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7.6 surface integrals

We discuss how to integrate over surfaces in R3. This section is the natural extension of the work
we have already accomplished with curves. We begin by describing the integral with respect to
the surface area, naturally this integral calculates surface area, but more generally it allows us to
continuously sum some density over a given surface. Next we discuss how to find the flux through a
surface. The concept of flux requires we give the surface a direction. The flux of a vector field is the
number!” of field lines which cut through the surface. The parametric viewpoint is primary in this
section, but we also make an effort to show how to calculate surface integrals from the graphical
or level-surface viewpoint.

7.6.1 motivations for surface area integral and flux

Let us consider a surface S parametrized by smooth 7(u, v) = (z(u, z), y(u, v), 2(u, v)) for (u,v) € Q.
If we wish to approximate the surface area of S then we should partition the parameter space 2
into subregions ;; such that U2 UL, Qi = Q where we assume that Q;; are mostly disjoint,
they might share an edge or point, but not an area. Naturally this partitions S into subsurfaces;
S = Uiz UL, Sij where S;; = 7(Qy;). Next, we replace each subsurface Si; with its tangent plane
based at some point!8 (uy, v;‘) € S;;j. For convenience of this motivation we may assume that the
partition is made so that €;; is a little rectangle which is Au by Av. The length of the coordinate
curves are well-approximated by %Au and g—gAv based at the point 7{u], v;-‘). The coordinate lines
on S are not necessarily perpendicular so the area is not simply the product of length times width,
in fact, we have a little paralellogram to consider. It follows that the area A;; of the i, j-tangent

plane is given by

Ai]’ = Aulv.
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A good approximation to surface area is given for m,n >> 1 by
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As we pass to the limit m — co and n — oo the double finite sum becomes the double integral
taken over the parameter space (2. For these reasons we define:

ﬁ(Uo,Vv = A 20 F(_u?%)
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7relative to some convention, lines drawn per unit of flux

8when I illustrate this idea I usually take these points to the lower left of the partition region, but in principle you
could sample elsewhere.
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Diefinition 7.8.1. scolar surfoce integral.
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Suppose S is a swrface in

define the scalar surface integral of f over S by the following integral (when it exists)

paramterized by 7 with domain O and with parameters , v.
Furthermore, suppose [ is a continuous function on some open set containing S then we

In the case we integrate f = 1 over S then we obtain the surface area of 5. On the other hand,

if f was the mass-density f = d‘“ then dM = fdS and the integral [ fdS calculates the total
mass of §. Clearly it is convement to think of dS as something on its own, however, it should be

remembered that this is just notation to package the careful definition given above,

ds J g—zxég

Moreover, we should recall that the normal vector ﬁeld to S induced by 7 was given by N= au

dudv inﬁnitesnnal scalar surface area element

or

X v

hence we can write dS = Ndudv. This is nice, but for most examples it does not save us from

explicit calculation of the cross-product.

Next, consider a vector field F defined on some open set containing S. Suppose that S is a regular
surface and as such has a well-defined normal vector field N. If we define i = - N then F o7 gives

the component of F which points in the normal direction of the surface. It is customary to draw
field-lines to illustrate both the direction and magnitude of a vector field. The number of lines
crossing a particular surface illustrates the magnitude of the vector field relative to the given area.
For example, if we had an area A, Whl(}h had 4 field lines of F and another area Ag which had 8
field lines of F then the magnitude of F on these areas is proportional to 74T and 33— respectively.
If the vector fields are constant, then the flux through A; is F} A; whereas the ﬂux through As is
F>As. Generally, the flux of a vector field through a surface depends both on the size of the surface
and the magnitude of the vector field in the normal direction of the surface. This is the natural

generaliza,tion of the flux-integral we discussed previously for curves in the plane.

Definition 7.6.2. surfoce integral of vector field; the flux through a surfoce.

vector field on some open set containing S then we define the surface integral of F over

S by the following integral {when it exists)

Suppose S is an oriented surface in B? par amterized by 7 with domain {1 (m@ with param-
eters u, v which induce unit-normal vector field 7. Furthermore, suppose F is a continuous

In practice, the formula we utilize for direct computation is not the one given above. Let us

calculate,

[[(Fenyas= [[ (7L Mudv-///w N ) dud

>V
=>

L
sV
= >
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Hence, recalling once more that N(u, v) = 8,7 X 8,7 we find i
pory \.((m)t Pe

//FdS / F((u, v)) (?ﬁng>dudv meo;?

