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preface

Before we begin, I should warn you that I assume a few things from the reader. These notes are
intended for someone who has already grappled with the problem of constructing proofs. I assume
you know the difference between = and <. I assume the phrase ”iff” is known to you. I assume
you are ready and willing to do a proof by induction, strong or weak. I assume you know what
R, C, Q, N and Z denote. I assume you know what a subset of a set is. I assume you know how
to prove two sets are equal. I assume you are familar with basic set operations such as union and
intersection. More importantly, I assume you have started to appreciate that mathematics is more
than just calculations. Calculations without context, without theory, are doomed to failure. At a
minimum theory and proper mathematics allows you to communicate analytical concepts to other
like-educated individuals.

Some of the most seemingly basic objects in mathematics are insidiously complex. We’ve been
taught they’re simple since our childhood, but as adults, mathematical adults, we find the actual
definitions of such objects as R or C are rather involved. I will not attempt to provide foundational
arguments to build numbers from basic set theory. I believe it is possible, I think it’s well-thought-
out mathematics, but we take the existence of the real numbers as a given truth for these notes.
We assume that R exists and that the real numbers possess all their usual properties. In fact, I
assume R, C, Q, N and Z all exist complete with their standard properties. In short, I assume we
have numbers to work with. We leave the rigorization of numbers to a different course.

Just a bit more advice before I get to the good part. How to study? I have a few points:

e spend several days on the homework. Try it by yourself to begin. Later, compare with your
study group. Leave yourself time to ask questions.

e come to class, take notes, think about what you need to know to solve problems.

e assemble a list of definitions, try to gain an inuitive picture of each concept, be able to give
examples and counter-examples

e learn the notation, a significant part of this course is learning to deal with new notation.

e methods of proof, how do we prove things in linear algebra? There are a few standard proofs,
know them.

e method of computation, I show you tools, learn to use them.

e it’s not impossible. You can do it. Moreover, doing it the right way will make the courses
which follow this easier. Mathematical thinking is something that takes time for most of us
to master. You began the process in Math 200, now we continue that process.

style guide

I use a few standard conventions throughout these notes. They were prepared with IATEX which
automatically numbers sections and the hyperref package provides links within the pdf copy from
the Table of Contents as well as other references made within the body of the text.

I use color and some boxes to set apart some points for convenient reference. In particular,



ii

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.
4. proofs start with a Proof: and are concluded with a [.

However, I do make some definitions within the body of the text. As a rule, I try to put what I
am defining in bold. Doubtless, I have failed to live up to my legalism somewhere. If you keep a
list of these transgressions to give me at the end of the course it would be worthwhile for all involved.

The symbol O indicates that a proof is complete. The symbol V indicates part of a proof is done,
but it continues.

ERRORS: there may be errors. I make every effort to eliminate them, but, I do make mistakes.
When you find one, simply send me an email about your concern anytime, day, night, even the
weekend. I usually see it fairly soon and I can confirm or deny the error. Most of the examples are
not new, so previous generations of students have combed through them for mistakes. If in doubt
email. Please. Thanks!

Note on the 2025 version: I made a significant edit relative to the 2024 version. In particular,
I’'ve moved quotient space and dual space to a later chapter so more attention is given to basic
theory early in the course. Chapters 4, 5 and 6 are newly formatted. I've also added some silly
things here and there including an “about the author” section as well as the final Appendix on
history, be sure to read the final remark if you read that Appendix.

reading guide

A number of excellent texts have helped me gain deeper insight into linear algebra. Let me discuss
a few of them here.

1. Charles W. Curtis’ Linear Algebra: An Introductory Approach (Undergraduate Texts in Math-
ematics), 4-th Edition was the required text for the Spring 2016 Semester. This is a very
good book. Apparently too good. Oh, the complaining. So much complaining. Hence, we
use it no more. Sorry for those of you who wanted something deeper. Still, certain aspects
of Curtis’ excellent text remain to influence these notes.

2. Damiano and Little’s A Course in Linear Algebra published by Dover. 1 chose this as the
required text in Spring 2015 as it is a well-written book, inexpensive and has solutions in the
back to many exercises. The notation is fairly close to the notation used in these notes. I also
liked the appearance of some diagrammatics for understanding Jordan forms. The section on
minimal and characteristic polynomials is lucid.

3. Berberian’s Linear Algebra published by Dover. This book is a joy. The exercises are chal-
lenging for this level and there were no solutions in the back of the text. This book is full of
things I would like to cover, but, don’t quite have time to do.

4. Takahashi and Inoue’s The Manga Guide to Linear Algebra. Hillarious. Fun. Probably a
better algorithm for Gaussian elimnation than is given in my notes.
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. Hefferon’s Linear Algebra: this text has nice gentle introductions to many topics as well as

an appendix on proof techniques. The emphasis is linear algebra and the matrix topics are
delayed to a later part of the text. Furthermore, the term linear transformation as supplanted
by homomorphism and there are a few other, in my view, non-standard terminologies. All
in all, very strong, but we treat matrix topics much earlier in these notes. Many theorems
in this set of notes were inspired from Hefferon’s excellent text. Also, it should be noted the
solution manual to Hefferon, like the text, is freely available as a pdf.

. Anton and Rorres’ Linear Algebra: Applications Version or Lay’s Linear Algebra, or Larson

and Edwards Linear Algebra, or... standard linear algebra text. Written with non-math
majors in mind. Many theorems in my notes borrowed from these texts.

Insel, Spence and Friedberg’s Elementary Linear Algebra. This text is a little light on appli-
cations in comparison to similar texts, however, the theory of Gaussian elimination and other
basic algorithms are extremely clear. This text focus on column vectors for the most part.

. Insel, Spence and Friedberg’s Linear Algebra. It begins with the definition of a vector space

essentially. Then all the basic and important theorems are given. Theory is well presented in
this text and it has been invaluable to me as I've studied the theory of adjoints, the problem
of simultaneous diagonalization and of course the Jordan and rational canonical forms.

. Strang’s Linear Algebra. If geometric intuition is what you seek and/or are energized by then

you should read this in paralell to these notes. This text introduces the dot product early
on and gives geometric proofs where most others use an algebraic approach. We’ll take the
algebraic approach whenever possible in this course. We relegate geometry to the place of
motivational side comments. This is due to the lack of prerequisite geometry on the part of
a significant portion of the students who use these notes.

my advanced calculus notes. I review linear algebra and discuss multilinear algebra in some
depth. I've heard from some students that they understood linear in much greater depth
after the experience of my notes. Ask if interested, 'm always editing these.

Olver and Shakiban Applied Linear Algebra. For serious applications and an introduction to
modeling this text is excellent for an engineering, science or applied math student. This book
is somewhat advanced, but not as sophisticated as those further down this list.

Sadun’s Applied Linear Algebra: The Decoupling Principle this is a second book in linear
algebra. It presents much of the theory in terms of a unifying theme; decoupling. Probably
this book is very useful to the student who wishes deeper understanding of linear system
theory. Includes some Fourier analysis as well as a Chapter on Green’s functions.

Curtis’ Abstract Linear Algebra. Great supplement for a clean presentation of theorems.
Written for math students without apology. His treatment of the wedge product as an abstract
algebraic system is fun to read.

Roman’s Advanced Linear Algebra. Treats all the usual topics as well as the generalization
to modules. Some infinite dimensional topics are discussed. This has excellent insight into
topics beyond this course.

Dummit and Foote Abstract Algebra. Part III contains a good introduction to the theory of
modules. A module is roughly speaking a vector space over a ring. I believe many graduate
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programs include this material in their core algebra sequence. If you are interested in going to
math graduate school, studying this book puts you ahead of the game a bit. Understanding
Dummit and Foote by graduation is a nontrivial, but worthwhile, goal.

16. Golub and Van Loan’s Matriz Computations 3rd edition. One of my students went to grad-
uate school and reported back about this masterpiece of advanced matrix manipulations.
Wonder what is beyond what I cover? Here’s a good place to start if you prefer matrices to
transformations.

17. Brown’s Matrices over Commutative Rings takes a long look at what happens when we fill
matrices with entries from a commutative ring. Interesting modifications of the theorems we
covered this semester are seen here. Probably need Math 421 before reading this.

18. My Applied Linear Algebra notes from the Spring 2024 Semester. Those notes do have much
in common with my old Math 321 notes as well. At the moment some of my lectures in Math
221 are not from these notes, but rather from the text by Lay itself. There are a few topics
like the QR-decomposition, the Singular Value Decomposition which I have not yet edited.
Eventually I want to have a set of notes which has part I for Math 221 then part I for Math
321.

19. My Linear Algebra notes from say 2019 which were for this course before we had the Math
221 prerequisite. The current version marks a major revision for the Fall 2024 Semester. If
you want to read more background material and additional examples of Math 221 calculations
then these notes are a good option.

about the author

(THIS IS WRITTEN BY THE VILLAGE IDIOT WHICH IS WRITING MORE THAN YOU REALIZE)

James Cook is an academic, educator, and content creator known for his contributions to the field
of mathematics and his active presence on YouTube. Currently affiliated with Liberty University,
Cook has made a significant impact in both the academic world and the digital space, where he is
celebrated for his ability to make complex mathematical concepts accessible to a broad audience.
His work at Liberty University primarily focuses on mathematics education, where he combines
traditional teaching methods with innovative approaches to engage students in the study of math-
ematics, fostering both a deep understanding and appreciation of the subject. Cook’s passion for
teaching extends beyond the classroom, as he has used his platform to connect with learners around
the world.

James Cook has garnered widespread recognition on YouTube, where he is known for his channel
*SuperMath*—a space dedicated to breaking down complex mathematical topics and presenting
them in a fun, understandable, and often entertaining way. His *SuperMath* series covers a range
of topics, from basic arithmetic to advanced theories, with a particular focus on helping students
gain confidence in their mathematical abilities. Through clear explanations, visual aids, and relat-
able examples, Cook has made mathematics more approachable for students, educators, and math
enthusiasts alike. His engaging content is a blend of educational instruction and popular culture
references, creating a unique space where math is celebrated rather than feared. By combining his
academic expertise with digital media, James Cook has become a well-respected figure in both the
academic community and the world of educational YouTube content, making lasting contributions
to the way mathematics is taught and understood globally.



notation in these notes

e Definitions given for an arbitrary field F. Typical examples include complex numbers C, real
numbers R, rational numbers QQ or a finite field such as Zs or Zs.

e If S is a set then |S| denotes the cardinality of S. For example, |Zs| = 3 whereas |Zs| = 2.
We denote [N| =X, whereas |R| = ¢.

e For a function f: A — B and U C A and V C B then the set f(U) = {f(x) | z € U} is the
image of f under U and the set f~}(V) = {z € A | f(z) € V} is the inverse image of
V under f. We say f is a surjection if f(A) = B and we say f is an injection if every
nonempty inverse image of a singleton is a singleton. Equivalently, f is injective if z,y € A
with f(z) = f(y) implies z = 3. Notice, the notation f~! does not require that f has an
inverse as a function.

e R™*™ is the set of m X n matrices with entries in R.
X1

Z2
o If v € R" = R™! then o = (v1,22,...,T,) = . is a column vector.

Ln

o If Aisan m x n matrix and 1 <7 <m and 1 < j < n then A;; is the component of A in
the i-th row and j-th column. Likewise, col;(A) is the j-th column of A and row;(A) is the
i-th row. We write A = [col1(A)|---|col,(A)] to denote the fact that A is the concatenation
of all its columns.

e Given a matrix A the reduced row echelon form or rref of A is the matrix produced by
applying the Gauss-Jordan row reduction to the matrix A. We denote this by rref(A). The
Column Correspondence Property or CCP is an important theorem connected to interpreting
the rref(A) and its various applications, see Proposition [1.7.6]

e §;j=1ifi=jand d;; = 0if i # j. We call §;; the Kronecker delta.

e [or I, € F"*" is the identity matrix which has I;; = d;;.

e The column vector e; € F" defined by (e;) j = 05 is the the i-th standard basis element.
e The matrix E;; € F™*" defined by (E;;)i = 0ix0;; is the the (i, j)-th matrix unit.

e If Fis a field and V is a set then V(F) denotes the vector space V' with field of scalars F.

e V is a vector space and writing U C V means U is a subset of V' whereas U < V means U
is a subspace of V. These are not the same.

e If S is a subset of a vector space V' then span(S) C V is the set of all finite linear combinations
of vectors in S. We sometimes use spang(S) to emphasize that the coefficients for the linear
combinations are taken from F.

e We use LI as an abbreviation for Linear Independence.

e If 5 is basis for V(F) and « € V then [z]g is the coordinate vector of = with respect to 5.
Likewise, @3 : V' — " is the coordinate map defined by ®g(z) = [z]s
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We use [T, for the matrix of T': V' — W where V' = span(a) and W = span(f).

P, () is the set of up to n-th order polynomials with coefficients in the field F. Likewise, [F[¢]
is the set of polynomials with coefficients in F where we are using the variable t to express the
polynomials. Likewise, F[z,y] = (F[z])[y] is the set of bivariate polynomials with coefficients
in F and Fxy, ..., 2,] is the set of n-multivariate polynomials with coefficients in F.

The null space of a matrix A is given by Null(A) = {z € F" | Az = 0} whereas the column
space of A is denoted Col(A) which is the span of the columns of A. Likewise, the nullity
of A is the dimension of Null(A) whereas the rank of A is the dimension of Col(A)

Given vector spaces V, W the set of all linear transformations is denoted L(V,W). If
T e L(V,V)=L(V) then we say T is a linear transformation on V' or an endomorphism
of V. The set of all functions from a set A to a set B is denoted F(A, B).

Given A € F™*™ the left multiplication map Ly : F" — ™ is defined by L4(z) = Az for
each r € [F".

For linear mapT : V' — W, the kernel of T is Ker(T) = {x € V | T(x) = 0} and the range
or image of T is Range(T) = {T(x) | x € V'}

The map Idy : V — V is known as the identity map on V; Idy(z) = x for all z € V.

Given appropriate linear maps T,S we call T»S the composition of 7" with S. If T is a
linear map on V then 70 = Idy and T = T whereas T% = T T*! for all k € N with k£ > 2

If Wi, Wy <V and W7 N W5 = 0 then Wy & W5 is the direct sum or internal direct sum
of W7 and W5. Given two vector spaces Vi, Vo we call the Cartesian product Vi x Vi the
external direct sum or direct sum of V; and V5. Similarly, W1 @ --- @ W}, is the direct
sum of the independent subspaces Wi, ...,Wy. See Theorem for the five ways to
characterize independent subspaces. Notice, is an example of an external direct sum.

For subspace W of V the set z+ W = {x+w | w € W} is the coset of W with representative
x. We also say « + W is a linear manifold of V'

The quotient space V/W is the set of all cosets of .
If vector spaces V and W are isomorphic then we write V = W.

Let T : V — V be a linear map and W < V. We say T| : W — V is the restriction of
T to W given by T|w(z) = T'(z) for each z € W. If T(W) < W then W is an invariant
subspace of T and we define Ty : W — W by Ty (z) = T(x) for each z € W.

The dual space of a vector space V (F) is given by V* = L(V,F). Likewise, the double dual
of V is V** is the set of all linear functions from V* to F.

The annihilator of W <V is ann(W) ={a € V* | (W) = 0}

The transpose of A € F™ " is AT €€ F"*™ where (AT);; = Aj; for all i,j. The transpose
of T € LIV,W) is Lt € W* V*.

Matrices A, B are congruent if there exist invertible matrices P, Q for which B = PAQ.

Matrices A, B are similar if there exists an invertible matrix P for which B = P~1AP.
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AoV =T, A1V =V and generally A,V consists of sums of k-fold wedge products of vectors.
We denote the wedge product by A.

The determinant of A is the scalar for which Aej A -+ A Ae, = det(A)eg A -+ Aep.

Given a matrix A or an endomorphism T of a finite dimensional vector space V (F) we define
the characteristic polynomial P(t) € F[t| by P(t) = det(A —tl,) or P(t) = det(T —tIdy).
The characteristic equation is P(t) = 0.

Given T a linear map on V(IF), if there exists x # 0 and A € IF for which T'(z) = Az then x
is an eigenvector with eigenvalue .

If A is an eigenvalue of T' € L(V (F)) then &\ = Ker(T — Al dy) is the A-eigenspace of T'. If
A is an eigenvalue of A € F™*™ then £, = Null(A — AI) is the A-eigenspace of A.

A generalized eigenvector of order k£ with eigenvalue A with respect to a linear transfor-
mation T : V — V is a nonzero vector v such that

(T —XMdrv=0 & (T -Md)*w#0.

A k-chain with eigenvalue X\ of a linear transformation 7' : V' — V is set of k nonzero
vectors vy, vg, . .., v such that (T — AId)(v;) = vj—q for j =2,...,k and v; is an eigenvector
with eigenvalue \; T — AId)(v1) = 0.

Let N = Fig+ Eoz+ -+ Eg_14 € F9*4 he the matrix which is everywhere zero except
where it is one on its superdiagonal. We define the d x d-Jordan block by Jz(\) = A\gl + N. A
matrix J € F"*" is said to be in Jordan Form if it is a block-diagonal matrix with Jordan
blocks on the diagonal; J = Jg, (A1) & - -+ @ Jg, (Ak)-

Let T € L(V) and x € V then the T-cyclic subspace generated from z is
(z) = span{T*(z) | k e NU{0}}

A generalized eigenspace of eigenvalue A for a linear transformation T : V' — V is denoted
K. We define x € K, if there exists a positive integer k such that

(T — NPz =0.
Suppose V is a vector space over R, then V¢ is the the complexification of V. Likewise,
if T:V — Vis a linear then its complexification is Tt : Vo — V¢ which is defined by

Te(z+iy) = T(x)+iT (y) for all z+1iy € Ve. A complex eigenvector for T is an eigenvector
for Te whose eigenvalue A € C — R.

The matrices below are known as real Jordan blocks. Suppose a+i5 € C with 8 # 0 then

a pf 1 0
Rg(a—kiﬁ):[_aﬁ i] &  Ryla+iB) = —06 g 2 ;
0 0 —8 «

Generally,
Rop(a+1iB) = Ra(a+iB) @ I + I, @ Ng.

If A is the block-diagonal with each block either of the form Rox(A) or Ji(\) then A is said
to be in real Jordan form.
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e ¢/ is the matrix exponential of A given by e =T + A+ %A2 + %AS + e
o If x,y € V then (x,y) is the inner-product of z and y.
e If x € V then ||z| is the norm or length of z.

e A set of vectors in an inner product space is orthogonal if (z,y) = 0 for any distinct pair
2,1 in the set. A unit-vector is a vector of length one. A set of orthogonal unit-vectors is
an orthonormal set.

e Given an inner product space V with inner product (, ): V xV — F and S C V we define
the orthogonal complement or perp of S by S* ={z € V | (z,y) =0 forally € V}

This image inspired by my time with Benjamin. We have been reviewing the adventures of KITT
lately and that prompted this art:

"“
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Chapter 1

Matrices and linear systems

Vectors interlace,
in a matrix’s firm grasp,
patterns start to form. EXTRANEOUS G, 2025

The calculations in this Chapter should be largely a review from your first course in Linear Algebra.
On the other hand, I do intend to test on the definitions of matrix addition, multiplication, scalar
multiplication and transposition. We give precise definitions which allow us to make arguments for
matrices of arbitrary size without using explicit listing of elements. I do hope you will learn the
definitions for the standard basis, matrix units as well as all the basic matrix operations. These
make for nice entry-level proof questions.

In addition, we seek to review the technique of row-reduction for the solution of linear systems of
equations. I introduce explicit definitions of elementary matrices and we work out their structure
via the matrix algebra introduced earlier in this Chapter. The general structure of solution sets
is described both for infinite and finite fields. We also study the question of spanning for column
vectors. We show how the Column Correspondence Property (CCP) gives an efficient and elegant
method to understand the meaning of row-reductions. This CCP is special to the context of col-
umn vectors. We will soon see that corresponding questions of spanning in an abstract vector space
require a bit more calculation.

It is unlikely I cover all of this material in lecture. I do hope you will review it. Certainly I do
assume students of Math 321 already have a complete understanding of how to find solution sets
over R or C. Systems of equations and matrix algebra over finite fields is new and I probably should
offer some homework to help us all understand the quirks of finite field arithmetic.

1.1 matrices

An array of objects is a collection of objects where we can keep track of which row and column each

object resides. A finite sequence has the form {ai,aq,...,a,}. There is a bijective correspondence
between finite sequencesﬂ in a set S and functions from N,, to S. In particular, given {a1, as, ..., an}
we define a(j) = a; for each j € N,,. Likewise, if a : N,, — S is a function then {a(1),a(2),--- ,a(n)}

is a finite, ordered list in S; that is, a finite sequence in S. An m X n array of objects in S is

lyou studied the more subtle topic of infinite sequences in second semester calculus, there the sequences are
functions from the positive integers to the real numbers typically
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likewise in bijective correspondence between functions from N,, x N,, to S. In particular, given
a: N, x N, =S we may construct an array as follows:

a(l,1) a(1,2) --- a(l,n)
a(2,1) a(2,2) -+ a(2,n)
a(ﬂ”.z, 1) CL(W'L, 2) - a(ﬁ, n)

For the foundationalist, you might wonder how we construct an array. There are various answers
to this question. One, we could adopt the viewpoint that an m x n array is simply a notation for a
function from N,, x N,,. Alternatively, you could view an array as a vector of vectors. The second
view is sometimes used as a basis for the syntax used to manipulate matrices in Computer Algebra
SystemsE| (CASs). Anyway, the construction of arrays from basic principles is really just something
we assume in this course so I've probably already said too much about this substructure. Definition
captures the essential feature of an array we wish to exploit.

Definition 1.1.1.

An m x n matrix is an array of objects with m rows and n columns. The elements in the
array are called entries or components. If A is an m x n matrix then A;; denotes the object
in the i-th row and the j-th column. We denote:

A A - Ay

A1 Ay - Ay
A=lgl=1

Aml Am2 e Amn

The label 7 is a row index and 1 < ¢ < m. The index j is a column index and 1 < 5 < n.

Ay
row;(A) = [Ai, . .., An] & colj(A) = :
Arj

San

Generally, if S is a set then is the set of m x n arrays of objects from S. If a matrix

has the same number of rows and columns then it is called a square matrix.

The set m x n of matrices with real number entries is denoted R™*™. The set of m X n matrices with
complex entries is C"™*™. An m X n matrix can be seen as a concatenation of rows or columns:
Ay o A row (A)
A= L : = [coly(A)|---|col,(A)] = :
Aml T Amn Irow,, (A)

To concentate to matrices is to join them together to make a larger matrix. The horizontal and
vertical lines simply point to where the matrices have been glued together.

It is important to distinguish between the matrix A and theE| i, j-th component A;;. It is simply
not true that A = A;;. However, A = [A;;] as the brackets denote the array of all components.

2not to be confused with the ever more interesting ROUSs
31t is understood in this course that %, j, k,l,m,n,p,q,r, s are in N. I will not belabor this point. Please ask if in
doubt.
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1 2 3 i 10
Example 1.1.2. Let A= | 4 5 6 | and B=| 0 341i | then A€ R3*3 and B € C3*2. If
789 11 12

M = [A|B] and N = [B|A] then M, N € C3*5. Notice, Mas = 3 + i whereas Nas = 6.

In the example above we observed that the 2,5 components of M and N differ. It follows M # N.
Let us pause to remind what is required for two arrays to be identitical:

Definition 1.1.3.
If A,B € S™*" then A = B if and only if A;; = B;; forall1 <i<mand 1< j <n.

It is simple to see that A = B is equivalentl| to row;(A) = row;(B) for all i € N,,. Likewise, A = B
is equivalent to col;(A) = col;(B) for all j € N,,. We can measure the verity of a matrix equation
at the level of components, rows, or columns. We use all three notations throughout this study.

Example 1.1.4. Matrices may contain things other than numbers. For instance, if f,g,h: R — R
g
h f
Our typical examples involve matrices with numbers as components. What is a number ? That
question is more philosophical than mathematical. I generally think of a number as an object which
I can add, subtract and multiply.

are functions then A = [ } 18 a matrix of functions.

Remark 1.1.5. an overview of abstract algebraic terminology

A group is a set paired with an operation which is associative, unital and is closed under inverses. If
the operation of the group is commutative then the group is said to be abelian. A set R is called a
ring if it has a pair of operations known as addition and multiplication. In particular, it is assumed
that R paired with addition forms an abelian group. If R has a unity it is also assumed there exists
1 € R for which 1z = x for each x € R. Finally, multiplication of the ring must satisfy the following:
for all a,b,c,z,y € R,

alx +y)=ar+ay & (a+b)x=azx+ bz.

In short, a ring is a place where you can do arithmetic as we usually practice. If ab = ba for all
a,b € R then R is a commutative ring. The study of commutative rings occupies a large part of
the abstract algebra sequence at many universities. Even commutative rings are a bit more perilous
than you might expect. For example, there are rings for which ab = ac with a # 0 does not imply
b = c. For example, Z/47 = {0,1,2,3} has 22 =0 and 20 = 0. The number 2 is a zero-divisor in
Z/AZ. If r € R has s € R for which rs = 1 then r is said to be a unit with multiplicative inverse
s usually denoted r~! = s. Zero-divisors are nonzero elements a,b € R for which ab = 0. A
commutative ring with no zero divisors is called an integral domain. The quintessential example
of an integral domain is Z. If every nonzero element of a commutative ring is a unit then we say that
ring is a field. It is a fun exercise to prove that no unit is a zero divisor (use proof by contradiction).
It follows that every field is an integral domain. In the finite case, the converse is also true. Every
finite integral domain is a field. This is the sort of claim we will prove in the study of abstract
algebra course sequence. I mention it here for your informational edification. I'll leave you with a
few claims whose proof I leave to another course; Q,R and C are fields. If p is a prime then Z/pZ
is also a field. The distinction between @, R, C and the finite field Z/pZ is quite clearly seen by the
concept of characteristic. If 14+1+---+1 # 0 then the field has characteristic zero. In contrast,
if we add p-fold copies of 1 in Z/pZ then 1+ 1+---+1 = pl = 0. We say the characteristic of Z/pZ
is p. However, if n is composite then Z/nZ is not a field as all divisors of n produce zero divisors.

4two rows are equal iff the given pair of rows have the same components in the same order. Likewise, equality of
columns is defined by equality of matching components.
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Row and column matrices deserve further discussion. First, we need to define transpositiorﬁ of a
matrix: once more let S be a set,

Definition 1.1.6.

If A e S™*" then AT € §"*™ is defined by (AT)]-Z- = A;; for all (¢,7) € Ny, x N,.
We say A7 is the transpose of A.

If we think through this definition in terms of rows and columns we can identify that transposition
converts columns to rows and rows to columns.

A A A Ao A
Example 1.1.7. Let A= | Ay Ag | then AT = 1 2 3L Observe
Ap Axp Az
Az Asp
An 1"
row (A7) = [A11, A1, Azi] = | Axn = (coly (A))T.
Az

Likewise, rows(AT) = (coly(A))T.

Proposition 1.1.8.

Let A € S™" then (i.) (AT)T = A. Furthermore, for each i € N,, and j € N,,,

(i.) row;(AT) = (col;(A))T & (ii.) col;(AT) = (row;(A))T.

Proof: To prove (i.) simply note that ((AT)T);; = (AT);; = Ajj for all (i,5) € N,,, x N,,. Notice,
(col;j(A)); = A;j whereas (row;(A)); = Aj;. Thus consider,

(row;(AT)); = (AT)ji = Ajj = (colj(A)); = ((col;(A))T);

the last step is simply that the i-th component of a row vector is the i-th component of the trans-
pose of the row vector. I leave the proof of (iii.) to the reader. O

In principle one can use column vectors for everything or row vectors for everything. I choose a
subtle convention that allows us to use bothf]

Definition 1.1.9. hidden column notation.

U1
() . 1
We denote (v1,v2,...,0,) = . and we write S” = "%,
Un
If T want to denote a real row vector then we will just write [v1,va,...,v,]. This convention means

we view points as column vectors. This is just a notational choice.

Ssome authors prefer the notation *A in the place of A”

50n the one hand it is nice to write vectors as rows since the typesetting is easier. However, once you start talking
about matrix multiplication then it is natural to write the vector to the right of the matrix and we will soon see that
the vector should be written as a column vector for that to be reasonable.
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1.2 matrix addition and scalar multiplication

Often we only need to consider numbers in fields, but, I'll prove a few things just assuming a ring
structure for the elements. This generality costs us nothing and helps the reader get in the habit
of thinking abstractly. Let us collect the essential algebraic features of a commutative ring R with
identity. There is an additive identity 0 € R such that x + 0 = = for each z € R. There is also a
multiplicative identity 1 € R such that 1z = x for each z € R. For each x € R there exists —z € R
such that x + (—z) = 0. We also have (—1)(x) = —z and 0(z) = 0 for each = € R. Furthermore,
for each for a,b,c € R,

(1.) associativity of addition: a + (b+ ¢) = (a + b) + ¢,

(2.) commutativity of addition: a +b = b+ a,

(3.) left and right distibutivity: a(b+ ¢) = ab + ac and (a + b)c = ac + be,
(4.) associativty of multiplication; a(bc) = (ab)c

Some mathematicians include the existence of 1 € R as part of the definition of a ring, but, I do
not assume that here or in the abstract algebra courses. That said, in the remainder of this section
please assume R is a commutive ring with identity 1. Pragmatically, this means I allow
R =R,Q,C,Z,7Z/nZ for n > 2. However, we could also have R be the set of continuous funtions
on R. There are many sets of things which have the structure of a commutative ring with identity.
In all those many cases we can construct a matrix of such objects. The arguments in this Chapter
demonstrate that a common algebra is shared for this multitude of examples. Abstraction allows
us to carry many loads at once. We cut away all the irrelevant features of R and focus just on the
arithmetic properties above. Those suffice to develop the matrix algebra.

Definition 1.2.1. Let R be a commutative ring with 1 € R.

If A,B € R™*" then the sum of A, B is A+ B and the scalar multiple of A by c is cA.
these are defined as follows:

(A+B)iyj =Ai+Bi; &  (cA)yy = c4;

for all (i,7) € N,;, x N,,.

In the special case of row or column vectors we understand the Definition above to reduce to:
(x+y)i =x; +yi & (cx); = cx;

for c € R and z,y € R"* = R"*! or for x,y € R™*™.
Let us pause to consider a few computational examplesﬂ

12 5 6 6 8
Example 1.2.2. [3 4]+[7 8]_[10 12}

-2 4 T T
10 4 T4y 222
equality A = B gives four equations we must solve concurrently:

2

Example 1.2.3. Let A = [ } and B = { ] Can we solve A = B? Notice, the

2=z, 4=z 10=T7+y, 4=222
We find two solutions x = —2,y = 3 and z = +/2

Tyou might take a moment to notice my examples tend to fit into one of the following three types: question and
answer, discussion-discovery or show-case a theorem or definition. If you're looking to identify the problem type so
you can solve it when I ask you it again, you need to adjust your thinking here...
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Example 1.2.4. Let A,B € R™*" be defined by A;j = 3i + 55 and B;; = i2 for all i,j. Then we
can calculate (A + 7B);; = 3i + 5j + 7i* for all i, j.

73671 [30
19 12 |30
Definition [1.2.1] says we define matrix addition and scalar multiplication component-wise. We

show next how index notation provides us an elegant formalism to easily prove facts about the
algebra of matrices. Notice how each arithmetic property rings induces a similar matrix property:

Example 1.2.5. Over R = Z/67Z we calculate

wl
| —
I =
NI )
—_—
|
| —
QI Wl
Il =
LI Wl
=1 NI

Proposition 1.2.6. linearity of matriz addition and scalar multiplication

Let R be a commutative ring with unity. If A, B,C € R™*™ and ¢y, co € R then
(1.) (A+B)+C=A+(B+0),

(2.) A+ B=B+ A4,

(3.) ci(A+ B) =c1A+ B,

(4.) (a1 te2)A=c1A+ A4,

(5.) (c1c2)A = c1(c2A),

(6.) 1A= A,

Proof: Nearly all of these properties are proved by breaking the statement down to components
then appealing to a ring property. I supply proofs of (1.) and (5.) and leave (2.),(3.), (4.) and (6.)
to the reader.

Proof of (1.): assume A, B, C are given as in the statement of the Theorem. Observe that

((A+B)+C)ij =(A+B)j;+C;;  defn. of matrix add.
= (Aij + Byj) + Cyj  defn. of matrix add.
= A;j + (B;; + Cyj) assoc. of ring addition
= Ai]’ + (B + C)U defn. of matrix add.
=(A+ (B+C));;  defn. of matrix add.

for all ¢, j. Therefore (A+B)+C=A+(B+C). O

Proof of (5.): assume ¢, c2, A are given as in the statement of the Theorem. Observe that

((c1e2)A)i; = (c1c2) Ay defn. scalar multiplication.
= c1(c24j) assoc. of ring multiplication
= (c1(c2A))i; defn. scalar multiplication.

for all 7, j. Therefore (c1c2)A = c1(c2A). O

The proofs of the other items are similar, we consider the 4, j-th component of the identity and then
apply the definition of the appropriate matrix operation’s definition. This reduces the problem to
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a statement about arithmetic in a ring so we can use the ring properties at the level of components.
After applying the crucial fact about rings, we then reverse the steps. Since the calculation works for
arbitrary 7, j it follows that the matrix equation holds true. This Proposition provides a foundation
for later work where we may find it convenient to prove a statement without resorting to a proof by
components. Which method of proof is best depends on the question. However, I can’t see another

way of proving most of
Definition 1.2.7.

