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7.8 gauss theorem d\“\ DNCI L1

Warning: the argument that follows is an infinitesimal argument. To properly undestand the
meaning of this discussion we should remember this is simply notation for a finite approximation
where a certain limit is taken. That said, I will not clutter this argument with limits. I leave
those to the reader here. Also... I will offer another less heuristic argument towards the end of this
section, I prefer this one since it connects with our previous discussion about the divergence of a
two-dimensional vector field and Green’s Theorem.

Green’s Theorem in the plane quantifies the divergence of the vector field PZ + Q ¥ through the

curve dD;
/ (Pa:+Qy)'nds__// (-8£+@)d dy

Suppose we consider a three-dimensional vector field F = PZ + Q7 + R%. Furthermore, suppose

we consider an infinitesimal cylinder £ = D X dz. [ J
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What is the flux of F out of the cylinder? Apply Green’s Theorem to see that the flux through the
vertical faces of the cylinder are simply given by elther of the expressions below:

Dpor = // P:L'—i—Qy)-nds@ /// (é—lz—l-—a—c?—)dxdydz
0D x[z,2+dz] Dx[z,z+dz] 0

Since dS = Aids dz is clearly the vector area element of the vertical face(s) of the cylinder it is clear
that the double integral above is simply the surface integral over the vertical faces of the cylinder.

We identify,
B = // FedS = /// (9-]3+?9>dmdydz.
8D X[z,z2+dz] Dx[z,z+dz] o

On the other hand, the flux through the horizontal caps of the cylinder D x {2z} and D x {z+ dz}
involve only the z-component of F since dS = zdz dy for the upper cap and dS = — Zdz dy for the
lower cap hence the fluxes are

By = // R(z,y,z+dz)dzdy &  Pgoun = // —R(z,y,2)dzdy
D D

The sum of these gives the net vertical fiux:

DBiep = // ( R(z,y,z+dz) — R(z,y,2) ) dzdy = /// a—Rda:dydz.
D Dx(z,z+dz] oz
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where in the last step we used the FTC to rewrite the difference as an integral. To summarize,

@vert=// ﬁ‘d§=/// %dwdydz
caps Dx[z,z+dz] Oz

The net-flux through the cylinder is the sum ® ey + Ppor. We find that,

(P,Q,R)+dS = ?—2+8—Q+QE dz dy dz.
oE g\ 0z Oy Oz

I prefer to write the result as follows:

/ ﬁ-d§=// V.Fdv.
oF E

This is the celebrated theorem of Gauss. We often refer to it as the divergence theorem. It simply
says that the net flux through a surface is portional to the continuous sum of the divergence
throughout the solid. In other words, the divergence of a vector field F measures the number of
field lines flowing from a particular volume. We found the two-dimensional analogue of this in our
analysis of Green’s Theorem and this is the natural three-dimensional extension of that discussion.
For future reference: (this is also called Gauss’ Theorem)

Theorem 7.8.1. divergence theorem for a simple solid

Suppose E a simple solid (has no interior holes) with consistently oriented outward facing
boundary 0F. If F is differentiable on an open set containing £ then,

// ﬁd§:// V.FdvV.
oF E

Discussion: But, I only proved it for a cylinder? Is this needed? Does it apply to other shapes?
Yes. Consider the case that D is a rectangular region. We can use the argument offered above to
obtain Gauss’ theorem for a rectangular solid. Take any other simple solid ( one with no holes ) and
note that you can obtain the solid as a union (possibly infinite!) of rectangular solids. Positively
orient each rectangular solid and apply Gauss’ Theorem to each member of the partition. Next,
add the results together. On the one side we obtain the volume integral of the divergence. On the
other side we get a sum of flux over many rectangular solids, some with adjacent faces. Think about
this, any interior face of a particular rectangular solid will share a face with another member of the
partition. Moreover, the common faces must be oppositely oriented in the distinct, but adjacent,
rectangular solids. Thus, the interior flux all cancels leaving only the outside faces. The sum of the
flux over all outside faces is simply the surface integral over the boundary of the simple solid. In
this way we extend Gauss’ Theorem to any solid without holes. Naturally, this leaves something to
be desired analytically, but you can also appreciate this argument is very much the same we gave
for Green’s Theorem. This would seem to be part of some larger story...but, that is a story for
another day?®.

