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7.7 stokes’ theorem

We have already encountered a simple version of Stokes’ Theorem in the two-dimensional context.

Recall that 3 8P
51{ Pdx + Qdy = //( g )dA

could be stated in terms of the z-component of the curl for F = (P,Q,0):

j[ﬁ-d?=[ (V x F)+ Zdzdy
OR R

However, notice that the double integral above is actually the surface integral of V x F over the
planar surface R where dS = zdz dy. Let’s generalize this idea a little. Suppose S is some simply
connected planar region with unit-normal 7 which is consistently oriented!® with 85 then we can
derive Green’s Theorem for .5 and by the arguments of the earlier section we have that

fﬁ-dﬁ://(Vxﬁ)-ﬁ@@:/ (VxF)«dS. =
as S S

Suppose that S = S;US2U---U S, is a simply connected surface where each S; is a planar region
with unit normal 7 and consistent boundary 0S;. The planar regions S; are called faces and we
call such a surface a polyhedra.

Theorem 7.7.1. baby Stokes’ for piece-wise flat surfaces.

Suppose S is a polyhedra S with consistently oriented boundary 95 and suppose F is
differentiable on some open set containing S then

?4 Frl:/ (V x F).ds.
oS S

Proof: The proof is mostly by the picture before the theorem. The key is that because S is
composed of flat faces we can apply x to each face and obtain for j = 1,2,...,n:

}4 ﬁ-dF:// (V x F)-dS.
a8 S;

¥9¢this means as we travel around the boundary the surface is on the left
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Add these equations together and identify the surface integral,

Z}Sq dr—Z//(VxF) ds—//SIUSZU e (V x F).dS.

To simplify the sum of the circulations we need to realize that all the edges of faces which are
interior cancel against oppositely oriented adjacent face edges. The only edge which leads to an
uncancelled flow are those outer edges which are not common to two faces. This is best seen in the

picture. It follows that
f dr = F odi
0S;

which completes the proof of the theorem. [

The theorem above naturally extends to a theorem for mostly regular surfaces. 1 say mostly regular
since we do allow for surfaces which have edges and corners. The normal vector field may vanish
at such edges, however, it is assumed to be nonvanishing elsewhere. There are surfaces where the
normal vector field vanishes at points other than the edge or corner. For example, the mobius
band. Such a surface is non-orientable. Generally, we only wish to consider oriented surfaces. I
implicitly assume S is oriented by stating it has consistently oriented boundary 8S.

Theorem 7.7.2. Stokes’ Theorem for simply connected surface.

Suppose S is a simply connected surface S with consistently oriented boundary 9.5 and
suppose F'is differentiable on some open set containing S then

F'.(zfz/ (V x F)e«ds.
aS S

Proof: If S is a mostly regular, simply connected, surface then it can be approximately modeled
by a simply connected polyhedra with n-faces. As we take n — oc this approximation becomes
exact and we obtain Stokes’ Theorem. 0.

The reader should find the limit above geometrically obvious, but analytically daunting. We will not

pursue the full analysis of the limit imiplicit within the proof above. However, we will offer another

proof of Stokes’ Theorem for a curved surface of a simple type at the end of this section. This

should help convince the reader of the generality of the theorem. That said, the yeader probably A
just wants to see some examples at this point:

i p P ) gR + 0

Example 7.7.3. Let F= {~y,z,2). Find the fluz of V X F over the kalf of the outward-oriented
sphere p = R with z > 0. Denote the hemisphere Spy. The hemisphere is simply connected and
the boundary of the outward-oriented hemisphere is given by x = Rcos(f), y = Rsin(f) and z =0
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= /
: X = Reos®
Y =Rsind
// (Vxﬁ")-dé":]{ Fedf =0
Sr+ OSR+