The zero matrix in R™*" is denoted 0 and defined by 0;; = 0 for all (¢, j) € N,;, xN,,. The
additive inverse of A € R™*" is the matrix —A such that A 4+ (—A) = 0. The components
of the additive inverse matrix are given by (—A);; = —A;; for all (i,5) € N,;, x N,,.

The zero matrix joins a long list of other objects which are all denoted by 0. Usually the meaning
of 0 is clear from the context, the size of the zero matrix is chosen as to be consistent with the
equation in which it is found.

Example 1.2.8. Solve the following matriz equation,
Ty -1 -2 00| |2—-1 y—2
O_[z w}+[—3 —4] = [O 0] | 2—-3 w—4
The definition of matrix equality means this single matriz equation reduces to 4 scalar equations:
0=2—-10=y—2,0=2—-3,0=w—4. The solution isx =1,y =2,z =3, w = 4.
Theorem 1.2.9.
If Ae R™ " then

(1.) 0- A =0, (scalar multiplication by 0 produces the zero matrix)

(2) A+0=0+A=A.

Proof: To prove (1.). Let A € R™*"™ and consider by definition of scalar multiplication of a matrix:
(0- A)ij = 0(Ay) =0

for all 4,j. Thus 0- A = 0. To see (2.), observe by the definiition of matrix addition and the
zero-matrix:

(O + A)ij = Oij + Aij =0+ Aij = Aij
and as the above holds for all 7,5 we find 0+ A = A. [

1.2.1 standard column and matrix bases

The notation introduced in this subsection is near to my heart. It frees you to calculate a multitude
of stupidly general claims with a minimum of writing.

Definition 1.2.10.

1 i
’Z. ‘] is called the Kronecker delta.
0 ,i#j

The symbol 6;; = {

For example, d9o = 1 while d15 = 0.
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Definition 1.2.11.

Let e; € R™! be defined by (e;) j = 6;5. The size of the vector e; is determined by context.
We call e; the i-th standard basis vector.

Example 1.2.12. Let me expand on what I mean by "context” in the definition above:
In R we have e; = (1) =1 (by convention we drop the brackets in this case)

In R? we have e; = (1,0) and e = (0,1).

In R? we have e; = (1,0,0) and ex = (0,1,0) and e3 = (0,0,1).

In R* we have e; = (1,0,0,0) and e3 = (0,1,0,0) and e3 = (0,0,1,0) and eq = (0,0,0,1).

Example 1.2.13. Any vector in R™ can be written as a sum of these basic vectors. For example,

v =(1,2,3) = (1,0,0) + (0,2,0) + (0,0,3)
— 1(1,0,0) + 2(0,1,0) + 3(0,0,1)
= e1 + 2e9 + 3es.

We say that v is o finite linear combination of e1,es and e3.

The concept of a finite linear combination is very importantlﬂ

Definition 1.2.14.

A finite R-linear combination of objects A1, Ao, ..., A is a finite sum
k
1A+ Ay + -+ A = Z ciA;
i=1
where the coefficients ¢; € R for each i. If ¢y = 0,c0 = 0,...,¢; = 0 then we say the

linear combination is trivial. We also say that {0} is formed by an empty sum. That is,
a linear combination of () is just {0}. We denote

Spang{Ai,...,Ax} = {141+ - +ckAr | c1,...,cx € R}.

The statement about the emptyset () helps theorems we state in future sections to be generally
true. We will look at linear combinations of vectors, matrices and even functions in this course.
The proposition below generalizes the calculation from Example [1.2.13

Proposition 1.2.15.

Every vector in R" is a linear combination of e, eo, ..., €,.

Proof: Let v = (v1,v2,...,v,) € R". By the definition of vector addition and zero in R:

v v + 0,04 ve,...,04vy)
v1,0,...,0) + (0,v9,...,v,)
v1,0,...,0) + (0,v2,...,0) +---+(0,0,...,v,)

= (
= (
= (
=(1-1Lv1-0,...,01-0)+ (v2-0,v3-1,...,00-0)+ -+ (v, - 0,...,0, 1)

8since we only consider finite linear combinations in this course we generally omit the term finite
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In the last step I rewrote each zero to emphasize that each entry of the k-th summand has a v
factor. Continue by applying the definition of scalar multiplication to each vector in the sum above
we find,
v =wv1(1,0,...,0) +v2(0,1,...,0) + -+ +v,(0,0,...,1)
=vie] + v2e3 + - - - + Upeén.
Therefore, every vector in R™ is a linear combination of e, eo,...,e,. For each v € R"™ we have
V=" vpe,. O

We can define a standard basis for matrices of arbitrary size in much the same manner.

Definition 1.2.16.

The ij-th standard basis matrix for R™*" is denoted E;; for 1 <7 <mand 1 < j < n.
The matrix E;; is zero in all entries except for the (7, j)-th slot where it has a 1. In other
words, we define (Ejj)i = 0ixdji.

Proposition 1.2.17.

Every matrix in R™*" is a linear combination of the E;; where 1 <i¢<m and 1 < j <n.

Proof: Let A € R™*"™ then

A A o Ay
Ay Az - Ay,
A = . . .

Aml Am? e Amn
1 0 0 0 1 0 0o o0 - 0
0 0 0 0 0 0 0o 0 - 0
o 0 Do 0 S 0
0 0 0 0 0 0 0 0 1

=AnEn+ApEn+ -+ ApnEnn.

The calculation above follows from repeated mmn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix. We can restate
the final result in a more precise langauge,

A=) AyE;.

i=1 j=1

As we claimed, any matrix can be written as a linear combination of the F;;. [

Alternate Proof: Let A € R™*" then let B =}71", > | A;;E;; and calculateﬂ

Bkl = Z Z AijEij Z Z Az] ij kl Z Z Azgézk(sﬂ = Akl

i=1 j=1 Kl i=1 j=1 i=1 j=1

%here I have to repeatedly apply the definition of matrix addition and scalar multiplication. I will probably add
a homework problem where you get to prove this follows from the definition by a simple induction argument
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Thus By, = Ay for all (k,1) € N,,, x N, hence A= B. O

The term ”basis” has a technical meaning which we will discuss at length in due time. For now,
just think of it as part of the names of e; and E;;. These are the basic building blocks for matrix
theory.

1.3 matrix multiplication

I don’t seek to motivate the definition below. Well, not yet anyway. Rest assured there are many
good reasons to multiply matrices in this way. We shall discover them as the course unfolds.

Definition 1.3.1. Let R be a commutative ring.

Let A € R™*™ and B € R" P then we say A and B are multipliable or compatible or
conformable. The product of A and B is denoted by AB and AB € R"™*P is defined by:

(AB);; = Z Aix By
k=1

foreach 1 <i<mand 1 < j < p. In the case m = p = 1 the indices i, j are omitted in the
equation since the matrix product is simply a number which needs no index. In particular,
for y € R"*™ and B € R™? then yB € R'*? is a row-vector and

n

(yB); = > _ ykBu-

k=1
Likewise, for A € R™*™ and x € R"*! then Az € R™*! is a column-vector and
n
k=1

If y € RY" 2 € R™! then yx = > }_; yxxk. It is also possible for n = 1 in which case the
summation is not needed, (AB);; = A;1 Bi;.

Notice, if m = n = 1 matrix multiplication reduces to multiplication by a scalar on the left and if
n = p = 1 matrix multiplication reduces to multiplication by a scalar on the right.

Example 1.3.2. Suppose A = (1,2,3,4) € R**! and B = [5,6] € R'*? then

1 5 6
2 10 12
AB = 3 [ 56 ] 15 18
4 20 24

The product studied in the example above is a column-row product. It is one of many ways to
create a matrix from row and column vectors. What follows next is more common in applications.
This definition is very nice for general proofs and we will need to know it for proofs. However, for
explicit numerical examples, it is also useful to define dot-products (notice, I allow dot-products of
row and column vectors for convenience of exposition)



1.3. MATRIX MULTIPLICATION 11

Definition 1.3.3.

Let v,w € R™ U R™™ then the dot-product of v and w is the number defined below:

n
Vew = viwi + vows + - - - + vwy = g VW -
k=1

In a later chapter we study the geometriﬂ content of the dot-producﬁ when R is the field R.

Proposition 1.3.4. dot-product as a row-column multiplication:

Let v,w € R™ then vew = v w.

Proof: Since v” is an 1 x n matrix and w is an n x 1 matrix the definition of matrix multiplication
indicates vTw should be a 1 x 1 matrix which is a number. Note in this case the outside indices ]
are absent in the boxed equation so the equation reduces to

T T T T
VW =0 qwy + U 2wz + -+ U Wy, = Vw1 + Vw2 + -+ VW, = U - W. O

Proposition 1.3.5.

Let A € R™*™ and B € R™*P then

rowi(A) - coly(B) rowi(A)-cola(B) -+ rowi(A) - coly(B)
B — rows(A) - coli(B)  rows(A)-cola(B) -+ rows(A) - coly,(B)
TO’U)m(A).- coly(B) rowm(A).- coly(B) --- rowm(A).o col,(B)

Proof: The formula above claims (AB);; = row;(A) - col;(B) for all 7, j. Recall that (row;(A)); =
A, and (col;(B))y, = By, thus

n

(AB)ij = > AiBy; =Y (rowi(A))x(col;(B))x

k=1 k=1

Hence, using definition of the dot-product, (AB);; = row;(A) - col;(B). This argument holds for
all 7, j therefore the Proposition is true. [J

1 2
3 4

|12 T | 1 2 | v+2
Sl E M H R Y s
Notice that the product of an n X k matrix with a k x 1 vector yields another vector of size k x 1.
In the example above we observed the pattern (2 x 2)(2 x 1) — (2 x 1).

Example 1.3.6. Let A = [ ] andv = [ Zj } then we may calculate the product Av as follows:

10T fact, there is some analog of the dot-product for complex numbers and quaternions. Many interesting matric
groups arise as isometries for these inner products.

1The definition I give above is a bit unusual as it allows us to take the dot-product of row and column vectors.
This is mostly a convenience of notation as to avoid writing a multitude of transposes in the Proposition below.
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Example 1.3.7. The product of a 3 X2 and 2 x 3 is a 3 X 3

L0lry 5 6 [1,0][4,7]" [1,0][5,8]" [1,0][6,9]" 45 6
0 1 [7 < 9]: 0,14, 71" [0,1][5,8]" [0,1][6,9]" | =] 7 8 9
00 L0)[4, 7)1 [0,0]5,8)" [0,0][6,9]" 00 0

Example 1.3.8. The product of a 3 x1 and 1 x 3 is a3 x3

1 4-1 5-1 6-1 4 5 6
2[4 5 6]=[42 52 6-2|=|28 10 12
3 4-3 5-3 6-3 12 15 18
1 2 3 1
Example 1.3.9. Let A= | 4 5 6 | andv = 0 calculate Av.
78 9 -3
1 2 3 1 (1,2,3)-(1,0,-3) -8
Av=1|4 5 6 0 =1 (4,5,6)-(1,0,-3) | = | —14
78 9 -3 (7,8,9) - (1,0,-3) -20
1 2 5 6
Example 1.3.10. Let A = 3 4 and B = 7 5| We calculate

AB — 1 2 5 6 | [1,2][5,7]T [1,2][6,8]T | 59+14 6416 | |19 22

T3 4T o8] | 345,77 [3,46,8)7 | | 15+28 18432 | | 43 50
Notice the product of square matrices is square. For numbers a,b € R it we know the product of a

and b is commutative (ab = ba). Let’s calculate the product of A and B in the opposite order,

BA:[5 ﬁHl 2]:[[5,6][1,3]§ [5,6][2,4]T]_[5+18 10+24]_[23 34}

7 8|3 4 7,813 (7,824 | | 7+24 14432 31 46

Clearly AB # BA thus matriz multiplication is noncommutative or not commutative.

Remark 1.3.11. commutators

The commutator of two square matrices A, B is given by [A, B] = AB—BA. If [A,B] # 0
then clearly AB # BA. There are many interesting properties of the commutator. It has
deep physical significance in quantum mechanics. It is also the quintessential example of
a Lie Bracket. It turns out that if the commutator of two observables is zero then they
can be measured simultaneously to arbitrary precision. However, if the commutator of
two observables is nonzero (such as is the case with position and momentum) then they
cannot be simulaltaneously measured with arbitrary precision. The more precisely you know
position, the less you know momentum and vice-versa. This is Heisenberg’s uncertainty
principle of quantum mechanics.

Properties of matrix multiplication are given in the theorem below. To summarize, matrix math
works as you would expect with the exception that matrix multiplication is not commutative. We
must be careful about the order of letters in matrix expressions.
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Theorem 1.3.12.

It A, B,C € R™", X,Y € R"™P, Z € RP4 and ¢1, ¢y € R then
(1) (AX)Z = A(XZ),

(2)) (14)X = e1(AX) = A(1X) = (AX)ar,

(3.) AX +Y) = AX + AY,

(4.) A(c1 X + YY) = 1 AX + 2 AY,

(5.) (A+B)X = AX + BX,

Proof: I leave the proofs of (1.), (2.), (4.) and (5.) to the reader. Proof of (3.): assume A, X,Y
are given as in the statement of the Theorem. Observe that

(AX+Y))ij =2 An(X +Y) defn. matrix multiplication,
= 1 A ( Xy + Vi) defn. matrix addition,
= > 1 (A Xk + AikYsj) dist. prop. of rings,
=> 1 AieXpj + D, AirYrj)  prop. of finite sum,
= (AX)ij + (AY); defn. matrix multiplication(x 2),
= (AX + AY);; defn. matrix addition,

for all 4, j. Therefore A(X +Y)=AX + AY. O

The proofs of the other items are similar, I invite the reader to try to prove them in a style much
like the proof I offer above.

We began our study of transpose in Proposition Let us continue it:

Proposition 1.3.13. Let R be a commutative ring with identity.

(1.) (AT)T = A for all A€ R™™,

(2.) (AB)T = BT AT for all A € R™*™ and B € R™*? (socks-shoes),
(3) (

(4.) (A+ B)T = AT 4 BT for all A, B € R™.

cA)T = cAT for all A € R™ " and c € R,

Proof: We proved (1.) for Proposition [[.I.8} Proof of (2.) is left to the reader. Proof of (3.) and
(4.) is simple enough,

((A+cB)")y; = (A+cB)ji = Aji + By = (AT)i; + ((¢B)")y5

for all 4,j. Set A =0 to obtain (3.) and set ¢ = 1 to obtain (4.). O

1.3.1 multiplication of row or column concatenations

Proposition [1.3.5] is not the only way to calculate the matrix product. In this subsection we find
several new ways to decompose a product which are ideal to reveal such row or column patterns. In
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some sense, this section is just a special case of the later section on block-multiplication. However,
you could probably just as well say block multiplication is a simple outgrowth of what we study
here. In any event, we need this material to properly understand the method to calculate A~! and
the final proposition of this section is absolutely critical to properly understand the structure of
the solution set for Az = b.

Example 1.3.14. The product of a2 x 2 and 2x 1 is a2 x 1. Let A=[13] and let v =[3],

vl 0 (R - (5]

Likewise, define w = [§] and calculate

b T
A — 1 2 6] _ 1, 2][6, 8]T _ | 22
3 48 3, 4][6, 8] 50
Something interesting to observe here, recall that in Example we calculated

1 2 5 6 19 22 ] .
AB = [ 3 4 ] [ 78 ] = [ 43 50 |- But these are the same numbers we just found from the

two matriz-vector products calculated above. We identify that B is just the concatenation of the

516
713 } Observe that:

vectors v and w; B = [v|w] = [

AB = Alv|w] = [Av|Aw].

The term concatenate is sometimes replaced with the word adjoin. I think of the process as
gluing matrices together. This is an important operation since it allows us to lump together many
solutions into a single matrix of solutions. (I will elaborate on that in detail in a future section)

Proposition 1.3.15. the concatenation proposition for columns

Let A € R™*™ and B € R™*P then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

AB = Alcoli(B)|cola(B)| - - - |col,(B)] = [Acoly (B)|Acolz(B)| - - - |Acol,(B)]

Proof: see the Problem Set. You should be able to follow the same general strategy as the Proof
of Proposition Show that the 7, j-th entry of the L.H.S. is equal to the matching entry on
the R.H.S. Good hunting. [J

There are actually many many different ways to perform the calculation of matrix multiplication.
Proposition essentially parses the problem into a bunch of (matrix)(column vector) calcula-
tions. You could go the other direction and view AB as a bunch of (row vector)(matrix) products
glued together. In particular,
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Proposition 1.3.16. the concatenation proposition for rows

Let A € R™*™ and B € R™*P then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

row (A) rowy (A)B

rows(A rows(A)B
e 2(4) B | 2(4)

rown, (A) rown(A)B

Proof: let R; = row;(A) hence AT = [RT|RY|---|RL]. Use Proposition [1.3.15(to calculate:
B'A" = BY[R]|R} |- |Ry) = [B"R{|B"R}|---|B" Ry)] %
But, (BTAT)T = (AT)T(BT)T = AB. Thus, taking the transpose of x yields

(B R{)" R\B
(BTRDT “R.B
AB = [BTRT|BTRY|---|B"RL]T = % _ |t
(B"RL)" ] [ RuB

where we used (BT RIT = (RI)T(BT)T = R;B for each i in the last step. O

There are stranger ways to calculate the product. You can also assemble the product by adding
together a bunch of outer-products of the rows of A with the columns of B. The dot-product of
two vectors is an example of an inner product and we saw v - w = vT w. The outer-product of two
vectors goes the other direction: given v € R" and w € R™ we find vw! € R™*™,

Proposition 1.3.17. matriz multiplication as sum of outer products.

Let A € R™*™ and B € R™*P then

AB = coly(A)rowi(B) + cola(A)rows(B) + - - - + coly, (A)row,(B).

Proof: consider the 7, j-th component of AB, by definition we have

(AB);j = Z AipBrj = AjnBij + AppBoj + -+ - + Ain By
k=1
but note that (coly(A)rowy(B))i; = coli(A)rowy(B); = AipBy; for each k = 1,2,...,n and the

proposition follows. [

A corollary is a result which falls immediately from a given result. Take the case B = v € R™*! to
prove the following;:

Corollary 1.3.18. matriz-column product is linear combination of columns.

Let A € R™*™ and v € R™ then

Av = vicoli (A) 4+ vacola(A) + - - + vpcoly (A).
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Some texts use the result above as the foundational definition for matrix multiplication. We took a
different approach in these notes, largely because I wish for students to gain better grasp of index
calculation. If you'd like to know more about the other approach, I can recommend some reading.

1.3.2 all your base are belong to us (e; and E;; that is)
Example 1.3.19. Suppose A € R™*" and e; € R" is a standard basis vector,

(Aei)j = ZAjk(ei)k = ZA]]C(S’L’C = Aji
k=1 k=1

Thus, | Ae; = col;(A) | We find that multiplication of a matriz A by the standard basis e; yields the
i —th column of A.

Example 1.3.20. Suppose A € R™*™ and e; € R™*! is a standard basis vector,

n

(e;7A); = Z(ei)kAkj = Z diAgj = Aij
k=1 k=1

Thus, |e;T A = row;(A)|. We find multiplication of a matriz A by the transpose of standard basis
e; yields the i — th row of A.

Example 1.3.21. Again, suppose e;,e; € R" are standard basis vectors. The product eiTej of the
1 xn andn x 1 matrices is just a 1 X 1 matriz which is just a number. In particular consider,

n

eilej = Z(eiT)k(ej)k = Z Oik0jk = 0ij

k=1 k=1
The product is zero unless the vectors are identical.

Example 1.3.22. Suppose e¢; € R™*! and ej € R". The product of the m x 1 matriz e; and the
1 x n matriz ejT s an m X n matriz. In particular,

(eie; ) = (ei)i(e] )i = Sindji = (Eij)u-
Thus the standard basis matrices are constructed from the standard basis vectors; E;j = eiejT.

Example 1.3.23. What about the matriz E;;? What can we say about multiplication by E;; on
the right of an arbitrary matriz? Let A € R™*™ and consider,

(AEij i = Awp(Eij)p = > Arpdip6ji = Aridji

p=1 p=1

Notice the matriz above has zero entries unless 3 = | which means that the matriz is mostly zero
except for the j-th column. We can select the j-th column by multiplying the above by e;, using
Ezxamples|1.5.21) and[1.5.19,

(AEjje;)r = (Aeie;" ej)x = (Aeidjj)i = (Aes)r = (cols(A))x



1.3. MATRIX MULTIPLICATION 17

This means,

column j
00 --- Ay o0
AE;; = 00 --- As; o0
00 - A 0|

Right multiplication of matriz A by E;; moves the i-th column of A to the j-th column of AE;; and
all other entries are zero. It turns out that left multiplication by E;; moves the j-th row of A to the
i-th row and sets all other entries to zero.

Example 1.3.24. Let A = [} 2] consider multiplication by E12,

AEm:[é ng (1)]:[8;)]:[00011(14)]

Which agrees with our general abstract calculation in the previous example. Next consider,

101 1 2] |3 4] | row(A)
E”A_[o 0“3 4}_{0 0}_[ 0 ‘
Example 1.3.25. Calculate the product of E;; and Ej,.

(EijEkl)mn = Z(Ez’j)mp(Ekl)pn = Z 6im5jp5k:p6ln = 5im5jk5ln
p p

For example,
(F12E34)mn = 01m02304n, = 0.

In order for the product to be nontrivial we must have j =k,
(E12E24)mn = 61m02204n = 61m04n = (E14)mn-
We can make the same identification in the general calculation,
(Eij Ex)mn = 0k (Ei)mn-

Since the above holds for all m,n,

’ EijEy = 0k Ey

this is at times a very nice formula to know about.

Remark 1.3.26.

The proofs in these examples are much longer if written without the benefit of index no-
tation. It usually takes most students a little time to master the idea of index notation.
There are a few homeworks assigned which require this sort of thinking, I do expect all
students of Math 321 to gain proficiency in index calculation.
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Example 1.3.27. Let A € R™*" and suppose e; € R™1 and e; € R". Consider,

m

(e:)" Aej = ((e0)r(Aej)i = Y in(Aej) = (Aey)s = Ajj

k=1 k=1

This is a useful observation. If we wish to select the (i,7)-entry of the matriz A then we can use
the following simple formula,

Ay = (&))" Ae;

This is analogous to the idea of using dot-products to select particular components of vectors in
analytic geometry; (reverting to calculus III notation for a moment) recall that to find vy of ¥ we
learned that the dot product by i =< 1,0,0 > selects the first components v, = 7 - i. The following
theorem is simply a summary of our results for this subsection.

Theorem 1.3.28.

Let A€ R™*"™ and v € R" if (Eij>kl = 5ik5jl and (61‘)j = 5ij then,

v = i vpen | A= i z”: AiiEij el A= row;(A) | Ae; = col;(A)

i=1 j=1

T T T
Aij = (6,) A(Ej EijEkl = jkEil Eij = €€j € € = 5ij

The reader should understand I am abusing notation in the case m # n. For example, to build
the m x n matrix units for rectangular matrices we probably should use a notation like F;; = gel

J
where €; € R™ and e; € R". Likewise, 4;; = éiTAej forl<i<mand1<j<n.

1.4 matrix algebra

In this subsection we discover the matrix analog of the number 1, the formulation of the multi-
plicative inverse and raising a matrix to a power.

1.4.1 identity and inverse matrices

We begin by studying the 2 x 2 case.

Example 1.4.1. Let I = [ 10 } and A = [ @ b } We calculate

0 1 c d
1 0][a b] [a b
IA__O L|le d| |c d]
Likewise calculate,
[a b][1 0] [a b
AI__C d]|0 1] |c¢ d]

Since the matriz A was arbitrary we conclude that IA = AI for all A € R?>*?.
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Definition 1.4.2.

The identity matrix in R™*" is the n x n square matrix / which has components

1 i=j

Iij =6 = { - ‘] The notation I,, is sometimes used if the size of the identity matrix
(]

needs emphasis, otherwise the size of the matrix [ is to be understood from the context.

100 0
10 0

10 0100

12_[0 1} Is = 8(1)(1) =19 01 0

0001

You might wonder, do other square matrices D satisfy AD = DA for each square matrix A 7 That
sounds like an excellent homework problenﬂ For now, let’s see how Example m generalizes:

Proposition 1.4.3.

If X € R"*P then X1, = X and I, X = X.

Proof: I omit the p in I, to reduce clutter below. Consider the 4, j component of X1,

P
(X1)i; = Z XLy defn. matrix multiplication

k=1

P

= Z XirOk;j defn. of 1
k=1

I
ke

1

The last step follows from the fact that all other terms in the sum are made zero by the Kronecker
delta. Finally, observe the calculation above holds for all 4, j hence X1 = X. The proof of /X = X
is left to the reader. O

Before we define the inverse of a matrix it is wise to prove the following:

Proposition 1.4.4. Let R be a commutative ring.

Suppose A € R™*". If B,C € R™*" satisty AB= BA =1 and AC =CA =1 then B=C.

Proof: suppose A, B,C € R"*™ and AB = BA =1 and AC = CA = I thus AB = AC. Multiply
B on the left of AB = AC to obtain BAB = BAC hence IB=1C = B=C. O

The identity matrix plays the role of the multiplicative identity for matrix multiplication. If AB = I
then we do not write B = I /A, instead, the following notation is customary:

Definition 1.4.5.

Let A € R™*™. If there exists B € R"*™ such that AB = I and BA = I then we say that A
is invertible and A~! = B. Invertible matrices are also called nonsingular. If a matrix
has no inverse then it is called a noninvertible or singular matrix.

1256 § for notation which is helpful to characterize D for which AD = DA for all A
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We’ll discuss how and when it is possible to calculate A~! for a given square matrix A, however,
we need to develop a few tools before we’re ready for that problem. This much I can share now:

Example 1.4.6. Consider the problem of inverting a 2 X 2 matriz A = [ CCL Z ] We seek B =
[Z 9] such that AB =1 and BA = I. The resulting algebra would lead you to conclude x = d/t,y =

—b/t,z = —c/t,w = a/t where t = ad — bc.

a b0 1 d —b
c d ad—be| —c a

It’s not hard to show this formula works,

1 a b d —=b| 4 ad —bc —ab+ ab
ad=bc | ¢ ( —c a | cd —dec —bc+da

1 ad — be 0 10
~ ad-be 0 ad—bec | |0 1

Proof that BA = I is similar.

the quantity ad — bc for A = [ CCL 2 ] is known as the determinant of A. In particular, we denote

det(A) = ad — be. If R = R then the significance of the determinant is that it provides the signed-
area of the paralellogram with sides (a,b), (c,d). The sign tells us if (a,b) is rotated clockwise
(CW) or counterclockwise (CCW) to reach (c,d). If you study it carefully, you'll find positive
determinant indicates the second row is obtained from the first by a CCW rotation. Determinants
are discussed in more detail later in this course. In fact, this formula is generalized to n-th order
matrices. However, the formula is so complicated that only a truly silly studenﬁ would try to
implement it for anything beyond the 2 x 2 case. Computationally, we find an efficient algorithm
for finding inverses larger matrices in §

Example 1.4.7. One interesting application of 2 X 2 matrices is that they can be used to generate
rotations in the plane. In particular, a counterclockwise rotation by angle 6 in the plane can be

cos@ sinf

represented by a matriz R(0) = [ ] Calculate via the 2 x 2 inverse formula with

—sinf cosf
a=d=cosf andb= —c=sinb
-1 1 cosf —sinf| _ | cos(—0) sin(-0)| .,
(R(0)) = cos2 6 + sinZ 0 [sin@ cos 6 } - [— sin(—0) cos(—0)| R(-0)

We observe the inverse matriz corresponds to a rotation by angle —0; R(6)~' = R(—0). Notice

that R(0) = ||

shall see them again.

] thus R(0)R(—0) = R(0) = I. Rotations are very special invertible matrices, we

Noninvertible martices challenge our intuition. For example, if A~! does not exist for A it is possible

to have Av = Aw and yet v # w. For example, A = } is not invertible and we observe

1
0 0

Ae; = e; = Aes and obviously e # es. Invertible matrices allow some of our usual thinking:

13his name is Minh
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Theorem 1.4.8.
If A, B € R™ ™ are invertible, X, Y € R™*" Z W € R"™ and nonzero ¢ € R then

(1.) (AB)"'=B71tA"1

(2.) (cA) =AY,

(3.) XA =YA implies X =Y,
(4.) AZ = AW implies Z = W,
(5.) (AT)"t ="

(6.) (AH)1=A

Proof: To prove (1.) simply notice that
(ABYB'A™' = A(BB YA ' = ANA = A4 = 1.
alsoEl note B~'A7Y(AB) = I. The proof of (2.) follows from the calculation below,
(PANeA=1cATTA=ATTA=1

and note cA(LA™') = I by nearly the same calculation. To prove (3.) assume that XA = YA
and multiply both sides by A~! on the right to obtain X AA~! = Y AA~! which reveals XI =Y
or simply X =Y. To prove (4.) multiply by A~! on the left. Finally, consider AA~! = I and
A7'A = I implies by the socks-shoes identity for the transpose that (A=1)7AT = [T = I and
AT(A™YHYT = IT = [ therefore (A7)~ = (A~1)T. Finally, (6.) is immediate from the definition. [J

Remark 1.4.9.

The proofs just given were all matrix arguments. These contrast the component level proofs
needed for We could give component level proofs for the Theorem above but that is
not necessary and those arguments would only obscure the point. I hope you gain your own
sense of which type of argument is most appropriate as the course progresses.

The importance of inductive arguments in linear algebra ought not be overlooked.

Proposition 1.4.10.

If Ay, Ag,..., A € R™™ are invertible then (A;As--- Ap) ™! = A,;lA,;_ll e Afl.

Proof: follows from induction on k. In particular, k¥ = 1 is trivial. Assume inductively the
proposition is true for some k with k > 2,

(A1Ag - Ay Ap) L = (BA) =41, B!

k+1
B
by Theorem [1.4.§ part (1.). Applying the induction hypothesis to B yields
(A1Ag- -+ Appy) = A A AT 0.

MMy apologies to the reader who already knows that AB = I implies BA = I for square matrices A, B. We have
yet to learn that. We shall soon, but, for now these proofs have a bit extra.
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1.4.2 matrix powers

The power of a matrix is defined in the natural way. Notice we need for A to be square in order
for the product AA to be defined.

Definition 1.4.11.

Let A € R™". We define A° = I, A = A and A™ = AA™ ! for all m > 1. If A is
invertible then A=P = (A~1)P,

As you would expect, A3 = AA%? = AAA.

Proposition 1.4.12. laws of exponents

Consider nonzero A, B € R"*" and
(1.) APAY = APt for all p,q € NU {0},
(2.) (AP)? = AP1 for all p,q € NU {0},

(3.) if A exists then the AP A9 = APT9 and (AP)? = AP for p,q € 7Z.

Proof: we prove (1.) by induction on ¢. Fix p € NU{0}. If ¢ = 0 then A% = A% = T thus
APAY = AP] = AP = APF0 = AP*4 thus (1.) is true for ¢ = 0. Suppose inductively that (1.) is true
for some ¢ € N. Consider,

AP AT — AP AIA by definition of matrix power
= APTIA by induction hypothesis

= Aptatl by definition of matrix power

thus (1.) holds for ¢+ 1 and we conclude (1.) is true for all ¢ € NU{0} for arbitrary p € NU{0}. I
leave (2.) for the reader, it can be shown by a similar inductive argument. To prove AP A% = APT4
fix p € Z and notice the claim is true for ¢ = 0. Our argument for ¢ € N still is valid when we
take p € Z (it was non-negative in our argument for (1.)). Hence, consider ¢ € Z with ¢ < 0. Let
q = —r and observe 7 > 0. We intend to prove APA™" = AP*(=7) for all » € NU {0} by induction
on r. Note APA™" = APT(=") is true for r = 0. Suppose inductively APA~" = APT(=") for some
r € N. Consider,

AP A=Y — gp(4— 1yl by definition of matrix power
= AP(A HraTt by definition of matrix power
= APATTAT! by definition of matrix power
= Apt(=r) 41 by induction hypothesis
= AP 41 arithmetic

= (A~ Hyrrat definition of matrix power
= (A~ hyr—ptl definition of matrix power
= Ap—(r+1) definition of matrix power

hence the claim is true for r + 1 and it follows by induction it is true for » € NU {0}. Hence,
APAY = APTY is true for all p,q € Z. I leave proof of the other half of (3.) to the reader, the
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argument should be similar. [J

You should notice that (AB)P # APBP for matrices. Instead,
(AB)? = ABAB, (AB)> = ABABAB, etc...
This means the binomial theorem will not hold for matrices. For example,
(A+B)?=(A+B)(A+B)=A(A+B)+B(A+B)= AA+ AB + BA + BB

hence (A + B)? # A? + 2AB + B? as the matrix product is not generally commutative. How-
ever, in the special case that AB = BA and we can prove that (AB)P = APBP and the binomial
theorem holds true as well. I may have assigned you the proof of the binomial theorem in homework.

1.4.3 symmetric and antisymmetric matrices

Definition 1.4.13.

Let A € R™"™. We say A is symmetric iff AT = A. We say A is antisymmetric iff
AT = —A.

At the level of components, AT = A gives A;; = Aj; for all i,j. Whereas, AT = —A gives
A;; = —Aj; for all 4,j. Both symmetric and antisymmetric matrices appear in common physical
applications. For example, the inertia tensor which describes the rotational motion of a body is
represented by a symmetric 3 x 3 matrix. The Faraday tensor is represented by an antisymetric
4 x 4 matrix. The Faraday tensor includes both the electric and magnetic fields. Physics aside,
we’ll see later that symmetric matrices play an important role in multivariate Taylor series and the
Spectral Theorem makes symmetric matrices especially simple to analyze in general. We might
study the Spectral Theorem towards the end of this course.