)d/\m ogh
The equation boxed above is how we typically calculate flux of F through S. I should mention that

is often convenient to calculate dS separately before computation of the integral, this quantity is
called the infinitesimal vector surface area element and is defined by

~ OFr or )
dS = axa—dudv ndS

Once more, dS is the scalar area element. Both of these are only meaningful when wewedﬂm con-
nection with the parametric set-up described in this section.

The uninterested reader may skip to the examples, however, there is some unfinished business
theoretically here. We should demonstrate that the definitions given in this section are independent
of the parametrization. If this fails to be true then the concepts of surface area, total mass etc...
and flux are in doubt. We must consider a reparametrization of S by X : D — S where a,b are
the typical parameters in D and the normal vector field induced by X is Nx (a,b) = 8,X x 8,X.
Let us, in contrast denote N, r(u,v) = 8,7 X 7. Since each point on S is covered smoothly by
both 7 = (z,y,2) and X = (X1, X9, X3) there exist functions whlch transition between the two
parametrizations. In particular, we can find T :Q — D such that T = (h,g) and

(u,v) = X(h(u v), 9(u,v))

We need to sort through the partial derivatives so we can understand how the normal vector fields
Nx and N, are related, let a = h(u) and b = g(v) hence 7(u,v) = X(a,b). I'll expand X into its
component function notation to make sure we understand what we’re doing here:

% = %<X1(a, b), X2(a,b), X3(a, b)> = <(%[X1(a, b)l, 86 [X2(a, b)] [X3(a b)]>

We calculate by the chain-rule, (omitting the (a,b) dependence on the lhs, technically we should
write 2[X1(a,b)] etc...)

90Xy 90X, 0h  0X; Qg_ 0Xo 09X, Oh  0X308g9 0X3 0X3 _a_h_ 8X3 8g
du  Oa du  Ob du’ Ou  Oa Ou = Ob du’ Bu  Oa Bu  Ob Ou
Likewise, for the derivative with respect to v we calculate,

0X1 _ 0X10h 0X18g 0Xp _0Xa0h  0Xodg 0Xs 0Xs0h  0X3dyg

60_6a8v+8b6v dv _ da Ov b ov’ Ov _ da Ov b ov
‘We find,

Su \ da Ou ' Ob Ou’ Oa Ou = Ob Ou’ Oa Ou = Ob Ou
B <6X1 09X 6X3>8h <ax1 X, aX3>ag

or <8X1 Oh  0X10g 0X20h  0X30g 08X30h  0X3 6g>

Oa’ Oa’ Oa 3u+ ob’ 8b ' 0b /ou
8X6h+3Xag
da Ou ab du

T

& e
ds = Ndudv
vector area element dS s N a du dv A
. N V=0

ds.
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Similarly,
or _oXon , oX oy
v da dv ' b dv

Calculate, by the antisymmetry of the cross-product,

e, O _(E20h phin) (adoh, 020r)
du v da Ou  8b Ou da v~ b v
0X 0X]|0hdg 80X 08X 8g0h
[30, Bb]auf)v [Gb ](’)uav
22 2] [2u2n_ o2
da Judv Oudv

———

It follows thatl N, (u,v) = Nx(h(u,v), g(u, v))@ hence N;(u,v) = Nx(h(u,v),g(u,v)) |5§Z—2)[
The vertical bars denote absolute value; witerwe pull a scalar out of a magnitude of a vector it
gets absolute value bars; ||cd]| = e/ [|7l]. Consider the surface area integral of f over S which is
parametrized by both #(u,v) and X (a,b) as discussed above. Observe,

[ ras= [ s omm e oaan
://ng()?(h(u, v), 9(u,v))) Nx (h(u,v), g(u,v)) ggz:ggld“d”
- [ & tpx(ovdea

In the last line I applied the multivariate change of variables theorem. Notice that the absolute
value bars are important to the calculation. We will see in the corresponding calculation for flux the
absolute value bars are absent, but this is tied to the orientation-dependence of the flux integral.
In the scalar surface integral the direction (outward or inward) of the normal vector field does not
figure into the calculation. We have shown

//Sfds;/_sfds.