27

= ( — Rsin(6), Rcos(8),0) «{ — Rsin(f), Rcos(6),0)do

- /ZQW R*d0 95‘&’-‘ -9%4
= SR

Example 7.7.4. Let F = (—y,z,2). Find the fluz of V x F over the half of the outward-oriented
sphere p = R with z < 0. Denote the lower hemisphere by Sr_. To solve this we can use the result
of the previous problem. Notice that Spy and Sgr- share the same set of points as a boundary,
however, 0Sgpy = —0Sg—. Apply Stokes’ Theorem and the orientation-swapping identity for line-

integrals: i
// (V x F)edS = F"-dv”z—yé Fedit=[-2rR2]
JJSp- JOSR- OSSR+

Example 7.7.5. Once more think about the vector field F= (—y,z, z). Notice that F is differen-
tiable on R3. We can apply Stokes’ Theorem to any simply connected surface. If the consistently- Sa
oriented boundary of that surface is Sgy then the fluz of V x F is 2mR?. t

Apply Stokes’ Theorem: 0404 rA (1

Stokes’ Theorem allows us to deform the flux integral of V x F over a family of surfaces which share
a common boundary. What about a closed surface? A sphere, ellipsoid, or the faces comprising
a cube are all examples of closed surfaces. If S is an closed surface then 8S = @. Does Stokes’
Theorem hold in this case?

Example 7.7.6. Suppose S is a simply connected closed surface S and suppose F is differentiable

on some open set containing S then I claim that
i 9s=4  adu

//(Vxﬁ)-d§=0.

° '

To see why this is true simply cut S in halves S; and Ss. Notice thot to consistently oriented S;

and Se we must have that 051 = —0Ss. Apply Stokes’ Theorem to each half to obtain: as 3
t 1

£51ﬁ.df=/sl(va)-ds” & jgszﬁ.d*=[SZ(VXﬁ)-d§ (%)- ,35: .98,

Note that,
//(Vxﬁ)-d§+//(vXﬁ)-d§=//(V><ﬁ)-d§
51 S2 S

But, $,s, Fedi=— $5s, F «d7. Therefore, addiing the eq. in * yields that [fs(V x F)«d§=0.

We can easily include the result of the example above by defining the integral over the empty set
to be zero. Another interesting extension of the basic version of the theorem is the case that the
surface has a few holes. The justification for this theorem will be a simple extension of the argument
we already offered in the case of Green’s Theorem.
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Theorem 7.7.7. Stokes’ Theorem for connected surface possibly including holes.

Suppose S is a connected surface S with consistently oriented boundary 9.5. If S has holes
then we insist that the boundaries of the holes be oriented such that S is toward the left
of the curve as we travel along the edge of the hole. Likewise, the outer boundary curve
must also be oriented such that the surface if on the left as we traverse the boundary in the
direction of its orientation. Suppose F is differentiable on some open set containing S then

% ﬁ-df’://(Vxﬁ)-dg.
J oS JiS

Proof: Mostly by a picture. If S is connected with holes then we can cut S into pieces which are
simply connected. We then apply Stokes’ Theorem to each simply connected component surface.
Finally, sum these equations together to obtain the surface integral of the flux over the whole
surface and the line-integral around the boundary.

The key feature revealed by the picture is that all the interior cuts will cancel in this sum since
any edge which is shared by two simply connected components must be oppositely oriented when
viewed as the consistent boundary of the simply connected components. .

Example 7.7.8. Suppose S is a pyramid with square-base on the zy-plane (do not include the
square-base in the surface S so the boundary of S is the square at the base of the pyramid). Find
the fluz of V x F' through the pyramid if F(z,y,z) = (1,3, 23). Apply Stokes’ Theorem,

// VxFedS= ¢ F.dr
S as

0\% ‘
Note that Flag = (1,3, 0) since z = 0 on the boundary of the pyramid. Define g(z,y,2) = =+ 3y 95
and note that Vg = (1,3,0) thus F|as = (1, 3,0) is conservative on the xy-plane and it follows that
the integral around the closed square loop 0S is zero. Thus, ey —

= (X,&‘JI o) =<V, 3,00

//S(vXﬁ}d§:0.