Example 1.4.14. Examples and non-examples of symmetric and antisymmetric matrices:

1 2 0 2 1 2
Ia 07 Eii7 |:2 0:| 07 I:_2 0:| [172]7 Ei,i+17 |:3 4:|

-~ -~

symmetric antisymmetric neither

Proposition 1.4.15.

Let A € R™*" then AT A is symmetric.

Proof: Proposition [1.3.13]yields (AT A)T = AT(AT)T = AT A. Thus AT A is symmetric. [
Proposition 1.4.16.

If A is symmetric then AF is symmetric for all k£ € N.

Proof: Suppose AT = A. Proceed inductively. Clearly k& = 1 holds true since A! = A. Assume
inductively that A* is symmetric.

(AMHT = (AAMT  defn. of matrix exponents,
= (AT AT socks-shoes prop. of transpose,
= AkA using inducition hypothesis.
= Ak+1 defn. of matrix exponents,

thus by proof by mathematical induction A* is symmetric for all £k € N. O
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1.4.4 triangular and diagonal matrices

Definition 1.4.17.

Let A e R™ ™. If A;; = 0 for all ¢, j such that ¢ # j then A is called a diagonal matrix. If
A has components A;; = 0 for all 4, j such that ¢ < j then we call A a upper triangular
matrix. If A has components A;; = 0 for all 4, j such that ¢ > j then we call A a lower
triangular matrix. If the diagonal of a matrix is zero then the matrix is hollow.

Example 1.4.18. Let me illustrate a generic example of each case for 3 x 3 matrices:

An 0 0 A A Asg An 0 0
0 A O 0 A A A1 Az O
0 0 Ass 0 0 Ass Asz1 Aszz Ass

As you can see the diagonal matriz only has nontrivial entries on the diagonal, and the names
lower triangular and upper triangular are likewise natural.

If an upper triangular matrix has zeros on the diagonal then it is said to be strictly upper
triangular. Likewise, if a lower triangular matrix has zeros on the diagonal then it is said to be
strictly lower triangular. Obviously and matrix can be written as a sum of a diagonal and
strictly upper and strictly lower matrix,

A=) AyE;
i,J
= Z A By + Z AijEij + Z AijEij
i 1<j i>]

There is an algorithm called LU-factorization which for many matriceﬁ A finds a lower triangular
matrix L and an upper triangular matrix U such that A = LU. It is one of several factorization
schemes which is calculationally advantageous for large systems. There are many many ways to
solve a system, but some are faster methods. Algorithmics is the study of which method is optimal.

Example 1.4.19. In the 2 x 2 case it is simple to verify the product of upper(lower) triangular
matrices is once more (upper)lower triangular:

a 0 z 0] ax 0 & a b r y | | ar ay+bz
b ¢ y z| | brt+ecy cz 0 ¢ 0 2| | 0 cz

Generally, the 2 x 2 case is surprisingly insightful. This is such a case:

Proposition 1.4.20.

Let A, B € R™*™.
(1.) If A, B are diagonal then AB is diagonal.
(2.) If A, B are upper triangular then AB is upper triangular.

(3.) If A, B are lower triangular then AB is lower triangular.

15 An LU decomposition exists iff the principal minors are all positive. However, a PLU (permutation, lower, upper)
factorization always exists. I will discuss this in Math 221.



1.4. MATRIX ALGEBRA 25

Proof of (1.): Suppose A and B are diagonal. It follows there exist a;, b; such that A =", a;Ey
and B =}, b;Ej;. Calculate,

AB = Z CLZEu Z bjEjj = Z Z aibjEiiEjj = Z Z aibjéijEij = Z azblE”
% J i j 7 %

A J i

thus the product matrix AB is also diagonal and we find that the diagonal of the product AB is
just the product of the corresponding diagonals of A and B.

Proof of (2.): Suppose A and B are upper triangular. It follows there exist A;;, B;; such tha@
A= Eigj Az’jEz’j and B = Zkgl By, Ey,;. Calculate,

AB = Z Ai;Eij Z BBy = Z Z AijBu BBy = Z Z AijBridjEy = Z Z Ai;BjEy.

i<j k<l i<j k<I 1<y k<l 1<j j<l

Notice that every term in the sum above has ¢ < j and j < [ hence ¢ < [. It follows the prod-
uct is upper triangular since it is a sum of upper triangular matrices. The proof of (3.) is similar. [J.

I hope you can appreciate these arguments are superior to component level calculations with explicit
listing of components and .... The notations e; and F;; are extremely helpful on many such
questions. Futhermore, a proof captured in the notation of this section will more clearly show
the root cause for the truth of the identity in question. What is easily lost in several pages of
brute-force can be elegantly seen in a couple lines of carefully crafted index calculation.

1.4.5 nilpotent matrices

Definition 1.4.21.

Let N € R™ ™ be nonzero then N is nilpotent of degree k if k is the first positive integer
for which N* = 0.

Nilpotent matrices are easy to find. Here is an important example:

10 0 01

Example 1.4.22. Let N = 0 1| henceN2=10 0 0 | and N3 =0 thus N is nilpotent
000 000

of degree 3. If N € R"*" and N;;41 =1 fori=1,...,n—1 and N;; = 0 otherwise then we can

show through similar calculation that N"~!' = Ey,, and N™ = 0.

A fun question to ponder: which of the matrix units are nilpotent? Moving on, another interesting
aspect of a nilpotent matrix is that if we modify the identity matrix by N then it is still invertible.
For example:

Example 1.4.23. Suppose N is nilpotent of degree 2 then I + N has inverse I — N as is easily
seen by (I+ N)YI—=N)=I+N—-N-N?=Tand (I —-N)(I+N)=I—-N+ N — N? =1 hence
(I+N)"t=I-N.

The inverse in the example above is not hard to guess. Try out the next case, can you find (I+N)~*
for N nilpotent of degree 3. As a formal intuition, you might think about the geometric series.

18the notation ZK]. indicates we sum over all pairs 4, j for which 7 < j. For example, if n = 3 then we sum over

(17]) = (17 1)7 (17 2)? (1,3), (272)7 (2>3)7 (37 3)'
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1.4.6 Dblock matrices

If you look at most undergraduate linear algbera texts they will not bother to even attempt much
of a proof that block-multiplication holds in general. 1 will foolishly attempt it here. However, I'm
going to cheat a little and employ uber-sneaky physics notation.

The Einstein summation convention states that if an index is repeated then it is assumed to be
summed over it’s values. This means that the letters used for particular indices are reserved. If
i, 7,k are used to denote components of a spatial vector then you cannot use them for a spacetime
vector at the same time. A typical notation in physics would be that v’ is a vector in xyz-space
whereas v* is a vector in txyz-spacetime. A spacetime vector could be written as a sum of space
components and a time component; v = vte, = Weg + vlep + v2eqy + viez = v0ey + vjej. This is
not the sort of langauge we tend to use in mathematics. For us notation is usually not reserved.
Anyway, cultural commentary aside, if we were to use Einstein-type notation in linear algebra then
we would likely omit sums as follows:

V= E Vi€ — UV = Vi€

7
A= ZAZJEZ] — A= Az’jEij
tj
We wish to partition a matrices A and B into 4 parts, use indices M, N which split into subindices
m, p and n, v respectively. In this notation there are 4 different types of pairs possible:

Amn Aml,:| an Bnﬁ/]

4= [AMN] B [ Aun AW Byj | Buy

B =[Bnj] = [

Then the sum over M, N breaks into 2 cases,
AMNBNy = Ay By + Avu By
But, then there are 4 different types of M, J pairs,
[AB]m] — AmNBNj — Amanj + Aml/Buj
[AB]m'y = AmNBny = Aman’y + AmuBu'y
[ABlu; = AunBNj = AunBnj + A By
[AB]H’Y = AunBny = Ayn By + A Buy
Let me summarize,

[ Amn | Ay } [ By | By ] _ [ [Amn][Bng] + [Amv)[Bys] | [Amin] [Buy] + [Amy][Bos]
Aun | Aw | | Buj | Buy [Aun][Brs] + [Aw][Buj] | [Aun][Bun] + [Ayw][Bus]

Let me again summarize, but this time I’ll drop the annoying indices:
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Theorem 1.4.24. block multiplication.

Suppose A € R™*™ and B € R™*P such that both A and B are partitioned as follows:

All A12 :| |: Bll Bl? :|
|: A21 AQQ a BQl B22

where Aqq1 is an my X nq block, Ajo is an my X no block, As1 is an mg X nq block and
Agy is an mg x ng block. Likewise, By, p, is an ny x p; block for £ = 1,2. We insist that
m1 + mg = m and nq + ny = n. If the partitions are compatible as described above then
we may multiply A and B by multiplying the blocks as if they were scalars and we were
computing the product of 2 x 2 matrices:

|:A11A12:|[BHBIQ:|
Ag1 | A By | B

_ [ A1 Bi1 + A1pBy1 | AiiBis + A13Bys
A9 Bi1 + AgeBo1 | AgiBio 4+ AnBas |

To give a careful proof we’d just need to write out many sums and define the partition with care
from the outset of the proof. In any event, notice that once you have this partition you can apply
it twice to build block-multiplication rules for matrices with more blocks. The basic idea remains
the same: you can parse two matrices into matching partitions then the matrix multiplication
follows a pattern which is as if the blocks were scalars. However, the blocks are not scalars so the
multiplication of the blocks is nonabelian. For example,

A11Bi1 + A19Bs1 | A11Bis + A1 By
Ag1Bi1 + AggBa1 | Ag1Big + Ay By
Ag1Bi1 + AszBa1 | Ag1Bia + AsyBas

where if the partitions of A and B are compatible it follows that the block-multiplications on the
RHS are all well-defined.

cos(f) sin(0) | cosh(y) sinh(7)
—sin(f) cos(6) and B(y) = sinh(vy) cosh(y)
more construct 4 X 4 matrices A1 and Ay as follows:

B(v)| 0 ] By)| 0
0 [R@) | h=| | |

Example 1.4.25. Let R(0) = [ ] Further-

A = [
Multiply A1 and As via block multiplication:
A1A2: _B(Iyl) 0 :| |:B(72) 0 :|

0 |R(6) 0 | R(6a)

[ B(71)B(72) +0 | 040 ]
I 0+0 | 0+ R(61)R(62)

[ By +12) | 0 ]
0 | R(61+62) |

The last calculation is actually a few lines in detail, if you know the adding angles formulas for
cosine, sine, cosh and sinh it’s easy. If 0 =0 and v # 0 then A would represent a velocity boost
on spacetime. Since it mixzes time and the first coordinate the velocity is along the x-coordinate. On
the other hand, if 8 # 0 and v = 0 then A gives a rotation in the yz spatial coordinates in space
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time. If both parameters are nonzero then we can say that A is a Lorentz transformation on
spacetime. Of course there is more to say here, perhaps we could offer a course in special relativity
if enough students were interested in concert.

Example 1.4.26. Problem: Suppose M 1is a square matrixz with submatrices A, B,C,0 where

A, C are square. What conditions should we insist on for M = [ 64 g } to be invertible.

D|FE
Solution: I propose we partition the potential inverse matriz M~ = [T‘?] We seek to find

conditions on A, B, C' such that there exist D,E,F,G and MM~ = I. Each block of the equation
MM~" =1 gives us a separate submatriz equation:

MM_lz[AB][DE]_[AD+BFAE+BG}:[IO]

0|C||F|G] |0D+CF |0E+CG
We must solve simultaneously the following:
(1.) AD+ BF =1, (2.) AE+ BG =0, (3.) CF =0, 4)CG=1

If C~1 exists then G = C~ from (4.). Moreover, (3.) then yields F = C~10 = 0. Our problem
thus reduces to (1.) and (2.) which after substituting F =0 and G = C~! yield

(1.) AD =1, (2.) AE+BC™ ! =0.
Equation (1.) says D = A~'. Finally, let’s solve (2.) for E,
E=-A"'BC™.

Let’s summarize the calculation we just worked through. IF A,C are invertible then the matrix

A|B | . . . .
M = [T‘F} 1s invertible with inverse

]

Al -AT'BCT!
o] ¢! '

Consider the case that M is a 2 x 2 matriz and A, B,C € R. Then the condition of invertibility
reduces to the simple conditions A,C #0 and —A~'BC~! = % we find the formula:

M-l = % % :i ¢|-B
0] & AC | 0| A |

This is of course the formula for the 2 X 2 matriz in this special case where Ma; = 0.

Of course the real utility of formulas like those in the last example is that they work for partitions of
arbitrary size. If we can find a block of zeros somewhere in the matrix then we may reduce the size
of the problem. The time for a computer calculation is largely based on some power of the size of
the matrix. For example, if the calculation in question takes n? steps then parsing the matrix into
3 nonzero blocks which are n/2 x n/2 would result in something like [n/2]? + [n/2]* + [n/2]? = 3n?
steps. If the calculation took on order n® computer operations (flops) then my toy example of 3
blocks would reduce to something like [n/2]* + [n/2]3 + [n/2]* = 2n? flops. A savings of more than
60% of computer time. If the calculation was typically order n* for an n x n matrix then the saving
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is even more dramatic. If the calculation is a determinant then the cofactor formula depends on
the factorial of the size of the matrix. Try to compare 10!4+10! verses say 20!. Hope your calculator
has a big display:

10! = 3628800 = 10!+ 10! = 7257600 or 20! = 2432902008176640000.

Perhaps you can start to appreciate why numerical linear algebra software packages often use al-
gorithms which make use of block matrices to streamline large matrix calculations.

In quantum mechanics, it is good to find a basis of state vectors which makes the Hamiltonian into
a block-diagonal matrix. Each block corresponds to a certain set of statevectors sharing a common
energy. The goal of representation theory in physics is basically to break down matrices into blocks
with nice physical meanings. On the other hand, abstract algebraists also use blocks to rip apart a
matrix into it’s most basic form. For linear algebraists, the so-called Jordan form is full of blocks.
Wherever reduction of a linear system into smaller subsystems is of interest there will be blocks.

1.5 systems of linear equations

We now introduce some notation which will help bring organization to our method of solving linear
systems: we assume F is a field in what follows:

Definition 1.5.1. augmented coefficient matrixz for m-equations in n-unknowns

The augmented coefficient matrix is an array of numbers which provides an abbreviated
notation for a system of linear equations.

Anxy + Appxa + -+ Aipxn = by A Az - A | b1
Ao1x1 + Agoxo + -+ - + Agpx, = by A1 Ay -+ Aoy | b2
o . . . replaced by . ) . . }

Ap1m1 + Ama®a + - - + AmnTn = b Api Am2 - Apn | b

We say A = [A;;] is the coefficient matrix of the system and b = [b;] is the inhomogenous
term. When b = 0 the system is homogeneous. The system of equations can also be
expressed as a matrix equation Ax = b. The solution set of the system is the set of
all z € F™ for which Az = b. If the solution set is empty then the system is said to be
inconsistent. If there exists a solution to Az = b then the system is consistent.

The vertical bar is optional, I include it to draw attention to the distinction between the matrix
of coefficients A;; and the nonhomogeneous terms b;. Let us briefly review the method of solving
systems of equation via row-reduction.

Definition 1.5.2. Elementary Row operations: Let A € F™*"™ we define

Effect on the linear system: Effect on the matrix:

Interchange equation ¢ and equation j

Type I (List the equations in a different order.) < Swap Row i and Row j
Type T Multiply both sides of equation i by a non- Multiply Row ¢ by ¢

zero scalar ¢ where ¢ # 0
Type TIT Multiply both sides of equation ¢ by ¢ and — Add ¢ times Row i to Row j

add to equation j where c is any scalar
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If we can get matrix A from matrix B by performing a series of elementary row operations, then
A and B are called row equivalent matrices.

Of course, there are also corresponding elementary column operations. If we can get matrix A
from matrix B by performing a series of elementary column operations, we call A and B column
equivalent matrices. Both of these equivalences are in fact equivalence relationﬂ While both
row and column operations are important, we will (for now) focus on row operations since they
correspond to steps used when solving linear systems.

The Gauss-Jordan Elimination is an “algorithm” which given a matrix returns a row equivalent
matrix in reduced row echelon form (RREF). Let us give a precise account of this algorithm:

Definition 1.5.3. A matriz is in Row Echelon Form (or REF) if...
Given a matrix over a field F. We first perform a forward pass:

(1.) Determine the leftmost non-zero column. This is a pivot column and the topmost
entry is a pivot position. If “0” is in this pivot position, swap (an unignored)
row with the topmost row (use a Type I operation) so that there is a non-zero
entry in the pivot position.

(2.) Add appropriate multiples of the topmost (unignored) row to the rows beneath it

so that only “0” appears below the pivot (use several Type III operations).

(3.) Ignore the topmost (unignored) row. If any non-zero rows remain, go to step 1.

The forward pass is now complete, such matrices can be denoted ref(A). Now let’s finish Gauss-
Jordan Elimination by performing a backward pass:

(1.) If necessary, scale the rightmost unfinished pivot to 1 (use a Type II operation).

(2.) Add appropriate multiples of the current pivot’s row to rows above it so that only
0 appears above the current pivot (using several Type III operations).

(3.) The current pivot is now “finished”. If any unfinished pivots remain, go to step 4.

(4.) Let the matrix you have obtained is denoted rref(A), this is short-hand for the
reduced row echelon form of A.

Proof that rref(A) is unique can be found in many texts, I hope the reader will forgive me for
omitting such proof here.

One advice to always keep in mind, you should think of the Gauss-Jordan algorithm as a sort of
road-map. It’s ok to take detours to avoid fractions and such but the end goal should remain in
sight. Also, keep in mind, it is sometimes far simpler to simply add equations directly or make
strategic substitutions instead of robotically following the algorithm. For homework, it is important
to use technology to check your work on row-reductions. I offer a number of examples, but most
of this should be a review from the previous course.

"recall an equivalence relation on a set is a relation which is reflexive, symmetric and transitive.
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Example 1.5.4. The equations x +2y —3z =1, 2x + 4y =7 and —x + 3y + 22 = 0 can be solved

by row operations on the matrix [A|b] below: Given [A|b] = ; 421 _03 ; calculate rref(Alb).
-1 3 210
1 2 -3|1 1 2 —-3|1]
B I T el BT e
(1 2 =31 1 2 =317
_8 g _61 ? r2 1y 8 g —61 é_ = ref[A]b]

1 2 -3|1 1 2 =3 1 ]
e = [ 31 [0 ] ] e
(1 2 -3 1 1 2 0|21/6 )
k g 1 151//66 ri+3ry 8 8 (1) 151//66 i
[ 1 0| 21/6 1 0 0/83/30
k (1) (1) 1;?20 r1—27’§ ’ (1) (1) 1;?20 = rref(A)

Thus, we’ve found the system of equations x +2y —3z=1,2x+4y =7 and —x + 3y + 22 = 0 has
solution x = 83/30,y = 11/30 and z = 5/6. This means the matriz equation Ax = b where

1 2 -3 x1 1 83/30
Az=1] 2 4 0 T2 | =7 has vector solution |x = | 11/30
-1 3 2 x3 0 5/6
‘Ar z b

Remark 1.5.5.

The geometric interpretation of the last example is interesting. The equation of a plane
with normal vector < a,b,c > is ax + by + cz = d. Each of the equations in the system of
Example has a solution set which is in one-one correspondence with a particular plane
in R3. The intersection of those three planes is the single point (83/30,11/30,5/6).

Example 1.5.6. Solve the following system of real linear equations if possible,

r—y=1
3x—3y=20
20 — 2y = -3
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Calculate,
1 —1] 1 ] 1 1] 1
[Al]b] = 3 =3/ 0 T9 —31“; 0 0 |-3] s —27‘}(
|2 2| -3 2 —2|-3
(1 —1| 1 ] (1 -1 1
3r T3 Ty
0 0 |-3 5 0 0 |-15 -1,
0 0|5 0 0|15 R
1 -1]1 1 —1]0
0 0|1 S’ 0 0|1 |= rref(Ald)
(0 00 (0 00

which shows the system has since Tow two in the rref corresponds to the equation

0z + 0y =1. The given equations are inconsistent.

Example 1.5.7. Solve the following system of real linear equations if possible,
rT—y+2=0
3x—3y=20
20 =2y —32=0

Gaussian elimination on the augmented coefficient matriz reveals

1 -1 110 1 -1 0]0 P—
rref |3 =3 0 fo|l=|0 0 10| = 236
2 -2 —30 0 0 00 -

The row of zeros indicates that we will not find a unique solution. We have a choice to make, either
x ory can be stated as a function of the other. Typically in linear algebra we will solve for the
variables that correspond to the pivot columns in terms of the non-pivot column variables. In this
problem the pivot columns are the first column which corresponds to the variable x and the third
column which corresponds the variable z. The variables x, z are called dependent variables while

y 15 called a free variabl. The solution set is ’ {(y,9,0) | y € R}
and z =0 for all y € R.

;in other words, x = y,y =y

You might object to the last example. You might ask why is y the free variable and not x. This is
roughly equivalent to asking the question why is y the dependent variable and x the independent
variable in the usual calculus. However, the roles are reversed. In the preceding example the vari-
able z depends on y. Physically there may be a reason to distinguish the roles of one variable over
another. There may be a clear cause-effect relationship which the mathematics fails to capture.
For example, velocity of a ball in flight depends on time, but does time depend on the ball’s velocty
? I'm guessing no. So time would seem to play the role of independent variable. However, when
we write equations such as v = v, — gt we can just as well write t = *=22; the algebra alone does
not reveal which variable should be taken as ”independent”. Hence, a choice must be made. In the
case of infinitely many solutions, we customarily choose the pivot variables as the ”dependent” or

8the choice of free and depedendent variables is suggested by the pivot positions, however, there may also be other
reasonable choices
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"basic” variables and the non-pivot variables as the ”free” variables. Sometimes the word parame-
ter is used instead of variable, it is synonomous.

We can calculate the rref of a matrix even when no equations are given.

Example 1.5.8. Find the rref of the matriz A € F3*5 given below:

1 1 111 1 1 1 1 1

i PR R R
1 1 1 1 1] 111 1 1
BRI R
111 1 1] 111 1 1
T HE T S
[1 1 0 1/4 0] 1 00 —1/4 0
AR H At R

The equation Ax = 0 can be solved via the reduction above since row operations act column by
1 00 —-1/4 0|0

column. With no further calculation, we note: rref[A|0)=1]10 1 0 1/2 0|0 |. Therefore,
001 3/4 1|0

we find solution se{™} {(x4/4, —x4/2, —3x4/4 — 25,24, 75) | 74,75 € F}.

Example 1.5.9. We can rewrite the following system of linear equations

1 +x4=0
201 4+ 2x0+ 25 =0
Az + 4xo + 43 =1

in matriz form this system of equations is Av = b where

1
10010 o 0
Av=1_2 2 0 0 1 z3 | =10
4 4 400 74 1
~——
5
A b

Gaussian elimination on the augmented coefficient matriz reveals

1 00 1 0|0 1 00 1 0 0
rref| 2 2 0 0 1|{0|=]010 -1 1/2 ] 0
4 4 4 0 0|1 001 0 -1/2|1/4

9Tn the span notation, Spany{(1, =2, —3,1,0), (0,0, —1,0,1)} and you might recall this calculation as finding the
basis for the nullspace of A. We discuss this further in a more abstract context a bit later in the course.
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Consequently, x4, x5 are free and solutions are of the form

1 = —X4
1

Tr9 = T4 — §$5
1 1

xr3 = Z‘i‘ §$5

for all x4, x5 € R. The vector form of the solution is as follows:

—X4 —1 0 0

T4 — %1‘5 1 —% 0

_ 1 1 _ 1 1
v = it 35 =24 0 + x5 5 + | 7
Ty 1 0 0

T 0 1 0

Remark 1.5.10.

You might ask the question: what is the geometry of the solution set above 7 Let S =
Soljap C R®, we see S is formed by tracing out all possible linear combinations of the
vectors v1 = (—1,1,0,1,0) and ve = (0, —%, %,0, 1) based from the point p, = (0,0, %,0,0).
In other words, this is a two-dimensional plane containing the vectors vi,v2 and the point
po. This plane is placed in a 5-dimensional space, this means that at any point on the plane

you could go in three different directions away from the plane.

The examples which follow are probably not a review for the students of Math 321. Gaussian
elimination over F when F # R, Q, C follows the same rules. The main difference is we have to keep
in mind the rules for arithmetic for the finite field in question. See Appendix Chapter [7] for a brief
introduction.

Example 1.5.11. In Z/27 we calculate (See Chapter@ if you seek background):

11 10] ,yy 1110 1010 100 1
A=1101T4+T 001 1| r+rg |00 1 1 mtr| 0011
1010 234 o100 010 0 010 0

then swap rows 2 and 3 to obtain

Example 1.5.12. In this ezample we calculate in 7./57 (See Chapter@ explains this in depth):

110 140 3 1 40 3
ro — 2r
A = 1 4 0 3 rLr 2110_43077176:
31 1 1 Flan11] =3 {0 S s
(1 4 0 3 1 0 3 02 1
L+
31 -1 2 |0 1 2 -2 AJF 012 -2 2r3
0 -1 1 2 0 -1 1 2] B8 o003 o0
(10 2 1 100 1 1001
ry— 2r
01 2 — j 01 0 —2|=|]010 3]|=rref(4)
001 o] 2= o0 1 0 0010
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SYSTEMS OF LINEAR EQUATIONS

Theorem 1.5.13.

Given a system of m linear equations and n unknowns over an infinite field, the solution
set, falls into one of the following cases:

(i.) the solution set is empty.

(ii.) the solution set has only one element.

(iii.) the solution set is infinite and is parametrized by (n — k)-parameters where
k is the number of pivot columns in the reduced row echelon form of the
augmented coefficient matrix for the system.
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Proof: Consider the augmented coefficient matrix [A[b] € F™*("+1D) for the given system of m-
linear equations in n-unknowns over the infinite field F. Apply the Gauss-Jordan Algorithm to
compute rref[A[b] and consider the possible cases:

If rre f[A|b] contains a row of zeros with a 1 in the last column then the system is inconsistent and
we find no solutions thus the solution set is empty. This brings us to case (i.).

Suppose rref[A]b] does not contain a row of zeros with a 1 in the far right position. Then there
are less than n + 1 pivot columns and we may break into two possible subcases:

(a.) Suppose there are n pivot columns, let ¢; for i = 1,2,...m be the entries in the rightmost col-
umn. We find x; = ¢1,x2 = ¢, ... 2, = ¢ Consequently the solution set is {(c1,ca,...,cm)}

which we identify as case (ii.).

If rre f[A]b] has k < n pivot columns then there are (n + 1 — k)-non-pivot positions. Since the
last column corresponds to b it follows there are n —k > 1 free variables. Examining rref[A|b]
we find the k-pivot variables can be written as affine linear combinations of the k-free variables.
In short, the solution set is parametrized by the (n — k)-free variables and since n — k > 1
and each free variable takes as many values as F we find the cardinality of the solution set is

infinite.

Naturally, the last case considered provides case (iii.) and the proof is complete [J

In the case of a finite field we find a very similar theorem. The proof is nearly the same so we omit
all but the most interesting detail.

Theorem 1.5.14.

Given a system of m linear equations and n unknowns over a finite field with P elements ,
the solution set falls into one of the following cases:

(i.) the solution set is empty.

(ii.) the solution set has P % solutions which are parametrized by n — k-
parameters where k is the number of pivot columns in the reduced row
echelon form of the augmented coefficient matrix for the system.
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Proof: If there are kK = n pivot columns then we find a unique solution and this is consistent with
the formula P»~" = P% = 1. On the other hand, in the case the system is consistent and there are
k < m pivot columns there are n — k free variables. Each free variable ranges over the P elements
of F hence there are P"~* possible solutions. O]

Example 1.5.15. To give an easy and possibly interesting example, consider t—y—z =1 in Z/27
the finite field with 2 elements. Observe y, z serve as parameters of the solution set as x = 1+y+z:
solution set ={(1 +y+ z,y,2) | y,z € Z/2Z}

To be explicit, the solution set has 22 = 4 solutions:
solution set = {(1,0,0),(0,0,1),(0,1,0),(1,1,1).}
If this system was given over Z/3Z then we would find 3* = 9 solutions.

1.5.1 superposition of solutions

Theorem 1.5.16. Superposition of solutions:

Let A € F™ ", Let ¢1,co € F and suppose there exist x1,z9 € F" for which Arq1 = b1 and
Axzo = by then z = c1a1 + coxo is a solution of Az = ¢1b; + c2by. In particular, if Axy =0
and Axzo = 0 then cizo + caxo is a solution to Ax = 0.

Proof: with x1,z2 as in the Theorem we note:
A(Cll‘l + CQ.TQ) = c1Az1 + coAxo = ¢1b1 + cobs.

The homogeneous case follows from setting by = by = 0. [

Example 1.5.17. If we have two nonhomogeneous solutions of the same linear system then it is
easy to gemerate a homogeneous solution. To see this, suppose Axy = b and Axe = b. Notice
A(zg — 1) = Axg — Axy = b — b =0 thus x9 — x1 is a solution of Az = 0.

The example above is interesting for physical systems. We can subject a given linear system to
two known forces and from the difference in the response functions it is possible to determine the
intrinsic character of the system in the absense of external force. In a linear system, the net-response
is a superposition of the responses to each source driving the system.

Theorem 1.5.18. General solution is sum of particular and homogeneous solutions.

Let A € F™*™ and b # 0. Suppose Az, = b for some z), # 0 then any solution of Az =b
has the form z = x5, + x, where Ax; = 0.

Proof: if Az, = b and Az = b then A(z — x,) = Ax — Az, = b—b =0 hence zj, = z — x,, has
Azp, = 0 and we conclude x = z;, + x, as desired. [

If Axp, = 0 then zj, € Null(A). The dimension of the nullspace of a matrix is called its nullity.
The nullity is the number of non-pivot columns in A.
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1.6 elementary matrices

1.6.1 definition of elementary matrices

Since we already know about matrix multiplication, it is interesting to note that an elementary row
operation performed on A can be accomplished by multiplying A on the left by a square matrix
(called an elementary matrixﬂ Likewise, multiplying A on the right by an elementary matrix
performs a column operation. We assume F is a field in what follows.

Recall, e; = (0,...,1,...,0) € F" where the non-zero entry is located in the i—positiorﬂ For

example, e; = [(1)] and ey = [ﬂ in F2. We saw in Subsection [1.3.2| that we can construct the

identity matrix and the standard basis in F**™ from the standard basis vectors e; € F™:

I:[€1|€2"-'|€n] & Eij2616?:[O,...,O,ei,o,...,()]

The matrix E;; has a 1 in the (4, j)-position and 0’s elsewhere. An illustration from the 2 x 2 case:

1 10

In Example [I.3.19] we learned multilpication by e; on the right of A produces the j-th column of
A. Likewise, in Example |1.3.20| we saw multiplication of e;; on the left of A allows us to select the
i-th row of A:

Example 1.6.1. In F?*2,  Ey = egel = [O} 1 0] = [O 0}

Aej = col;(A) & el A = row;(A).

Again, we illustrate these identities in the 2 x 2 case:

1 2
3 4} Thus,

AeFB ﬂ m:m & fA=[0 1] [:1,) ﬂ:[g 4.

Proposition [1.3.15| which allows us to view matrix multiplication as

Alvi vy -+ vy = [Avy Avg -+ Avy]

Example 1.6.2. Let A = [

(i.e. done column-by-column) and Proposition |1.3.16|allows us to view matrix multiplication as:

Wy wiA
(i.e. done row-by-row). Therefore,
AE;; = A0 ---0€;0 ---0]=1[0--- 0Ae 0 --- 0]

is merely the i*! column of A slapped into the j'' column of the zero matrix. Likewise, E;; A is the

4 row of A slapped into the i*" row of the zero matrix. Illustrate via the 2 x 2 case once more:

2%in a compressed treatment of linear algebra I might avoid discussion of these, but, as we will see shortly, these

elementary matrices allow for concrete proofs of many important aspects of row reduction, the structure of inverse
matrices, even the product identity for determinants. Skipping these is not wise if we care about why things work

21in R? we sometimes call e; = i and es =jand in R? sometimes we say e = i, e2 = j, es = k. However, in my
multivariate calculus notes I use the notation e; = Z; to denote unit-vectors in the direction of the i-th Cartesian
coordinate, or Z, ¥, z for the usual three-dimensional applications.
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1 2
3 4

R i | P R [

Proposition 1.6.4. Elementary Matriz of Type I:

Example 1.6.3. Let A = [ } Then,

fE=1I,—E;—Ej;+E;;+E;; € F™™ and A € F™*" then EFA is A with the i-th and
j-th row of A swapped.

Proof: let &/ = I,,, — E;; — Ej; + E;; + Ej;. Let’s track through how the various parts of £ act on
A by left-multiplication:

(1.) E;A would be the i*h row of A left in place with all other rows zeroed out. Likewise E;;A
provides be the j* row of A left in place with all other rows zeroed out

(2.) by (1.) we find (I, — Ej; — Ejj)A = A — E;A— E;jA wipes out rows ¢ and j

(3.) E;;jA would be the j* row of A moved to the i*® row with all other rows zeroed out. Thus,
by adding in (E;; + Ej;)A, we put rows i and j back but interchanging their locations in
E =1, — Eii — Ej; + Eij + Eji.

In summary, EA swaps rows ¢ and j. In particular, £ = EI,, is the identity matrix with rows ¢

and j swapped (this gives an explicit formula for E). O

It is interesting to note that ET = IZ; — EZ:C — E}; + EE; + E}; =1I,—-FE; —Ej; +Ej; + Ej =FE.
Also, since swapping twice undoes the swap, E~! = E (F is its own inverse).