Next, turn to the reparametrization invariance of the flux integral. Suppose once more 7 and X
both parametrize S. Calculate the flux of a continuous vector field F' defined on some open set
containing S (via the boxed equation following the definition)

/.[gﬁ-d§= //Q F(7(u, ) » Ny(u, v) dudv
— [[[ FR ), 960,90+ Fxha,o), oo, v»gg’wg Bl
Q U, v

If 27(2%% > 0 for all (u,v) € Q then it follows that N, and Nx point on the same side of S

and we say they are consistently oriented parametrizations of S. Clearly if we wish for the

flux to be meaningful we must choose a side for S and insist that we use a consistently oriented

parametrization to calculate the flux. If 7 and X are consistently oriented then g?(ﬁ—’i% > 0 for all
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(u, v) € Q and hence %’% g((:f’g; for all (u,v) € Q and we find
FedS= [[ F(Rh(u,v) v o(h,g)
° = 1 ,g(u,’u)))-Nx(h(u,v),g(u,v)) dudv
Js JJQ 9(u,v)

= / F(X(a,b)« Nx(a,b) dadb
J JD

by the change of variable theorem for double integrals. On the other hand, if 7 is oppositelyjoriented
from X then we say © parametrizes S whereas X parametrizes —S. In the case X poi

direction opposite 7 we find the coefficient ‘g%%%‘ ét—’% and it follows that:

// ﬁ.dgz_//ﬁ.ds?
JJ—-8 JJS

7.6.2 standard surface examples ‘ l

S>>V

In this section we derive dS and dS for the sphere, cylinder, cone, plane and arbitrary graph.
You can add examples past these, but these are essential. I also derive the surface area where
appropriate.

1. Sg the sphere of radius R centered at the origin. We have spherical equation p = R which
suggests the natural parametric formulas: for 0< <27 and 0< ¢ <7

z = R cos(8) sin(¢), y = Rsin(6) sin(¢), z = Rcos(¢)

A
7(¢,0) = (Rcos(9) sin(¢), Rsin(f)sin(¢), Rcos(p)) p
We can limit the parameter space [0, 7] x [0, 2r] to select subsets of the sphere if need arises. ‘
The normal vector field is calculated from partial derivatives of 7(¢, 6); d % {Rl J (‘d
I(n4’
gq& <Rcos(9) cos(¢), Rsin(P) cos(¢), Rsin(¢)>
or . . .
5=\~ Rsin(#) sin(¢), Rcos(f)sin(p), 0 —
In invite the reader to calculate the cross-product above and derive that

/E>

or or
3; F i R? s1n(¢)< cos(f) sin(¢), sin(6) sin(g), cos(¢)> = R%sin(¢)p.
We will find is useful to note that N(¢,0) = R2sin(¢)p for Sr. This is an outward pointing
normal vector field. To summarize, for the sphere Si with outward orientation we find

dS = R%sin(¢)d¢ddp  and dS = R%sin(¢)dpdo
d ( Yor R’)

It is interesting to note that d/dR(%er3) = 47 R? just like d/dR(xR?) = 2= R.

The surface area of the sphere Sg is given by

Area(Sg) = /0-# /07r R?sin(¢)d¢dd = 4w R



7.6. SURFACE INTEGRALS 377

2. Right circular cylinder of radius R with axis along 2. In cylindrical coordinates we have
the simple formulation r = R which gives the natural parametrization:

z = Rcos(6), y = Rsin(f), 2=z
70, z) = (Rcos(d), Rsin(f), z)

for 0 < 6 < 27 and z € R. Calculate &5 = (~Rsin(f), Rcos(d),0) = RE and 97 = 2 thus

oF  or ~ - .
%xg—z—mRex Z=Rr N(@ﬂ,}—; <Rw;9lR§u\@,(‘)>
Consequently, N(6, z) = R7 = R(cos(8), sin(8),0) and we find ’)J
- >
|d5 = Rd9d>7 and  dS = Rddz| o N
The surface area of the cylinder for 0 < z < L is given by &/ 99,

27 L
Area = f / Rdzdf = 2« RL.
0 0 X

Of course, the whole cylinder with unbounded z has infinite surface area.

