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Observe that the cross-cuts cancel (in the diagram above the cancelling pairs are 3,4 and 5, 6):
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Apply Green’s theorem to the regions bounded by Cy, and Cg and the theorem follows. [

A= Gk Gis

Notice we can recast this theorem as follows: c A CW
oP
§PA)¢QJ‘7 +fl°d¥+@19 = Pdz + Qdy — Pdz + Qdy = // [g—g - a_y] dA. =) - C‘-A CCW,
C;n Cout ‘Cin R ‘
Or, better yet, if Cy, Cy are two CCW oriented curves which bound R Ci

de+Qdy—j[ Pd:c+Qdy=// [99-—5—]3](1/1.
o Cs rLOz Oy

Suppose the vector field F = (P, Q) passes our Clairaut Test on R then we have %g = %—I; and @
consequently:

f Pdz + Qdy = f Pdz + Qdy.
C1 C2

I often refer to this result as the deformation theorem for 1rrotational vector fields in the plane.
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Theorem 7.5.5. Deformation Theorem for irrotational vector field on the plane:

Suppose Cy, Cy are CCW oriented closed simple curves which bound R € R? and suppose
F = (P, Q) is differentiable on a open set containing R then

7{ Pdx 4+ Qdy = % Pdx + Qdy.
Ci JCo

In my view, points where V x F # 0 are troublesome. This theorem says the line integral is
unchanged if we do not enclose any new troubling points as we deform Cj to Cs. On the flip-side
of this, if the integral around some loop is nonzero for a given vector field that must mean that
something interesting happens to the curl of the vector field on the interior of the loop.

Theorem 7.5.6. Green’s Theorem for a region with lots of holes.

. . 2 . v . .
Suppose R is a connected subset of R which has boundary dR. We orient this boundary
curve such that the outer boundary has CCW orientation whereas all the inner-boundaries
have CW orientation. Furthermore, suppose F is differentiable on an open set containing

R then _ 3 OP
jg Pdm+Q(l1—//[Q ] dA
SR

Proof: follows from the picture below and a little thinking.
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This is more interesting if we state it in terms of the outer loop and CCW oriented inner loops.
Denote Cyy; for the outside loop of dR and Cj for k = 1,2,..., N for the inner CCW oriented
loops. Since OR = Cypy U —-C1U---U —C’N it follows

Pdz + Qdy — j{ Pdx + Qdy = // [B_Q_(?_P} dA

Cout
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If we have %9- a = 0 throughout R we find the following beautiful generalization of the defor-

mation theorem:

N
Pdz+ Qdy = f Pdz + Qdy.
k=1"Ck

- Caut

In words, the net circulation around C is simply a sum of the circulations around each singular-
ity contained within C. A singularity is a point at which the field (P, Q) obtains a nontrivial
circulation around any small loop containing the point.

7.5.4 examples P()-X{' M‘? &J

Example 7.5.7. Use Green’s theorem to calculate fc z3dz 4? yccdy where C is the CCW boundary
of the oriented rectangle R: [0,1] x [0,1]. Identify that P = x3 and Q = zy. Applying Green’s

Theorem,
yf 3da:+ya:dy-//(a—Q——~a—£>dA //ydmdy-———

One important application of Green’s theorem involves the calculation of areas. Note that if we
choose F = (P, Q) such that % - %f-j =1 then the double integral in Green’s theorem represents
the area of R. In particular, it is common to use

= (Oa iE), or F= ('—ya 0)7 or F= <‘y/27 $/2>

in Green’s theorem to obtain the identities:

Agzjg :cdyz——}{ yda::lf xdy — ydx
oR oR 2 Jor

Example 7.5.8. Find the area of the ellipse bounded by °/a®+y?/b% = 1. Observe that the ellipse
OR is parametrized by x = acos(t) and y = bsin(t) hence doz = —asin(t)dt and dy = bcos(t)dt
hence

1 1 [ 1 [
Arp == f zdy —ydz = = / lacos(t)bcos(t)dt — bsin(t)(—asin(t)dt) = —/ abdt = mab.
2 Jor 2 Jo 2Jo
When a = b = R we obtain the famous nR2.
Example 7.5.9. You can show (perhaps you will in a homework) that for the line-segment L from
(z1,1) to (z2,y0) we have the following excellent identity:

1 1
= / zdy — ydz = = (21y2 — T2y1)-
2/, 2

Consider that if P is a polygon with vertices (z1,v1), (z2,32),-. -, (TN, y;y‘) with sides
Ly, Logy - .., Ln-1,n then the area of P is given by the line-integral of F' = (—y/2,2/2) thanks to
Green’s Theorem:

Ap=//dA=l/ z:dy——yda:
p 2 Jop

1 ‘ 1 1
=§/ xdy—-ydx—f—é-/ xdy—yda:+--~+§/ zdy — ydx
Li2 Loy Ly-i,n

1

=3 [@1y2 — Ty + Toys — Tay2 + - + TN_1YN — INYN-1]
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You can calculate the area of polygon with vertices (0,0), (—1,1),(0,2), (1, 3),(2,1) is 9/2 by ap-
plying the formula above. You could just as well calculate the area of a polygon with 100 vertices.
The example below is a twist on the ellipse example already given. This time we study an annulus
with elliptical edges.

