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384 CHAPTER 7. VECTOR CALCULUS

7.9 green’s identities and helmholtz theorem

This section is mostly developed in your homewark, well, except for Green’s Third identity and
s mpphm!lons 1 think you'll ke happy T did not relagate that to your homework. The purpose
veralfold: {1} we get to see how 16 use the divergence theorem yields further
tics, in some sense these are the generalization of integration Ly parts to our current context,
{2.) we lay some foundational mathematics which i important for the logical consistency of the
jal formut of ele ism {3.} we see new and fun ealenlations,

Tt your homewerk | asked you to show the following identities:

Proposition 7.9.1. Green's First and Second Identities

Suppose_f, 9 € ((D') where £ is an open set containing the simple solid £ whichi has
piecewise smooth boundary J£7 Then,

1y ///pJV]-ngV/{-///]JV’ng:/_/;K(]Vg)ulsg

) / //E (V%= gV )V = f ag(/vg — gV]}eudS

The identities above vield important results abont harmonic functions. A function f is called
harmonic on I if v, =0 on E. You are also asked to show in the homework that:

Proposition 7.9.2. properties of harnunic functivns on g sitople solid £

Suppose the simple solid £ which has piecewise smooth boundary 2K and suppose f satisfies
V3f = 0 throughout E. Then,

(L) /st;.d,s’:o
@ [ffvs-vraw=[[ uvn.as

3) fruz=0 for all {z; y,:) €08 = f(tu, )=
) I Vz,‘ i= b and V’V =4 throughom E nnd Vo=

0,
V; on DB theu E

Vo thmuglmut E.

In wards, (3.} states that if the restriction nfj to dE is ldFm)Cn“} zero then f is zero thmubhm\t
E. Whereas, (4.} states the solution to the Poisson Equation ¥*V = b is uniquely determined
by its values on the beundary of a simple solid region.
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Lemma 7.9.5. Let b be o continuous function and Sp is « sphere of rudius K ceniered at ¥ then

. |
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The proof of this Lemma is similar to the previous. We begin by simplifying the integral. Nute,

} sd§'= ~dih(F).
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Likewise, n similar caleulation shows, G =t and 5 = . Thus,
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Continuing, tote the normal vector field ¥ on Sp points in the 7 — 7 direction at 7' thus
G F=1
x.-‘,S‘::-—-—-iS _-(T-—r S,
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T caleulate the surface integral, note L = A on Sy thus,

=7’.3/ s

We once again use the squeeze theorem argument of thl. previous memm‘ since A is continuous it
follows that there exict & b € Sp such that h{i) = Wiy < In{b) for all 77 € Sp. Cousenuently,

WS < /h”’}ds;/ h{pdS
/./s,,.((” /;R {7 < /SRI('

But, the integrals on the edges ave easily calenlated sinee hw),hgﬂj: are just constants and we
dednce:

e rﬂ-p-{r — #dS

An ¥Rty < / / 'S < 4a BBy = ) 2 - / WS < Wy

Sa £l
As H - 0% is clenr that @,5 — & hence h{b) — h{#} and A{@}) ~ h{¥) and the lemma follows by
the syneeze theorem. ¥,

Creen's Second Identity applies to solid regions with heles provided we give the boundary the
standard outward orientation. With thut in mind, consider £ = E ~ By where 8Bg is the clntsvd-
bali of radius J which takes boundary Sg; #3p = 5y However, we insist that 08" =
20 the hole at »" has fnward-pointing normals. Apply Creen's Second Tentity with g(+”}

L (et - ””;")arv= (o]
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“This picture should help make sense of the Lemmas use to prove the Third Tdentity of Green:

Proposition 7.9.3. Green’s Thind Mentity.

smooth boundary O, and assuime f i8 twice
{ y. z¥ as'a fixed, “but a:bnram point in B
dr/ dy' d2 and

Suippose. E is 5 simple solid; with picce:
differentiable; througho
and denote the muablos ‘of the: mtegmtion by ©L = lati 2 so dV?

x’—;y + _75?+ £, With this notation iu wind,

A

We partly follow the proof in Colley. Begin with o Lenuna,

Lemma 7.9.4, Let & be a continuous function and Sg is « sphere of rudius R contered at 77 then

il I
(48 = 0.
R-n*//,n ‘]r-—r”i‘ 0 5

The proof relies on the fact that if 7' € Sy then. by the definition of a sphere of radivs £ centered
at 7, we have |iF ~ 7*}f = R. Thus,
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Since & is contivuous?” it follows that there exist 8.5 & Sg such that h(7) < h(7"

71 & Sp. Consequently,
O / /
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As R ~» 0% is clear that @7 ~ ¥ hence h(B) — h{} and (@) ~ h
obtain 47 RA(@ — 47 R{7) — 0 and 4= RA(R) — 45 RA(F) = 0. The
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Onee wore, use the notation L = {|¥ ~ Fil. Observe that

VL o fd-x] L-te e B A
Gt 0r | L T = ¥

similar fornmias held for ¥ and = heuce:

R i S A ks Sk Ut el il O
proige ] 72 =

Thereore, Green's Secand hdentity simplifies slightty: (i the second line we use 95 = JEU(-Sg)

DLCHR) =t - 1)
o]

Observe that W {7’} is continuous as required by the Lemma 7.9.5. Suppose B — 0* and apply
Lemma 7.9.5 and Lemma 7.9.4 to simplify the surface integrals over Sp. Moreover, as B — 0% we
see B s E = [¥} and it follows:

//fg(\_ "’I("’:) W= / f(r )V{ ‘H} e )).ds,"q..mj(r‘)‘

HF ~
Green's Third Tdentity follows by algebra, jnst solve for {7}, O

1 like the proof of this proposition because it is little more than careful calenlation paired with
few natural limits. If you study the Coulomb field and the way it escopes the divergence thearem®
due to the singularity at the origin then you imight be led to these caleulations, To any event, we've
proved it s0 we can use it now.