3. Cone at angle ¢,. In cylindrical coordinates r = psin(¢,) thus the cartesian equation of this
cone is easily derived from r2 = p?sin?(g¢,) gives 22 + 3% = sin?(¢,)(2? + 3 + 2?) hence, for
b0 # 7/2, we find 2% + y? = tan®(¢,)2z2. In cylindrical coordinates this cone has equation
r = tan{¢,)z. From spherical coordinates we find a natural parametrization,

“a
s =poos(f)sin(do),  y=psin(d)sin(@,),  z= pcos(do) Cf/ﬁﬁ;j
A
L
X

ol P

For convenience denote a = sin(¢,) and b = cos(¢,) thus

&
78, p) = {apcos(9), apsin(d), bp) %

for 0 < 6 < 27 and p € [0, 0). Differentiate to see that

7

or , oF _
55 =(—ar sin(6), apcos(d), 0) & 7 (acos(6), asin(8), b).
Calculate,
or  or . 5 .
33 * % = (abp cos(8), abpsin(), —a’p) = ap(bcos(8), bsin(6), —a)

Note that ¢ = (cos(8) cos(¢), cos(8) cos(¢), —sin(¢)) and a = sin(¢,) and b = cos(¢,) hence
- - OF o7 ) -~
N®Q) = 55 5, =rsin(s0)d

Consequently, N (6, p) = psin(¢o)$. We find for the cone ¢ = ¢,,

dS = psin(¢,)dfdps  and  dS = psin(¢,)d6 dp.




378 CHAPTER 7. VECTOR CALCULUS

where ¢ = ( cos(8) cos(¢,), cos(8) cos(¢o), — sin(@o) ). The surface area of the cone ¢ = ¢, for d)o: ﬂ]”
0 < p < R is given by

R 2
Area = / / psin(¢,)d8 dp = sin(¢,)wR2.
o Jo

Of course, the whole cone with unbounded p has infinite surface area. On the other hand,
the result above is quite reasonable in the case ¢, = /2.

4. Plane containing vectors 4 and B and base-point 7,. We parametrize by
#(u, v) =7, +ud + vB

for (u,v) € R ™", Clearly 8,7 = A and 8,7 = B hence N(u,v) = A x B. The plane has a
constant normal vector field. We find:

dS=Ax Bdudv  and  dS = ||A x B||dudv. C@

If we select a compact subset  of the plane then 7(Q) has surface area

4
Area—// nAxBndudv_/ 14 x Bl dA. o~

In the last equation I mean to emphasize that the problem 1e(§\§§§s to an ordinary double in-
tegral of a constant over the parameter space Q. Usually there is some parameter dependence

in dS, but the plane is a very special case.
Aro= (Bl oe(S)

“

5. Graph z = f(z,y). Naturally we take parameters z,y and form
(z,y) = (z,y, f(z,9))
this is the Monge patch on the surface formed by the graph. Differentiate,
7= (1,0,0,f) &  8,7=(0,1,8,f)
Calculate the normal vector field,
N(z,y) = (1,0,0:f) x {0,1,8,F) = ( = 8 f, =8, f,1)

We find:

dS = (= 0,f,~0,f, 1) dudy  and  dS = /14 (3.)2 + (8,/)° du dy.

