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1.3.4 Prove the following nsing induction.
g g

{a) 2o--1 2" forn 2= 3 (n e M)

(b) #% < 3" forall n & N, (Hin; show first that for all n € M. 2r < 2% + 1. This does not require
mduetion.)

(¢) 1wt < 3" for all n € W, (Hint: Check the cases n = ] and » = 2 directly and then use induction
form = 3.)

1.3.5 Given areal number ¢ 5 1, prove that

] e gttt}

Tdhata 4 - g = - forallme N,

1.3.6 # The Fibonacei sequence is defined by

) =y = ] and e ™8 s -+ dp forn ?:' 1.

o B - (5]

V.37 Leta = —1. Prove by induction that

Prove that

(T4a)" = 1dna foraline M.

1.3.8 o Leta, b ¢ B and n ¢ N, Use Mathematical Induction to prove the binomial theorem

(a4 b)Y = L G:)a*b” k

Fal)

1.4 ORDERED FIELD ANIOMS | ﬁw T € @m “}

1u this book, we will start from an axiomatic presentation of the real numbers. That is, we
will assusne thal there exists a set, denoted by R, satisfying the ordered field axioms. stated below.
together with the completeness axiom, presented in the next section. In this way we identify the
basic properiies that characterize the real nunbers. After listing the ordered field axioms we derive
from them additional familiar properties of the real numbers. We conclude the section with the
definition of absolute value of a real number and with several results about it that will be used often
later in the text.

We assume the existence of a set B (the set of real numbers) and two operations -+ and - (addition
and multiplication) assigning to each pair of real numbers x,y, unigoe real numbers x-+y and x-y
and satisfying the following properties;

(la) (x4 y)bz=x+(y-+z) forall x, vz ¢ B (D-SSOC‘\ n.h'\u.)

(1b) x-+y=y+xforallxye R, (L mmantebive )
(1) There exists a unique element 0 £ R such that x40 =xforallr € R
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(1d) For each x € IR, there exists a unique element —x € R such that x4+ (—x) = 0. @ "R‘JI"
wA

@8) (xy)-z=x(v-2) forallxyzeR Associahivily of mwltiplisdim.

(2b) x-y=y-xforallx,y e R Cdmw\'ﬂl'& v{- Mnlhph‘cn-ﬁ'an.

(2c) There exists a unique element 1 € R such that 1 #0 Em;]’x- 1 =xforall x € K.

(2d) For each x € R\ {0}, there exists a unique element x~! € R such that x- (x™') = 1. (We also
write 1/x instead of x~'.)

(2e) x- (y+z)=x-y+x-zforallx,yze R (J;_r'f'f;.(whw Pfupvﬁl )

We often write xy instead of x - y.

In addition to the algebraic axioms above, there is a relation < on IR that satisfies the order
axioms below:

(3a) Forall x,y € R, exactly one of the three relations holds: x =y, y <x,orx<y.
(3b) Forallx,y,zeR, ifv<yandy<z thenx <z (-Frﬂn;.:‘t.v¢ ')

(3c) Forallx,y,ze R if x <y, then x4z < y+z.

(3d) Forallx,y,z€ R, ifx < yand 0 < z, then xz < yz.

We will use the notation x < y to mean x < y or x = y. We may also use the notation x = y to
represent y < x and the notation x > ytomeanx > y orx = y.

A set IF together with two operations + and - and a relation < satifying the 13 axioms above is
called an ordered field. Thus, the real numbers are an example of an ordered field. Another example
of an ordered field is the set of rational numbers (@ with the familiar operations and order. The
integers Z do not form a field since for an integer m other than 1 or —1, its reciprocal 1/m is not an
integer and, thus, axiom 2(d) above does not hold. In particular, the set of positive integers N does
not form a field either. As mentioned above the real numbers IR will be defined as the ordered field
which satisfies one additional property described in the next section: the completeness axjom.

From these axioms, many familiar properties of R can be derived. Some examples are given
in the next proposition. The proof illustrates how the given axioms are used at each step of the
derivation,

Proposition 1.4.1 For x,y,z € R, the following hold:

() fx+y=x+ztheny=z;

(b) —(—x)=x;

(c) f x# 0 and xy = xz, then y = z;

(d) Ifx#0,then 1/(1/x) =x;

(e) Ox=0=2x0;

) —x=(-1)x;

(2) x(=z) = (—x)z=—(xz).