This is not terribly surprising since direct computation easily shows that V x F=0.



7.7. STOKES’ THEOREM 387

Suppose S is a connected surface which has outer boundary C,,; and inner boundary Cj, where we
have consistently oriented Cyy; but oppositely oriented Ciy; 8S = Cout U (—Cir). Applying Stokes’
Theorem with holes to a vector field F which is differentiable on an open set containing S2°,

f Fedi - F-df':/ (V x F)«dS
Cout Cin S

This is a very interesting formula in the case V x F =0 on some connected annular surface:

A7

X

Theorem 7.7.9. Deformation Theorem for connected surfaces

Suppose S is connected with inner boundary C;, (oriented such that the surface’s normal
side is to the ught of Cj,) and outer boundary C,,; oriented such that S is on the left of
the curve then if F is differentiable on an open set containing S and has V x F=0on S,

?[ F-sz}[ F o dr.
C'oul, Cin

Proof: follows from the formula above the theorem 1.

Application to counservative vector fields: How does Stokes’ Theorem help us understand

conservative vector fields in R3? Recall we have a list of equivalent characterizations for a simply
connected space U as given in Proposition 7.4.5: Suppose U is an open connected subset of R”
then the following are equivalent

1. F is conservative; F' = Vf on all of U

2. Fis path-independent on U

3. Fedit =0 for all closed curves C in U

@dd precondition n = 3 and U be simply connected) V x F=0onU. )

We argued before how [V x (P,Q,0)] « Z = 8,Q — 8,P = 0 paired with the deformation version of
Green’s Theorem allowed us to shrink loop integrals to a point hence estabishing that F' = (P, Q,0)

20if S were a donut this does not necessitate that F be differentiable in the center of the big-circle of the donut, it
merely means I¥ is differentiable near where the actual donut is found
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is conservative if it passed Clairaut’s test (0, P = 0,Q on a simple connected two-dimensional do-
main. Let us continue to three dimensions now that we have the needed technology.

Suppose F = {P,Q, R) has vanishing curl (V % F = 0) on some simply connected subset U of B3.
Suppose Cy and Cy are any two paths from P to Q in U. Observe that Cy U{—C3) bounds a simply
connected surface S on which V x F' = 0 (since S sits inside U, and U has no holes). Apply Stokes’

Theorem to S:
jé F’-df'://(\?xﬁ)-d§:o
C1U(~C3) S

Therefore, -[Cl Fodi = fC2 F'« d7 and path-independence on U follows.

Discussion: criteria 1,2 and 3 are n-dimensional results since the arguments we gave apply
equally well in higher dimensions. However, item 4 is only worthile in it’s application to n = 3 or
with proper specialization n = 2 because we have no cross-product and hence no curl in dimension
n = 4,5... etc.... You might wonder what is the generalization of (4.) for vector fields in R™.
The answer involves differential forms. The exterior derivative allows us to properly extend vector
differentiation to n-dimensions. This is not just an academic®® comment, in the study of differential
equations we enjoy solving exact differential equation. If Pdx + Qdy + Rdz = 0 then we can solve
by f(z,y,2) = 0 if we can find f with 0;f = P, 8,f = Q and 0,f = R. But, this problem is one
we have already solved:

Pdz+Qdy+Rdz=0 isexact =  F=(PQR)=Vf

Thus V x (P,Q, R) = 0 on simply connected U C R? implies existence of solutions for the given
differential equation Pdz+ Qdy+ Rdz = 0. What about the case of additional indpendent variables;
suppose w, z, ¥, z are variables

Idw+ Pdr+ Qdy+ Rdz =0 isexact <  F=(I,P,QR)=Vf

If we could find the condition analogue to ¥V x F = 0 then we would have a nice test for the
existence of solutions to the given DEqn. It turns out that the test is simply given by the exterior
derivative of the given DEqn; 22 If Pidz; + Pedxg + - - - + Ppdw, = 0 then this DEQn is exact on
a simply connected domain in R™ iff d{Pidz; + Padxs + - - - + Ppdz,) = 0. Consult my advanced
calculus notes and/or ask me for details about what ”d” means in the context above.