If © is a compact subset of dom(f) then we can calculate the surface area by

Area = //Q \/l-i- (0:1)? + (8yf)? dz dy.
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7.6.3 scalar surface integrals

I examine several examples to further illustrate the construction of the scalar surface integral. We

use the surface area elements developed in the oQrevious Sgction.
o>

N
Example 7.6.3. Calculate the total mass of a sphe'rehof radius R which has mass-density
o(z,y,2) = tan~(y/x). Identify that o = dM/dS hence dM = odS. Moreover, in spherical
coordinates o = 0 hence thus the integral below gives the total mass: o
-4

1rl':.
#
M= // odS = Afﬁzosm(@d(pde RZ( )(-9; ):
Sn HW{‘L

Example 7.6.4. Calculate the average of f(x,vy, z) = 2° over the circular cylinder S: z2+y* = R2
for 0 < z < L (assume the caps are open, just find the average over the curved side). By logic,

favg = ! // 248 = 1 /L %deOd—— !
wI=orRL J)s* T mRL Jy Jy T VYT 2RL

Generally if we wish to calculate the average of a function over a surface of finite total surface area
we define fu,y to be the value such that [[g fdS = faygArea(s).

2
(2nR)(L3/3) = 5’3—

Example 7.6.5. Find the centroid of the cone ¢ = n/4 for 0 < p < R. The centroid is the
geometric center of the object with regard to the density. In other words, calculate the center of
mass under the assumption dM/dS = 1. However you like to think of it, the centroid (%,7, %) is

given by
1 1 1 e
= Area(S) //S 5, v= Area(S) /fsyds’ ~ Area(S) //5~d5

For the cone S it is clear by symmetry that T = § = 0. Once more building off (3.) of the
previous section we calculate: Area(S) = sin(¢o)7R? = wR?/V/2 hence as z = pcos(¢,) = p/v/2

and dS = —\%dﬁ dp

L]

“—\/_//QTw——dﬁd _ V2 R®2r _|RV2
“T IR TR23 2 | 3

We can also calculate the moment of intertia about the z-axis for the cone S (assume constant
mass density 1 for this example) . The moment of intertia is defined by I, = [/, g r2dM and as the
equation of this cone is simply r = z we find r? = p? cos®(w/4) = p?/2 thus

e oo [ = S0 [

Example 7.6.6. Find the scalar surface integral of f(z,y,z) = zyz on the graph S: z =6+ 24y
for0 <y <a? and 0 < = < 1 (this is just a portion of the total graph z = 6 + z + y which is an
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unbounded plane). Observe that f, =1 and f, =1 thus dS = i+ A F dudy= V3 dz dy

1 z2
// a:yzd.S':/ / zy(6 +z +y)V3dydz
S 0 JO

1 pz?
= \/5/ / ( 6zy + 6z2y + 6xy> )dyda:
o Jo

2

1 z
=3 / ( 3zy? + 3ac2y2 + 2213 ) dx
0 0

2

dz
0

z

1
=\/§/(3x5+3x6+2z7)

JO

3.8 %
"‘/§<6+?+_>

8
33v3
28 °

7.6.4 flux integrals
Once more I build off the examples from Section 7.6.2.

Example 7.6.7. Calculate the fluz ofﬁ = (1,2, 3) through the part of the sphere % + 1 + 2% =4
which is above the zy-plane. Recall dS = R? sin(¢)df dép and note for z > 0 we need no restriction
of the polar angle 8 (0 < 6 < 27) however the azmuthial angle ¢ falls into the interval 0 < ¢ < /2.
Thus, as R = 2 for this example,

o = / / Fed§= / i " (1,2,3) - ( cos(8) sin(), sin(8) sin(4), cos(d) 4 sin(6)db d
S 0 0 0

=4 /OW/Z /027r (C())f(B())sin2 () +2 si/ztﬂ) sin®(¢) + 3 cos(¢) sin(qb)) déd¢

—6 /O i /0 " (sin(2¢))d0d¢ lusém\& = sin(26)

w/2

_ -1 - A
_1271'( 5 COS(2¢)) L = l;\ﬂ( fbw\ +3i0)$(ﬁl) "
=[12x] - X

Example 7.6.8. Letn € Z and calculate the fluz of F(z,y, z) = (2242 + 2221y, 2) through

the sphere Sg. Observe that F = p"p and recall A XN e
7(#,0) = (R cos(6) sin(¢), Rsin(6) sin(¢), Rcos(¢)) = Rp P Vet
Thus calculate, F(7(¢,0)) = R"p ' ow(wwl’ GCU

@:/[gﬁod§=/()ﬂ/02w(R"ﬁ)-(b‘R%in(qb)d&dqb)
= JPFe /0 i /0 zwsin(fb)dﬁ do
= [4np ]
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Believe it!. Notice that the case n = —2 is very special. In that case the fluz is independent of the
radius of the sphere. The fluz spreads out evenly and is neither created nor destroyed for n = —2.