Example 1.6.5. We obtain an elementary matriz E for Type I operation formed by swapping rows
1 and 3 (so E = I3 — E11 — Es3+ Fi3+ Es31).

0 01 2 -1 3 : -1 -1 0 4 : 7
010 0O 5 -6 : 0f=]0 &5 -6 : 0
10 0] [-1 0 4 : 7 2 -1 3 : -1

Proposition 1.6.6. Elementary Matriz of Type II: for ¢ # 0 in F:

If E =1, — FE;+cE;; € F™™ and A € F™*" then FA is A with the i-th row of A
multiplied by c.

Proof: Let E = I,,, — E;; + cE;;. Observe (I,,, — E;;) A gives A with the i-th row zeroed out. Note
cE;; A provides a matrix with zero all rows except the i-th row. In the i-th row of cE; A we find
crow;(A). Hence, F A gives A with the i-th row multiplied by ¢ and the remaining rows unaltered. [J

Notice that E~! = I,,, — E;; + ¢ ' Ej;; (to undo scaling row i by ¢ we should scale row i by 1/c). So
E~! corresponds to a type II operation.

Example 1.6.7. We find E for a Type II operation of scaling row 3 by -2
(so we set E = I3 — E33 + (—2)FEs3).

1 0 O 2 -1 3 : -1 2 -1 3 : -1
01 0 O 5 -6 : O0f=1]0 5 —6 : 0
o0 -2|(-1 0 4 : 7 2 0 =8 —14
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Proposition 1.6.8. Elementary Matriz of Type III: for s € F and i # j:

If £ = Iy +sEj; € F™*™ and A € F™*" then F'A has rowy(EA) = rowy(A) for k # j and
row;(EA) =row;(A) 4+ srow;(A).

Proof: Let E = I,,, + sEj;. Again, recall left multiplication by Ej; (note the subscripts) will copy
row ¢ into row j’s place. So E = I,;, + sEj; will add s times row ¢ to j. [J

To undo adding s times row j to row ¢ we should subtract s times row j from row ¢. Therefore,
E-'=1, — sEj;, so yet again the inverse of an elementary operation is an elementary operation
of the same type.

Example 1.6.9. A Type III operation can be formed by adding 3 times row 8 to row 2
(so we construct E = I3 + 3FEs3).

1 00 2 -1 3 : -1 2 -1 3 : -1
01 3 0O 5 -6 : 0=]|-3 &5 6 : 21
oo 1|]-1 0 4 : 7 -1 0 4 7

Notice, the discussion in this section shows:

Proposition 1.6.10.

Each elementary matrix is invertible with inverse matrix of the same type.

Proposition 1.6.11.

Let A € R™*™ then there exist elementary matrices F1, Fo, ..., Ej
such that rref(A) = Ey - -+ EoEq A.

Proof: Gauss Jordan elimination consists of a sequence of k elementary row operations. Each
row operation can be implemented by multiplying the corresponding elementary matrix on the left.
Hence successively left-multiplying A by each elementary matrix corresponding to a row operation
in the sequence will produce rref(A). O

1.6.2 superaugmented matrices and inverse matrix calculation
Suppose we have a system of equations Az = b; and another system Ax = by. Both systems
share the same coefficient matrix A. Suppose FE is a product of elementary matrices for which
rref(A) = FA. Since row-reduction is done column-by-column,
TTef[A‘bllBQ] = E[A’bllbg]
Apply Corollary [1.3.18
rref[A|bi|be] = [EA|Eby|Ebs] = [rref(A)|Eby|Ebs].

This means we can calculate the solution to multiple systems with the same row-reduction.
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Example 1.6.12. Solve the systems given below,

r+yt+z=1 r+y+z=1
r—y+2z=0 (L) and r—y+z=1 (IL)
—r+z=1 —r+z=1

The systems above share the same coefficient matriz, however by = (1,0,1) whereas by = (1,1, 1).
We can solve both at once by making an extended augmented coefficient matriz [A|by|ba]

1 1 1]1]1 1 0 0|—=1/4]0
[Abilbo] = | 1 -1 1]0]1 rref[Albilbo] = | 0 1 0 1/2 |0
-1 0 1]1]1 0 0 1| 3/4 |1
Thus ( 1.) has solution (—1/4,1/2,3/4) and ( I1.) has solution (0,0,1).
If A€ F™*" is invertible then there exist v1,...,v, € F* such that A=t = [vy]---|v,] and

AA =T = Afvr| - |vp] = [Avr] -+ |[Avp] = [e1] - - |en] = Avj =g

for j = 1,...,n. Therefore, the inverse of A exists if and only if the equations Av, = ey, ..., Av, =
en have a solution. We can calculate these n-solutions by simply row reducing the super-augmented
coefficient matrix [Aleq|- - |ey].

Suppose A is square and rref(A) = FA then
rref[A|l] = E[A|I]| = [FA|EI = [rref(A)|E]

If rref(A) # I then at least one pivot column is found in the last n-columns of the n x (2n) matrix
[rref(A)|E] and so there exists some j for which Az = e; has no solution. In other words, if
rref(A) # I then A~! does not exist. On the other hand, if rref(A) = I then rref[A|l] = [I|E]
and we see FA = I thus E = A~!. This is the logic behind the algorithm taught to find the inverse
by row-reducing [A|]].

Example 1.6.13. Recall that in Ezample[1.5.8 we worked out the details of

100100 1001 0 0
rref [ 2 2 0|0 1 0|=]010|-1 1/2 0
4 4 410 0 1 00 1|0 —1/2 1/4
Thus,
1 007" 1 0 0
2 2 0 =l -1 12 o0
4 4 4 0 -1/2 1/4

The theorem that follows here collects the many things we have learned about an n x n invertible
matrices and corresponding linear systems:
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Theorem 1.6.14.

Let A be an n x n matrix over a field F then the following are equivalent:

(1.) A is invertible,
(2.) rref[A] =1,
(3.) Az =0iff z =0,
(4.) A is the product of elementary matrices,
(5.) there exists B € R ™™ such that AB = I,
(6.) there exists B € R ™" such that BA = I,
(7.) for each b € F™ there exists x € F™ for which rref[A|b] = [I|z],
(8.) Az = b is consistent for every b € F™,
(9.) Az = b has exactly one solution for each b € F™,
(10.) AT is invertible.

1.7 spans of column vectors and the CCP

Recall that the span of a set of vectors in F™ is simply the set of all finite F-linear combinations of
vectors taken from the set. The problem of solving a linear system and the problem of spanning
are naturally linked as is explained in the Proposition:

Proposition 1.7.1.

If A= [vi|vg| - |vy] € F™ ™ and b € F™ then the matrix equation Az = b has the same
set of solutions as the vector equation

X101 + Xov2 + - -+ + Tpv, = b

Thus b € span{vi,va,...,v,} if and only if [v1|ve|- - |v,]z = b has a solution.

Example 1.7.2. Problem: Letb; = (1,1,0),b = (0,1,1) and bs = (0,1,—1).
I@ es € span{by, by, b3} ?

Solution: Find the explicit linear combination of by, bo,bs that produces es. We seek to find
x,1y,z € R such that xby + yby + zbs = eg3,

1 0 0 0 x 0
x| 1| +y|1]|+z=2 1 =10 = r+y+z | =10
0 1 —1 1 Y —z 1

Following the Proposition above, we answer the question by gluing the given vectors into a matriz
and doing row reduction. In particular, we can solve the wvector equation above by solving the

22Z¢hallenge: once you understand this example for es try answering it for other vectors or for an arbitrary vector
v = (v1,v2,v3). How would you calculate z,y, z € R such that v = zb1 + yba + 2b3?



42 CHAPTER 1. MATRICES AND LINEAR SYSTEMS

corresponding system below:

10 010 10 010

1 1 1 (0] ro—r 01 10| rg—r

01 —1]1 g_01_11_
10 007 ™2 110 0] o0
01 110 T2 Ty 01 0| 1/2
00 —2/1] m—p 00 1|-1/2
L 1;

Therefore, v = 0,y = % and z = —%. We find that |e3 = %bg — %b3 thus ez € span{bi,ba, bs}.

Example 1.7.3. Problem: Let by = (1,2,3,4), b = (0,1,0,1) and b3 = (0,0,1,1).
Isw=(1,1,4,4) € span{by,ba,b3}?

Solution: Following the same method as the last example we seek to find x1,xo and x3 such that
x1b1 + x2bo + x3bs = w by solving the aug. coeff. matriz as is our custom:

10 0[17] o 1001
baltau] = | 2 L O ﬁ—gr 01 0|-1 -
Ho10sfwf="1q9 ¢ 104 | 2=2% |9 0 1|1 | ™R

401 1]4] ™= o1 1o

1.0 0] 1 10 0|1

01 0|1 01 0]-1

(00 1|1 00 0|0

We find x1 = 1,29 = —1,23 = 1 thus ’w =by — by + b3 ‘ Therefore, w € span{by, ba, bs}.

Pragmatically, if the question is sufficiently simple you may not need to use the augmented coeffi-
cient matrix to solve the question. I use them here to illustrate the method.

Example 1.7.4. Problem: Let by = (1,1,0) and be = (0,1,1).

Is ey € span{by, by} ?

Solution: Attempt to find the explicit linear combination of by, by that produces es. We seek to
find x,y € R such that xby + yby = es3,

1 0 0 x 0
z| 1l |4+y|1|=]1 = r4+y | =1
0 1 0 Y 0

We don’t really need to consult the augmented matrix to solve this problem. Clearly x = 0 and
y = 0 is found from the first and third components of the vector equation above. But, the second
component yields x +y = 1 thus 0+ 0 = 1. It follows that this system is inconsistent and we may
conclude that w ¢ span{bi,bs}. For the sake of curiousity let’s see how the augmented solution
matriz looks in this case: omitting details of the row reduction,

1 0/0 1 0/0
rref |1 1|1 | =10 1]0
0 1|0 0 0|1

note the last row again confirms that this is an inconsistent system.
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1.7.1 solving several spanning questions simultaneously

If we are given B = {b1,b,...,bx} CF" and T = {w1,wy,...,w,} C F" and we wish to determine
if T' C span(B) then we can answer the question by examining if [b1|b| - - - |bg]z = w; has a solution
for each j = 1,2,...r. Or we may solve it by calculating

rreflbi|be| - - - |bg|[wi|wz| - |w,].

The notation || is used to distinguish between the generating vectors from B and the target vectors
in T'. The question is whether or not the vectors in T can be attained by some linear combination
of the vectors in B. If there is a row with zeros in the first k-columns and a nonzero entry in the
last r-columns then this means that at least one vector wy is not in the span of B (moreover, the
vector not in the span corresponds to the nonzero entrie(s)). Otherwise, each vector is in the span
of B and we can read the precise linear combination from the matrix. I will illustrate this in the
example that follows.

Example 1.7.5. Let W = span{e; + ea,es + e3,e1 — es} and suppose T = {e1,e2,e3 —e1}. Is
T C W ¢ If not, which vectors in T are not in W ¢ Consider, [e1 +ea|ea +es|er —es||er|ez]|es —e1] =

111 0 1 0 1 1 0 -1
00 1 O ry =Ty 01 —-1-1 1 1
0 0 01 -1 0 0 1

Let me summarize the calculation:

1 0 1 0o 1 -1
rrefler + ealea + esler — esllerleales —er] =1 0 1 =10 O 1
0 0 O 1 -1 0

We deduce that e; and es are not in W. However, e3 — e; € W and we can read from the matrix
—(e1+e2)+ (e2+e3) =es3 —ey. I added the double vertical bar for book-keeping purposes, as usual
the vertical bars are just to aid the reader in parsing the matriz.

In short, if we wish to settle if several vectors are in the span of a given generating set then we can
do one sweeping row reduction to determine what is in the span. This is a great reduction in labor
from what you might naively expect. That said, the CCP is even faster. Let’s get to it.

1.7.2 CCP and linear dependence of column vectors

Recall a set of column vectors in F” is said to be linearly dependent if there exists a vector in the
set which can be written as an F-linear combination of other vectors in the set. In particular, if b €
span{vi, ..., v} then {b,v1,..., v} is a linearly dependent set. Our main goal here is to understand
a particular technique which is special to the context of column vectors. I call this method the
Column Correspondence Property or CCP. Others call it the linear correspondence. In
short, the CCP allows us to decide questions of linear dependence simply by inspection of the rref
and common sense.
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Proposition 1.7.6. Column Correspondence Property (CCP)

If A, R € F™*™ are row-equivalent matrices then any linear dependence of the columns of
R is shared by the columns of A. In particular, any linear dependence found amongst the
columns of rref(A) is likewise found in the columns of A.

Proof: if A and R are row-equivalent then there exist elementary matrices F1, ..., E} for which
R = Ey---E1A. Let E = Ey---E; for brevity of notation. Let A = [A;]---]4,] and R =
[R1|---|Ry]. Observe,

FEA=R = FE[A] --|A)=[EA] --|FA)) =[Ri|---|R,] = FEA; =R,
for j=1,...,k. Suppose ci,...,ci € F such that 2?21 c;jA; = 0. Multiply by E on the left,

k
FE chAj = E(O) =0 = ZC]‘EAJ' = ZCjRj =0
= - -

Likewise, if we suppose there exist by,...,br € F such that Z?:l bjR; = 0 then multiplication

by E~! on the left, paired with th observation A; = E~'R;, will likewise yield Z?:l b;R; = 0.
Finally, the claim about the rref(A) follows immediately since rref(A) and A are row-equivalent
matrices. [

Example 1.7.7. In Example we studied by = (1,1,0),b2 = (0,1,1) and b3 = (0,1, —1) and
asked if es € span(by,ba,b3) ¢ We calculated:

1 0 0 0 1 )
rreflbi|balbsles]= | 0 1 0| 1/2 = e3= 5[)2 _ 553
00 1|-1/2

by the CCP and inspection of the row reduced matrix above.

Example 1.7.8. In Example we studied by = (1,2,3,4), ba = (0,1,0,1) and b3 = (0,0,1,1)
and asked if w = (1,1,4,4) € span{b1, bz, b3} ¢ Observe that the CCP yields the implication below:

1 0 01
01 0]—-1

rref[bi]ba|bs|w] = 00 1|1 = w=>b; —by+bs.
0 0 0] O

Example 1.7.9. In Ezample we set by = (1,1,0) and by = (0,1,1) and we asked if ea €
span{by,be} ¢ Observe, by the CCP applied to rref[bi|bsles], the answer is clearly no,

1 0]0
rreflbilbeles] = | 0 1]0 = ey ¢ span{by,ba}
0 01

Example 1.7.10. Let us revisit Example [1.7.5. Let vi = e1 + ez, va = ez + €3, v3 = e3 — €1 and
set W = span{vi,ve,v3}. Since

10 1|0 1 -1
rreflui|va|vs|lerlezles —e1]=| 0 1 —1(0 0 1
00 O0}1 -1 O

the CCP implies e1,ea ¢ W whereas e3 —e; = vy —v; € W
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You should notice that the CCP saves us the trouble of expressing how the constants ¢; are related.
If we are only interested in how the vectors are related the CCP gets straight to the point quicker.
In invite the reader to look at all the row-reductions in this Chapter in light of the CCP.
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Chapter 2

Vector Spaces

Points without a place,
laws define what eyes can’t see—
space built out of thought. EXTRANEOUS G, 2025

Up to this point the topics we have discussed loosely fit into the category of matrix theory. The
concept of a matrix is millennia old. If I trust my source, and I think I do, the Chinese even
had an analog of Gaussian elimination about 2000 years ago. The modern notation likely stems
from the work of Cauchy in the 19-th century. Cauchy’s prolific work colors much of the notation
we still use. The concept of coordinate geometry as introduced by Descartes and Fermat around
1644 is what ultimately led to the concept of a vector spaceﬂ Grassmann, Hamilton, and many
many others worked out volumous work detailing possible transformations on what we now call
R2 R3 R*. Argand(complex numbers) and Hamilton(quaternions) had more than what we would
call a vector space. They had a linear structure plus some rule for multiplication of vectors. A
vector space with a multiplication is called an algebra in the modern terminology.

Honestly, I think once the concept of the Cartesian plane was discovered the concept of a vector
space almost certainly must follow. That said, it took a while for the definition I state in the
next section to appear. Giuseppe Peano gave the modern definition for a vector space in 1888ﬂ In
addition he put forth some of the ideas concerning linear transformations. Peano is also responsible
for the modern notations for intersection and unions of setﬂ He made great contributions to proof
by induction and the construction of the natural numbers from basic set theory.

I should mention the work of Hilbert, Lebesque, Fourier, Banach and others were greatly influential
in the formation of infinite dimensional vector spaces. Our focus is on the finite dimensional case[]

Let me summarize what a vector space is before we define it properly. In short, a vector space
over a field F is simply a set which allows you to add its elements and multiply by the numbers in
F. A field is a set with addition and multiplication defined such that every nonzero element has a
multiplicative inverse. Typical examples, F = R, C,Q,Z/pZ where p is prime.

'Bourbaki 1969, ch. ”Algebre lineaire et algebre multilineaire”, pp. 78-91.

ZPeano, Giuseppe (1888),Calcolo Geometrico secondo I Ausdehnungslehre di H. Grassmann preceduto dalle Oper-
azioni della Logica Deduttiva, Turin

3see Pg 87 of A Transition to Advanced Mathematics: A Survey Course By William Johnston

4this history is flawed, one-sided and far too short. You should read a few more books if you’re interested.
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Vector spaces are found throughout modern mathematics. Moreover, the theory we cover in this
chapter is applicable to a myriad of problems with real world content. This is the beauty of linear
algebra: it simultaneously illustrates the power of application and abstraction in mathematics.

2.1 definition and examples

Axioms are not derived from a more basic logic. They are the starting point. Their validity is
ultimately judged by their use. However, this definition is naturally motivated by the structure of
vector addition and scalar multiplication in R™ (or F" if that is where your intuition rests)

Definition 2.1.1.

A vector space V over a field F is a nonempty set V together with a function + : VxV — V
called vector addition and another function - : F x V' — V called scalar multiplication.
We require that the operations of vector addition and scalar multiplication satisfy the
following 10 axioms: for all z,y,z € V and a,b € F,

(Al) z4+y=y+azforallz,y eV,

(A2.) (z+y)+z=2+(y+2) foralz,yzeV,

(A3.) there exists 0 € V suchthat t +0=2x=0+z forallz € V,

(A4.) for each x € V there exists —z € V such that z + (—z) =0 = (—z) + =,
(A5.)) 1-z=zforallz eV,

(A6.) (ab)-x=a-(b-z)forallz € V and a,b €T,

(A7) a-(zx+y)=a-z+a-yforall x,y eV and a € F,

(A8.) (a+b)-z=a-x+b-xforallz €V and a,b e F,

(A9.) If x,y € V then = + y is a single element in V,
(we say V is closed with respect to addition)

(A10.) If x € V and c € F then c- x is a single element in V.
(we say V is closed with respect to scalar multiplication)

We call 0 in axiom 3 the zero vector and the vector —z is called the additive inverse of
x. We will sometimes omit the - and instead denote scalar multiplication by juxtaposition;
a-z = ax. We write V(F) to communicate that the pointset V' is a vectorspace over F.

Axioms (9.) and (10.) are admittably redundant given that those automatically follow from the
statements that +: V xV — V and - : F x V — V are functions. I've listed them so that you are
less likely to forget they must be checked.

The terminology ”vector” does not necessarily indicate an explicit geometric interpretation in this
general context. Sometimes I'll insert the word ”abstract” to emphasize this distinction. We’ll see
that matrices, polynomials and functions in general can be thought of as abstract vectors.

Example 2.1.2. Real Matrices form real vector spaces: R is a vector space if we identify
addition of real numbers as the vector addition and multiplication of real numbers as the scalar
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multiplication. Likewise, R™ forms a vector space over R with respect to the usual vector addition
and scalar multiplication:

(x4+y)i=x+uy & (cx); = cx;

for each i € N, and x,y € R"™ and c € R. In fact, even R™ is just the n x 1 case of R™*™. Indeed,
R™*™ forms a vector space over R with addition and scalar multiplication of matrices defined as
we studied in previous chapters:

(A+B)ij = Aij+ By & (cA)yy = cAj;
for all (i,7) € Ny, x N, and A, B € R™*" and ¢ € R.

In the previous example, I introduced the standard interpretation of R, R™ and R™*" as real
vector spaces. To say V is a real vector space is just another way of saying V is a vector space
with the field of scalars being the real numbers. Proof that Axioms 1-10 are met was already given
in part in Proposition and Theoremm (if we prove something for an arbitrary commutative
ring then this naturally includes the case R = R). I should mention, we can also view R, R™ and
R™*™ as vector spaces over the rational numbers Q. Our notation for such vector spaces would be:

R(@Q), R™(Q), R™™(Q)

which indicates vector spaces of real numbers, vectors and matrices such that the scalar multipli-
cation by rational numbers. However, even R is infinite dimensional over the rational numbers. In
contrast, R is one-dimensional over R. For now, I use the term dimensional as an intutitive term,
we shall soon give it a rigorous meaning. The next example should not be surprising in view of

Example

Example 2.1.3. Complex matrices form complex vector spaces: C is a vector space if we
identify addition of complexr numbers as the vector addition and multiplication of complex numbers
as the scalar multiplication. Likewise, C™ forms a vector space over C with respect to the usual
vector addition and scalar multiplication:

(r+y)i =x +yi & (cx); = cx;

for each i € N, and x,y € C" and c € C. In fact, even C" is just the n x 1 case of C"™*™. Indeed,
C™* ™ forms a vector space over C with addition and scalar multiplication of matrices defined as
we studied in previous chapters:

(A+B)ij =Aij+ By & (cA)y =cAy
for all (i,7) € Ny x Ny, and A, B € C"™*"™ and ¢ € C.

If a given point-set permits the assignment of a vector space structure (meaning we can define
addition and scalar multiplication which adhere to Axioms 1-10) then it may be possible to assign
a different vector space structure to the set as well. In Example we discussed C"™*" as
a complex vector space. In contrast, in the example below we give C™*™ a real vector space
structure:

Example 2.1.4. Let V. = C™*™(R) denote the vector space over R where addition and scalar
multiplication are defined by:

(A + B)z‘j = Az‘j + Bij & (CA)Z']‘ = CAij
for all (i,7) € Ny, x N, and A, B € C™*" and ¢ € R.
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Notice, C"™*"(R) is a real vector space whereas C™*"(Q) is a rational vector space. The
choice of scalars is what decides the nomenclature complex or real or rational. Our custom is to let
Cmxn = C™*™(C) and R™*"™ = R™*™(R) and Q"™*" = Q™*™(Q) by default. If in doubt about the
intended choice of scalars for a given problem or example then please ask. I am here to help!

Generalizing a bit:

Example 2.1.5. Matrices over a field F form vector spaces over F: in particular, F™*"
forms a vector space over F with addition and scalar multiplication of matrices defined as we studied
in previous chapters:

(A+B)ij = Aij+ Bij & (cA)ij = cAjj
for all (i,7) € Ny, x N, and A, B € F™*" and ¢ € F. We understand F and F" as sub-cases.
I think the next example will seem a bit different.

Example 2.1.6. Let S be a set and denoteﬁ the set of all real-valued functions from S to R
by F(S,R). Let f,g € F(S,R) and suppose ¢ € R, define addition and scalar multiplication of
functions by

(f+9)(@) = f(2) +9(x) & (cf)(@) = cf(x)

for all x € S. In short, we define addition and scalar multiplication by the natural "point-wise”
rules. This is an example of a function space. Notice that no particular structure is needed for the
domain. The vector space structure is inherited from the codomain of the functions. I invite the
reader to check Axioms 1-10 for this point-set. For example, define z(x) =0 for all x € S then we
can prove z+ f = f+z = f for each f € F(S,R). This shows z : S — R serves as the zero-vector
for F(S,R).

In the interest of confusing the students, we often write z = 0 for the zero-function of the last
example. The notation 0 really means just about nothing. Or, perhaps it means everything. For
example, 0 is used to denote

0, [0,0], [0,0,0], [8} [8 8] [8 8 8]

in appropriate contexts. Let us move on to a less trivial discussion:

Example 2.1.7. Let S be a set and let W be a vector space over F and let V.= F(S,W) denotes
the set of functions from S to W. If we define addition and scalar multiplication of functions in
V in the same fashion as Example then once more we have V as a vector space over F. For
example, functions from R to C? are naturally viewed as a complex vector space. Or, functions
from {a,b,c} to Z/117Z naturally form a vector space over Z/117Z.

Example 2.1.8. Let Py(R) = {ax?® + bx +c | a,b,c € R}, the set of all real polynomials up to
quadratic order. Define addition and scalar multiplication by the usual operations on polynomials.
Notice that if ax® + bx + ¢, dz?® + ex + f € Py(R) then

(az® + bz + )+ (di* +ex + ) = (a+ d)z> + (b + e)x + (c + f) € Py(R)

Sanother popular notation for the set of functions from a set A to a set B is simple B“. That is, F(A,B) = BA. In
particular, this is in some sense consistent with the notation R? as in we can view triples of real numbers as functions
from {1,2,3} to R.
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thus + : Po(R) x Po(R) — Py(R) (it is a binary operation on Pa2(R)). Similarly,
d(az® 4 bx + ¢) = dax® + dbx + dc € Po(R)

thus scalar multiplication maps R x Py(R) — Py(R) as it ought. Verification of the other 8 axioms
is straightfoward. We denote the set of polynomials of order n or less via Pp(R) = {apx™ + -+ +
a1z + aola; € R}. Naturally, P,(R) also forms a vector space. Finally, if we take the set of all
polynomials R[z| it forms a real vector space. Notice,

R C P(R) C P(R) C P3(R) C Py(R) C --- C Rz]
where R is naturally identified with the set of constant real polynomials Py(R)

Real polynomials in a different variable are denoted in the natural fashion; for example, R[t] is the
set of real polynomials in the variable ¢t. Furthermore, once the context is clear we are free to drop
the R notation from P,(R) and simply write P,. We can generalize the last example by replacing
R with an arbitrary field F:

Example 2.1.9. We denote the set of polynomials with coefficients in F of order n or less via
P,(F) = {apz™ + - - - + a17 + apla; € F}. Naturally, P,(F) also forms a vector space over F. The
set of all polynomials with coefficients in F is denoted F[x] and we can show it forms a vector space
over F with respect to the usual addition and scalar multiplication of polynomials.

This list of examples is nowhere near comprehensive. We can also mix together examples we’ve
covered thus far to create new vector spaces.

Example 2.1.10. Let [P>(R)]>*? denote the set of 2 x 2 matrices of possibly-degenerate quadratic
polynomials. Addition and scalar multiplication are defined in the natural manner:

[ AH(:E) Alg(.%') :| + [ Bn(w) 312(1’) :| o [ AH(Q?) —i—BH(:L') ‘ Am(&?) +Blg(:(})
Azi(z) Az(z) Byi(x) Bpa(z) | | Aoi(x) + Bay(z) | Asa(x) + Baa(x)

Ag1(w)  Aza(z) cAgi(r) cAxp(r
possibly degenerate n-th order real polynomials by [P, (R)]™*™. Furthermore, we can replace R with
F to obtain even more varied examples.

and c[ An(z)  Ar(z) ] _ [CAH( cAra(z

] We can similarly define m x n matrices of

Given a pair of vector spaces over a particular field there is a natural way to combine them to make
a larger vector spac

Example 2.1.11. Let V, W be vector spaces over F. The Cartesian product V- x W has a natural
vector space structure inherited from V and W: if (vi,w1), (v2, w2) € V. x W then we define

(v1,w1) + (v2, w2) = (v1 + v2, w1 + w2) & ¢ (vi,wy) = (c-v1,c-wy)

where the vector and scalar operations on the L.H.S. of the above equalities are given from the
vector space structure of V. and W. All the axioms of a vector space for V-x W are eaily verified
from the corresponding axioms for V and W.

Sthis is roughly like adding the vector spaces, in contrast, much later we study V ® W which is like multiplying
the spaces. The tensor product ® also gives us a larger new space from a given pair of vector spaces
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Example 2.1.12. Let V1, Va,..., Vi be vector spaces over F. The Cartesian product Vi x Va X
-+ X Vi has a natural vector space structure inherited from Vi,...,Vi: if x = (x1,22,...,2k),y =
(1,92, yk) € Vi x Vo x -+ X Vi, then we define

r+y=(r14+y,x2+y2,...,Tk + Yg) & c-x=(c-T1,C-X9y...,CTf)

where the vector and scalar operations on the L.H.S. of the above equalities are given from the vector
space structures of V1, ..., Vi respective. All the axioms of a vector space for Vi X Vo X -+ X V. are
eaily verified from the corresponding axioms for Vi, ..., Vi respective.

Example 2.1.13. Let V = R[z,y] = (R[z])[y] then V contains elements such as
11 LY, $27 Ty, 92, 1'3, xzyv $y27 y37 T

more generally, suppose c;; # 0 for only finitely many i,j then f € V' has coeffcients c;; and

o0
=3 ety
i,j=0
If f,g have coefficients c;; and b;; respectively then f + g is defined to have coefficients c;j + b;;.
Notice f + g once more has only finitely many nonzero coefficients and is hence in V. Likewise,
define af = « (Z;’Z-:O aijzz:iyj> = ij’:o aaijxiyj. It follows that V is a real vector space. There

are many ways to extend this example.

Example 2.1.14. Let V = F[z1, za, ..., x,] denote the set of multivariate polynomials in x1,. .., Ty,
with coefficients taken from F. If v € V then there exist finitely many nonzero c;, ;,... i, € F such

that
(o]
11 .0 7 I
V=Dl n I e apE = Y cre
k=0

I
where I have introduced multi-index notation ! = ziag - xzk and Ck, js....ix = C1- 1o be less
concise,

n n n
v =cCy+ E cl,ix’ + E Cgﬂ'ﬂ']}ll'] + E 03,i,j,kxzxjmk 4+
i=1 ij=1 ijik=1

Ifw=>;brx! and a € F then we define:

V4w = cr + bp)at & av = acrzl.
>
I T

Convergence of these seemingly infinite sums is clear since only finitely many multi-indices have
either ¢y # 0 or by # 0. In summary, to add multivariate polynomials simply add coefficients of
like terms. Verification of all the vector space axioms is a routine exercise. Finally, if you prefer,
we could also have denoted v € V by

oo
v= > Dis igernsin 1 T3 - Ty = bo0,...,0 + b10,..071 + bo,1,..0T2 + - + oo, 1Tn + -

il,i27'--7in:0

The theorem that follows is full of seemingly obvious facts. I show how each of these facts follow
from the vector space axioms.
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Theorem 2.1.15.

Let F be a field and V' a vector space over F with zero vector 0 and let ¢ € I,
(1.) 0-z=0forallz eV,

(2.) ¢c-0=0forall ceF,

3.) (-1)-z=—xforalzeV,

(4.) if ct =0thenc=0or z =0.

Lemma 2.1.16. Law of Cancellation:

’Let a,x,y be vectors in a vector space V. If z +a = y + a then z = y. ‘

Proof of Lemma: Suppose = + a = y + a. By A4 there exists —a such that a + (—a) = 0. Thus
x+a=y+aimplies (z+a)+(—a) = (y+a)+(—a). By A2 we find 2+ (a+(—a)) = y+ (a+(—a))
which gives z+0 = y+0. Continuing we use A3 to obtain z+0 = 0 and y+0 = y and consequently
z=y. 0.

We now seek to prove (1.). Consider:

0-x24+0=0-x by A3
=(0+0)- 2 defn. of zero scalar
=0-z4+0-2 by A8

Finally, apply the cancellation lemma to conclude 0 -z = 0. Note x was arbitrary thus (1.) has
been shown true. [

We now prove (2.). Suppose ¢ € F.

c-04+0=c-0 by A3
=c-(040) by A3
=c-04c-0 by A7

Consquently, by the cancellation lemma we find ¢-0 =0 for all c € F. [J

The proof of (3.) is similar. Consider,

0=0-z by (1.)
=(1+(-1) -z scalar arithmetic
=1l-z4+(-1)-=x by A8
=z4+(-1)-z by A5

Thus, adding —z to the equation above,
(—x)+0=(—2)+z+(-1)-2=0+(-1)-x

thus, using A3 once more, (—1) -z = —z forallz € V. [
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To prove (4.), suppose ¢ -x = 0. If ¢ = 0 then we have that the claim of (4.) is verified. If ¢ # 0
(&
(&

then 1 = ¢ = %c hence using A5 in the first equality and A6 in the third equality we find:
1 1 1
r=1-2= <c> cx=—-(cox)==-0=0
c c c

where we used (2.) in the final equality. In summary, ¢z = 0 implies ¢ =0 or x = 0. [

Perhaps we should pause to appreciate what was not in the last page or two of proofs. There were
no components, no reference to the standard basis. The arguments offered depended only on the
definition of the vector space itself. This means the truths we derived above are completely general;
they hold for all vector spaces. In what follows past this point we sometimes use Theorem [2.1.15
without explicit reference. That said, I would like you to understand the results of the theorem do
require proof and that is why we have taken some effort here to supply that proof.

2.2 subspaces

Definition 2.2.1.

Let V be a vector space over a field F. If W C V such that W is a vector space over
with respect to the operations of V restricted to W then we say W is a subspace of V' and
write W < V.

Example 2.2.2. Let V be a vector space. Notice that V- C V and obviously V' is a vector space with
respect to its operations. Therefore V. < V. Likewise, the set containing the zero vector {0} < V.
Notice that 0 +0 =0 and ¢- 0 = 0 so Axioms 9 and 10 are satisfied. I leave the other axioms to
the reader. The subspace {0} is called the trivial subspace.