(h) If x = 0, then —x < 0; if x < 0, then —x = 0;
(i) If x < yand z < 0, then xz = yz;

(M 0<1.

Feld

QUT)<R

a+byz
o be @
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Proof; (1) Suppose x+ v x+ 2. Adding —x (which exists by axiom {21} to both sides, we have

Then axiom { la: gives
[(=x) + ] +y o [(—x) 2] + 2.

Thus, again by axiom (2}, 04y = 0-F 7 and, by axiom (1o, ye 2 ( mmplglw ng/' c)F 9‘? .Y4.la )
thi Since {(—x) +x = 0, we have (by uniqueness in axiom (203}« (x) = x,

The proofs of (¢ and 1) are similar,

{) Using axiom 207 we have Ox = (04 0)x = Ov-+ Ox. Adding ~ (0x) te both sides faxiom (%))
and using axioms (1w and (1o, we get
ez — (0x) 4 Qv = — (Ox) -+ (Ox - 0x) = (= (0x) + Ox) 4 O == B+ O == Q.

That Ox = x0 follows from axiom 7h),

() Using axioms 2oy and (223 we get x-+ (D= 1x - (~1)a = (1 4+ (—1))x, From agiom {2}
we gel 1+ {1} =0 and from part (v} we get x+ (— 1 )x = 0xv = 0. From the uniqueness in axiom 0
we get {1y = «x as desired.

(v’ Using axioms Z¢) and (i¢) we have xz -+ x{--z) = x{z -+ {—z)) = 20 = (. Thus, using
axiom [2) we get that x{—z) = —(xz). The other equality follows similarly.
(b From x = 0, uaing axioms (30 and (1o} we have x4+ (—-x) = 04 {~x} = —x, Thus, using

axiom {20, we get 0 = ~x, The other case follows in a similar way.

X<g , 2<0 = BXPYDT

(i1 Since ¢ = 0, by part th}, -z = 0. Then, by axiom (}d), x(—z} < ¥(—z). Corabining this with

part () we get —xz < —yz. Adding xz -+ yz to both sides and using axioms ¢ 1w, (30, (1), and { fo;
we got
Xy = { - xn e xg) e xy = Xz b (X2 R Xy) < Xy (D ay) s —xy 4 (Xv-bag) = (—ayebay) e xz = AT

contradiction. It follows that 1 =0, [

Mole that we can assume that the set of all natural numbers is a subset of B (and of any ordered
field. in fact) by identifying the 1 in I with the | in axiom (2¢) above, the number 2 with 1 +1, 3
with 1+ 14 I, ete, Furthermore, since O <2 1 (from part {}+ of the previous proposition), axiom {3¢)
gives, | < 2 < 3, etc (in particular al! these numbers are distinet). In a similar way, can include Z
and €] as subsets,

We say that a real number x is irrarional if x € B\ Q, that Is, if it is nol rational.

Defipition 1.4.1 Given x = B, define the absolure value of x by

X, ifx=0
vt = e
—x, ifx<Q



Svpposr X< and 2 <0,
Thamw ¢ 0 from Peop. 1A,
So [ Z)Xx< (-2])9 by ki 34
—XZ < -%2
Add Xz by Poxom 3c,
X 4 XL L —Y2 X2~ BDAXDAYE
O < =92 +X2 4y FAxim 1
Add Y2 "“l Mytom 3¢, |
0+t < LYB +XT)+42 Mmbﬁw/
Ui < X2 / &m‘*“‘“’”’"’lﬁ%

A)ﬂtwﬁ [5‘/

X4 7o > 92<x3 oy X2 >YE.
="
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Figure [.1: The absolute value function,

The following properties of absolute value follow directly from the definition,

' Prahosﬂion 1.4.2 Letx, vy M € I and suppose M = 0. The following properties hokd:

{a) lxj = é‘f
(b) | =] == fxf; !
(e lay| = ixflyl: i

!