26]o0k-up a proof of the generalized Stokes’ Theorem in an advanced calculus text if you are interested. The
key construction involves generalizing the polyhedral decomposition to something called an n-chain or perhaps an
n-simplex depending what you read. Basically, you need some way of breaking the space into oriented parts with
nice oriented boundaries, you prove the theorem for one such item and extrapolate via face-cancelling arguments as
we have seen here in this case
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Example 7.8.2. Suppose F(z,y,2) = (z +y,y+ =,z + y) wad you wish to calculate the fluz of
F through a set of stairs which has width 3 and 10 steps which are each height and depth 1. Let
E be the set of stairs and OF the outward-oriented surface. Clearly the calculation of the fluz
over the surface of the stairs would be o lengthy and tedious computation. However, note that

VeF = a(f;y) -+ a(%:;m) + a(‘;jy) = 3 hence we find by Gauss’ Theorem:

//aEﬁ.dS':///Ev.F“dV:a///EdV:3Voz(E).

Elementary school math shows:

Vol(B) =3(1+2+3+4+5+6+7+8+9+10) =165

Hence, // FedS = 495.
OE

Challenge: work the previous example for n-steps.

Example 7.8.3. Suppose F is a differentiable at all points near a simple solid E. Calculate the
fluz of the curl of F through OE:

//t)E(VXﬁ).dngffE‘v.(vxﬁ)dvz//E(O)dvzg‘

I used the identity ¥V« (V x F ) = 0. You can contrast this argument with the one given in Ezample
7.7.6. Both examples are worth study.

Example 7.8.4. Problem: Consider the cube E with side-length L and one corner g
the origin. Calculate the flux of F = (z,y, 2) through the upper face of the cube.

Solution: Note that we cannot use a simple symmetry argument to see it is 1/6 of the given o
since the face in question differs from the base face (for example) in its relation to the vector field 3
F. On the other hand, if we imagine a larger cube of side-length 2L which is centered at the origin [_"‘) (]
then the vector field is symmetric with respect to the faces of [-L, L]3. Call this larger cube E' and

observe that we can easily calculate the net-flux through OE' by the divergence theorem.

@aE:=//ﬁ-d§==///EIV-F'dV———///1,3dV=3Vol(E’)=3(2L)3:24L3.

Notice that the face [0, L] x [0, L] x {L} is 1/4 of the upper face of E' and it is symmetric with
respect to the other 3/4 of the face [—L, L] x [-L, L] x {L} with regard to F. It follows the flux
through the upper face of E is 1/4 of the fluz through the upper face of E'. Moreover, since the
faces of E' are symmetric with regard to F we find that 1/6 of the total fluz through OE' passes
through that upper face of E/. In summary, the flux through the face in question is simply 1/24 of

the total fluz through OE' and the flux through the upper face of E is

It should come as no suprise that there is a simple argument to extend the divergence theorem to
a solid with a hole(s) in it. Suppose E is a solid which has a hole H in it. Denote the boundary
of E by OF = Spus U Sin where these surfaces are oriented to point out of E. Notice we can do
surgery on E and slice it in half so that the remaining parts are simple solids (with no holes). The
picture below illustrates this basic cut.
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should include picture here >

d$ 45 _[e 43
a$ :

More exotic holes require more cutting, but the idea remains the same, we can cut any solid with
a finite number of holes into a finite number of simple solids. Apply the divergence theorem, for
an appropriately differentiable vector field, to each piece. Then add these together, note that the
adjacent face’s flux cancel leaving us the simple theorem below:

Theorem 7.8.5. divergence theorem for a solid with k-interior holes.

Suppose F a solid with interior holes Hy, Ho, ..., H). Orient the surfaces Sy,S5s,..., S of
the holes such that the normals point into the holes and orient the outer surface Sy of
E to point outward; hence 0F = S, U S1 U Sp U --- U Sy gives E an outward oriented
boundary. If F is differentiable on an open set containing F then,

// ﬁ-d§=// Ve.FEdV.
or E

This is perhaps more interesting if we take the holes as solids on their own right with outward
oriented surfaces dHy,3Ho, . ..,dH) (this makes 8H; = —S; for i =1,2,..., k. It follows that:

/ ﬁ-d§~// Fedd— ﬁ-d§—---—// ﬁ.dg;///v.ﬁdv.
OSout OHy OHo OHy, E

Note that we have an interesting result if V «F = 0 on the E described above. In that case we
obtain a deformation theorem for the flux spreading between surfaces:

Theorem 7.8.6. deformation theorem for a solid with k-interior holes.