Example 2.2.3. Let L = {(x,y) € R%|ax + by = 0}. Define addition and scalar multiplication
by the natural rules in R%. Note if (x,y),(z,w) € L then (z,y) + (z,w) = (x + 2,y + w) and
alx+z)+bly+w) =axr+by+az+bw=0+0=0 hence (z,y) + (z,w) € L. Likewise, if c € R
and (z,y) € L then ax +by = 0 implies acx +bcy = 0 thus (cz,cy) = c(x,y) € L. We find that L is
closed under vector addition and scalar multiplication. The other 8 axioms are naturally inherited
from R2%. This makes L a subspace of R2.

Example 2.2.4. If V = R? then
1. {(0,0,0)} is a subspace,

2. any line through the origin is a subspace,

3. any plane through the origin is a subspace.

Example 2.2.5. Let V =R and let W = [a, b] where a,b > 0. Observe a+b ¢ [a,b] hence W £ R.
Indeed, we can generalize this observation, if W # {0} is a proper subset of R then it cannot form

a subspace of R. Vector addition and scalar multiplication will take us outside W. For example
W =7 has 2z ¢ Z for each z € Z.
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Example 2.2.6. Let W = {(z,y,2) | x +y + 2z = 1}. Is this a subspace of R® with the standard)
vector space structure? The answer is no. There are many reasons,

1. (0,0,0) ¢ W thus W has no zero vector, axiom 3 fails. Notice we cannot change the idea of
“zero” for the subspace, if (0,0,0) is zero for R® then it is the only zero for potential subspaces.
Why? Because subspaces inherit their structure from the vector space which contains them.

2. Observe (1,0,0),(0,1,0) € W yet (1,0,0) 4+ (0,1,0) = (1,1,0) is not in W since 1 + 1+ 0 =
2 # 1. Thus W is not closed under vector addition (A9 fails).

3. Again (1,0,0) € W yet 2(1,0,0) = (2,0,0) ¢ W since 2+ 0+ 0 =2 # 1. Thus W is not
closed under scalar multiplication (A10 fails).

Of course, one reason is all it takes.
My focus on the last two axioms is not without reason. Let me explain this obsessiorf}]

Theorem 2.2.7. Subspace Test:

Let V' be a vector space over a field F and suppose W C V with W # () then W < V if and
only if the following two conditions hold true

(1.) if x,y € W then z +y € W (W is closed under addition),

(2.) ifz € W and c € F then ¢- . € W (W is closed under scalar multiplication).

Proof: (=)If W < V then W is a vector space with respect to the operations of addition and
scalar multiplication thus (1.) and (2.) hold true.

(«=) Suppose W is a nonempty set which is closed under vector addition and scalar multiplication
of V. We seek to prove W is a vector space with respect to the operations inherited from V. Let
x,y,z € W then as W C V we have x,y,z € V. Use Al and A2 for V' ( which were given to begin
with) to find

r+y=y+uz and (x4+y)+z=z+ (y+ 2).

Thus Al and A2 hold for W. By (3.) of Theorem [2.1.15| we know that (—1)-z = —z and —z € W
since we know W is closed under scalar multiplication. Consequently, x + (—x) = 0 € W since W
is closed under addition. It follows A3 is true for W. Then by the arguments just given A4 is true
for W. Let a,b € F and notice that by A5,A6,A7,A8 for V we find

lrz=z, (ab)-z=a-(b-z), a-(r+y)=a-z+a-y, (a+bdb)-z=a-xz+b-x.

Thus A5,A6,A7,A8 likewise hold for W. Finally, we assumed closure of addition and scalar multi-
plication on W so A9 and A10 are likewise satisfied and we conclude that W is a vector space over
F. Thus W < V. (if you're wondering where we needed W nonempty it was to argue that there
exists at least one vector & and consequently the zero vector is in W.) O

"yes, there is a non-standard addition which gives this space a vector space structure
8notice that Charles Curtis uses this Theorem as his definition for subspace. It is equivalent in view of the proof
below
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Remark 2.2.8.
The application of Theorem is a four-step process

1. check that W C V
2. check that 0 € W (this is a matter of convenience, and if it fails it’s usually blatant)
3. take arbitrary x,y € W and show x +y € W

4. take arbitrary x € W and ¢ € F and show cx €¢ W

We usually omit comment about (1.) since it is obviously true for examples we encounter.

Example 2.2.9. The function space F(R) = F(R,R) has many subspaces.
1. continuous functions: C(R)
2. differentiable functions: C*(R)

smooth functions: C*°(R)

polynomial functions (which are naturally identified with R|x])

analytic functions

S T S

solution set of a linear homogeneous ODE with no singular points

The proof that each of these follows from Theorem |2.2.77. For example, f(x) = x is continuous
therefore C'(R) # (). Moreover, the sum of continuous functions is continuous and a scalar multiple
of a continuous function is continuous. Thus C(R) < F(R). The arguments for (2.),(5.),(4-),(5.)
and (6.) are identical. The solution set example is one of the most important examples for en-
gineering and physics, linear ordinary differential equations. Also, we should note that R can be
replaced with some subset I of real numbers. F(I) likewise has subspaces C(I),CY(I),C>=(I) etc.

Example 2.2.10. Let Ax = 0 denote a homogeneous system of m-equations in n-unknowns over
F. Let W be the solution set of this system; W = {x € F" | Az = 0}. Observe that A0 = 0 hence
0 € W so the solution set is nonempty. Suppose x,y € W and c € T,

Az +cy) =Arz+cAy=0+¢(0) =0

thus x + cy € W. Closure of addtion for W follows from ¢ = 1 and closure of scalar multiplication
follows from x = 0 in the just completed calculation. Thus W < F™ by the Subspace Test Theorem.
We define the null space of A by:

| Null(A) = {zx € F" | Az = 0}

This example proves Null(A) < F".

Sometimes it’s easier to check both scalar multiplication and addition at once. It saves some writ-
ing. If you don’t understand it then don’t use the trick I just used, we should understand our work.

The example that follows here illustrates an important point in abstract math. Given a particular
point set, there is often more than one way to define a structure on the set. Therefore, it is important
to view things as more than mere sets. Instead, think about sets paired with a structure.
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Example 2.2.11. Leﬂ V), be the set of all vectors with base point p € R",
Vp={p+v|veR
We define a nonstandard vector addition on V,, if p+v,p+w € V), and c € R define:
p+v) +p p+w)=p+v+w & cp(p+v)=p+cv.

Clearly +, : V, x V, =V, and -, : R x V,, = V), are closed and verification of the other axioms is
straightforward. Observe 0, =p as (p+v)+, (p+0) =p+v+0=p+v hence O, =p+0 = p.
Mainly, the vector space azioms for V), follow from the corresponding axioms for R™. Geometrically,
+p corresponds to the tip-to-tail rule we use in physics to add vectors. Consider S, defined below:

Sp={p+v|veW<R"}
Notice 0, € Sp as 0 € W and 0, = p + 0. Furthermore, consider p+v,p+w € S, and c € R
(p+v)+p(p+w)=p+ (v+w) & cp(p+v)=p+cv

note v + w,cv € W as W < R" is closed under addition and scalar multiplication. We find
(p+v) +p (p+w),cp (p+v) €Sy thus Sy <V, by the subspace test Theorem [2.2.7]

In the previous example, S, need not be a subspace with respect to the standard vector addition of
column vectors. However, with the modified addition based at p it is a subspace. We often say the
solution set to Ax = b with b # 0 is not a subspace. It should be understood that what is meant
is that the solution set of Az = b is not a subspace with respect to the usual vector addition. It is
possible to define a different vector addition which gives the solution set of Ax = b a vector space
structure.

Example 2.2.12. Let W = {A € R ™" | AT = A}. This is the set of symmetric matrices, it
is nonempty since I” = I (of course there are many other examples, we only need one to show it’s
nonempty). Let A, B € W and suppose c € R then

(A+B)T = AT + BT prop. of transpose
=A+B since A,B e W

thus A+ B € W and we find W is closed under addition. Likewise let A € W and ¢ € R,

(cA)T = cAT prop. of transpose
=cA sinceA,BeW

thus cA € W and we find W is closed under scalar multiplication. Therefore, by the subspace test

Theor@m W <R x7,

I invite the reader to modify the example above to show the set of antisymmetric matrices also
forms a subspace of the vector space of square matrices.

Example 2.2.13. Let W = {f € F(R) | fil f(z)dx = 0}. Notice the zero function 0(z) = 0 is
i W since f_ll 0dx =0. Let f,g € W, use linearity property of the definite integral to calculate

1 1 1
/ (f(a:)—l—g(a:))dx:/lf(x)dx—i—/ g(x)dz = 0+0=0

-1 -1

91t may be better to use the notation (p,v) for p + v, this has the advantage of making the base-point p explicit
whereas p can be obscured in the more geometrically direct p + v notation. Another choice is to use vp.
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thus f+ g € W. Likewise, if c € R and f € W then

/11 cf(z)dz = c/llf(a:) dz = ¢(0) = 0

thus cf € W and by subspace test Theorem[2.2.7W < F(R).

Example 2.2.14. Here we continue discussion of the product space introduced in Example[2.1.11]
Suppose V.= C and W = P, then V. x W = {(a + ib,cz® + dx + €) | a,b,c,d,e € R}. Let
U = {(a,b) | a,b € R}. We can easily show U < V x W by the subspace test Theorem
W < F(R). Can you think of other subspaces? Is it possible to have a subspace of V- x W which is
not formed from a pair of subspaces from V and W respective?

Example 2.2.15. Let W be the set of real-valued functions on R for which f(a) =0 for some fized
valuea € R. If f,g € W and c € R then (f +cg)(a) = f(a)+cg(a) = 0+¢(0) =0 thus f+cg € W.
Observe W is closed under addition by the case c =1 and W is closed under scalar multiplication
by the case f = 0. Furthermore, f(x) =0 for all x € R defines the zero function which is in W.
Hence W < F(R) by subspace test Theorem [2.2.7

Example 2.2.16. Let W be the set of solutions of the differential equation ay” + by’ +cy = 0
where a,b,c € R and a # 0. Notice that the zero function y = 0 solves ay” + by’ + cy = 0 thus
0 #W C F(R). Suppose yi1,y2 € W and let « € R. We are given that ay] + by} + cy1 = 0 and
ayy + by, + cya = 0. Consider, by properties of the first and second derivative,

(ayy + byy + cy1) + ayh + byb + cyo

alayr +y2)" + blays + y2)" + clays + y2)" = «
a(0)+0
0

Thus ayy + y2 € W. Therefore, by subspace test Theorem W < F(R).

Example 2.2.17. Let Vi,V be vector spaces over F. We can show {0} x Vo < Vi x Va. Since
0 € Vo we find (0,0) € {0} x Vo # 0. Suppose z,y € {0} x Vo and ¢ € F. Then there exists
x9,y2 € Vo for which x = (0,x2) and y = (0,y2). Thus,

ar+y = a(0,12) + (0,y2) = (a0, axz2) + (0,32) = (0, axs + y2)

Since Va is a vector space we have axy + yz € Vo thus ax +y = (0,azz + y2) € {0} x Vo and we
conclude {0} x Vo < Vi x Vi by the subspace test Theorem .

2.3 spanning sets and subspaces

In a vector space V over a field F we are free to form F-linear Combinationﬂ of vectors; wesay v € V
is a linear combination of v1,...,vy € V if there exist ¢q,..., ¢, € F such that v = civ1 + - - - 4+ cvg.
In other words, v = Zle cjvj is a finite linear combination of vectors v; in V' with coefficients
z; in F. The Lemma below is quite usefu]lﬂ:

Oollowing Definition 1.2.14|with R=TF

' Charles Curtis’ proof of (4.4) on page 27-28 has an induction-based refinement of proof I offer for the Lemma
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Lemma 2.3.1. Let V' be a vector space over the field F and let S be a nonempty subset of V,

The finite F-linear combination of finite F-linear combinations of vectors from S is once
more a finite F-linear combination of vectors from S.

Proof: Suppose V' is a vector space over a field F. Let s; = Z?’Zl cijti; where ¢;; € F and t;; € S
for n;,i € N with i =1,2,...,k. Let by,...,br € F and consider by (2.) of Proposition ??

k k n; k n;
Zbisi = Zbi Zcijtij = Zzbicijtij'
i=1 i=1 j=1

i=1 j=1
Notice, this is a F-linear combination of vectors in S as b;c;; € F. [

Definition 2.3.2.

Let V' be a vector space over F and suppose S C V. Then span(S) is defined to be the set
of all finite-F-linear combinations of vectors taken from S

k
span(S) = U {Z Civi

keN \i=1

CiEF,UiES}.

If W = span(S) then we say that S is a generating set for W. We also say S spans W
in this case. To be clear, if S = () then span(()) = {0}.

Note, in the case that |S| < oo we can write S = {v1,...,v,} and the definition above simply reads:
span{vy,...,vn} = {civ1 + -+ cpon | c1,...,cn € F}
However, the infinite case is important. A rather famous example is polynomials.

Example 2.3.3. If f € F[z] then f(z) = ap + a1x + -+ + apz™ for a; € F fori=0,...,n. But,
n € N can be as large as we wish. In fact, F[z] = span(S) where S = {1,2° | i € N}.

Example 2.3.4. If we set R = F then Proposition explains how F™ was spanned by the
standard basis; F* = span{e;} . Likewise, Proposition showed the m x n matriz units E;;
spanned the set of all m x n matrices; F™*" = span{Eij}ijl.

Spans are important because they are subspaces which are presented in a particularly lucid manner.

Theorem 2.3.5. span(S) is a subspace.

Let V be a vector space over a field F and suppose S C V then span(S) < V. Furthermore,
if W <V and S C W then S C span(S) C W; that is, span(S) is the smallest subspace of
V' which contains S.

Proof: If S = () then span() = {0} < V. Otherwise, S # () hence consider z,y € span(S) and
¢ € F. Apply Lemma to see the linear combination of linear combinations x + y and cx is
once more a linear combination of vectors in S. Thus x + y, cz € span(S) and we conclude by the
Subspace Test Theorem span(S) < V.

Suppose W is any subspace of V' which contains S. By definition W is closed under scalar multi-
plication and vector addition thus all linear combinations of vectors from S must be in W hence
span(S) C W. Lastly, if v € S then v = 1 - v € span(S) hence S C span(S). O
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Example 2.3.6. Let S = {1,z,22,...,2"} then spany(S) = P, (F). For ezample,
spang{1,z,2%} = {az® + bx + c | a,b,c € R} = Py(R)

Notice, Py(F) < Pi(F) < P(F) < --- < P, (F) <--- < F[z].

Example 2.3.7. Let W = {(s +t,2s+t,3s+t) | s,t € R}. Observe,
(s+1,25+1,3s+1) = s(1,2,3) + £(1,1,1)

thus W = {s(1,2,3) + t(1,1,1) | s,t € R} = span{(1,2,3),(1,1,1)}. Therefore, Theorem [2.5.5]
gives us W < R3.

The lesson of the last example is that we can show a particular space is a subspace by finding
its generating set. Theorem tells us that any set generated by a span is a subspace. This
test is only convenient for subspaces which are defined as some sort of span. In that case we can
immediately conclude the subset is in fact a subspace.

Example 2.3.8. Consider y = y. Or, taking t as the independent variable, % = y. Separation

of variables (that you are expected to know from calculus II) shows % =dt hence lnly| =t+c. It

follows that y = +ee’. Note y = 0 is also a solution of y' = y. In total, we find solutions of the
form y = ciet. The solution set of this differential equation is a span; S = span{e'} < F(R).

Example 2.3.9. Consider, y"" = 0. Integrate both sides to find y" = cy. Integrate again to find
Y = cit + co. Integrate once more, y = c15t> + cot + c3. The general solution of y" = 0 is a
subspace S of function space:

1
S = span{Qtz, t, 1} < F(R)
Physically, we often consider the situation ¢ = —g.

The analysis in Examples and simply derive from combining prerequisite calculus knowl-
edge with linear algebra. In our Differential Equations course you learn how to construct the
fundamental solution set for an n-th order homogeneous constant coefficient differential equation.
It turns out that any solution can be written y = c1y1 + -+ + ¢pyn thus span{yi,...,yn} is the
solution set of the differential equation. If you've already taken differential equations then you can
gain much intuition for linear algebra from your previous work on differential equations. On the
other hand, if you haven’t taken differential equations then the good news is that course becomes
even easier when you apply the theory of linear algebra.

Example 2.3.10. Subspaces associated with a given matrix: Let A € F™*™. Define column
space of A as the span of the columns of A:

Col(A) = span{col;(A) | j=1,2,...,n}

this is clearly a subspace of F™ since each column has as many components as there are rows in A.
We also define row space as the span of the rows:

‘ Row(A) = span{row;(A) | i=1,2,...,m} ‘
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this is clearly a subspace of R1*™ since it is formed as a span of vectors. Since the columns of AT
are the rows of A and the rows of AT are the columns of A we can conclude that Col(AT) = Row(A)
and Row(AT) = Col(A). Finally, we already defined the null space of A by:

| Null(A) = {z € F" | Az = 0}

We studied this in Example|2.2.10 where we showed Null(A) < F"™. With some effort and the insight
of the rref(A) we can write the null space as a span of an appropriate set of solutions to Ax = 0.

See Example|2.2.1() for instance.

I would remind the reader we have the CCP and associated techniques to handle spanning questions
for column vectors. In contrast, the following example requires a direct assaul

Example 2.3.11. Is Ey; € span{E12+2E11, E1o — E11}7 Assume E;; € R2*2 for alli,j. We seek
to find solutions of
Evi = a(Er2+ 2E11) + b(E2 — Enn)

in explicit matriz form the equation above reads:

HRGHE B
BEED

| 2a—b a+d
B 0 0

thus 1 =2a — b and 0 = a + b. Substitute a = —b to find 1 = 3a hence a = % and b = —71 Indeed,
1
3
Therefore, E11 € span{FE12 + 2FE11, E12 — E11}.

(Er +2E1) — 3(E12 — En) = 3B + 3B = By

Example 2.3.12. Find a generating set for the set of symmetric 2 x 2 matrices. That is find a set
S of matrices such that span(S) = {A € R**2 | AT = A} = W. There are many approaches, but

I find it most natural to begin by studying the condition which defines W. Let A = [ Z Z ] ew

T a c| |a b _|a b
A_A@[bd]_[cd]@/l_[bd].

In summary, we find an equivalent way to express A € W is as:

and note

A:[b d]:a{o 0}—{—6[1 O]—l—d[o 1]:aE11+b(E12+E21)+dE22,

Consequently W = span{E11, Ei2 + Ea1, Ea} and the set {Ev1, Ei2 + Fa1, Fas} generates W.
This is not unique, there are many other sets which also generate W. For example, if we took
S ={E1, Eia+ E21, Ea, E11 + E2} then the span of S would still work out to W.

2However, once we have the idea of coordinates ironed out then we can use the CCP tricks on the coordinate
vectors then push back the results to the world of abstract vectors. For now we’ll just confront each question by
brute force. For an example such as this, the method used here is as good as our later methods.
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2.4 linear independence

We have seen a variety of generating sets in the preceding section. In the last example I noted
that if we added an additional vector E17 + E99 then the same span would be created. The vector
Fh1 + Ey is redundant since we already had Fq; and Fas. In particular, Fq1; + Foo is a linear
combination of F1; and FEso so adding it will not change the span. How can we decide if a vector
is absolutely necessary for a span? In other words, if we want to span a subspace W then how
do we find a minimal spanning set? We want a set of vectors which does not have any linear
dependences. We say such vectors are linearly independent. Let me be precisﬂ

Definition 2.4.1.

Let S C V a vector space over a field F. The set of vectors S is Linearly Independent (LI)
iff for any {v1,v9,...,0t} C S and ¢y,...,¢c; €T,

civ1+covg+ -+ =0 = cp=co=---=¢ =0.

Furthermore, to be clear, () is LI. Moreover, if S is not LI then S is linearly dependent.

Example 2.4.2. Let v = cos?(t) and w = 1 + cos(2t). Clearly v,w are linearly dependent since
w—2v =0. We should remember from trigonometry cos®(t) = 1(1+ cos(2t)).

Proposition 2.4.3.

’If S is a finite set of vectors which contains the zero vector then S is linearly dependent.

Proof: Let {6, V9, ...V} = S and observe that 1 - 0 = 0 thus S is not linearly independent, that
is, S is linearly dependent. [

Proposition 2.4.4.

Let v and w be nonzero vectors.

v, w are linearly dependent < Jk # 0 € F such that v = kw.

Proof: Let v,w # 0. Suppose {v,w} is linearly dependent. Hence we find c¢1,c2 € F, not both

zero, for which c1v + cow = 0. Without loss of generality suppose ¢; # 0 then v = — 2w so identify
k = —ca/c1 and v = kw. Conversely, if v = kw with & # 0 then v — kw = 0 shows {v,w} is linearly

dependent. [J

It turns out the claim in the Proposition below does not generalize to the study of moduled™] so
this is why we should use the Definition above as stated. Furthermore, this definition is oft used
for calculations in our study of linear independence.

13if you have a sense of deja vu here, it is because I uttered many of the same words in the context of R™. Notice,
in contrast, I now consider the abstract case. We cannot use the CCP directly here

4 A module is like a vector space, except, we use scalars from a ring. For example, if we consider pairs from Z/6Z
we have 2(3,0) + 3(0,2) = 0 hence {(3,0),(0,2)} is linearly dependent. But, note we cannot solve for (3,0) as a
multiple of (0,2). In short, the solving for a vector criteria is special to using scalars from a field.
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Proposition 2.4.5.

vj € span{vi,...,Vj—1,Vj41,...,0} iff {v1,v9,..., 04} is a linearly dependent set.

Proof: (=) if v; € span{vi,...,vj—1,vj41,..., v} then there exist ¢; € F for ¢ # j such that
vj = Z#j c;v; thus
clvy + -+ ¢io1vj—1 — v + ¢4 + -+ v =0

therefore {v1,ve,..., vt} is linearly dependent as there is a nontrivial linear combination whose
sum is zero.

(<) Suppose {v1,vg,...,v;} is linearly dependent. Then there exist c,...,c; € F for which
c1vr +cva + -+ cpup =0
and at least one constant, say c;, is nonzero. Then we can divide by ¢; to obtain

C -~ C
%vl+%v2++2}]++£vk:0 = Uj:_%Ul—%?UZ—"‘—Uj—“'—?ka

where 0 denotes the deletion of v; from the list. Thus v; € span{vi,...,vj—1,vj41,...,v5}. O

Given a set of vectors in F” the question of LI is elegantly answered by the CCP. In examples that
follow in this section we leave the comfort zone and study LI in abstract vector spaces. For now we
only have brute force at our disposal. In other words, I'll argue directly from the definition without
the aid of the CCP from the outset.

Example 2.4.6. Suppose f(x) = cos(z) and g(x) = sin(z) and define S = {f,g}. Is S linearly
independent with respect to the standard vector space structure on F(R) ¢ Let ¢1,co € R and
assume that

c1f +cog =0.
It follows that ci f(x) 4+ cag(x) = 0 for each x € R. In particular,
¢1 cos(z) + e sin(z) =0

for each x € R. Let x = 0 and we get ¢1 cos(0) + c2sin(0) = 0 thus ¢; = 0. Likewise, let x = 7/2
to obtain ci cos(m/2) + casin(n/2) = 04 ¢ = 0 hence co = 0. We have shown that c¢1f + cog = 0
implies ¢y = co = 0 thus S = {f, g} is a linearly independent set.

Example 2.4.7. Let f,(t) = t" forn = 0,1,2,.... Suppose S = {fo, f1,..., fn}. Show S is a
linearly independent subset of function space. Assume cg,c1,...,c, € R and

cofotcifi+tcafot+ - -+cnfn=0. *

I usually skip the expression above, but I'm including this extra step to emphasize the distinction
between the function and its formula. The x equation is a function equation, it implies

cotert+ct?+ +ept" =0 * *
for all t € R. Evaluate »x at t = 0 to obtain co = 0. Differentiate ¥* and find
1420t 4 Fnet" =0 £

Evaluate %3 at t = 0 to obtain c¢; = 0. If we continue to differentiate and evaluate we will similarly
obtain co = 0, c3 = 0 and so forth all the way up to ¢, = 0. Therefore, x implies cog =c1 = -+ =
cp = 0.
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Linear dependence in function space is sometimes a source of confusion for students. The idea of
evaluation doesn’t help in the same way as it just has in the two examples above.

Example 2.4.8. Let f(t) =t — 1 and g(t) = t +t* is f linearly dependent on g? A common
mistake is to say something like f(1) =1—1=0 so {f, g} is linearly independent since it contains
zero. Why is this wrong? The reason is that we have confused the value of the function with the
function itself. If f(t) = 0 for all t € R then f is the zero function which is the zero vector in
function space. Many functions will be zero at a point but that doesn’t make them the zero function.
To prove linear dependence we must show that there exists k € R such that f = kg, but this really
means that f(t) = kg(t) for all t € R in the current context. I leave it to the reader to prove that
{f,g} is in fact LI. You can evaluate att =1 and t = 0 to obtain equations for ci,co which have
a unique solution of c; = ca = 0.

Example 2.4.9. Let f(t) =t — 1, g(t) = t> + 1 and h(t) = 4t%. Suppose
c1(t* = 1) + ot +1) +e3(4t?) =0 *

A little algebra reveals,
(61 + co + 463)t2 — (01 — 62)1 =0

Using linear independence of t> and 1 we find
c1+co+4c3 =0 and cp—co=0
We find infinitely many solutions,
- I a=—glate) =
1 =co an s =—zlaa+e)=—5c
Therefore, * allows nontrivial solutions. Take co =1,
1
1(#2—1)+1(t*+1) - 5(4752) = 0.
We can write one of these functions as a linear combination of the other two,
1
=— —h.
f=-9+3

Once we get past the formalities of the particular vector space structure it always comes back to
solving systems of linear equations.

Remark 2.4.10.

We should keep in mind that in the abstract context statements such as v and w go in
the same direction” or ”u is contained in the plane spanned by v and w” are not statments
about ordinary three dimensional geometry. Moreover, you cannot write that u, v, w € R"
unless you happen to be working with that rather special vector space. I caution the reader
against the common mistake of trying to use column calculation techniques for things which
are not columns. This is a very popular mistake in past years.
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2.5 theory of dimension

Thanks to my brother William Cook of Appalachian State University, Boone North Carolina. This
section of notes is nearly identical to a handout he gives to his Linear Algebra classes. In past
editions of my notes, the focus was almost entirely on finite dimensional vector spaces. Here we
learn that infinite dimensional vector spaces have dimension specified by cardinality. Let’s go!

We can contrast the interplay of linear independence and spanning with subsets and supersets. If
S1 C S9 and S5 is linearly independent then S; is linearly independent. Likewise, if 51 C Sy C W
and span(S1) = W then span(Sy) = W; that is supersets of spanning sets still sparF_EI

Lemma 2.5.1.

Let S be a linearly independent subset of V', v € V such that v ¢ S. Then SU{v} is linearly
independent if and only if v & span(S5).

Proof: Suppose S U {v} is linearly independent. Then v cannot depend linearly on S. Thus
v & span(.9).

Conversely, suppose v ¢ span(S). Suppose S U {v} were linearly dependent. Then we could
write civ1 + - - - + ¢cpvp + sv = 0 for some vy, ...,v, € S and scalars cq, ..., cp, s not all zero. Notice
that s # 0 would imply v = s~ tejvg + - - + s~ egvp € span(S) (contradiction) so s = 0. But then
c1v1 + -+ + cpvg = 0 with not all ¢p,...,¢,. This means S is linearly dependent! (contradiction).
Thus S U {v} must be independent.

Theorem 2.5.2.

Let S be a linearly independent subset of T" where T" spans V. Then there exists some /3
such that S C § C T where § is both linearly independent and a spanning set for V. In
other words, between any independent and spanning set, we can find a basis.

Proof: Consider the set S = {S’ C V | § C 5 C T and 5’ is linearly independent}. Notice
that S itself belongs to S, so S is a non-empty set and is partially ordered by the subset relation.
Suppose that we have a chain of elements in S, say C: this means that for all S’,S” € C either
S C 8" or S C S (ie., C is totally ordered by the subset relation). Consider C' = UC (i.e.,
C' is the union of all of the sets in our chain). Now every set in C contains S and is contained
in T, so this is true of the union of such sets (i.e., S € C C T). Suppose v1,...,v, € C and
c1,...,¢¢ € F such that cjvy + -+ + ¢cpvp = 0. Then for each 7+ = 1,...,¢, we have v; € S; for
some S; € C. But C is a chain so we can (possibly after relabeling — without loss of generality)
assume S1 C€ Sy € --- C Syp. Thus vy,...,v, € Sp. But ultimately Sy is a set in S and so is lin-
early independent. Thus ¢; = --- = ¢y = 0. Therefore, C is linearly independent. Therefore, C € S.

All of this shows that S is a non-empty set such that every chain is bounded above (by something in
S). Thus Zorn’s Lemma applies and provides that S must contain a (possibly non-unique) maximal
element. Call such an element 5. We have then that 5 contains S, is contained in T, and is linearly
independent. To finish our proof we just need to establish that 5 spans V.

Suppose T is not contained in span(/3). This implies there is some v € T such that v ¢ span(8). So
by our Lemma, 8/ = SU{v} is linearly independent. But also S C 8 C 3/ C T so 8’ € S. However,
this is impossible because 8 was chosen to be maximal (i.e., it is not contained in something else

15if we drop the condition Sz C W and merely suppose S1 C So then we can easily prove span(S1) < span(Ss)
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in §). Therefore, we must conclude that 7' C span(/3). Therefore, V' = span(7") C span(f8) C V so
that span(f) = V. Thus f is our desired linearly independent spanning set. [

We used Zorn’s lemma in a non-trivial way. Zorn’s result is equivalent to the Axiom of Choice. In
fact, it can be shown that our theorem above is equivalent to the Axiom of Choice (we must use
choice in some way to establish our theorem in general).

A set which both spans and is linearly independent is very special. We have a name for these:

Definition 2.5.3.

If V is a vector space over the field F and g C V such that g is linearly independent and
spanp(B) = V then  is a basis for V.

It is difficult to stress just how important the following corollaries to above theorem are:

Corollary 2.5.4. Basis can be created by extension of LI set or reduction of spanning set.

Every vector space has a basis. Every linearly independent set can be extended to a basis.
Every spanning set can be shrunk down to a basis.

Proof: Applying the above theorem to the case S = () and T' =V (these are always independent
and spanning sets respectively), shows that we must have at least one basis. If S is linearly inde-
pendent and we let T = V', we get that S is contained in some basis (i.e., every independent set
can be extended to a basis). Finally, if T is a spanning set and we let S = (), we get a a basis 3
that is contained in 7" (i.e., spanning sets can be shrunk down to a basis). O

All of this leads us to the following linear algebra philosophy@ Bases are small enough spanning
sets (small enough to be independent). Likewise, bases are big enough independent sets (big enough
to span). We get the impression that independent sets must be no larger than spanning sets. This
is true but requires some proof.

Lemma 2.5.5. (The Ezchange Lemma)

Let o = {wy,...,v¢} be linearly independent and suppose T spans V. Then there exists
some partition of T' = {w1,...,we} [[ 7" (i-e., T is a disjoint union of {ws,...,wy} and
T") such that 7" = « U T” still spans V. In other words, if we select the right w;’s, we can
swap out {wi,...,ws} with o and still span our vector space.

Proof: We proceed by induction. We can obviously swap zero vectors without difficulty, so
our base case holds. Now suppose we have replaced {w1,...,wg} by {v1,...,vx} so that 7" =
{v1,..., vk} |1 T" spans V. Consider vi,1. Since T” spans V, vgp11 = c1v1+- -+ cpvp+s1up+- -+
SmUm, for some ui,...,uy, € T" and c1,...,ck, 51,...,5m € F. Notice that if s1 = --- = s, = 0,
then vg4q € span{vi,...,vx} implying that « is linearly dependent (contradiction). Therefore,
at least one s; is non-zero, say s, # 0. For convenience call s,, = s and u,, = u. Let
X =cv1+ -+ cpvg + s1up + -+ - + Spp—1Um—1 S0 we have that vy = su+ X. Let T" = {u} [[ To
(i.e., Tp is all of 7" except u). Notice that X is a linear combination of elements drawn from
{’Ul, oo ,?)k} U T().

18small as possible spanning set is also known as a minimal spanning set, likewise large as possible linearly inde-

pendent set is also known as a maximally linearly independent set.
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Therefore, in any linear combination, if it involves u, we can replace u with s~ v, 1 — s X. We
now have that any linear combination of elements drawn from {vy,..., v} U{u} U Ty can also be
written as a linear combination of elements drawn from {vy,..., v} U {vg41}UTo. In other words,
we can swap out wgi1 = u for vgp1 and our set will still span. The theorem now follows from
induction. [J

Corollary 2.5.6.

If o is a finite linearly independent set and 7' is a spanning set, then |a| < |T'|. Moreover,
if V' is spanned by a finite set, it cannot have an infinite linearly independent subset.

Proof: By the Exchange Lemma we can replace elements of T with elements of o, so T" must have at
least as many elements as a. Now suppose that we have a finite spanning set T, say |T| = m < co.
If we had an linearly independent set a with more than m elements, the Exchange Lemma would
imply that we could replace m+1 elements of T with the first m+1 elements of «. This is absurd. [J

Corollary 2.5.7.