Example 7.5.10. Find the area bounded by ellipses 22 /a® +y? /b? = 1 and 22/ +42/d? = 1 given
that 0 < c < a and 0 < d < b to insure that the ellipse z2/a® + y?/b* = 1 is exterior to the ellipse
z2/c® +y%/d% = 1. Observe that the ellpitical annulus has boundary R = Cin U Cour where Ciyy 5
CCW parametrized by x = acos(t) and y = bsin(t) and Cy, is CW oriented with parametrization
x = ccos(t) and y = —dsin(t) it follows that:

1
ARz—jg zdy — ydzx
2 Jor

1 1
=—j{ xdy—ydz—i——j{ zdy — ydx
2 Cou.t 2 ci

27 27
=1/ wﬁ—l/ cddt
2 Jo 2 /o

= wab — wed.

Notice the CW orientation is what caused us to subtract the inner area which is missing from the
annulus.

Example 7.5.11. Consider the CCW oriented curve C with parametrization z = (10+sin(30¢)) cos(t)
and y = (10+sin(30t)) sin(t) for 0 <t < 2w. This is a wiggly circle with mean radius 10. Calculate

/ zdy — ydx
c ?+y?
Let P = —y/(z* + y*) and Q = /(2 + y?) you can show that 8,Q — 8,P = 0 for (z,y) # (0,0).

It follows that we can deform the given problem to the simpler task of calculating the line-integral
around the unit circle S1: = = cos(t) and y = sin(t) hence zdy — ydx = cos?(t)dt + sin(t)dt and

2?2 +9y% =1 on S1, calculate,
/ zdy — ydz / zdy — ydz
c @+ Js, B2+

Notice that we could still make this calculation if the specific parametrization of C was not given.
Also, generally, when faced with this sort of problem we should try to pick a deformation which
makes the integration easier. It was wise to deform to a circle here since the denominator was
greatly simplified.
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7.5.5 conservative vector fields and green’s theorem

Recall that Proposition 7.4.5 gave us a list of ways of thinking about a conservative vector field:

Suppose I/ is an open connected subset of R"™ then the following are equivalent

1. F is conservative; F = Vf on all of U

[

. F is path-independent on U
3. §C Fedr =0 for all closed curves ¢/ in U

. {add precoundition U be simply connected} V x F=0onU.

e

Proof: We finish the proof of by addressing why (4.) = (1.) in light of Green’s Theorem. Suppose
U is simply connected and V x F = 0 on U. Let C; be a closed loop in U and let Cp be another
loop of radius R inside Cj. Since V x F = 0 it follows we can apply the deformation Theorem
7.5.5 on the annulus between C; and Cp to obtain [, Feodi = fCR F «dF. Now, as U is simply
connected we can smoothly deform Cr to a point Cp. You can show that

since Cr becomes a point in this limit. Not convinced? Consider that the integral fCR FedFis at

most the product of maz{||F(7)]| | 7 € Cr} and the total arclength of Cr. However, the magnitude
is bounded as F has continuous component functions and the arclength of Cp clearly goes to zero
as R — 0. Perhaps the picture below helps communicate the idea of the proof:

We find (4.) => (3.) hence, by our earlier work, (3.) = (2.) = (1.). O

Now, in terms of logical minimalism, to prove that 1,2, 3,4 are equivalent we could just prove the
string of implications (1.) = (2.) = (3.) = (4.) = (1.) then any of the reverse implications are
easily found by logic. For example, (3.) = (2.) would follow from (3.) = (4.) = (1.) = (2.). That
said, I tried to give all directions in the proof to better illustrate how the different views of the
conservative vector field are connected.

7.5.6 two-dimensional electrostatics

The fundamental equation of electrostatics is known as Gauss’ Law. In three dimensions it simply
states that the flux through a closed surface is proportional to the charge which is enclosed. We
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have yet to define flux through a surface, but we do have a careful definition of flux through a
simple closed curve. If there was a Gauss’ Law in two dimensions then it ought to state that

bp = Qenc

In particular, if we denote o = d@/dA and have in mind the region R with boundary R,

jiR(E-ﬁ)ds = //R odA

Suppose we have an isolated charge @ at the origin and we apply Gauss law to a circle of radius r
centered at the origin then we can argue by symmetry the electric field must be entirely radial in
direction and have a magnitude which depends only on r. It follows that:

éR(Ecﬁ)dsszRadA = (@2mE=Q

Hence, the coulomb field in two dimensions is as follows:

B(r,0)= 27

27r

Let us calculate the flux of the Coulomb field through a circle C of radius R:

ﬁ(é-ﬁ)@:/{}( 2%?-?)615
;/ngﬁds

_ @
Q 27 R)

= 3R
= Q.