() x| < Mifand only if ~M < x < M. (The same holds if < is repluced with <)

Proof: We prove (d) and leave the other parts as an exercise,
(d) Suppose |x| < M. In particuiar, this implies M > 0. We consider the two cases separately;

x 2z Oandx = 0. Suppose first x = . Then |x} = x and, hence. -~

Note that a3 a consequence of part (d) above, since x| < Jx] we get —ix] <1 < |xh.
The next theorem will play an important role in the study of himits, s

immedi wdx Conpegune.,

Theotem 1.4.3 — Triangle Inequality, Given x,y ¢ B, 0{ P
i
ookl € bl B o 1124
Proef: From the observation above, we have I X] = f XI = M
ey
=t S x = I -

visyE vl

Adding up the inequalities gives

Sl Erey SN =D ~(1¥l+l‘11)£><+°3 < 1X{ +{y]
|X449) < I+l

wix



@f.p_/-‘/.]ay TEM>0 and X €R thm (x| € -MXM,

Bﬂf]ﬁ/ Asrama [x[ < M. Congidn A ceara,
(1.) X =zo0 phen X=X and IxX[ <M = X<M

et M>0md £ ~M&o<X<M = ~MX</M,

(Q) X<0 -J’fuu (] = =X and IK({M'——-"D —-)(-:‘:M

Moy ~M<x<0 <M ~mex <M.
— Crnuex;:g,§ roppIFe ~M< X<M.

(1) If X =20 Xhow x| = X and S
Hom 1)\ =~X and fo ~MLS X< =D =X M

-M< [Xx]eM = [x[<M.

(2.) Tf x<o
hich  Shows {x{-—:M,//
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Since ~{xt ~ [yl = —~(lx| ++ |v|}, the conclusion follows from Proposition 4.2 (d). [
of (o, b) = “"ﬂk
Corollary 1.4.4 For any x,v & K, e M
- - P o]
[} i} =2 b=y o, b

Remark 1.4.5 The absolute value has a geometric interpretation when considering the numbers in
an ordered field as points on a line. The number {a} denotes the distance from the number a to €.
More generally, the number o (a, b) == |a — b 15 the distance between the points @ and b, It follows
easily from Proposition 142 that d(x,¥) = 0, and d{x,y) = 0 if and only if x = y. Moreover, the
triangle inequalily imphies tha

d(-"‘) = d(.kf,.?_‘) -+ d‘(g\yL

for all numbers x, vz,

Exernises

1.4.1 Prove that i is an even integer if and only il n? is an even integer. (Hinf: prove the “if” part
by contraposition, that is, prove that if  is odd, then 77 is odd.)

1.4.2 Prove parts o} and 1) of Proposition 1.1

143 leta be,d € R, Suppose 0 <l a < band 0 < ¢ < d. Prove that ac < hd.
14.4 Prove parts (a), (b, and (c) of Proposilion 1.:4.2,

1.4.5 » Prove Corollary 144,

Ld.6 Given two real numbers x and y, prove that

max { X, V} — E_i._'.{fx 'H and ]'nj;n.{ X, y} R L A

147 Letx, v M € B Prove the [ollowing

(2) Jxi2 == x?
(b) |x} < Mifand only if x < M and —x < M.
(€} fx-¥| = |xf+ v if and only il xy = 0.

1.8 THE COMPLETENESE AXIOM FOR THE REAL NUMBERS

There are many examples of ordered Helds, However, we are interested in the feld of real
numbers, There 15 an additional axtom that will distinguish this ordered field from all others. In
order {o introduce our last axiom for the real numbers, we first need some definitions.

Definition 15,1 et A be a subset of B, A number M is called an wpper bound of A if

I A hag an upper bound, then A is said (0 be bounded above.



Lecrvie 6@ 0RvERED Fiep Axcoms (514 in fext)

Pﬂw& 1[190" (Of'nﬂﬂ?, L9Y on . 272 (Px—'f nc,.w-’? cnd of w'pf:a)

(%] = [x =9+ < [ x=4] + [4)
Ix|— 4| < |x-4|
4| = ¥ -x+ x| € 9%+ ix]

|4-x| = \-'(X"ﬂ\
= |X-4]
L= (x] € |x-9)

Bob, Iki-mil = k=)
Wima [\x)=al| € (x4 .