If any basis of a vector space is finite, all bases of that space are finite. Moreover, any two
finite bases must have the same size.

Proof: Our previous corollary states that we cannot have a finite basis (a finite spanning set) and
also an infinite basis (an infinite linearly independent subset).

Next, suppose « and [ are finite bases for V. Then since « is finite linearly independent and f is

a spanning set, our previous corollary says that |a| < |3]. But also, § is finite linearly independent
and « is a spanning set, so that |3| < |«a|. Therefore, || = |g]. O

Theorem 2.5.8.

‘Any two bases of a vector space must have the same cardinality.

Proof: Let 8 and ' be bases for V. We already know that either both are infinite or both are
finite. If both are finite, the corollary above establishes that |3| = |5’|. Therefore, we suppose that
both are infinite and for sake of contradiction that |5| < |f'|.

Consider v € 3. Then since 3 spans V, there exists vq,...,v, € 8’ and c1,...,¢, € F such that

v =c1v1 + -+ cpvg. Define F,, = {v1,...,v} and so we have v € span(F,). Let « = |J F,. Then
veER
« is a subset of §’. Moreover, for each v € 5 we have v € span(F,) C span(a) so S C span(a).

Thus since 3 spans V', we have V' = span(/) = span(«).

But this is problematic. Since « is a union of finite subsets indexed by [, we have that |a| <
|B] - Ng = |B]| (since B is infinite). So |a| = |B] < |8’|. Therefore a must be a proper subset of 5'.
Thus there is some w € 3’ that does not belong to «. Since ' is linearly independent, o [ {w} is
independent. Therefore, w ¢ span(«). But this means that span(«) # V (contradiction). There-
fore, we must have that |3| = |5'|. O

Given all bases have the same size, we can make the following definition:
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Definition 2.5.9.

Let V have a basis 8. Then dim(V') = |g]| is the dimension of V.

Finite dimensional spaces are special. For example, we have the following result.

Theorem 2.5.10.

Let V' be a vector space of finite dimension n. Let 8 = {v1,...,v,} be a subset of V' of
cardinality n. Then f is linearly independent if and only if 5 spans V.

Proof: If 3 is linearly independent, then it is contained in a basis, say . But 8 C v where
I8l = |7] = n < oo implies 5 =+, so [ is a basis. Likewise, if 5 spans V, then it contains a basis,
say a. But a C § where |a| = || =n < oo implies o = 3, so 3 is a basis. O

The above theorem does not work for infinite dimensional spaces. For example, {1,22, 2%,...} is a
countably infinite, linearly independent subset of the countably infinite dimensional space R[z], yet
it fails to span. On the other hand, {2,1,z,22,...} is a countably infinite, spanning set for R[z],
yet it fails to be independent. Having one property plus the “right size” isn’t enough to force sets
to be bases if we work in infinite dimensional spaces.

2.6 coordinate mappings

We begin with a useful characterization of linear independence; the equating coefficients property.

Proposition 2.6.1.

Let V be a vector space over a field F and S C V. S is a linearly independent set of
vectors iff for any finite list of vectors vy, ..., v € S we have the property that if there exist
constants ai,...,a,b1,...,b, € F such that

a1v1 + agvg + - + agvg = bvy + bovg + -+ - + by

then a1 = by, as = bo,...,ar = bi. In other words, we can equate coefficients of any finite
subset of a set of vectors iff the set of vectors is a LI set.

Proof: (=) suppose S is LI and vy,...,v; € S. If there exist ay,...,a, b1,...,bx € F such that
a1v1 + agve + - - - 4+ apvg = byvy + bovy + - - - + vk

then
(a1 —b1)vy + (ag — ba)va + - - + (ar — br)vp =0

hence aj —b; =0 for j =1,...k by LI of S. Hence a; = b; for j =1,... k.
(<) suppose S has the equating coefficients property for any finite subset. Let vy,...,v; € S and

suppose c1v] + - - - + cpvrp = 0. Notice, civ; + -+ vy = 0-v1 + - - - + 0 - v hence by the equating
coefficients property we find ¢; =0,...,¢; =0. O

In retrospect, partial fractions in Calculus II is based on the LI of the basic rational functions.
The technique of equating coefficients only made sense because the set of functions involved was in
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fact LI. Likewise, if you've taken Differential Equations, you can see LI of solutions being utilized
throughout the undetermined coefficients technique. The ubiquity of the role of LI in common
mathematical calculation is hard to overstate.

Definition 2.6.2.

Suppose B = {f1, fa,..., fn} is a basis for vector space V over field F. If v € V' has

v=vfit+vafot+- -+ onfn

then [v]g = [v1 vy -+ vy]T € R™ is called the coordinate vector of v with respect to 3.

Technically, the each basis considered in the course is an ”ordered basis”. This means the set of
vectors that forms the basis has an ordering to it. This is more structure than just a plain set since
basic set theory does not distinguish {1,2} from {2,1}. I should always say ”we have an ordered
basis” but I will not (and most people do not) say that in this course. Let it be understood that
when we list the vectors in a basis they are listed in order and we cannot change that order without
changing the basis. For example v = (1,2, 3) has coordinate vector [v]p, = (1,2,3) with respect
to By = {e1,e2,e3}. On the other hand, if By = {eg, e1,e3} then the coordinate vector of v with
respect to By is [v]p, = (2,1, 3).

Example 2.6.3. I called {ey,ea,...,e,} the standard basis of F". Since v € F™ can be written as
vV = Z V€4
i

it follows F™ = span{e; | 1 < i < n}. Moreover, linear independence of {e; | 1 < i < n} follows
from a simple calculation:

OZZCiei = 0= [ZCie’i] :Zciéik:ck
i i k i

hence ¢, = 0 for all k. Thus {e; | 1 < i <n} is a basis for F", we continue to call it the standard
basis of F"*. The vectors e; are also called "unit-vectors”.

Example 2.6.4. Since A € F™*™ can be written as
A=Y AyE;
Z‘7j

it follows F"™*"™ = span{E;; | 1 <i<m, 1 < j <n}. Moreover, linear independence of {E;; | 1 <
i <m, 1<j<n} follows from a simple calculation:

0= ZCUEZ']' = 0= ZcijEi' = Zcijéikéjl = Ck

1,J ] Kl 1,J

hence ciy = 0 for all k,1. Thus {E;; | 1 <i<m, 1 <j <n}is a basis for F™*", we continue to
call it the standard basis of F*". The matrices E;; are also called "unit-matrices”.

The usual ordering given to the standard basis of F™*" is the lexographical ordering which goes

row-by-row from E7; to Fq, to Es to Fo, etc. until finally reaching F,,; and ending at F,,,. Let
us see how this goes for the 2 x 2 case.
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Example 2.6.5. Let § = {E11, E12, E22, E91}. Observe:

b
A= [ CCL d} = aF11 + bE12 + dE2 + cEay.

Therefore, [Alg = (a,b,d,c).

Example 2.6.6. Consider 3 = {(t + 1)%,t + 1,1} and calculate the coordinate vector of f(t) = t2
with respect to B. I often use an adding zero trick for such a problem:

f)=t?=(t+1-1)2=@t+1)>—2(t+1)+1
From the expression above we can read that [f(t)]s = (1,-2,1).

Example 2.6.7. Suppose A in invertible and Av = b has solution v = (1,2,3,4). It follows that A
has 4 columns. Define,
B = {coly(A), col3(A), cola(A),coli(A)}

Given that (1,2,3,4) is a solution of Av = b we know:
col1(A) + 2cola(A) + 3col3(A) + 4cols(A) = b
Given the above, we can deduce [b]g = (4,3,2,1).

The three examples above were simple enough that not much calculation was needed. Understand-
ing the definition of basis was probably the hardest part. In general, finding the coordinates of a
vector with respect to a given basis is a spanning problem.

Example 2.6.8. Given that B = {by,ba, b3, by} = {e1+ea,e2+e3,e3+e4,e4} is a basis for R* find
coordinates for v = [1,2,3,4]7 € R%. We can find coordinates [x1,z2, 73, 24]T such thatv =", x;b;
by calculating rref[bi|b2|bs|ba|v] the rightmost column will be [v]g.

rref = |[vlp=

S O ==
O = = O
_= = O O
o O O
IS GO NI
o O O
O O = O
O = O O
_ oo O O
N DN = =
NN ==

The calculation above should be familar. We discussed it at length in the spanning section.

Example 2.6.9. We can prove that S from Example is linearly independent, thus symmetric
2 X 2 matrices have a S as a basis

S=A{lod], 1891, 951}

thus the dimension of the vector space of 2 X 2 symmetric matrices is 3. (notice S from that
example is not a basis because it is linearly dependent). While we’re thinking about this let’s find

the coordinates of A = [} 3] with respect to S. Denote [Als = [z,y, 2]T. We calculate,
1
[33]==2[68]1+y[B0]+2[95] = [Als=| 2
3

Example 2.6.10. IfV = R and we use Q as the set of scalars then V' can be shown to be an infinite
dimensional Q-vector space. In contrast, R is a one-dimensional real vector space with basis {1}.
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A given point set may have different dimension depending on the context. The last example gives
a rather exotic example of that idea. What follows is probably easier to understand:

Example 2.6.11. C is a one-dimensional vector space over C with basis {1}. However, C is a
two-dimensional vector space over R with basis {1,i}. Note: z = x + iy = x(1) + y(i) hence
spang{l,i} = C. Moveover, if c1,co € R and c¢1(1) + ca(i) = 0 then we obtain ¢; = ca = 0. Hence,
{1,i} is LI over R and we have dimg(C) = 2. On the other hand, since z = z(1) for all z € C and
{1} is linearly independent it follows dimc(C) = 1 thus {1,i} is linearly dependent. Indeed, it is
obvious that i = i(1) thus 1 and i are linearly dependent over C.

Example 2.6.12. Consider V = C**? then B8 = {E1, Er2, E21, F22} gives a basis for V(C). If we
instead wish to look at V' as a real vector space there are two popular choices for the basis over R

_ | Xutivn | X1z + Y1 } _ {Xn | X1o ] z[ Y11 | Y10
Xo1 +iYa1 | Xog + iYa9 Xo1 | X2 Yo | Yoo

} =X+1Y
where X,Y € R?*2. If we use y1 = fUif3 then
[Z]y, = ([X]s,[Y]p) = (X11, X12, Xo1, X292, Y11, Y12, Yo1, Y22)
Whereas if we use yg = {Ell,iEll, Elg, iElg, Egl, iEgl, EQQ,iEQQ} then
[Z]y, = (X11, Y11, X12, Y12, Xo1, Y1, X992, Y22)

Both bases split the matriz into real and imaginary parts. However, the ordering of the bases differ
and as such the coordinate maps will reveal different aspects of such a complex matrix.

When multiple fields are in use it is wise to adorn the dimension notation with the field to reduce
possible confusions. Usually, we work with just one field so we omit the explicit field dependence

Remark 2.6.13.

Curvelinear coordinate systems from calculus III are in a certain sense more general than the
idea of a coordinate system in linear algebra. If we focus our attention on a single point in
space then a curvelinear coordinate system will produce three linearly independent vectors
which are tangent to the coordinate curves. However, if we go to a different point then the
curvelinear coordinate system will produce three different vectors in general. For example,
in spherical coordinates the radial unit vector is e, = (cos @ sin ¢, sin 6 sin ¢, cos ¢) and you
can see that different choices for the angles 6, ¢ make e, point in different directions. In
contrast, in this course we work with vector spaces. Our coordinate systems have the same
basis vectors over the whole space. Vector spaces are examples of flat manifolds since they
allow a single global coordinate system. Vector spaces also allow for curvelinear coordinates
(which are not coordinates in the sense of linear algebra). However the converse is not true;
spaces with nonzero curvature do not allow for global coordinates. I digress, we may have
occassion to discuss these matters more cogently in our Advanced Calculus course (Math
332)(join us)

2.6.1 how to calculate a basis for a span of row or column vectors

Given some subspace of F" we would like to know how to find a basis for that space. In particular,
if V.= span{vi,ve,...,vr} then what is a basis for W? Likewise, given some set of row vectors
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W = {wy,wa, ... w;} C F*" how can we select a basis for span(W). We would like to find answers
to these question since most subspaces are characterized either as spans or solution sets(see the
next section on Null(A)). We already have the tools to answer these questions, we just need to
apply them to the tasks at hand.

Proposition 2.6.14.

Let W = span{vi,ve,...,vx} C F™ then a basis for W can be obtained by selecting the
vectors that reside in the pivot columns of [vy|ve|- - - |vg].

Proof: this is immediately obvious from Proposition [1.7.6] [

The proposition that follows is also follows immediately from Proposition [1.7.6

Proposition 2.6.15.

Let A € F™*™ the pivot columns of A form a basis for Col(A).

Example 2.6.16. Suppose A is given as below: (I omit the details of the Gaussian elimination)

1 2 3 4 10 5/3 0
A=1]21 41 =  rref[Al=]0 1 2/3 0
000 3 00 0 1

Identify that columns 1,2 and 4 are pivot columns. Moreover,
Col(A) = span{coly(A), cola(A), coly(A)}
In particular we can also read how the second column is a linear combination of the basis vectors.

col3(A) = Scoli(A) + 2coly(A)
= 3(1,2,0) + 2(2,1,0)
= (5/3,10/3,0) + (4/3,2/3,0)
= (3,4,0).

What if we want a basis for Row(A) which consists of rows in A itself?

Proposition 2.6.17.

The rows of a matrix A can be written as linear combinations of the transposes of pivot
columns of AT. Furthermore, the set of all rows of A which are transposes of pivot columns
of AT is linearly independent.

Proof: Let A be a matrix and AT its transpose. Apply Proposition to AT to find pivot
columns which we denote by col;; (AT) for j = 1,2,...k. The set of pivot columns for AT are
linearly independent and their span covers each column of A”. Suppose,

cirow;, (A) + carow;, (A) + - - - + ¢prow;, (A) = 0.
Take the transpose of the equation above, use Proposition to simplify:

c1(row;, (A)T + ca(rowi, (A)T + -+ + e (rows, (A))T = 0.
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Recall (row;(A))T = col;(AT) thus,
crcoliy (AT) + cacoli, (AT) + - - + cpeol;, (AT) = 0.

hence ¢; = ¢y = --- = ¢;, = 0 as the pivot columns of AT are linearly independent. This shows
the corresponding rows of A are likewise linearly independent. The proof that each row of A is
obtained from a span of {row;, (A), row;,(A),...,row;, (A)} is similar. [

Corollary 2.6.18.

Let W = span{wy,ws,...,w;} C FY*"™ and construct A by concatenating the row vectors
in W into a matrix A:
w1
w2
A=
W

A basis for W is given by the transposes of the pivot columns for A”.

Proof: apply Proposition O

The proposition that follows is also follows immediately from Proposition 2.6.17] Incidentally, it
is almost more important to notice what we do not say below; we do not say the pivot rows of A
form a basis for the row space.

Proposition 2.6.19.

Let A € F™*" the rows which are transposes of the pivot columns of A7 form a basis for
Row(A).

Example 2.6.20.

1 2 0 1 00

s 1210 o |01 0
A—340 = Tr@f[A]—OOl
4 1 3 0 0O

Notice that each column is a pivot column in AT thus a basis for Row(A) is simply the set of all rows
of A; Row(A) = span{|[1,2,3,4],[2,1,4,1],[0,0,0,3]} and the spanning set is linearly independent.

Example 2.6.21.
1 2 3 5 1 2
= AT=11 2 4 6 = rref[AT] =10 0
1 2 0 2 0 0

! 0
0 11
9 00

Tt W N~
DN

We deduce that rows 1 and 3 or A form a basis for Row(A). Notice that rows(A) = 2row;(A)
and rows(A) = rows(A) + 2rowi(A). We can read linear dependencies of the rows from the
corresponding linear dependencies of the columns in the rref of the transpose.
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The preceding examples are nice, but what should we do if we want to find both a basis for Col(A)
and Row(A) for some given matrix ? Let’s pause to think about how elementary row operations
modify the row and column space of a matrix. In particular, let A be a matrix and let A’ be the
result of performing an elementary row operation on A. It is fairly obvious that

Row(A) = Row(A).

Think about it. If we swap to rows that just switches the order of the vectors in the span that
makes Row(A). On the other hand if we replace one row with a nontrivial linear combination of
itself and other rows then that will not change the span either. Column space is not so easy though.
Notice that elementary row operations can change the column space. For example,

A:“ H ;srref[A]:[é (1)]

has Col(A) = span{[1,1]T} whereas Col(rref(A)) = span([1,0]T). We cannot hope to use columns
of ref(A) (or rref(A)) for a basis of Col(A). That’s no big problem though because we already
have the CCP-principle which helped us pick out a basis for Col(A). Let’s collect our thoughts:

Proposition 2.6.22.

Let A € F™*™ then a basis for Col(A) is given by the pivot columns in A and a basis for
Row(A) is given by the nonzero rows in ref(A).

This means we can find a basis for Col(A) and Row(A) by performing the forward pass on A. We
need only calculate the ref(A) as the pivot columns are manifest at the end of the forward pass.

Example 2.6.23.

111
rg—1r1 =T
A=|1 1 1 e
1 2 3

1 11
000 L T = ref[A]
7“3—7’1—)7’§ 01 2

OO =
O =
SN =

We deduce that {[1,1,1],[0,1,2]} is a basis for Row(A) whereas {[1,1,1]7,[1,1,2]T} is a basis for
Col(A). Notice that if I wanted to reveal further linear dependencies of the non-pivot columns
on the pivot columns of A it would be wise to calculate rref[A] by making the backwards pass on

ref[A].
-1

1 1 1 10
01 2 T2 T 0 1 2 | =rref[4]
0 0O 0 0 O
From which I can read col3(A) = 2cola(A) — col1(A), a fact which is easy to verify.

Example 2.6.24.

1 2 3 4 1 2 3 4
O —T1 —7T
A=1|1 3 8 10 . _Hng 0 1 5 6| =reflA]
1 2 4 11 B 0017

We find that Row(A) has basis
{[1,2,3,4],]0,1,5,6],[0,0,1,7]}

11 121 |3
{1,3,8}
1] [2] |4

Proposition [2.6.22| was the guide for both examples above.

and Col(A) has basis
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2.6.2 calculating the basis of the null space of a matrix

Often a subspace is described as the solution set of some equation Az = 0. How do we find a basis
for Null(A)? If we can do that we find a basis for subspaces which are described by some equation.

Proposition 2.6.25.

Let A € F™*" and define W = Null(A). A basis for W is obtained from the solution set of
Az = 0 by writing the solution as a linear combination where the free variables appear as
coefficients in the vector-sum.

Proof: z € W implies Az = 0. Denote z = [x1,22,...,2,]7. Suppose that rref[A] has r-pivot
columns ( we must have 0 < r < n). There will be (m — r)-rows which are zero in rref(A) and
(n — r)-columns which are not pivot columns. The non-pivot columns correspond to free-variables
in the solution. Define p = n — r for convenience. Suppose that z;,,x;,,...,x;, are free whereas
Tj,Tj,, ..., T are functions of the free variables: in particular they are linear combinations of the
free variables as prescribed by rref[A]. There exist components or rref(A), let us denote them by
bij, such that

xj + buiwiy, + b1axi, + - + bipwi, =0

Tjy + ba1ziy + baowiy + -+ + bopwi, =0

Tj, + br1Tiy + browiy, + -+ + bz, =0
Hence zj, = — >, brxy,. Thus, if Az =0 then
r P r P P P r
€T = Z Zj €y, + Z L4, €y = Z - Z brzi, | €j, + Z L4 €4y = Z‘Til €y — Z briejy,
k=1 =1 k=1 =1 I=1 =1 k=1

Thus 8 = {e;, — Y1, briej, }_, serves as a spanning set for Null(A). It remains to prove 3 is LL I
will sketch a proof ‘| by contradiction. If 8 was linearly dependent then that implies an additional
dependence amongst the variables forming the solution set of Ax = 0. But, this is impossible since
such a dependence would imply a linear dependence amongst the pivot columns of A. [

Didn’t follow the proof above? You might do well to sort through the example below before
attempting a second reading. The examples are just the proof in action for specific cases.

Example 2.6.26. Find a basis for the null space of A = [1,2,3,4]. This example requires no

additional calculation except this; Az = 0 for x = (x1, x2, x3,x4) yields x1 = —2x9 — 3w3 —4xy4 thus:
—2.%'2 — 31’3 — 41’4 —2 -3 —4
= T2 — 1 +z 0 N 0
- T3 I 511 1o
Ty 0 0 1

Thus, {(-2,1,0,0),(-3,0,1,0),(—4,0,0,1)} forms a basis for Null(A).

17

we can prove LI of 8 if we find an independent argument that dim(Null(A)) = p, if that dimension was known
then we know a spanning set with p-vectors is necessarily a basis for Null(A).
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Example 2.6.27. Find a basis for the null space of A given below,
100 10
A=12 2 0 0 1
4 4 4 00

Gaussian elimination on the augmented coefficient matriz reveals

100 10 100 1 0
rref| 2200 1|=|010 -1 1/2
44400 001 0 —1/2

Denote © = (x1, 2,23, x4, 5) in the equation Ax = 0 and identify from the calculation above that
x4 and x5 are free thus solutions are of the form

T1 = —T4 —x4 -1 0
X9 = T4 — %x5 X4 — %1‘5 1 —%
T3 = %9:5 = T = %1:5 = x4 0| +x5 %
Ty = X4 Ty 1 0
5 = Ip xT5 0 1

for all x4,x5 € R. We can write these results in vector form to reveal the basis for Null(A), It
follows that the basis for Null(A) is simply {(—1,1,0,1,0), (0,—1/2,1/2,0,1)} Of course, you could
multiply the second vector by 2 if you wish to avoid fractions. In fact there is a great deal of freedom
in choosing a basis. We simply show one way to do it.

1
1 | we perform Gaussian
1

Example 2.6.28. To find a basis for the null space of A =

—_ =

1
1
1

—_ =

elimination to reveal

rref

— = =
—_ = =
[
—_ = =

1111
=(0 000
0 000

Denote x = (x1, 2,3, 24) in the equation Az = 0 and identify from the calculation above that
To, x3 and x4 are free thus solutions are of the form

T1 = —Tg — X3 — T4 —X9 — T3 — X4 -1 -1 -1
T2 = T2 X9 1 0 0
= = = X9 + x3 + x4
T3 = I3 T3 0 1 0
Ty = T4 T4 0 0 1

for all xo, x5, x4 € R. We can write these results in vector form to reveal the basis for Null(A), It
follows that the basis for Null(A) is simply {(-1,1,0,0),(-1,0,1,0),(—1,0,0,1)}.

The process of finding the basis for the null space is a bit different than the column or row space
basis problem. Both the column and row calculations allow us to read the basis of either rref(A)
or rref(AT) on the logical basis of the CCP. There is a matrix-theoretic way to do the same for the
null space, but, it comes at a considerable cost to esthetics. See my |Question and Answer| on the
Math Stackexchangﬂ

8there is a link to math.stackexchange.com/q/1612616/36530 if you look at the pdf in the proper viewer
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2.6.3 coordinates for an infinite dimensional vector space

When V is infinite dimensional, we can still define a notion of coordinates, but they are not nearly
as useful. Before I share the constructionlﬂ for infinite dimensions, let me discuss the approach as
it relates to finite dimensions.

Notice, in the finite context we can understand each coordinate vector as a function on the finite set
{1,2,...,n}. In particular, if 8 = {v1,...,v,} and v = z1v1 + - - + zpv, then [v]g = (z1,...,2y)
could be replaced with

fa(v) : {1,2,...,n} = F

defined by fg(v)(i) = x; for i = 1,...,n. Of course, this would be rather inefficient since it is
much simpler to just list the values of f3(v). Indeed, the notational question we face here was also
dealt with in Calculus II where we trade functions @ : N — R for an ordered list {a,}. In some
sense, using a sequence or coordinate vector corresponds to using the range of the coordinate vector
function we introduce next.

Consider a basis  indexed by some set I (i.e., 8 = {v; | i € I} where v; = v; if and only if i = j).
The set of all functions F/ = {f | f : I — F} can be given the structure of a vector space over F as
follows: f+ g is defined to by (f+g¢)(i) = f(i) + g(i) (we add outputs pointwise) and sf is defined
by (sf)(i) = sf(i) for all i € I; f,g € F!; and s € F. Then consider F/ = {f : I — F | f(i) =
0 for all but finitely many i € I} (i.e., the set of functions of finite support). It is easy to see that
Fl is a subspace of F! which corresponds with V' via the correspondenc v fg(v).

Definition 2.6.29.

Suppose 3 be a basis for vector space V over field F and g = {v; | i € I}; that is, suppose
is a basis indexed by I. Now notice that given any v € V', there exists (unique up to padding
out with zeros) v;,,...,v;, € f and ¢;,,...,¢, € F such that v = ¢;;v;; + -+ + ¢;,v;,. We
can then define a function fs(v) : I — F by fg(v)(i;) = ¢;; for j = 1,...,£ and fs(v)(i) =0
for all other 7 € I. Then fg(v) is the unique coordinate function associated with the vector
inveV.

In the particular case I = N we can use sequential notation; [v]g = fz(v)(N).

Example 2.6.30. Let 8 = {1,z,2%,...} serve as the basis for Flx] then if v = a,+a1z+- - -+ a,z"
then [v]g = (a0, a1,...,an,0,...).

The example above is probably the best I can do explicitly. The funny thing is that there is a
rather large distinction between knowing the existence of a basis and constructing such a basis.
For instance, I know R(Q) is an infinite dimensional vector space with dimension X;, but I cannot
write down a basis with which we can express any real number as finite Q-linear combination of the
basis. As a practical matter, the concept of spanning tends to be modified to work in tandem with
some concept of vector length (norm). Convergence replaces finiteness and with that adaptation
more can be constructed. Look up Schauder basis if you wish to study this further, or study Hilbert
Spaces.

Ythanks to William Cook of Appalachian State University, Boone North Carolina for the construction, it certainly

is an interesting addition as of Fall 2024 Semester. I took his nice notation and uglified it for clarity.

209y +» fg(v) is an isomorphism from V to FI just as v — [v]g is an isomorphism from V to F" in the finite

dimensional context. That said, when [ is infinite, working with such coordinate functions isn’t typically terribly
useful. My apologies for this out of order footnote, we discuss isomorphism properly in the next chapter.
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2.6.4 trace based calculation of dimension

Technically, we’ve already established the proposition below using fancy arguments that extend well
past the context of finite dimensions. Indeed, the current set of notes offer a more sophisticated
take on dimension theory than I have offered in previous rendititions of Math 321. That said, the
following calculation is dear to me and I cannot let it go. Basically what is shown below is that if
we have two finite bases then they must have the same number of vectors. If you study arguments
given in other linear algebra texts you’ll find arguments somewhat like I gave earlier in this chapter,
except rather than using Zorn’s lemma they’ll most like give a proof which is anchored to a lengthy
induction argument@ In contrast, the proof below is a calculation.

Proposition 2.6.31.

Let V be vector space over a field F and suppose there exists B = {b1,bs,...,b,} a basis of
V. Then any other basis for V' also has n-elements. In other words, any two finite linearly
independent generating sets for a vector space V have the same number of elements.

Proof: Suppose B = {by,ba,...,b,} and F = {f1, fo,..., fp} are both bases for a vector space V.
Since F' is a basis it follows by € span(F') for all k so there exist constants ¢;; € F such that

b, = cipf1 + copfo + -+ i fp
for k =1,2,...,n. Likewise, since f; € span(B) there exist constants dj; € F such that
fj = dijb1 +dojbo + - - + dy by
for j =1,2,...,p. Substituting we find
fi = dijbi +dajba 4 - - + dp;by

= dyj(cinfi +eafo+ -+ cp1fp)+
+daj(ciafi + coafo + -+ cpafp)+
+- 4+ dnj(clnfl +eopfotoo+ cpnfp)

= (dyjci1 +dgjcia + -+ - dpjcin) fi
(dijear + dajean + - - - dnjcan) fot
+ o+ (dujepr + dojepr + - dnjcpn)

Suppose j = 1. We deduce, by the linear independence of F', that
dircin +doicig + - dpicip =1
from comparing coefficients of f1, whereas for fo we find,
dy1co1 + daicog + - dpicon =0

likewise, for f, with ¢ # 1,
dircqr + dorcga + - - - dpicgn =0

Notice we can rewrite all of these as

5q1 = qudll + Cq2d21 + - andnl

21For example, read Chapter 5 in Curtis’ Linear Algebra. If you look at the previous version of these notes from
2019 you’ll find a complete list of the results presented in Curtis.
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Similarly, for arbitrary j we’ll find
5qj = qudlj + ngdgj + - andn]’

If we define C' = [¢;;] € FP*™ and D = [d;;] € F"*P then we can translate the equation above into
the matrix equation that follows:

CD =1,

We can just as well argue that
DC =1,

The trace of a matrix is the sum of the diagonal entries in the matrix; trace(A) = > " | Aj; for
A € F»*™. It is not difficult to show that trace(AB) = trace(BA) provided the products AB and
BA are both defined. Moreover, it is also easily seen tr(I,) = p and tr(I,,) = n. It follows that,

tr(CD) =tr(DC) = tr(I,) =tr(Il) = p=n.
Since the bases were arbitrary this proves any pair of bases have the same number of vectors. [

The trace has use far beyond this proof. For example, to obtain an invariant over a symmetry
group in physics one takes the trace of an expression to form the Lagrangian of a gauge theory.
The trace is an example of a linear functional and it plays an important role in representation
theory.

2.7 theory of subspaces

We now turn to the question of how we can produce new subspaces from a given pair.

Theorem 2.7.1.

Let V be a vector space and suppose U <V and W <V then UNW < V.

Proof: it is tempting to prove this here. But, I leave it for homework. [J

Examples of the Theorem in R3 are fun to think about. For example, one-dimensional subspaces
are lines through the origin and two-dimensional subspaces are planes through the origin. The
intersection of a line and plane is either the line once more or the origin. On the other hand, the
intersection of two planes is either the plane once more (if the given planes are identical), or a line.
Two planes cannot intersect in just one point in R3. In contrast, in R* the planes 21 = x5 = 0 and
x3 = x4 = 0 share only (0,0,0,0) in common. Apparently, the calculation of the intersection of
two subspaces has many cases to enumerate for an abitrary vector space. That said, we do have a
nice theorem which relates the intersection to the sum of two subspaces. The following definition
is quite natural:

Definition 2.7.2.

Let V be a vector space and U <V and W < V then define the sum of U and W by

U+W={z+y|lzeclU yecW}
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If you consider the union of two subspaces you’ll find the result is only a subspace when one of
the subspaces contains the other. For example, the union of the  and y-axes in R? is missing the
sums such as (z,0) + (0,y) = (x,y) for z,y # 0. It turns out the set defined above is the smallest
subspace which contains the union of the given subspaces.

Theorem 2.7.3.

Let V be a vector space and suppose U <V and W <V then U + W < V. Moreover, no
smaller subspace contains U U W.

Proof: it is tempting to prove this here. But, I leave it for homework. [J

Theorem 2.7.4.

Let V be a finite dimensional vector space with subspace W. Then dim(W) < dim(V')
where equality is attained only if V = W.

Proof: Let 8 be a basis for W, if 3 is also a basis for V' then dim(V) = dim(W) and V =W =
span(f3). Otherwise, if span(B) # V, apply Corollary and extend 3 to 7 a basis for V. Hence,
dim(W) = #(8) < #(7) = dim(V). O

This result which more useful than you might first expect. In particular, suppose Uy, Us, ... are
subspaces of a finite dimensional vector space V. If U; < Uj_q for j = 2,...,k with U; # U;_4
then we have the following nested-sequence of subsets:

U, cU,_1C---CcUcU CV

where dim(U;) < dim(U;_1) for each j = 1,2.... Simple counting then reveals we cannot keep
descending to smaller subspaces without end. Eventually, we obtain a smallest subspace (it might
be {0}). Conversely, we could think about a sequence of subspaces which gets larger as the se-
quence progresses. Once again, we cannot continue without end as the dimension of V' bounds the
dimension of subspaces.

There is a natural relation between the dimensions of the sum and intersection of two subspaces
which is related to the counting problem for two sets: if A and B are finite sets then

#(AUB) =#A+ #B — #(AN B).

This rule is easy to see in a Venn Diagram. I will not omit the proof of the result below, it does
require some effort.

Theorem 2.7.5.

Let V(IF) be a finite-dimensional vector space and suppose U <V and W <V then

dim(U + W) = dim(U) + dim(W) — dim(U N W).

Proof: Given U <V and W <V we have UNW <V and U + W < V by Theorems and
I invite the reader to verify UNW <U < U+ W and UNW < W < U+ W (both of these
assertions are simple to obtain from the Subspace Test Theorem). Observe by Corollary we
can find a basis Synw = {v1,...,v,} for UNW. We count dim(U N W) = n. Notice Synw is a LI
subset of U thus by Corollary we can complete Syaw to a basis Sy = {vi,...,vn,u1, ..., uq}
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for U by adjoining vectors uy,...,uqg € U—UNW. Notice dim(U) = n+d in our current notation.
Similarly, Bynw is a LI subset of W thus by Corollary we can complete Synw to a basis
Bw = {v1,...,0p,w1,...,we} for W by adjoining vectors wi,...,w. € W — U NW. We count,
dim(W) = n+e. We argue that Sy+v = {v1,...,Un,u1,...,uq,w1,...,w} forms a basis for U +V
hence the Theorem follows as

dm(U+V)=n+d+e=(n+d)+ (n+e)—n=dm(U)+ dim(W) — dim(U N W).