Suppose E a solid with interior holes Hj, Ha, . ... Hy. Let the outer surface S,,; of E be
oriented to point outward and give the hole surfaces an orientation which points out of the
hole; If F is differentiable on an open set containing E and Ve F' = 0 then,

// ﬁ.dgz/ Fedd+ // ﬁ-d§+~--+// Feds.
J . aSout . aHl 7 . ()[‘[2 /. (‘)I{k

This theorem forms the basis for the three-dimensional electrostatics and much more. Basically
it says that if a field is mostly divergence free then the flux comes from only those places where
the divergence is non-vanishing. Everywhere else the field lines just spread out. Given F with
V.F = 0 most places, I think of the holes as where the charge for the field is, either sinks or
sources. From these mysterious holes the field lines flow in and out.
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7.8.1 three-dimensional electrostatics

The fundamental equation of electrostatics is known as Gauss’ Low. In three dimensions it simply
states that the flux through a closed surface is proportional to the charge which is enclosed.

Pr = Qenc

In particular, if we denote 0 = d@/dV and have in mind the solid E with boundary 8E,

é;ﬁ-dﬁ: ///EadV

Suppose we have an isolated charge @ at the origin and we apply Gauss law to a sphere of radius
p centered at the origin then we can argue by symmetry the electric field must be entirely radial
in direction and have a magnitude which depends only on p. It follows that:

$Eas= [[[ o > =0

Hence, the coulomb field in three dimensions is as follows:

- Q -

Let us calculate the Aux of the Coulomb field through a sphere Sg of radius R:
f (E+dS = ( %ﬁ-ﬁds (7.3)
Sr Sp \ 4mp

_ Q
- Sr 472’R2 ds

_ @ /
—4’ITR2 SRdS

__Q e
= 47TR2(471'R)

The sphere is complete. In other words, the Coulomb field derived from Gauss’ Law does in fact
satisfy Gauss Law in the plane. This is good news. Let’s examine the divergence of this field. It
appears to point away from the origin and as you get very close to the origin the magnitude of E
is unbounded. It will be convenient to reframe this formula for the Coulomb field by

Q

El@,y,2) = dm(x? + o + 22)3/2

(@3:2) = o (9,2
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Note that as p = /22 +y? + 22 it follows that 9;p = z/p and 9yp = y/p and d.p = z/p. Conse-

quently:
= Q 2|z oly -
v E—. Bz +5y fiss +8z P
_ Q_ p -3-'170239;;7 L PP = 8updyp L PP =32p"0:p
4m p° p° p°
-3 3__3 2 3__3 2
__g(p 6wp+p yp+p 62p>
4 P p° p
_Q 3p° — 3p(z? + 4 + 2%)
4 08
= 0.

If we were to carelessly apply the divergence theorem this could be quite unsettling: consider,

/Agﬁ'dngfév'EdV = Q——-///E(O)dvzo.

But, @ need not be zero hence there is some contradiction? Why is there no contradiction? Can
you resolve this paradox?

Moving on, suppose we have N charges placed at source points 71,7, ...,7n then we can find the
total electric field by the principle of superposition.

P o fadpurt P, = didace |
SR : “F(o(n Q& i ‘F S
4

‘?‘ bosed oF m%ir\
(ﬂcﬁ‘ &rmwn)

QB’ &S c,‘nnr%&,

We simply take the vector sum of all the coulomb fields. In particular,

N
E(f‘)=zlE szu d
P

7 — 7|3

What is the flux through a sphere which encloses just the k-th one of these charges? Suppose Sg
is a sphere of radius R centered at 7. We can calculate that

[ Beas=a
JSp

whereas, since Ej is differentiable inside all of Sp for j % k and Voﬁj = 0 we can apply the
divergence theorem to deduce that
/ / Ej«dS =0.
Sr
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Therefore, summing these results together we derive for E= B+ + E;; + .+« + Ey that
/ EedS = Qr
J ISR

Notice there was nothing particularly special about @Q;, so we have derived this result for each
charge in the distribution. If we take a sphere around a charge which contains just one charge
then Gauss’ Law applies and the flux is simply the charge enclosed. Denote S, 59,..., Sy as little
spheres which enclose the charges 1, Q3, ..., Qn respective. We have

lef Fedd, ng/ F.ds, ... QN=/ Feds
S1 J I8y Sn

Now suppose we have a surface S which encloses all N of the charges. The electric field is dif-
ferentiable and has vanishing divergence at all points except the location of the charges. In fact,
the superposition of the coulomb fields has vanishing divergence (V-E = 0) everywhere except
the location of the charges. It just has the isolated singularities where the charge is found. We
can apply deformation theorem version of the divergence theorem to arrive at Gauss’ Law for the
distribution of N-charges:

//E-d§=/ E-d§+// E-d§+~--+/ BedS=Qi+Qat - +Qy
g 5 S Sy

You can calculate the divergence is zero everywhere except at the location of the source charges.
Moral of story: even one point thrown out of a domain can have dramatic and global consequences
for the behaviour of a vector field. In physics literature you might find the formula to describe
what we found by a dirac-delta function these distributions capture certain infinities and let you
work with them. For example: for the basic coulomb field with a single point charge at the origin
E( p,0,0) = ﬁf} this derived from a charge density function o which is zero everywhere except at
the origin. Somehow [ [, 0dV = @ for any region R which contains (0,0,0). Define o(7) = Q5(7).
Where we define: for any function f which is continuous near 0 and any solid region E which
contains the origin

