorem follows from the
curl-form we state below.

Theorem 7.5.3. Green’s Theorem for simply connected region:

Suppose OR is a piecewise-smooth, simple, closed CCW oriented curve which bounds the
. . 9 — . o . o .
simply connected region R C R* and suppose F is differentiable on an open set containing

R then .
f Pdr—l—Qd/——// [———}d&
IR

Proof: we begin by observing that any simply connected region can be subdivided into more ba-
sic simply connected regions which are simultaneously Type I and Type II subsets of the plane.
Sometimes, it takes a sequence of these basic regions to capture the overall region R and we will
return to this point once the theorem is settled for the basic case.
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Proof of Green’s Theorem for regions which are both type I and IL. We assume that
there exist constants a,b,¢,d € R and functions fi, f2, g1, g2 which are differentiable and describe
R as follows:

R={(z,y)|a<z<bh filz) <y< fal@)} ={(z,9) | c<y < d, qily) < o< g2(y))
type I type 11

Note the boundary R = C1 U (' can be parametrized in the type I set-up as:
Cr:71(z) = (@, filz)),  —Ca:7-2(z) = (z, f2(z))

for a <z < b (it is easier to think about parametrizing —C4 so I choose to do such). Proof of the
theorem can be split into proving two results:

@) § Pio=- // Lia & fBRQdy:/L%%dA

I prove I. in these notes and I leave II. as a homework for the reader. Consider,
// oP /b /fz(T) ()p
ROy Si(=) By

- / [ P(z, fo(x)) — P(z, f1(2)) ]dz

§ ab b

= Pdzx — Pdzx
—~Ca Cy1

-—-( Pdz + Pd:c) C~= C\UC‘
Cqy C1

—/Pda:
C

Hence ~9P4A = ¢ Pdz. You will show in homework that Qdy = 994A and Green’s
R 8y C R R Bz
Theorem for regions which are both type I and II follows. ¥V
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If the set R is a simply connected subset of the plane then it has no holes and generically the
picture is something like what follows. We intend that R = )", Ry

Applying Green’s theorem to each sub-region gives us the following result.

j’{ Pd:r:—l—Qdy——Z// [a_—inﬁ]dA

It is geometrically natural to suppose the rhs simply gives us the total double integral over R,

L5 -3 )aa= [ - 5 lea

I invite the reader to consider the diagram above to see that all the interior cross-cuts cancel and
only the net-boundary contributes to the line integral over R. Hence,

Z Pdz + Qdy = f Pdz + Qdy.
OR

ORy

Green’s Theorem follows. It should be cautioned that the summations above need not be finite.
We neglect some analytical details in this argument. However, I hope the reader sees the big idea

LE Chere ou caj dful det ngsome a‘cll%andcy%d cglrci"ulus taexts [} i LoNréRVAﬂVE VFCTDR
Theorem 7.5.4. G7eens Theorem for an annulus: T FigL0s

Cot

Suppose 0R is a pair of simple, closed j,‘@\‘( oriented curveswhich bounds the connected
region R C R? where OR = C,, U Coy and Cj,, is the CW-oriented inner-boundary of
R whereas C,,; is the CCW oriented outer-boundary of R. Furthermore, suppose Fis
differentiable on an open set containing R then

fures+aun= [] [52- 5]

Proof: See the picture below we can break the annulus into two simply connected regions then
apply Green’s Theorem for simply connected regions to each piece. _ .
pply ply gi p YR = Cyut v Ci