It remains to show Sy is a basis for U + W. Let z € U + W then there exist x € U and y € W
such that z = = +y. However, as {vi,...,vp,u1,...,uq} is basis for U there exist ¢;,b; € F such
that = > | cv; + Z;l:l bjuj. Also, as {vi,...,vp, wi,...,we} is a basis for W and y € W there
exist o, B € F for which y = > " | v + > 5y Sjwg. Thus,

n d

z:x+y=Z(ai—i—cl-)vi—l—ijUj—{—Zﬁjwk

i=1 j=1 k=1

and we find Sy is a generating set for U + V. Finally, we must demonstrate Sy is LI. Suppose
there exist «;, 8,y € F for which

n d e
Zaivi + Zﬁjuj+27kwk =0 *
i=1 j=1 k=1

—_—
xeU yew

Recall, by construction, u; € U —U NW and w, € W —U NW. Solve for the vector in W,

n d e
Zaivi + Zﬁju]' = —Z’ykwk =—yeW
i=1 j=1 k=1

But, > | a;v; + Z?Zl Bju; € U thus —y € U and —y € W hence —y € UNW ! Thus, there exist
M, ..., 0 for which Y77 | oyu; + Z;l:l Bjuj = > miv; (%*). Hence, by LI of Sy we learn 8 = 0
for j € Ny by comparing coefﬁcientsl?l of the LHS and RHS of xx. To complete the proof we make
an entirely similar argument for —x which shows 7, = 0 for k£ € N.. Finally, returning to x we have
oy oqv; = 0 and LI of Syaw = {v1,...,v,} shows o; = 0 for each ¢ € N,,. This completes the
proof. [J

You might ask, what about three subspaceﬂ ? Threats aside, the problem of studying the de-
composition of a vector space into a finite set of subspaces is an interesting and central problem of
linear algebra we will devote substantial energy towards in a later part of this course. This is just
Chapter 1 of that story.

?2]ike the wings of an elephant, the coefficients of u; are set to zero on the RHS of
23add evil laugh to properly read this question. Or look at this question on math overflow


http://mathoverflow.net/questions/23478/examples-of-common-false-beliefs-in-mathematics
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Chapter 3

linear transformations

Vectors realign—
under maps they twist and turn,
new frames, old truths hold. EXTRANEOUS G, 2025

It would be wise to review Appendix Chapter [§] to refresh your memory set theory and functions.
I do expect you be conversant in images and inverse images of sets under a function. Some of you
have thought more about this than others. Of course, we review this as we go, but, you would
likely profit from some preparatory reading.

The theorems on dimension also find further illumination in this chapter. We study isomor-
phisms. Roughly speaking, two vector spaces which are isomorphic are just the same set with
different notation in so far as the vector space structure is concerned. Don’t view this sentence as
a license to trade column vectors for matrices or functions. We’re not there yet. You can do that
after this course, once you understand the abuse of language properly. Sort of like how certain
musicians can say forbidden words since they have earned the rights through their life experience.

We also study the problem of coordinate change. Since the choice of basis is not unique the prob-
lem of comparing different pictures of vectors or transformations for abstract vector spaces requires
some effort. We begin by translating our earlier work on coordinate vectors into a mapping-centered
notation. Once you understand the notation properly, we can draw pictures to solve problems. This
idea of diagrammatic argument is an important and valuable technique of modern mathematics.
Modern mathematics is less concerned with equations and more concerned with functions and sets.

A theme for applications of linear algebra outside this course is the technique of linearization.
Given a complicated set of equations we can approximate them by a simpler set of linear equations.
This is the idea of Newton’s Method for root-finding. Ultimately, this approximation paired with
the nontrivial contraction-mapping technique provides proof of the implicit and inverse function
theorems. In short these theorems say linearization works as well as you would naively hope. On
the other hand, given a mapping which twists and contorts one shape into another globally may
allow a rather simple description locally. The basic idea is to replace a globally nonlinear function
with a local linearization. The linearization is built from a linear transformation. Much can be
gleaned from the local linearization for a wide swath of problems. I really can’t overstate the use
of linear transformations. If you understand them then you understand more things than you know.

The conclusion of this chapter focuses on general abstract constructions which are often seen in the

83
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application of linear algebra such as dual spaces, quotient spaces and direct sum decomposition.
The first isomorphism theorem is proved and applied. We also give a classification theorem for
maps on finite dimensional vector spaces and discuss its connection with matrix congruence.

3.1 definition, examples and basic theory

We assume V, W are vector spaces over a field F in the remainder of this section.

Definition 3.1.1.

Let V, W be vector spaces over a field F. If a function T': V' — W satisfies
(1.) T(z+y) =T(z)+T(y) for all z,y € V; T is additive or T' preserves addition
(2.) T(cx) =cT(z) for all x € V and c € F; T is preserves scalar multiplication

then we say T is a linear transformation from V to W. The set of all linear transfor-
mations from V to W is denoted L(V, W). Also, L(V,V) = L(V) and T € L(V) is called a

linear transformation on V.

I have used the terminology that (2.) is homogeneity of T', but, technically, 7" is homogeneous
degree one. More generally, T'(cx) = c*T(z) for all ¢ € F and 2 € V would make 7" homogeneous
of degree k. In the interest of readability, let us agree that homogeneous means homogeneous of
degree one. We have little use of higher homogeneity in these notes. I should also mention, if

T(cx+y) =cT(x)+T(y)

for all z,y € V and ¢ € T then it follows from ¢ = 1 that T preserves addition and y = 0 that
T preserves scalar multiplication. Thus, much like the subspace test arguments, we can combine
our analysis into the simple check; does T'(cx +y) = ¢I'(z) + T(y). I should also mention, other
popular notations,

L(V) =End(V) & L(V,W) = Homp(V, W)

where End(V') is read the endomorphisms of V.

3.1.1 examples of linear transformations

I’ll offer several examples of functions which are not linear transformations then we’ll conclude this
subsection with a number of positive examples.

Example 3.1.2. Let L : R — R be defined by L(x) = mx + b where m,b € R and b # 0. This is
often called a linear function in basic courses. However, this is unfortunate terminology as:

Lxz+y)=mz+y)+b=max+b+my+b—b= L(x)+ L(y) — b.

Thus L is not additive hence it is not a linear transformation. It is certainly true that y = L(x)
gives a line with slope m and y-intercept b. An accurate term for L is that it is an affine function.

Example 3.1.3. Let f(z,y) = 22 + y? define a function from R? to R. Observe,
fle(w,y)) = flex,cy) = (cx)* + (cy)* = (a® +¢%) = P f (2, ).

Clearly f does not preserve scalar multiplication hence f is not linear. (however, f is homogeneous
degree 2)
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Example 3.1.4. Suppose f(t,s) = (v/1,s>+t) note that f(1,1) =
that (4,4) = 4(1,1) thus we should see f(4,4) = f(4(1,1)) = 4f(1,
s not a linear transformation.

(1,2) and f(4,4) = (2,20). Note

1) but that fails to be true so f

Now that we have a few examples of how not to be a linear transformation, let’s take a look at
some positive examples. Notice that we have many new examples to explore here now that we
consider abstract vector spaces. In contrast, Math 221 focused on the case of column vectors and
their maps (we review those in a future subsection).

Example 3.1.5. Define T : F™*" — F"¥™ by T(A) = AT, This is clearly a linear transformation
since

T(cA+ B) = (cA+ B)T = cAT + BT = ¢T(A) + T(B)
for all A, B € F™*" and c € F.

Example 3.1.6. Let VW be a vector spaces over a field F and T : V. — W defined by T'(z) = 0
for all € V. This is a linear transformation known as the trivial transformation

Tx+y)=0=04+0=T(x) + T(y)

and
T(cx) =0=c0=cT(x)

forallceF and z,y € V.

Example 3.1.7. The identity function on a vector spaCfE V() is also a linear transformation.
Let Id : V — V satisfy T(x) = x for each x € V. Observe that

Idz+cy)=z+cy=xz+c-y=1d(x)+c-Id(y)
forallz,y eV and c € F.

Example 3.1.8. Define T : C°(R) — R by L(f fo x)dz. Notice that L is well-defined since
all continuous functions are integrable and the Ualue of a deﬁmte integral 1s a number. Furthermore,

T eq) = [ (¢ +en)arin = [

for all f,g € CO(R) and c € R. The definite integral is a linear transformation.
Example 3.1.9. Let T : C1(R) — C%(R) be defined by T(f)(x) = f'(x) for each f € P3. We know

from calculus that

T(f+9)(x) = (f+9)(x) = fl(x) + ¢'(x) = T(f)(x) + T(g)(x)

1

1 1
[ @)+ eota) Jdz = [ payda+e [ gtarte = T()+T(0)

and

T(cf)(x) = (cf) (z) = cf'(x) = T(f)(2).
The equations above hold for all x € R thus we find function equations T'(f+g) =T (f)+T(g) and
T(cf) = cT(f) for all f,g € C*(R) and c € R.

Example 3.1. 10 Let V' be the set of smooth functions in n-real variables x1,x3,...,x, then
T= 8% 82 . ax defines a linear mapping on the set of smooth functions on R™,

Example 3.1.11. Let a € R. The evaluation mapping ¢, : F(R) — R is defined by ¢o(f) = f(a).
This is a linear transformation as (f + cg)(a) = f(a)+ cg(a) by definition of function addition and
scalar multiplication. (we could also replace R with F to obtain further examples)

'remember, V(F) simply denotes a vector space V over the field F
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3.1.2 basic theory of linear transformations

We assume V, W are vector spaces over a field F in the remainder of this section.

Proposition 3.1.12.

Let L : V — W be a linear transformation,
(1.) L(0)=0

(2.) L(civi +coua+---cpvn) = 1 L(v1) + caL(ve) + - - - + e L(vy) for all v; € V and ¢; € F.

Proof: to prove of (1.) let € V and notice that + —z = 0 thus
L(0) = L(x — x) = L(x) + L(—1x) = L(x) — L(z) = 0.

To prove (2.) we use induction on n. Notice the proposition is true for n=1,2 by definition of linear
transformation. Assume inductively L(civ1 +cova+- -« cpvn) = 1 L(vi)+caL(vy)+- - -+ ¢, L(vy,) for
all v; € V and ¢; € F where ¢ = 1,2,...,n. Let vi,va,...,05,0p41 € V and ¢y, co,...¢p,cnp1 € F
and consider, L(civ1 + cove + -+ Crup + Cpy1Unt1) =

= L(c1v1 + cova + -+ - cuvn) + cpr1L(vpg1) by linearity of L
=c1L(v1) + coL(v2) + - - - + cn L(vy) + ¢nt1L(vp41) by the induction hypothesis.

Hence the proposition is true for n+ 1 and we conclude by the principle of mathematical induction
that (2.) is true for all n € N. [

Proposition 3.1.13.

’Let L e L(V,W). If S is linearly dependent then L(S) is linearly dependent.

Proof: Suppose there exists ci,...,c; € F for which v = Ele c;v; is a linear dependence in S.
Calculate,

k Kk
L(v)=L (Z Ci”i) = ZCiL(Uz‘)

which, noting L(v), L(v;) € L(S) for all i € Ny, shows L(S) has a linear dependence. Therefore,
L(S) is linearly dependent. O

Just as the column and null space of a matrix are important to understand the nature of the matrix
we likewise study the kernel and image of a linear transformation: (Theorem [3.1.17] shows these
are subspaces)

Definition 3.1.14.

Let V, W be vector spaces over a field F and T € £(V,W) then

Ker(T) ={veV | T(v) =0} & Image(T) = Range(T) = {T'(v) |v e V}
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Example 3.1.15. Let T(f(z)) = f'(z) for f(x) € Pa(R) then clearly T is a linear transformation
and we express the action of this map as T(ax? + bx + ¢) = 2ax +b. Hence,

Ker(T) = {az? + bx + c € Py(R) | 2ax+ b =0} = {c |c € R} = R.
Also, Range(T) = span{1,x} since T(ax? + bz + ¢) = 2ax + b allows arbitrary 2a,b € R.
Notice, the statement Ker(7") = {0} means the only solution to the equation T'(x) = 0 is x = 0.

Theorem 3.1.16. linear map is injective iff only zero maps to zero.

’T : V. — W is an injective linear transformation iff Ker(7") = {0}.

Proof: this is a biconditional statement. I'll prove the converse direction to begin.
( <) Suppose T'(x) = 0 iff z = 0 to begin. Let x,y € V and suppose T'(x) = T'(y). By linearity we
have T'(z —y) = T'(z) — T'(y) = 0 hence x — y = 0 therefore = y and we find 7" is injective.

(=) Suppose T is injective. Suppose T'(z) = 0. Note T'(0) = 0 by linearity of 7" but then by 1-1
property we have T'(x) = T'(0) implies = 0 hence the unique solution of T'(z) = 0 is the zero
solution. [J

For a linear transformation, the image of a subspace and the inverse image of a subspace are once
again subspaces. This is certainly not true for arbitrary functions. In general, a nonlinear function
takes linear spaces and twists them into all sorts of nonlinear shapes. For example, f(z) = (z, 2?)
takes the line R and pastes it onto the parabola y = z? in the range. We also can observe
F71(0,0)} = {0} and yet the mapping is certainly not injective. The theorems we find for linear
functions do not usually generalize to functions in genera

Theorem 3.1.17.

If T:V — W is a linear transformation
(1.) and V, <V then T(V,) < W,
(2.) and W, < W then T-Y(W,) < V.

Proof: to prove (1.) suppose V, < V. It follows 0 € V, and hence T'(0) = 0 implies 0 € T'(V}).
Suppose T'(z),T(y) € T(V,) and ¢ € F. Since z,y € V, and V,, is a subspace we have cx +y € V,
thus T'(cx +y) € T'(V,) and as

T(cx+y)=cT(z)+T(y)

hence T'(V,) # 0 is closed under addition and scalar multiplication. Therefore, T'(V,) < W.

To prove (2.) suppose W, < W and observe 0 € W, and T(0) = 0 implies 0 € T~*(W,). Hence
T=Y(W,) # (. Suppose c € F and z,y € T~Y(W,), it follows that there exist z,,y, € W, such that
T(x) =z, and T(y) = y,. Observe, by linearity of T,

T(cx+y) =cT(x)+T(y) = cxo+ yo € W,

Zalthough, perhaps it’s worth noting that in advanced calculus we learn how to linearize a function at a point.
Some of our results here roughly generalize locally through the linearization and what are known as the inverse and
implicit function theorems
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hence cx +y € T~ (W,). Therefore, by the subspace theorem, T-1(W,) < V. O

The special cases V, =V and W, = {0} merit discussion:

Corollary 3.1.18.

If T:V — W is a linear transformation then T'(V) < W and T-'{0} < V. In other words,
Ker(T') <V and Range(T) < W.

Proof: observe V<V and {0} < W hence by Theorem the Corollary holds true. [J

The following definitions of rank and nullity of a linear transformation are naturally connected to
our prior use of the terms. In particular, we will soonE| see that to each linear transformation we
can associate a matrix and the null and column space of the associated matrix will have the same
nullity and rank as the kernel and image respective.

Definition 3.1.19.

Let V, W be vector spaces. If a mapping 7' : V — W is a linear transformation then

dim(Ker(7")) = nullity(7T) & dim(Range(T")) = rank(7T).

Thus far in this section we have studied the behaviour of a particular linear transformation. In what
follows, we see how to combine given linear transformations to form new linear transformations.

Definition 3.1.20.

Suppose T : V — W and S : V. — W are linear transformations then we define T+ 5,7 — S
and T for any ¢ € F by the rules

(T+S)(zx)=T(z)+ S(z). (T'=8)(z)=T(z)—S(z), (cT)(x)=cT(x)

forall z € V.

The proof of the proposition below as it is nearly identical to the proof of Proposition [3.1.2

Proposition 3.1.21.

]IfT,Sec(V,W) and ¢ € F then T + S, ¢T € L(V, W). \

Proof: I'll be greedy and prove both at once: let z,y € V and b,c € F,

(T + ¢S)(x + by) = T(x + by) + (cS)(x + by) defn. of sum of transformations
=T(x + by) + cS(x + by) defn. of scalar mult. of transformations
=T(x) + bT(y) + c[S(z) + bS(y)] linearity of S and T’
=T (z) 4+ cS(z) + b[T(y) + cS(y)] vector algebra props.
= (T +cS)(x) +b(T + cS)(y) again, defn. of sum and scal. mult. of trans.

Let c=1and b =1 tosee T + S is additive. Let ¢ =1 and x = 0 to see T + S is homogeneous.
Finally, let 7' = 0 to see ¢S is additive (b = 1) and homogeneous (z = 0). O

3Lemma [3.3.16| and Proposition [3.3.17] to be precise
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Recall that function space of all functions from V' to W is naturally a vector space according to the
point-wise addition and scalar multiplication of functions. It follows from the subspace theorem
and the proposition above that:

Proposition 3.1.22.

The set of all linear transformations from V to W forms a vector space with respect to the
natural point-wise addition and scalar multiplication of functions; L(V, W) < F(V,W).

Proof: If T, S € L(V,W) and ¢ € F then T'+ S, T € L(V,W) hence L(V,W) is closed under ad-
dition and scalar multiplication. Moreover, the trivial function T'(x) = 0 for all z € V' is clearly in
L(V,W) hence L(V,W) # () and we conclude by the subspace theorem that L(V, W) < F(V,W). O

Function composition in the context of abstract vector spaces is the same as it was in precalculus.

Definition 3.1.23.

Suppose T': V — U and S : U — W are linear transformations then we define
SeT:V - Wby (S-T)(x)=S5(T(x)) forall z € V.

The composite of linear maps is once more a linear map.

Proposition 3.1.24.

Suppose T' € L(V,U) and S € L(U, W) then S-T € L(V,W).

Proof: Let z,y € V and c € F,

(SeT)x+cy) = ST(x+cy)) defn. of composite
T is linear trans.
S is linear trans.
OT)( ) defn. of composite

[
pa=a
/’j/\
88
8T+
T

py-

nH=
<

additivity follows from ¢ = 1 and homogeneity of ST follows from z = 0 thus S-7 € L(V,W). O

A vector space V together with a bilinear multiplication m : V x V' — V is called an algebrﬂ For
example, we saw before that square matrices form an algebra with respect to addition and matrix
multiplication. Notice that V' = L(W, W) is likewise naturally an algebra with respect to function
addition and composition. One of our goals in this course is to understand the interplay between
the algebra of transformations and the algebra of matrices.

The theorem below says the inverse of a linear transformation is also a linear transformation.

Theorem 3.1.25.

Suppose T' € L(V, W) has inverse function S : W — V then S € L(W,V).

4it is somewhat ironic that all too often we often neglect to define an algebra in our modern algebra courses in
the US educational system. As students, you ought to demand more. See Dummit and Foote for a precise definition
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Proof: suppose T>S = Idy and S°T = Idy. Suppose x,y € W hence there exits a,b € V for
which T'(a) = x and T'(b) = y. Also, let ¢ € F. Consider,

S(cx+y) = S(cT(a)+T(b)).

=S(T(ca+0)): by linearity of T'
=ca+b: def. of identity function
=cS(z)+ S(y) : note a = S(T'(a)) = S(z) and b = S(T(b)) = S(y).

Therefore, S is a linear transformation. [J

Observe, linearity of the inverse follows automatically from linearity of the map. Furthermore, it
is useful for us to characterize the behaviour of LI sets under invertible linear transformations:
What about LI of sets? If S is a LI subset of V and T' € L£(V,W) then is T(S) also LI? The
answer is clearly no in general. Consider the trivial transformation of Example [3.1.6] On the other
extreme we have the following:

Theorem 3.1.26.

If T :V — W is an injective linear transformation then S is LI implies 7'(S) is LI. If
L:V — W is any linear transformation and if U is LI in W then L=1(U) is LI in V.

Proof: suppose T is an injective linear transformation from V' to W and suppose S = {s1,..., sk}
is a LI subset of V. Consider T(S) = {T(s1),...,T(sx)}. In particular, suppose there exist
€1, ..,¢k € Fsuch that e1T(s1)+ -+ cxT(sx) = 0 implies T'(c181 + - - - + ¢cxsi) = 0 by Proposition
3.1.12] Thus 181+ -+cgsy € Ker(T) = {0} by Theorem[3.1.16] Consequently, ¢1s1+---+cpsp =0
hence ¢y =0,...,¢; =0 by LI of S.

Conversely, if U = {u1,...,u;} is LI in W then suppose z1,--- ,x, € L~1(U). Assume
cxri+ -+ cpx, = 0 and observe:

L(ciz1+ -+ cpzn) =L(00) = caL(z1)+--+cpLl(zy) =0

but, by definition of L=*(U) we have L(x1),...,L(z,) € U and thus by LI of U we conclude
C1 :0,...,Cn:0. O

Injective maps preserve linear independence whereas surjective maps preserve spanning:

Theorem 3.1.27.

If T:V — W is a surjective linear map then if span(S) =V then span(T(S)) = W.

Proof: Suppose the linear map 7" : V' — W is surjective and span(S) = V. Let y € W then as T
is surjective there exists € V for which T'(z) = y. Since x € span(S) there exist ¢1,...,cp € F
and v1,...,v; € S for which x = cjv1 + - -+ + ¢,vi. Hence

T({L’) = T(Clvl + o4 Ckvk) = CIT(Ul) + o4 CkT(Uk)‘

Since T'(v1),...,T(vg) € T(S) we find y = T'(z) € span(T(S)) and it follows W = T'(span(S)). O
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3.1.3 standard matrices and their properties

I hope this section is a review from your previous course. I include it here in the interest of these
notes being complete.

Theorem 3.1.28. fundamental theorem of linear algebra.

L : F* — F™ is a linear transformation if and only if there exists A € F"™*" such that
L(z) = Ax for all z € F™.

Proof: (<) Assume there exists A € F™*" such that L(z) = Ax for all z € F". Observe:

L(z+cy) = A(x 4 cy) = Ax + cAy = L(z) + cL(y)
for all x,y € F" and ¢ € F hence L is a linear transformation.

(=) Assume L : " — F™ is a linear transformation. Let e; denote the standard basis in F”. If
x € F™ then there exist constants x; € F such that © = x1e1 + x9e9 + - - + €, and

L(z) = L(z1e1 + z2e2 + - - - + Tpep)
=ux1L(e1) +zoL(e2) + -+ - + x, L(ey)

I
Z2

= [L(e)|L(e2)| -~ |L(en)]

Tn

by Corollary [1.3.18] Let A = [L(e1)|L(e2)|- - |L(ey)] to see L(x) = Ax as desired. [

The fundamental theorem of linear algebra allows us to make the following definition.

Definition 3.1.29.

Let L : F" — F™ be a linear transformation. The standard matrix of L is defined by:

[L] = [L(e1)[L(e2)] - - - | L(en)]-

The proof of the previous theorem makes it clear that [L] is the unique matrix for which L(z) = [L]x.
We also use the notation Ly : F* — F™ to denote the linear transformation defined by left-
multiplication by A € F™™*".

Example 3.1.30. Given that L(z,y,2) = (x + 2y, 3y + 42,5z + 62) for (x,y,2) € R? find the the
standard matriz of L. We wish to find a 3 x 3 matriz such that L(v) = Av for allv = (z,y, z) € R3.
Write L(v) then collect terms with each coordinate in the domain,

x x+ 2y 1 2 0
L Y =|3y+4z | =2 | 0 |+y| 3 |+=z] 4
z T + 62 ) 0 6
It’s not hard to see that,
T 1 20 T 1 2 0
L y =10 3 4 y = A=[L]=|0 3 4
z 5 0 6 z 5 0 6
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Notice that the columns in A are just as you’d expect from the proof of theorem [3.1.28
[L] = [L(e1)|L(e2)|L(es)]. In future examples I will exploit this observation to save writing.

Example 3.1.31. Suppose that L((t,z,y,2)) = (t+z+y+ 2,2 —x,0,3t — 2), find [L].

L(e1) = L((1,0,0,0)) = (1,0,0,3) 1 1 1 1
L(es) = L((0,1,0,0)) = (1,—1,0,0) |0 -1o0 1
L(es) = L((0,0,1,0)) = (1,0,0,0) =10 0 0 o
L(es) = L((0,0,0,1)) = (1,1,0,—1) 3.0 0 —1

I invite the reader to check my answer here and see that L(v) = [L]v for all v € R* as claimed.

Very well, let’s return to the concepts of injective and surjectivity of linear mappings. How do
our theorems of LI and spanning inform us about the behaviour of linear transformations? The
following pair of theorems summarize the situtation nicely.

Theorem 3.1.32. linear map is injective iff only zero maps to zero.

L :F"™ — F™ is a linear transformation with standard matrix [L] then
(1.) L is 1-1 iff the columns of [L] are linearly independent,

(2.) L is onto F™ iff the columns of [L] span F™.

Proof: To prove (1.) use Theorem [3.1.16
Lis1l-1 & {L(JJ):O & :1::0} & {[L]xzo & 1‘20.}

and the last equation simply states that if a linear combination of columns of L is zero then the
coefficients of that linear equation are zero so (1.) follows.

To prove (2.) recall that if A € F™*" v € F" then Av = b is consistent for all b € " if and only
if the columns of A span F™. To say L is onto F™ means that for each b € F™ there exists v € F"
such that L(v) = b. But, this is equivalent to saying that [L]v = b is consistent for each b € F™ so
(2.) follows. O

The standard matrix enjoys many natural formulas. The standard matrix of the sum, difference
or scalar multiple of linear transformations likewise the sum, difference or scalar multiple of the
standard matrices of the respective linear transformations.

Proposition 3.1.33.

Suppose T : F* — F" and S : F* — F™ are linear transformations then

L) [T+S]=[T1+1[8], 2)[T-5 =[-8, (3)[cS]=¢[S].

Proof: Note (T'+ c¢S)(e;) = T'(e;) + c¢S(e;) hence (T + cS)(e;))i = (T'(ej))i + c(S(ej))q for all 4, j
hence [T+ ¢S] = [T] + ¢[S]. Set ¢ =1 to obtain (1.). Set ¢ = —1 to obtain (2.). Finally, set T =0
to obtain (3.). O
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Example 3.1.34. Suppose T'(z,y) = (x +y,z —y) and S(x,y) = (2x,3y). It’s easy to see that

no[1 0 et [22] » esomeis 2]

Therefore, (T + S)(x,y)

3 1 r } = [ STy | (3z + y,x + 2y). Naturally this is the

112 Y T+ 2y
same formula that we would obtain through direct addition of the formulas of T and S.

Matrix multiplication is naturally connected to the problem of composition of linear maps.

Proposition 3.1.35.

S:FP — F™ and T : F* — FP are linear transformations then So7T : F" — F™ is a linear
transformation with standard matrix [S][T]; that is, [S~T] = [S][T].

Proof: Let us denote F" = span{e; | i = 1,...,n}. To find the matrix of the composite we need
only calculate its action on the standard basis; by definition, col;[ST] = (S°T)(e;). Observeﬂ

(SeT)(ej) = S(T(ej)) : def. of composite
= S([T)e;) : def. of [T]
= [S]([Te;) : def. of [S]
= ([S][T])e; : associativity of matrix multiplication

Thus col; ([S<T]) = col; ([S][T]) for j =1,...,n hence [S-T] = [S][T]. O

Think about this: matrix multiplication was defined to make the above proposition true.
Perhaps you wondered, why don’t we just multiply matrices some other way? Well, now you have
an answer. If we defined matrix multiplication differently then the result we just proved would not
be true. However, as the course progresses, you'll see why it is so important that this result be
true. It lies at the heart of many connections between the world of linear transformations and the
world of matrices. It says we can trade composition of linear transformations for multiplication of
matrices.

3.2 restriction, extension, isomorphism

Another way we can create new linear transformations from a given transformation is by restriction.
Recall that the restriction of a given function is simply a new function where part of the domain
has been removed. Since linear transformations are only defined on vector spaces we naturally are
only permitted restrictions to subspaces of a given vector space.

Definition 3.2.1.

If T:V — W is a linear transformation and U C V then we define T|y : U — W by
T|y(z) =T (x) for all z € U. We say T'|y is the restriction of T to U.

I’ve lectured this calculation a few times, but it somehow never made it to my previous version of the notes, look
back if you want to see how to make this like way more complicated, I think in columns more now than when I wrote
the notes originally
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Proposition 3.2.2.

I T € L(V,W) and U <V then Ty € L(U,W).

Proof: let z,y € U and ¢ € F. Since U <V it follows cx +y € U thus
Tly(cx +y) =T(cx +y) = cT(x) + T(y) = cT'lu(z) + Tlv(y)

where I use linearity of T" for the middle equality and the definition of T'|;; for the outside equalities.
Therefore, T'|¢ € L(U,W). O

We can create a linear transformation on an infinity of vectors by prescribing its values on the basis
alone. This is a fantastic result.

Theorem 3.2.3. linear transformations are fixed by their action on a basis.

Suppose S is a basis for a vector space V' and suppose W is also a vector space. Furthermore,
suppose L : f§ — W is a function. There exists a unique linear extension of L to V.

Proof: to begin, let us understand the final sentence. A linear extension of L to V means a func-
tion T': V' — W which is a linear transformation and T'|3 = L. Uniqueness requires that we show
if Th,T5 are two such extensions then 77 = T5. With that settled, let us begin the actual proof.
I’ll assume V is finite dimensional since that is our main application of this theorem, however, this
result holds in the infinite dimensional context.

Suppose 5 = {v1,...,v,} if # € V then there exist unique z1,...,z, € F for which z = >_7" | z;v;.
Therefore, define T': V. — W as follows

T(x)=T (Z azivi> = ZazlL(vz)
i=1 i=1

Clearly T|s = L. Suppose z,y € V with x = >, z;v; and y = >, y;v; then cx +y = ¢, m0; +
S vivi = Y, (cw; + yi)v; thus

T(cx+y)=T <Z(cm + y@-)vi>
= Z(c;i + i) L(v;)
= cZinL(vi) + 2 uilw)
= cTz(at) +T(y) Z

thus 7' € L(V,W). Suppose T, T are two such extensions. Consider, z =Y " | ;v;

=1 =1

However, the same calculation holds for Ts(x) hence T (z) = Ty(x) for all x € V therefore the
extension 7T is unique. I have given the proof in the finite dimensional context, however, it is a
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simple exercise to prove nearly the same proof applies in the infinite dimensional context. [I.

When we make use of the proposition above we typically use it to simplify a definition of a given
linear transformation. In practice, we may define a mapping on a basis then extend linearly.

We conclude this section by initiating our discussion of isomorphism.

Definition 3.2.4.

Vector spaces V(F) and W(F) are isomorphic if there exists an invertible linear trans-
formation W : V. — W. Furthermore, an invertible linear transformation is called an
isomorphism. We write V = W if V and W are isomorphic.

Notice that it suffices to check ¥ : V' — W is linear and invertible. Linearity of ¥~! follows by
Theorem [3.1.25, This is nice as it means we have less work to do when proving some given mapping
is an isomorphism. In fact, isomorphisms are especially nice in their relation to bases.

Lemma 3.2.5. image of a basis is a basis under isomorphism.

‘If U : V — W is an isomorphism and £ is a basis for V(F) then ¥(5) is a basis for W (IF). ‘

Proof: Theorem tells us injective linear transformations map LI sets to LI sets. Thus, as
an isomorphism W is injective and the basis § is LI we find ¥(f3) is a LI subset of W. Likewise,
Theorem tells us that a surjection maps spanning sets to spanning sets. Thus, V' = span()
implies W = span(¥(/3)). Therefore, U(3)) is a linearly independent spanning set for W; that is,
V() is a basis for W. O

Notice the Lemma above allows the possibility that V' is an infinite dimensional vector space. In
fact, since the cardinality of the basis is the dimension of the vector space we find the following
interesting result:

Theorem 3.2.6.

'V =W if and only if dim(V) = dim(W).

Proof: if ¥ : V — W is an isomorphism then ¥ is a bijection. Moreover, by the Lemma above, if
B is a basis for V then W([3) is a basis for W. Hence |8| = |¥(3)| as cardinality is preserved under
bijection. Thus dim(V') = dim(W).

Conversely, if dim(V') = dim(W) then there exist bases 3 for V and v for W for which there exists
a bijection F' :  — ~. Extending F' linearly to V gives ¥ : V. — W a linear map. Likewise,
extending F~! : v — 3 linearly gives ® : W — V a linear map. The reader is invited to prove
U~! = & and thus ¥ is an isomorphism and hence V = W. O

We should beware there are many practicioners of linear algebra who have been taught a careless
formalism for infinite dimensional vector spaces which flattens infinite dimensional vector spaces of
differing cardinality into a single monolithic whole. So, are two infinite dimensional vector spaces
isomorphic 7 Answer: maybe. For instance, the set of algbraic numbersﬁ@ over Q has dimension R,

Ssee Dummit and Foote’s 3rd edition, the set of algebraic numbers include all numbers found in a finite extension
field of Q like v/3 or 3i = /=9 etc, but not things like m or e which are transcendental over Q, something beyond
finite algebra is required to reach C which contains R
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whereas C(Q) has dimension ;. Hence, Q and C are not isomorphic as Q-vector spaces since they
have different dimensions. On the other hand, R(Q) and C(Q) are isomorphic as their dimensions
are both Nj.

Proposition 3.2.7.

IfT:V —-Uand S:U — W are isomorphisms then 5.7 is an isomorphism. Moreover,
~ is an equivalence relation on the class of all vector spaces over a given field F.

Proof: let T € L(V,U) and S € L(U,W) be isomorphisms. Recall Proposition [3.1.24] gives us
ST € L(V,W) so, by Theorem [3.1.25| all that remains is to prove SeT is invertible. Observe
that 71> S~! serves as the inverse of S 7. In particular, calculate:

(S THT™ o571 (2)) = S(T(T~H(S™H(2)))) = S(S™H(z)) = =.

