· integralo over G

Lie Groups Final Exam Fall 2006

- (1) Let V be a finite-dimensional representation space of a compact Lie group
- (a) Show in detail that there is a G-invariant inner product on V. Check all the relevant properties.
- Show that if W is a G-submodule of V then $V = W \oplus U$ for some submodule U of V. Also show that V is a direct of irreducible submodules.

(2) Let G be any Lie group and V a finite-dimensional irreducible G-module. Show that every morphism $f:V\to V$ has the form $f=\lambda id_V$ for some $\lambda\in\mathbb{C}$.

(3) Using the fact that for irreducible V and $f \in Hom(V, V)$

$$\int_{G} (g \cdot f) dg = (\frac{1}{dim_{\mathbb{C}} V}) Tr(f) i d_{V}$$

prove the following:

$$\int_{G} \phi(gf(g^{-1}v))dg = (\frac{1}{dim_{\mathbb{C}}V})Tr(f)\phi(v)$$

for $\phi \in V^*$, $f \in Hom(V, V)$, and $v \in V$

$$\int_{G} \langle gf(g^{-1}v), w \rangle dg = (\frac{1}{dim_{\mathbb{C}}V})Tr(f) \langle v, w \rangle$$

for $f \in Hom(V, V), v, w \in V$

$$\int_{G} \langle g^{-1}v, \alpha \rangle \langle g\beta, w \rangle dg = (\frac{1}{dim_{\mathbb{C}}V}) \langle \beta, \alpha \rangle \langle v, w \rangle$$

for $\alpha, \beta, v, w \in V$. Hint: choose $f(u) = \langle u, \alpha \rangle \beta$.

THE REST OF THE EXAM IS ON THE BACK OF THE PAGE

(4) Let V be a finite-dimensional representation space of a compact Lie group G endowed with a G-invariant inner product. Let $g \to (r_{ij}^V(g))$ denote the corresponding matrix representation relative to an orthonormal basis of V.

(a) Show that

$$\int_{G} r_{ij}^{V}(g) \overline{r_{kl}^{V}(g)} dg = \left(\frac{1}{dim_{\mathbb{C}} V}\right) \delta_{ik} \delta_{jl}$$

- (b) Define what it means to say f is a representative function of G and show that the functions r_{ij}^V are representative functions. What does the Peter Weyl theorem tell us about these functions?
- (5) Show that a representation is determined up to isomorphism by its character.

$$(R_S f)(x) = f(x_S)$$

 f_0 a representative
 $f_0 = f_0 \cdot G$ finite
 $f_0 \cdot f_0 \cdot G$ finite