Naturally, we can extend the annular result to the more general case that the surface as finitely-
many holes:

?lsad comment on our culture that this is an insult!

example: z2dy — ydz = 0 is not exact since dz*dy — ydz] = 2zdz Ady — dy Adz # 0. In contrast ydz +zdy = 0 is
exact since dlydz + zdy] = dy A dx + dz A dy = 0. We discussed the wedge product and exterior derivative in lecture,
ask if interested and missed it...
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Theorem 7.7.10. Stokes’ Theorem for connected surface possibly including holes.

Suppose S is a connected surface S with consistently oriented boundary 95. If .S has k holes
Hy, Ho, ..., Hy then 9S = Coyy U (—0H,) U (—9Hs) - -- (—9H}.). Suppose F is differentiable
on some open set containing S then

Fedi— ¢ Fedi—¢ Fedi—--— F’-df://(VxF”)-d.s?.
. (/'ou.i o i)’]l . (’)112 . i)l]k S

Remark 7.7.11.

Electrostatics for a curved surface is an interesting problem. Imagine that the electric field
was confined to the surface. We considered this problem in some depth for the plane. It is
worth mentioning that we could just as well repeat those arguments here if we wished to
model some field which is bound to flow along a surface. The details of the theory would
depend on the particulars of the surface. I leave this as an open problem for the interested
reader. You might even think about what surface you could pick to force the field to have
certain properties... this is a prototype for the idea used in string theory; the geometry of
the underlying space derives the physics. At least, this is one goal, sometimes realized...
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7.7.1 proof of Stokes’ theorem for a graph

Our goal is to show that §,4 F'«di* = [[4(V x F)+dS for a simply connected surface S which can
be expressed as a graph. Suppose z = f(z,y) for (z,y) €  In particular, as a starting point, let
Q = [a,b] x [¢,d}®. It is easily calculated that 7(z,y) = (z,y, f(2,y)) induces normal vector field
N(z,y) = (=84 f, —0yf,1). The boundary of S consists of 4 line segments: C;UCaU(—C3)U(—Cy)
where

1. Ci: fora<t<bwesetz=t, y=c, z= f(t,c) hence dz =dt, dy =0, dz = 9, f(t,c)dt
2. Co: forc<t<dwesetx=a, y=t, 2= f(a,t) hence dz =0, dy = dt, dz = 0yf(a,t)dt
3. Cy: fora<t<bwesetxz=t, y=d, z= f(t,d) hence dr = dt, dy =0, dz = 0, f(¢,d)dt
4. Cy: forc<t<dwesetx=0b, y=t, 2= f(b,t) hence dz =0, dy = dt, dz = 0, f(b,t)dt.

We could visualize it as follows:

= =L
g =T G)

’Fur (x, ‘é) < —S-_L

Consider a vector field F = (P, Q, R) which is differentiable on some open set containing S. Cal-
culate, for reference in the calculations below,

V x F=(08,R~08,Q, 0,P—8,R, 8,Q—9,P)
To calculate the flux of V x F we need to carefully compute (V X ﬁ) «N :

(Vx F)eN = (8,R~0.Q, 0,P — R, 0,Q— 8P )+ (—0:f,—0,f,1)
= [8,Q:f + 0:Q] — [0, POy f + 0y P] + [0:R8y f — 8y R, f)

To proceed we break the problem into three. In particular F = ﬁl + ﬁz + F5 where we let
F; = (P,0,0), F» =(0,Q,0) and F3 = (0,0, R). For F; = (P,0,0) we calculate:

