LIE GROUP TEST I

1. (a) What does it mean to say that a vector field X is ϕ related to a vector field Y^{2}

(b) Assume that X_1, X_2 are vector fields on a manifold M and that Y_1, Y_2 are vector fields on a manifold N. Also assume that $\phi: M \to N$ is a smooth mapping and that X_i is ϕ related to Y_i for i = 1, 2. Show that $[X_1, X_2]$ is ϕ related to $[Y_1, Y_2]$.

(c) Let X and Y be left-invariant vector fields on a Lie group G. Show that [X,Y] is also left-invariant.

2. (a) Let G be a Lie group. For $v, w \in T_eG$, explain how the bracket [v, w] is defined and discuss what is needed for the definition to be meaningful.

(b) Let $B_1, B_2 \in gl(n, R)$ and write

$$\hat{B}_1 = \sum_{i,j=1}^n (B_1)_{ij} (\frac{\partial}{\partial x_{ij}}|_e)$$
 and $\hat{B}_2 = \sum_{i,j=1}^n (B_2)_{ij} (\frac{\partial}{\partial x_{ij}}|_e)$

where (x_{ij}) are the components of the usual global chart on Gl(n,R). Describe how you would compute $[\hat{B}_1, \hat{B}_2]$ as a tangent vector at the identity e of Gl(n,R) using only the definition in 2.(a). Note that this is not the matrix $B_1B_2 - B_2B_1$ although, according to one of our theorems, it can be identified with it

3. Assume that ϕ is a one-parameter Lie group in a Lie group G.

(a) Show that $\phi'(t) = X^{v}(\phi(t))$ for $v = \phi'(0)$ and for all $t \in R$.

Show that $\phi(s) = exp(sv)$ for some $v \in T_eG$ and for all $s \in R$.

(c) Explain how you know that the one-parameter groups fill up a neighborhood of the identity in G, that is, how do you know that there is an open set U of the identity such that every point of U lies on the image of a one-parameter group in G. Can an element of U lie on two one-parameter groups?

The The

THE REST OF THE TEST IS ON THE BACK OF THE PAGE

4. (a) Show that the function $\phi: C \to gl(2,R)$ defined by

$$\phi(z) = \begin{pmatrix} Re(z) & -Im(z) \\ Im(z) & Re(z) \end{pmatrix}$$

satisfies the equations $\phi(zw) = \phi(z)\phi(w)$ and $\phi(\overline{z}) = \phi(z)^t$ for $z, w \in C$. (b) Let $\psi: gl(2, C) \to gl(4, R)$ be defined by

$$\psi(A) = \left(\begin{array}{cc} \phi(A_1^1) & \phi(A_2^1) \\ \phi(A_1^2) & \phi(A_2^2) \end{array}\right).$$

Show that $\psi(A^{\dagger}) = \psi(A)^t$ and use this to show that $\psi(U(2)) = SO(4, R)$.

THE FOLLOWING PROBLEM MAY BE SUBSTITUTED FOR ANY ONE PART OF ANY ONE OF THE PROBLEMS ABOVE.

Assume that G is a group which is also a manifold and that $\mu: G \times G \to G$ is defined by $\mu(g,h) = gh$ for $g,h \in G$. Show the the inversion mapping ι of G defined by $\iota(g) = g^{-1}, g \in G$, is smooth provided μ is smooth.