The circle is complete. In other words, the Coulomb field derived from Gauss’ Law does in fact
satisfy Gauss Law in the plane. This is good news. Let’s examine the divergence of this field. It
appears to point away from the origin and as you get very close to the origin the magnitude of E
is unbounded. It will be convenient to reframe this formula for the Coulomb field by:

E(%Z/) = W%Jj‘)‘($7y>'

Note:
) zQ a1 yQ
Vb= o fo e g%
Oz {271'(:702 + yz)] + Ay [27r(:02 + yz)}
_ Q[+ -2 P4y’
T or (zz + y2)2 (xz + y2)2 -

If we were to carelessly apply the divergence form of Green’s theorem this could be quite unsettling:

consider,
E-ﬁ:/fv-EdA = Q://(O)d.A:O.
R R R



370 CHAPTER 7. VECTOR CALCULUS

But, @ need not be zero hence there is some contradiction? Why is there no contradiction? Can
you resolve this paradox?

Moving on, suppose we have N charges placed at source points 7, 72,...,7n then we can find the
total electric field by the principle of superposition.

%4 R o
f’/‘ﬁa‘é?ai'ﬂ’f’ H “Y‘AJ' “ = didmnce

\%om Q b ¥

bosed o erigin
{nat J-(wvvn‘}

}
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We simply take the vector sum of all the coulomb fields. In particular,

N ’.’_ '-",
B =2 F = Zwr—r P
Z

What is the flux through a circle which encloses just the k-th one of these charges? Suppose Cp is
a circle of radius R centered at 7. We can calculate that

f (By+R)ds = Qy
Cr

whereas, since E’}- is differentiable inside all of Cr for j # & and V-E‘} = { we can apply the
divergence form of Green’s theorem to deduce that

}{ (E;+R)ds = 0
Cr

Therefore, summing these results together we derive for E = El et Ek RERE EN that

(E+R)ds = Qp
Cn
Notice there was nothing particularly special about @y so we have derived this result for each
charge in the distribution. If we take a circle around a charge which contains just one charge
then Gauss’ Law applies and the flux is simply the charge enclosed. Denote C1,Cs,...,Cn as
little circles which each enclose a single charge. In particular, ¢, Cs,...,Cn enclose the charges
Q1,Qs, ..., QN respective. We have

o1 =j£01(ﬁ.ﬁ)ds, Q2=j€7;(ﬁ‘?z)ds, QN=)£CN(E.ﬁ)ds

- Now suppose we have a curve C which encloses all N of the charges. The electric field is differ-
entiable and has vanishing divergence at all points except the location of the charges. In fact,
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the coulomb field passes Clairaut’s test everywhere. It just has the isolated singularity where the
charge is found. We can apply the general form of the deformation theorem to arrive at Gauss’
Law for the distribution of N-charges:

j[(E.a)ds.—_f (E'ﬁ)ds—%% (E’-ﬁ)ds+~--+f (Eei)ds= Q1+ Q2+ -+ Qn
C Cy Ca Cn

You can calculate the divergence is zero everywhere except at the location of the source charges.
Moral of story: even one point thrown out of a domain can have dramatic and global consequences
for the behaviour of a vector field. In physics literature you might find the formula to describe
what we found by a dirac-delta function these distributions capture certain infinities and let you
work with them. For example: for the basic coulomb field with a single point charge at the origin
E(r, f) = 5%? this derived from a charge density function o which is zero everywhere except at
the origin. Somehow [f,odA = Q for any region R which contains (0,0). Define o(¥) = Q4(F).
Where we define: for any function f which is continuous near 0 and any region which contains the
origin

/R F(F)5F)dA = F(0)

and if R does not contain (0, 0) then [/, f(7)d(7)dA = 0. The dirac delta function turns integration
into evaluation. The dirac delta function is not technically a function, in some sense it is zero at
all points and infinite at the origin. However, we insist it is manageably infinity in the way just
described. Notice that it does at least capture the right idea for density of a point charge: suppose

R contains (0, 0),
//RodA=//RQ5(f')dA= Q.

On the other hand, we can better understand the divegence calculation by the following calcula-

tions?b:

—

;
Ve = 2m(F).

Consequentlly, if E = %;’; then V+E = V. [9% ;’";} = %V- f; = Q4(F). Now once more apply
Green’s theorem to the Coulomb field. Use the divergence form of the theorem and this time
appreciate that the divergence of E is not strictly zero, rather, the dirac-delta function captures
the divergence: recall the RHS of this calculation followed from direct calculation of the flux of the
Coloumb field through the circle dR,

jéRE.ﬁds=/Lv.EdA = Q___//RQé(ﬂdAzQ.

All is well. This is the way to extend Green’s theorem for Coulomb fields. You might wonder about
other types of singularities. Are there similar techniques? Probably, but that is beyond these notes.
I merely wish to sketch the way we think about these issues in electrostatics. In truth, this section
is a bit of a novelty. What really matters is three-dimensional Coulomb fields whose magnitude
depends on the squared-reciprocal of the distance from source charge to field point. Perhaps I will
write an analogus section once we have developed the concepts of flux and the three-dimensional
divergence theorem.

157 don’t intend to explain where this 27 comes from, except to tell you that it must be there in order for the
extension of Green's theorem to work out nicely.