Problem: Solve V4f = & for [ on E.

Tuake the Laplacian of Green's Third Identity with respect to 7 € E. Tt can be shown through
relatively straight-forward differentiation the surface integral over 8E are trivial hence we find the

heantiful formula: 2
i)
2 - 2 £
Vi = v /// e

Let #{71 = ¥2 {7} to see what the forrauin above reaily says:

B dzsonssad how rmany physies shudents are taght 12 escape the diffinlty in Sectica 781
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Wi have only provided evidence it is trun if ft is the Laplacian of ancther fanctien f, but it is true
it mote generality®™ The fonnula boxed above shows how o particular madified tripls itegrating
in an inverse process to taking the Laplacian, Tt's like a second-order FTC for volume integrals,
Returning to the pmh}ém, and placing faith in the generality of the formula™, think of & = f and
asstne Vif = b { 1 leave the details of why V¢ can be pulled into the mtrgm{ and changed to
v

=¥ / /L A]J[,I(' = / Il TR Vﬂ{(.’;g}; W= /[ /L~4x;1f*(fl3'*2! o

‘Theeefore, we find the following theorem.

Theorem 7.9.6. Integral solution to Paisson’s Equation:

16'V2[ = b for some continuous function b on o simpleé salid region /= then

1f we are given that b tends to 2ere fust enough as we let 7] — oc then the domain of intagration
E may be extended to B3 and the boxed equation serves to «define a glabal solution to Poisson’s
Equation, Helmboltz” Theorem is related to this disensston, Tet me state the Theorem for reference:

Theorem 7.9.7. Helmholtz

Suppose F is a vector field for which Vs F=DBmivxF=0 Furthermore, suppose
= 05 [[flf ~ oo and €, I tend to zero faster than 1/{1“‘1} thien F i uniquely given by

F=aVU 48 <7

/R

For the interested reader, this does not contradict the multivariate Tavlor theorem, Tn Taylor's
theorem we are given all derivatives at o partienlar point and that data allows us to reconstruet
the function. I Helmboltz Theorem we are given two globally defined vector fields and some first
ander derivative data which is sufficient to reconstruet the vector field 7. The difference is in the
dowain of the givens, At a point vs. on all paints.

where

Foley points 1o Kellug's Foundalions of Potential Thery san 1028, P4 waget yaug it Bud s of foxie
to suppots this point. Fos cxample, Flawier's text, develops tho fias i blindiig gensralit via differential fam
culeudations,

Fscrry telks, P fike to §il this gap, bt time's op
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7.10  maxwell's equations and the theory of potentials

The central equations of electramagnetism are known as Maxwell’s Equations in honor of Janses
Clerk Maxwell whe completed these equations around the time of the Civil War, Parts of these

were known hefore Maxwell’s work, bowever, Maxwell's addition of the term s, 28 was m\ciAl in
the overal consistency and eventual suecess of the theory in explaining electr i

In this section we will exanine how these equations can either be stated lacally as a systent of PDEs
or as integrals whish yield the lelds. Potentials for the fields are alsa analyzed, we see how Lrven’s
identities help connect the integral for jons of the jals and the fing PDE which
are, in a particntar gauge, Poisson-type equations. Please understand T am not attempting to ex-
plain the physics here! That would take a course or twp, our focus is on the mathematical backdrop
for electromagunetism. T leave the physics for our junior-level electromagnetism course.

Let e sot the stage bere: £ is the electric field, £ is the magnetic field, both depend on time ¢
and space 2.y, & generally. In principle the particular feld configurativon is due to s given charge
density p and current density J. The electrie and ic fields are soluth to the fellowing set

of PDEs™:

ai gl
VeE=L, ‘)‘Kl;:!E,,(j"f't“%) Ce B =0, Cw b= f’i‘.
€ ¢ ot

These are Gauss’ Law, Ampere's Law with Maxwell's correction, no magnetie monopoles and Fara-

day’s Law all wrimu as local field equations. In most vimnentary electromagnetios courses®? these

Laws are p d ns integral relati In those ¢l 'y the integral velations are

taken as primary, or basic, experimentalfy verified results. I constrast, te Colley's Vector Calenlus

test, or most intraductory physics texts, I take the PDE form of Maxwell's equatious as basic,

Tt my opinion. these are the nexus from which all else fows in B & M. For me, Maxwell’s equa-

tions define electromagmetism®®. Let's see how Stukes” and Gauss’ theorems allow us te translate
Maxwell's equations in PDE-form to Muxwell's equations in integral form.

7.10.1 Gauss’ Law

Suppose M is a simple solid with closed surface § = 937 where and apply the divergence theorem
26 Ganss' Law:

voE=L // (Ve BV = '/// paV =

The equation bosed above is what we call Gauss’ Lawe in the freshman™ B & M cowrse, Tt simply
states that the fux through a closed “gaussian” surface is given by the charge enclosed in the
surface divided by the permitivity of space.

Example 7.10.1. Suppose you have o very long line of charge along the z-azis with constant
density A = dQidz. Imagine & Goussian cylinder S length L centered about the z-axis: only the

2t} yse ST units wnd 2, and jes are the permitivity and permeability of empty space

Tfar example, Physics 202 at LU

k. I truth there dx 2 cose that escapes Moxwell's squuations, but that nenlinear case is cousiderably mare
sophisticated than these notes. ..

*'hesaisse there are three more years of pliyeice past this course... 1t is to be done in the Frestauan year of
university.