Example 7.6.9. Calculate the fluz of F= (z?, 2,7) through the closed cylinder 2 + y*> = R? with =
0 < z < L. Notice that S = 81U S3 U S3 where I mean to denote the top by S1, the base by S2 and dsl
the side by Ss. The parametrizations and normal vectors to these faces are naturally given by

Xi(r,0) = (reos(0), rsin(6),L)  Ni(r,0) =8,X1 x X1 =Fxrl=7%

Xo(0,7) = (rcos(0),rsin(6), L) No(6,7) = 8 X2 x 8, Xg =1 x T = —13 d.-
X5(0,2) = (Rcos(6), Rsin(6),z)  Ns(6,2) = 9pX3 x 8,X3 = R x = RF $;

where 0 <r < R,0<0 <27 and 0 < 2 < L. Ill calculate the flur through each face separately. Q $t
Begin with S;: a
d,

F(X1(r,0)) = F(rcos(0),rsin(8), L) = (r? cos®(0), L, r sin(6) )

note that dS; = rdrdf z and we find

. . R 2w R 2w
Bg, = / FedS= / (r? cos®(8), L, rsin()) « Z(rdfdr) = / / 2 sin(#)df dr = 0.
S1 0 0 0 0

Through a similar calculation we find ®g, = 0. To calculate the flux through S3 we should evaluate
the vector field on the parametrization, v 2

-—
F(Ra(r,0)) = FFoos(0), Fom(), ) = (R eos? (@), Rsin@) [ (%42) =X, 2,9

also recall that 7 = (cos(f), sin(8), 0) thus dS = R{cos(6),sin(6),0)dd dz. Thus,

27 pL
bg, = / / (R? cos?(0), z, Rsin(8)) « R cos(d),sin(6),0)d6 dz
o Jo

= '/027r /OL <R3 cos®(6) + stin(@)) d dz

27
= LR? / cos®(0) do
0

2T
= LR3 / [1 - sin?(6)] cos(6) d6
0

sin(2m)
=LR3 [1 — u2] du

sin(0)
=
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Example 7.6.10. Find the fluz of F = C on the subset of the plane r(u

v) =7, +uA+vB defined

by 1 < u?+12 < 4. Denote Q = dom(7). You can calculate dS = A x B dudv hence

//ﬁ.d§=/ o*.(zxé)dudv:é.(gxé)// dudv =
s o} " Q

Since the area of Q is clearly —7m(1)2 = 1}4% 30

(1030 (Ax B)

"ml

I

Finally, we conclude by developing a standard formula which is the focus of flux calculations in

texts such as Stewart’s.

Example 7.6.11. Find the flux of F= (P, Q, R) through the upwards oriented graph S: z = f(z,y)
with domain Q. We derived that dS = (-0, f, —0y f, 1)dx dy relative to the Monge parametrization

™z, 9) = (z,y, f(z,y)) for (z,y) € Q. We calculate, from the definition,

//S(P,Q,R)»dg‘:.// (P,Q,R)-(——Bmf,—ayf, 1)dz dy
_//( f )da:dy

which is technically incorrect, we really mean the following:

Jpa.ryas = [[ (<P i) - 0w n i@ + R, s ) s

For ezample, to calculate the flux of F(z,y, z) = (—z, —y, €® +92) onz=1x>+3? for0<a?+¢y2 <1

we calculate Op f = 2z and Oy f = 2y

//(——1:, -1, e$2+-”2) .dS = // (——23:2 - 2y2 + emz"’“yz)dA
S Q

In polar coordinates §) is described by 0 < r <1 and 0 < 6 < 27 so we calculate

24y ol ot 2 2 “7'4 1 r2 1
(—z,—y,e )edS = ~2rf + € \rdrdf = 27| — + =e =
s o Jo 2 2 o

(L