[E FRSFAV = 1(0)

and if E does not contain (0,0,0) then [[. f(7)6(F)dV = 0. The dirac delta function turns
integration into evaluation. The dirac delta function is not technically a function, in some sense it
is zero at all points and infinite at the origin. However, we insist it is manageably infinity in the
way just described. Notice that it does at least capture the right idea for density of a point charge:

suppose E contains (0,0, 0},
// adV=// Q8(A)V = Q.
E E

On the other hand, we can better understand the divegence calculation by the following calcula-

tions®":

VL = 4rs (7).

Ro

Consequentlly, if E = %% then Ve E = V. [4% fl?;] = %Vo ;"rz = Q46(7). Now once more apply
Gauss’ theorem to the Coulomb field. This time appreciate that the divergence of E is not strictly

7] don’t intend to explain where this 4w comes from, except to tell you that it must be there in order for the
extension of Gauss’ theorem to work out nicely.
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zero, rather, the dirac-delta function captures the divergence: recall the RHS of this calculation
followed from direct calculation of the flux of the Coloumb field through the circle dR,

//E)EE-dS":///EVoEdV - Q=//]EQ5(F)dV=Q.

All is well. This is the way to extend Gauss’ theorem for coulomb fields. The fields discussed in
this section are the ones found in nature for the most part. Electric fields do propagate in three-
dimensions and that means that isolated charges establish a coulomb field. In a later section of
this chapter we seek to describe how a continuous distribution of charge can generate a field. At
the base of that discussion are the ideas presented here, although, we will not have need of the
dirac-delta for the continuous smeared out charge. Some physicists argue that there is no such
thing as a point charge because the existence of such a charge comes with some nasty baggage. For
example, if you calculate the total energy of the Coulomb field for a single point charge yon find
there is infinite energy in the field. Slightly unsettling.
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7.8.2 proof of divergence theorem for a rectangular solid

Suppose F is differentiable near the solid E = [z1, 2] X [y1,%2] X [21, 22]. Denote the faces of the
solid as follows:

Si: T =11,(2,9) € |21, 22] X [y1,72] has dS = —ZTdzdy
So: T = T2, (y, 2) € [y1,y2] X [21,22] has dS = Tdydz
Sy : y = y1,(z,z) € |z1,72] X |21, 22] has dS = —gdzdz
Sy y =y, (2, ) € {21, 29] x [£1,22] has dS = jdzdzx
Sy - z=12,(y, ) € [y1, 0} X [&1,29] hss d§ = —Zdyda
S : z =20, (z,y) € [T, %) X [y1,30] has dS = Zdzdy

The nice thing about the rectangular solid is that only one component of F= (P, @, R) cuts through
a given face of the solid.

Observe that:

F s (this defines @5 for future reference)

] xl,y,z) (~Bdzdy) + / / F(az,y,2)+ (Fdz dy)
21 ¥1

o= [ P
L
- / / —P(a1,y,2)|dzdy + / / [Plaz,y, 2)|dydz
A
L

2
/ P($2,y, Z) P(xbyaz)]dydz
7"

y2 T2
/ ?—E dz dy dz by the FTC.
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Likewise,

Py = / F+dS + / F.dS (this defines ®34 for future reference)
S4

/22 /n F(z,y,2)(— ydmdz)+/“ / F{x,y2, 2) » ( §dz dx)

21

/ / Q(z, 1, 2)] dzdy+/ / (z,y2,2)]dy dz
Z1 1

// Q@ 32, 2) ~ Qe 1, )] dy d

L2 z
/ / / —_ d:L dydz.
n

Repeating the same argument once more we derive:

P = / FedS + F+dS (this defines ®19 for future reference)
Sy Sg

T2 (Y2 (72 HR
= / / / — dzdydzx.
3} Y1 Z1 a

The flux of F over the entire boundary 8E is found by summing the flux through each face.
Therefore, by linearity of the triple integral for the second line,

// F-d§=@12+@34+®5ﬁ
IE

v2 aP aQ AR
[ G R R e

Which proves the divergence theorem for an arbitrary rectangular solid. [

In contrast to the earlier argument in this section the third dimension of the cylinder was not take
as infinitesimal. That said, it wouldn’t take much to modify the earlier argument for a finite height.
The result just proved extends to more general solids in the way discussed earlier in this section
following the cylindrical proof.