L bopd
/./S(V % B -dS':/a /c (—0.P8,f — 9,P)dy dx
d
- _/b/ y[P(z,y, f(z,y))|dydz  (chain-rule)

b
~ [ [P@.c. f(2,6)) = P(a,d, f(@,d))]ds. (3

231n my first attempt I tried €2 as a type-I region given by functions fi, f2 such that @ = {(z,y) { i(z) <y <
fa(z), a < z < b}, however, this is too technical, it is clearer to show how this works for a rectangular domain.
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On the other hand, we calculate the circulation of Fy = PZ around 8S note that dz = 0 for Cy
and Cy hence only C; and C5 give nontrivial results,

Fiedi= | Pdz= | Pdz— | Pdzx
88 a5 Cy Cs

b b
= / P(t,c, f(t,c))dt — / P(t,d, f(t,d))dt

b
:/ [P($7 C,f(it, C)) - P("E: d,f(:l), d))]dm

Consquently we have established Stokes’ Theorem for Fy over our rather simple choice of surface.
Continuing, consider Fy» = Q4. Calculate, given our experience with the Pdz integrals we need not
meet in the middle this time, I offer a direct computation:

L b d
//S(V xFQ)-ds=/a / (0:Q0f — 8,Q)dy dz
d b
= / / 8 [Q(z,y, f(z,y))]dy d (chain-rule, & swapped bounds)
e d
= ] Qb,y, f(b,y))dy — / Qa,y, f(a,y))dy
d a
- [ @t sena- [ (o)

= Qdy — Qdy
Ca —C4

= Qdy {integrals along C; and Cj are zero)
Jas
=¢ Fyedr
a8
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Next, we work out Stokes’ Theorem for Fy=RZ%. Tl begin with the circulation this time,

Fyedi= | Rdz— | Rdz+ | Rdz— | Rdz
a8 cy Cy Cq Cy

b b
- [Rtereagiee a- [ redseaZea
d af . d af
+ / RO, 5, 0) 50, )t — / Rl £(@ ) 3(a. )
b ,
= (R(zc, 4 £, ) (@,d) - Bz e, flo. )L c)) dz
d
- (R(b,y, s005 6.9 - R se ) L y>)

d b

- / {R(z,y, el <x,y>} do+ ]d{ (,y,f(x,y»g;(x,y)]

b
=_~/ aRafd e //8R8f
Ja Jo Oy Oz o Oz 0y
b pd
oy Ry P
« Je \Oz 0y 0Oy oz

=/ (V x Fy) +d3.
JJE

a

Therefore, by linearity of the curl and line and surface integrals we find that

F-dF:/ (V x F)«d§
as 8

Notice that the choice of rectangular bounds for € allowed us to freely exchange the order of
integration since « and y bounds were independent. If  was a less trivial type I or type I region,
then the arguments given in this section need some modification since swapping bounds is in general
a somewhat involved process. That said, the result just proved is quite robust when paired with the
earlier polyhedral proof to make a general argument. If surface consists of a graph with a curved
domain then we can break it into rectangular subdomains and apply the result of this section to
each piece. Once more when we sum those results together the nature of the adjoining regions is to
cancel all line integrals modulo the boundary of the overall surface.?* If the surface does not admit
presentation as a graph z = f(z,y) then generally we can patch it together with several graphs?®.
We apply the result of this section to each such patch and the sum the results to obtain Stokes’
Theorem for a general simply connected surface.

24 Technically, we’ll have to form a sequence of such regions for some graphs and then take the limit as the
rectangular net goes to infinitely many sub-divisions, however, the details of such analysis are beyond the scope of
these notes. If this seems similar to the proof we presented for Green’s Theorem then your intuition may serve you
well in the remainder of this course.

25 could be 2z = f(x,y) type, or y = g(=,2) or « = h{y, 2}, the implicit function theorem of advanced calcululus
will give a general answer to how this is done for a level surface