Thus (SoT)o(T71eS™) = Idy. Similarly, (T-*eS71)o(SoT) = idy. Therefore ST is invert-
ible with inverse 7-1o §~1.

The proof that = is an equivalence relation is not difficult. Begin by noting that T' = Idy gives an
isomorphism of V' to V hence V = V; that is & is reflexive. Next, if T': V' — W is an isomorphism
then 7! : W — V is also an isomorphism by Theorem thus V= W implies W = V; = is
symmetric. Finally, suppose V= U and U = W by T € L(V,U) and S € L(U,W) are isomor-
phisms. We proved that ST € £(V,W) is an isomorphism hence V = W; that is, & is transitive.
Therefore, & is an equivalence relation on the class of vector spaces over F. [

3.2.1 examples of isomorphisms

In this section I give you examples of isomorphisms. I do not supply proof that these maps are in
fact as claimed, but it should be straight-forward to check on my assertions.

The coordinate map is an isomorphism which allows us to trade the abstract for the concrete.

Example 3.2.8. Let V be a vector space over R with basis B = {fi1,..., fn} and define ®g by
®3(fj) =ej € R" extended linearly. In particular,

a(vifi+ -+ vnfn) = vier + - + vnen.
This map is a linear bijection and it follows V ~ R™.

The notation V(R) indicates I intend us to consider V(R) as a vector space over the field R.

Example 3.2.9. Suppose V(R) = {A € C>*2 | AT = — A} find an isomorphism to P, < R[z] for
appropriate n. Note, A;j = —Aj; gives Ajg = Axp = 0 and A1p = —Ag. Thus, A € V has the

form:
_ 0 a+ b
A[—a—ib 0 ]

0 a+1ib

I propose that ¥(a + bx) = [ aeib 0

] provides an isomorphism of Py to V.
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Example 3.2.10. Let V(R) = (C x R)?*2 and W(R) = C?*3. The following is an isomorphism
from 'V to W:

(z1,21) (22,22) }

|: Z1 Z9 z3
(23,23) (24,74)

z4 T1+ixy T3+ 1Ty

Example 3.2.11. Consider P»(C) = {az?+bx+c| a,b,c € C} as a complex vector space. Consider
the subspace of Py(C) defined as V = {f(x) € Po(C) | f(i) = 0}. Let’s find an isomorphism to C"
for appropriate n. Let f(x) = ax? + bx +c € V and calculate

f@)=a(@)?+bitc=—a+bi+c=0 = c=a—bi

Thus, f(z) = ax® +bx +a —bi = a(z® + 1) + b(x —i). The isomorphism from V to C? is apparent
from the calculation above. If f(z) € V then we can write f(z) = a(x® + 1) + b(z — i) and

U(f(x)) = ¥(a(z® 4+ 1)+ b(z — i) = (a,b).
The inverse map is also easy to find: ¥~'(a,b) = a(x® + 1) + b(z — i)

Example 3.2.12. Let U(f(z),g9(x)) = f(z)+2"Tg(x) note this defines an isomorphism of P, x P,
and Pop41. For example, n =1,

U((ax +b,cx +d)) = ax + b+ 2*(cx + d) = ca® + dz® + ax + b.

The reason we need 2n+1 is just counting: dim(P,) = n+1 and dim(P, x P,)) = 2(n+1). However,
dim(Pap+1) = (2n+ 1) + 1. Notice, we could take coefficients of P, in R, C or some other field F
and this example is still meaningful.

Example 3.2.13. Let V =F™*" and W = L(F™,F™). Consider ¥ :V — W given by V(A) = L4
where La(z) = Ax for all x € F*. Then Ly € W as desired and it is a simple exercise to check
U(cA+ B) =cV(A) + ¥(B). We can also show

v(L) =[]

thus U is an isomorphism as it is a linear map with linear inverse. Notice a basis for L(F™ F™)
can be found by mapping the matriz-units E;; to V(E;;) = Lg,;. The mappings Lg,; : F* — F™
serve as a basis for L(F™ F™).

Example 3.2.14. Let V. = L(R",R™) and W = L(R™,R"™). Transposition gives us a natural
isomorphism as follows: for each L € V there exists A € R™*" for which L = L. However, to
AT € R™ ™ there naturally corresponds L v : R™ — R™. Since V. and W are spaces of functions
an isomorphism is conveniently given in terms A~ Ly isomorphism of R™*™ and L(R™,R™): in
particular ¥ : V. — W 1is given by:

W(Ly) = Lyr.

To write this isomorphism without the use of the L4 notation requires a bit more thought. Take off
your shoes and socks, put them back on, then write what follows. Let S € V and v € R™,

(¥(8))(z) = (" [S])" = [S]"& = Ligyr(2).

Since the above holds for all x € R™ it can be written as V(S) = Ligr.



98 CHAPTER 3. LINEAR TRANSFORMATIONS

Example 3.2.15. Let V = P, and W = {f(x) € y | f(1) = 0}. By the factor theorem of algebra
we know f(x) € W implies f(z) = (x — 1)g(x) where g(x) € Py. Define, ¥(f(z)) = g(x) where
g(x)(x — 1) = f(z). We argue that U is an isomorphism. Note U~1(g(x)) = (v — 1)g(x) and it is
clear that (x — 1)g(z) € W moreover, linearity of W1 is simply seen from the calculation below:

U (eg(@) + () = (x —1)(cg(z) + h(x)) = e(z — Dg(x) + (z — 1)g(z) = ¥} (g(x)) + ¥ (h()).
Linearity of ¥ follows by Theorem as W= (UH=l Thus V = W.

You might note that I found a way around using a basis in the last example. Perhaps it is helpful
to see the same example done by the basis mapping technique.

Example 3.2.16. Let V = Py and W = {f(z) € y | f(1) = 0}. Ignoring the fact we know the
factor theorem, let us find a basis the hard way: if f(x) = ax® + bz +cx +d € W then

f)=a+b+c+d=0
Thus, d = —a — b—c and
f(x)=a(@®—=1) +b® —1) +c(z—1)
We find basis B = {x3 — 1,22 — 1,2 — 1} for W. Define ¢ : W — Py by linearly extending:
oz —1) =22, ¢t -1)=z, olx—1)=1.
In this case, a bit of thought reveals:
¢ Haz® 4+ bz + ¢) = a(z® — 1) + b(x? — 1) + ¢(z — 1).
Again, these calculations serve to prove W = Ps.

Example 3.2.17. Consider complex numbers C as a real vector space and let Mc be the set of
a

real matrices of the form: [ Z _ab ] Observe that the map V(a + ib) = { b

-b | . .
s a linear
a

transformation with inverse W1, ([ _ab ]) = a +ib. Therefore, C and Mc are isomorphic as

a
b
real vector spaces.

Let me continue past the point of linear isomorphism. In the example above, we can show that C
and Mg are isomorphic as algebras over R. In particular, notice

a _bHc —d}:[ac—bd ~(ad + be)

(a+ib)(c+id) = ac — bd +i(ad + bc) & [b a d e ad+be  ac—bd

As you can see the pattern of the multiplication is the same. To be precise,

U( (a+ib)(c+1id) )=VY(a+1ib)V(c+id).

complex multiplication matrix multiplication

These special 2 x 2 matrices form a representation of the complex numbers. The term isomor-
phism has wide application in mathematics. In this course, the unqualified term ”isomorphism”
would be more descriptively termed ”linear-isomorphism”. An isomorphism of R-algebras is a lin-
ear isomorphism which also preserves the multiplication * of the algebra; ¥(v * w) = ¥(v)¥(w).
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Another related concept, a non-associative algebra on a vector space which is a generalization of
the cross-product of vectors in R? is known aﬂ a Lie Algebra. In short, a Lie Algebra is a vector
space paired with a Lie bracket. A Lie algebra isomorphism is a linear isomorphism which also pre-
serves the Lie bracket; ¥ (v, w]) = [¥(v), ¥(w)]. Not all isomorphisms are linear isomorphisms. For
example, in abstract algebra you will study isomorphisms of groups which are bijections between
groups which preserves the group multiplication. My point is just this, the idea of isomorphism,
our current endeavor, is one you will see repeated as you continue your study of mathematics.

3.3 matrix of linear transformation

I used the notation [v]g in the last chapter since it was sufficient. Now we need to have better
notation for the coordinate maps so we can articulate the concepts clearly.

Definition 3.3.1.

Let V(F) be a finite dimensional vector space with basis 5 = {v1,va,...v,}. The coordinate
map ®g: V — F" is defined by

@/3(,7}11}1 + Tovo + - + mn”n) =x1€e] + Taeg + -+ Tpep = (3317 Zo, ... ,.Tn)

for all v = zyv1 + 22v9 + -+ - + TV, € V.

We argued in the previous section that ®g is an invertible, linear transformation from V' to F". In
other words, ®4 is an isomorphism of V' and F". It is worthwhile to note the linear extensions of

(I)B(Ui) = €; & (I)El(ei) = V;
encapsulate the action of the coordinate map and its inverse. The coordinate map is a machine

which converts an abstract basis to the standard basis.

Example 3.3.2. LetV = szz with basis ﬁ = {Ell,Elg, E21, E22} then

<bﬁ<[z Z])z(a,b,c,d).

Example 3.3.3. Let V.= C" as a real vector space; that is V(R) = C". Consider the basis
B = {e1,...,en,i€1,...,0en} of this 2n-dimensional vector space over R. Observe v € C" has
v = + iy where x,y € R"™. In particular, if a +ib = a —ib and v = (v1,...,v,) then the identity
below shows how to construct x,y:

1 1
v:i(u+®)+§(v—@)
N e’

Re(v)=x iIm(v)=iy

and it’s easy to verify T = x and § = y hence x,y € R™ as claimed. The coordinate mapping is
sitmple enough in this notation,

p(x +iy) = (z,y).
Here we abuse notation slightly. Technically, I ought to write

Cp(x+iy) = (T1,. -, Ty Y1, - - - Yn)-

"it is pronounced ”Lee”, not what Fauci did
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Example 3.3.4. Let V = P, with f = {1,(x—1),(x—1)%,...,(x—1)"}. To find the coordinates of
an n-th order polynomial in standard form f(z) = apx™+ - -+ a1x + a, requires some calculation.
We've all taken calculus II so we know Taylor’s Theorem.

M)

n!

f(z) (z —1)"

n=0
also, clearly the series truncates for the polynomial in question hence,

F™(1)

n!

Fl#) = $0) + ) = 1)+ o /D) =124 T 1y
Therefore,
B(7) = (£ 70, 3 W7V,

Example 3.3.5. Let V(]R) = {A = Z?,j:l AijEij | A1+ Ay = 0, Aqg € Pl,All,AQQ,Agl € (C}
If A €V then we can write:

B a—l—ib‘ ct+d
T latiy | —a—ib

A natural choice for basis B is seen

R TER RER AT D

The coordinate mapping g : V — RS follows easily in the notation laid out above,
®s(A) = (a,b,c,d, z,y).

Now that we have a little experience with coordinates as mappings let us turn to the central problem
of this section: how can we associate a matriz with a given linear transformation T : V — W 2. It
turns out we’ll generally have to choose a basis for V(IF) and W(IF) in order to answer this question
unambiguously. Therefore, let 5 once more serve as the basis for V' and suppose ~ is a basis for W.
We assume #(3), #(v) < oo throughout this discussion. The answer to the question is actually in
the diagram below:

V(F) — W (F)

lcpﬁ l%

I e B

Lirig

The matrix [T, induces a linear transformation from F” to F™. This means [T]5, € F™*".
It is defined by the demand that the diagram above commutes. Directly this means ®, T =
L), ., > ®p. However, since the coordinate maps are invertible we can just as well write:

-1
T =@ e Lipy, o ®p.



3.3. MATRIX OF LINEAR TRANSFORMATION 101

Or, on the other hand, we could write
-1
Ly, = ®yeTo®y.

The equation above indicates how to calculate Lip 5., I terms of the coordinate maps and T
directly. To select the i-th column in [T, we simply operate on e; € F". This reveals,

coli([T]p) = ®(T(®5" (ei)))
However, as we mentioned at the outset of this section, Cbgl(ei) = v; hence

coli([T),y) = @~ (T (v5)) = [T'(v3)]

where I have reverted to our previous notation for coordinate Vectorsﬂ Stringing the columns out,
we find perhaps the nicest way to look at the matrix of an abstract linear transformation:

[T = [[T(v1)}5] - [[T(0n)];]

Each column is a W-coordinate vector which is found in F” and these are given by the n-basis
vectors which generate V.

As we remarked at the outset of this discussion, commuting of the diagram means:
®yoT = Ligy,  °Pp.

If we feed the expression above an arbitrary vector v € V' we obtain:

(T (v)) = Liry, , (Pp(v) = [T(0)ly = [T]p4[vs

In practice, as I work to formulate [T, for explicit problems I find the boxed formulas convenient
for calculational purposes. On the other hand, I have used each formula on this page for various
theoretical purposes. Ideally, you'd like to understand these rather than memorize. I hope you are
annoyed I have yet to define [T . Let us pick a definition for specificity of future proofs.

Definition 3.3.6.

Let V(F) be a vector space with basis 5 = {vi,...,v,}. Let W(F) be a vector space with
basis v = {w1, ..., wpy}. T :V — W is a linear transformation then we define the matrix
of T'" with respect to 3,7 as [T, € F"*" which is implicitly defined by

Ligy,., = Dy oTo@gl.

The discussion preceding this definition hopefully gives you some idea on what I mean by ”implic-
itly” in the above context. In any event, we pause from our general discussion to illustrate with
some explicit examples.

Example 3.3.7. Let S: V — W with V = W = R?*2 are given bases B = v = {E11, E12, F21, Faa}

and L(A) = A+ AT, Let A= [ i ] and calculate,

d

o=z 2] i)l 5

8the mapping notation supplements the [v]g notation, T use both going forward in these notes
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Observe,

[A]s = (a,b,c,d) & [S(A)]y = (2a,b+ ¢, b+ ¢,2d)
Moreover, we need a matriz [S]g~ such that [S(A)]y = [S]s,[Alg. Tilt head, squint, and see
0

[Slgny =

S O O N
O = = O
i =]
N OO

Example 3.3.8. Let V(R) = P12X2 be the set of 2 x 2 matrices with first order polynomials. Define
T(A(x)) = A(2) where T : V. — W and W = R?>*2. Let v = {E11, E12, Ea1, E2} be the basis for
W. Let 3 be the basiéﬂ with coordinate mapping

o, <[ a+bx | c+da ]) = (a,b,c,d,e, f,g,h).

e+fx‘g+h$
We calculate for v = a+ br ‘ ¢t dr that
e+f3:‘g+hac

_[a+2b|c+2d
T(U)_[e+2fg+2h]

Therefore,
[T'(v)]y = (a+2b,c+2d,e +2f, g+ 2h)

and as the coordinate vector [v]g = (a,b,c,d, e, f,g,h) the formula [T(v)], = [T]g~[v]g indicates

12000000
00120000
Tlsa=10 00012 0 0
0000001 2

Example 3.3.9. Suppose Ps is the set of cubic polynomials with real coefficients. Let T : Ps — Pj
be the derivative operator; T(f(x)) = f'(x). Give Py the basis 8 = {1,x,2% 23}. Calculate,

T(a + bz + cx® + da®) = b+ 2cx + 3dz>

Furthermore, note, setting v = a + bx + cx® + da3

[T'(v)]g = (b,2c,3d,0) & [v]g = (a,b,c,d) = T)pp =

o O O O
o O o=
S O N O
O w o o

The results of Proposition [3.1.2] and [3.1.35 naturally generalize to our current context.

9you should be able to find 8 in view of the coordinate map formula
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Proposition 3.3.10.

Let V, W be n, m-dimensional vector spaces over a field IF with bases 3, v respective. Suppose
S,T € L(V,W) then for c € F we have [T £ S, [T]s,y, [S]g,y, [¢S]g,y € F™*™ and

(1) [T+ Slgy = Tlpny + [Slpys  (2.) [T = Slgy = Tlgy — [Slpy,  (3.) [eS]py = clSlpy-

Proof: the proof follows immediately from the identity below:
Oyo(T+c9)o @y =0y oTody! + by S byl
This identity is true due to the linearity properties of the coordinate mappings. [J

The generalization of Proposition [3.1.35]is a bit more interesting.

Proposition 3.3.11.

Let U,V,W be finite-dimensional vector spaces with bases f,7,d respectively. If S &
L(U,W) and T € L(V,U) then [S°T], s = [S],5(T]+,s

Proof: Notice that LyeLp = Lap since La(Lp(v)) = La(Bv) = ABv = Lyp(v) for all v. Hence,

L1815 51716 = L181s5 ° L1, 6 set A = [S]g s and B = [T,
= (P5°5°P5 Yo (@goTo @;1) :defn. of matrix of linear transformation,
=®50(5T)0 ! :properties of function composition,
= L[SOT]% s :defn. of matrix of linear transformation.

Thuslﬂ [SeT),s =[S]s,s[T],8 as we claimed. O

If we apply the result above to a linear transformation on a vector space V where the same basis
is given to the domain and codomain some nice things occur. For example:

Example 3.3.12. Continuing Example . Observe that T?(f(x)) = T(T(f(z)) = f"(z). Thus
if v =a+ bz + cx? + dz® then T? : Py — Py has T?(v) = 2c + 6dx hence [T?(v)]g = (2¢, 6d,0,0)
and we find

0020
o |0 006
Tlss =100 0 0

0000

You can check that [T% g5 = [T)ps[T)ps. Notice, we can easily see that [T3|gs # 0 whereas
[T")gp =0 for alln > 4. This makes [T)g s a nilpotent matriz of index 4.

The following example is pretty weird.

Example 3.3.13. It might be interesting to relate the results of Example and FExample
3.2.16. Ezaming the formula for V=1(g(z)) = (x — 1)g(x) it is evident that we should factor out

107 use a little lemma here, two left multiplication maps are equal if and only if they multiply by the same matrix;
Ly = Ly if and only if M = N. Another way to look at this, the mapping A — L 4 is injective.
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(x — 1) from our ¢~ formula to connect to the U~ formula,

pHaz? +br+c)=alz—1)(@®+z+1)+bx—1)(z+1)+clz—1).
= (z = Dfa(z® + 2+ 1) + b(z + 1) + ¢
= (z — Daz* + (a+b)x +a+ b+
=0 Yaz? + (a+b)x+a+b+c).

Evaluating the equation above by ¥ yeilds (Vo¢~1)(az? + bz + ¢) = ax?® + (a + b)x + a + b + c.
Therefore, if v = {x? 2,1} then we may easily deduce

100
[Wopyy=|1 10
111

Example 3.3.14. Let V,W be vector spaces of dimension n over F. In addition, suppose T : V —
W is a linear transformation with inverse T~': W — V. Let V have basis 3 whereas W has basis
v. We know that ToT~' = Idw and T~'oT = Idy. Furthermore, I invite the reader to show that
Udylgp =1 € F"*" where n = dim(V') and similarly [Idw]y, = I € F"*™. Apply Proposition
to find

[T~ e T)g5 = [T7"),,5T )5,

but, [TV eT)gs = [Idv]lpps = I thus [T, 3(T)s, = I and we conclude ([T)p,)"' = [T, 5.
Phew, that’s a relief. Wouldn't it be strange if this weren’t true? Moral of story: the inverse
matrix of the transformation is the matrix of the inverse transformation.

1 111

2 2 30
recall, the CCP reveals all, we can easily calculate:

Example 3.3.15. Let A = ] find an isomorphism from Null(A) to Col(A). As we

rref(A):[é (1) (1) _32}

Null space is © € R* for which Az = 0 hence ©1 = —x9 — 324 and x3 = 2x4 with o, x4 free. Thus,
x = (—wg — 3w4, 2,214, 74) = x2(—1,1,0,0) + 24(—3,0,2,1)

and we find By = {(—1,1,0,0),(—=3,0,2,1)} is basis for Null(A). On the other hand Bc =
{(1,2),(1,3)} forms a basis for the column space by the CCP. Let ¥ : Null(A) — Col(A) be
defined by extending

U((-1,1,0,0)) = (1,2) & U((-3,0,2,1)) =(1,3)

linearly. In particular, if x € Null(A) then VU (z) = x2(1,2) + x4(1,3). Fun fact, with our choice of

basis the matriz (V] g, = [ (1) (1) ]

The matrix of a linear transformation reveals much about the transformation.
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Proposition 3.3.16.

Let T : V. — W be a linear transformation where dim(V) = n and dim(W) = m. Let
®g:V — F"* and &, : W — F™ be coordinate map isomorphisms. If 3,v are bases for
V, W respective then [T, satisfies the following

(L) Null([T]5,) = B5(Ker(T)),  (2) Col([Tls,) = &, (Range(T)).

Proof of (1.): Let v € Null([T]g) then there exists € V for which v = [z]g. By definition of
nullspace, [T|g[x]g = 0 hence, applying the identity [T'(z)], = [T]s,[x]g we obtain [T'(z)], = 0
which, by injectivity of @, yields T'(z) = 0. Thus « € Ker(T") and it follows that [z]g € ®g(Ker(T')).
Therefore, Null([T],,) € ®g(Ker(T')).

Conversely, if [z]z € ®g(Ker(T')) then there exists v € Ker(7") for which ®5(v) = [z]|g hence, by
injectivity of ®3, x = v and T'(x) = 0. Observe, by linearity of ®, [T'(z)], = 0. Recall once
more, [T'(x)]y = [T]g~[x]s. Hence [T]s,[x]g = 0 and we conclude [z]g € Null([T]3,,). Consquently,
®p(Ker(T)) € Null([T]g,, ).

Thus ®g(Ker(T)) = Null([T]3,,). I leave the proof of (2.) to the reader. [J

I should caution that the results above are basis dependent in the following sense: If 1,52 are
bases with coordinate maps ®3,, ®g, then it is not usually true that ®g, (Ker(T)) = ®g,(Ker(T)).
It follows that Null([T]g, ,) # Null([T]g,~) in general. That said, there is something which is
common to all the nullspaces (and ranges); dimension. The dimension of the nullspace much match
the dimension of the kernel. The dimension of the column space must match the dimension of the
range. This result follows immediately from Lemma and Proposition .

Proposition 3.3.17.

Let T : V — W be a linear transformation of finite dimensional vector spaces with basis /3
for V and v for W then

nullity (7") = nullity ([T ,y) & rank(7T") = rank([T]g)-

You should realize the nullity and rank on the L.H.S. and R.H.S of the above proposition are quite
different quantities in concept. It required some effort on our part to connect them, but, now that
they are connected, perhaps you appreciate the names. Since we already know about rank and
nullity for matrices from our study of row-reduction we obtain the following result:

Theorem 3.3.18. Rank-Nullity Theorem

Let T : V — W be a linear transformation of finite dimensional vector spaces then
dim(V') = rank(7T") + nullity(7")

where rank(7") = dim(Range(7")) and nullity(7') = dim(Ker(T")).

Proof: choose any pair of bases for V' and W respective, say S, and notice from matrix theory
we know nullity([T]g) is the number of non-pivotal columns whereas rank([T]g ) is the number
of pivot columns. But n = #4 = dim(V) is the number of columns in [T, hence

dim(V') = rank([T]g ) + nullity([Ts,,) = rank(7") 4 nullity (7
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where we applied Proposition in the final equality. [J

There is another proof of the Rank Nullity Theorem we give in conjunction with our study of the
Straightening Theorem [3.5.1

3.4 coordinate change

Vectors in abstract vector spaces do not generically come with a preferred coordinate system. There
are infinitely many different choices for the basis of a given vector space. Naturally, for specific
examples, we tend to have a pet-basis, but this is merely a consequence of our calculational habits.
We need to find a way to compare coordinate vectors for different choices of basis. Then, the same
ambiguity must be faced by the matrix of a transformation. In some sense, if you understand the
diagrams then you can write all the required formulas for this section. That said, we will cut the
problem for mappings of column vectors a bit more finely. There are nice matrix-theoretic formulas
for R™ that I'd like for you to know when you leave this coursﬂ

3.4.1 coordinate change of abstract vectors

Let V be a vector space with bases 8 and 3 over the field F. Let 8 = {vi,...,v,} whereas
B = {v1,...,0n}. Let x € V then there exist column vectors [z]g = (z1,...,7,) and [z]z =
(Z1,...,%y) € F™ such that

ZT;V;
1

n
T = E Tiv; & T =
i=1

J

Or, in mapping notation, x = @El([a}]g) and z = @El([x]g). Of course = = x hence

Operate by ®5 on both sides,

Observe that ®5- @El : F™ — F” is a linear transformation, therefore we can calculate its standard
matrix. Let us collect our thoughts:

Proposition 3.4.1.

Using the notation developed in this subsection, if Ps 5 = [®5° @El] then [z]5

The diagram below contains the essential truth of the above proposition:

T mean, don’t wait until then, now is a perfectly good time to learn them
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\\W Fr

o 3.0, = B, bds

HAS mATRIX

P= 3%, ]

Example 3.4.2. Let V = {A € R?*2|Aj; + Ay = 0}. Observe 8 = {E2, Ea1, E11 — Eos} gives a
basis for V. On the other hand, B = {E12+FE21, E1a—E21, E11—E} gives another basis. We denote
B ={v} and B = {v;}. Let’s work on finding the change of basis matriz. I can do this directly by
our usual matriz theory. To find column i simply multiply by e;. Or let the transformation act on
e;. The calculations below require a little thinking. I avoid algebra by thinking here.

O5(05' (1)) = 5(Ew) = @5 (; [01 + 172]> =(1/2,1/2,0).
D5(05" () = D5(Ea) = @ <; (o1 — 172]) =(1/2,-1/2,0).
D5(05 (e3)) = Dg(E1 — Enp) = @5 (v3) = (0,0, 1).

Admittably, if the bases considered were not so easily related we’d have some calculation to work
through here. That said, we find:

1/2 1/2 0
Pog=|1/2 -1/2 0
0 0 1
, . . 1 2
Let’s take it for a ride. Consider A = [ 5 _1 ] clearly [A]g = (2,3,1). Calculate,
1/2 1/2 0772 5/2
PoglAls= | 1/2 =172 0 | |3 | =] -1/2 | = [4];
0 0 1 1 1

Is this correct? Check,

T H B B R R T P

Yep. It works.

It is often the case we face coordinate change for mappings from F" — F". Or, even more special
m = n. The formulas we’ve detailed thus far find streamlined matrix-theoretic forms in that special
context. We turn our attention there now.
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3.4.2 coordinate change for column vectors

Let 8 be a basis for F”. In contrast to the previous subsection, we have a standard basis with

which we can compare; in particular, the standard basis. Huzzah@ Let g = {vi,...,v,} and
note the matrix of [ is simply defined by concatenating the basis into an n x n invertible matrix
(8] = [vi]|- - |vn]. If € F™ then the coordinate vector [z]z = (y1,...,yn) is the column vector such
that

x = [f]lz]g = y1v1 + - ynn

here T used ”y” to avoid some other more annoying notation. It is not written in stone, you
could use ([z]); in place of y;. Unfortunately, I cannot use z; in place of y; as the notation x; is
already reserved for the Cartesian components of z. Notice, as [3] is invertible we can solve for the
coordinate vector:

2] = 8] 'a
If we had another basis 3 then
[2]5 = [B) '«
Naturally, = exists independent of these bases so we find common ground at x:

z = [B][z]p = [B][z]5
We find the coordinate vectors are related by:
[2]5 = 8] (B[]
Let us summarize are findings in the proposition below:

Proposition 3.4.3.

Using the notation developed in this subsection and the last, if P35 = [@Bo@bgl] then
[z]5 = Ps lz]p and a simple formula to calculate the change of basis matrix is given by
Pgz= [B]71[B]. We also note for future convenience: [B]Pﬁﬁ =[]

Example 3.4.4. Let 8 = {(1,1),(1,—1)} and v = {(1,0),(1,1)} be bases for R%. Find [v]z and
[v]ly if v=1(2,4). Let me frame the problem, we wish to solve:

v=[plklpg  and  v=[l],

where I'm using the basis in brackets to denote the matriz formed by concatenating the basis into a
single matrix,

1 1] 11
A=y o] e w=|y
This is the 2 X 2 case so we can calculate the inverse from our handy-dandy formula:
171 1] 1 -1
-1 _ 1 -1 _

Then multiplication by inverse yields [v]g = [B]~ v and [v], = [y] tv thus:
1 1

=g (4 A J[]=[ 2] e w=[o S]] ]

250rry, we visited Medieval Times over vacation and it hasn’t entirely worn off just yet
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Let’s verify the relation of [v]y and [v]g relative to the change of basis matriz. In particular, we
expect that if Ps = [y]|71[8] then [v]y = P, [v]s. Calculate,

O F | E B

As the last great American presidenﬂ trust, but, verify

e e I I Bl A

It might be helpful to some to see a picture of just what we have calculated. Finding different
coordinates for a given point (which corresponds to a vector from the origin) is just to prescribe
different zig-zag paths from the origin along basis-directions to get to the point. In the picture below
I illustrate the standard basis path and the 3-basis path.

Ty i T P e L
= lﬁi€$gﬁf ~ih 4= 4], E=JJJ

Y4

This ;l‘in_nanm-.. ;;;.wj hows V= [F
is broken wie {',ampnnwﬂk;{
with tespect 4o o Shundscd
wid  non=stnderd  Basir

€, B “shuodond” b __
[:ime Er = I:-jf & o { 'ﬂ

Now that we’ve seen an example, let’s find [v]g for an arbitrary v = (z,y),

171 1][= ;m+m]
v = — =
wetlt 2L
If we denote [v]g = (Z,y) then we can understand the calculation above as the relation between the
barred and standard coordinates:

z=3(+y)  g=35(—y)
Conversely, we can solve these for x,y to find the inverse transformations:

r=x+y Yy=r—y.

Similar calculations are possible with respect to the ~y-basis.

13Upon further reflection, he wasn’t so great, his approval of the bill which made drug companies free from litigation
stemming from harming citizens whose lives were destroyed by dangerous vaccines has done lasting damage to this
country and his compromises on immigration and failure to remove the Department of Education left America open
to attack from within. Moreover, the EITC has incentivized tax fraud for decades. Finally, he paved the road for
Bush and Bush Jr. to involve us in foreign wars and grow domestic surveilance openly in the name of freedom.
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3.4.3 coordinate change of abstract linear transformations

In Definition we saw that if V(IF) is a vector space with basis § = {v1,...,v,} and W(F) be
a vector space with basis v = {w1,...,wp}. Then a linear transformation 7" : V' — W has matrix

[T)g~ € F™*™ defined implicitly by:
_ -1
Liryp, = @yoTo®p5.
If there was another pair of bases 3 for V and 7 for W then we would likewise have
=P oToP L
L[T]E,a = ®y0T (I)B .
Solving for T relates the matrices with and without bars:
—_ o1 —_ o1 _
= e Ligs,, o ®p = @5 o Lyry;  ° Op-
From which the proposition below follows:

Proposition 3.4.5.

Using the notation developed in this subsection

Suppose B, A € F™*"_ If there exist invertible matrices P € F™*™ () € F"*" such that B = PAQ
for then we say B and A are matrix congruent. The proposition above indicates that the matrices
of a given linear tranformation’| are congruent. In particular, [T|5 5 is congruent to [T']g,. The
picture below can be used to remember the formulas in the proposition above.

14 . . .
of finite dimensional vector spaces
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Example 3.4.6. Let V = P, and W = C. Define a linear transformation T : V. — W by

T(f) = £(0). Thas
T(az? +bx +c¢) = ai> + bi+c=c—a+ib.

Use coordinate maps given below for 8 = {x?,x,1} and v = {1,i}:
Ps(ar? +bx + ¢) = (a,b,¢) & o, (a+ib) = (a,b).

—101]

Observe [T(az* + bz + ¢)]y = (c — a,b) hence [T)g, = [ 0 10

Let us change the bases to
B:{($—2)2,(1‘—2),1} & P_Y:{%l}
Calculate, if f(x) = ax® +bx +c then f'(z) = 2ax +b and f"(x) = 2a. Observe, f(2) = 4a+2b+c
and f'(2) = 4a+ b and f"(2) = 2a hence, using the Taylor expansion centered at 2,
1
fla)=f2) + f'2)(z =2) + 5" 2)( - 2)?
=4a+2b+c+ (4a + b)(z — 2) + a(z — 2)*.

Therefore,
¢B(ax2 +bx +c¢) = (a,4a+ b,4a + 2b+¢)

But, @gl(a, b,c) = ax?® + bx + c. Thus,

100
®5(®5" (a,b,¢)) = (a,4a + b, 4a + 2b + ¢) = (@50 @5 = j ; (1)

Let’s work out this calculation in the other direction (it’s actually easier and what we need in a bit)
Pgla(r —2)* +b(z —2) +¢) = Pgla(x® — 4z +4) + b(z — 2) +¢) = (a, —4a + b, 4a — 2b + c)
But, @ﬁ?l(a, b,c) = a(z —2)? 4+ b(x — 2) + ¢ therefore:
1 0
1

<I>5(<I>[§1(a, b,c)) = (4a —2b+ ¢, —4a + b, a) = (@3 ofbgl] = —4

= o O

-2

On the other hand, ®~(a +ib) = (b,a). Of course, a + ib = @;l(a, b) hence <1>:Y(CI>;1(CL, b

~—

) = (b,a).

It follows that [®5 o@;l] = [ (1) (1) ] We’ll use the change of basis proposition to find the matriz
w.r.t. B and ¥
T)55 = [<1>7°<1>§1][T]ﬁ,v[<1>ﬁ°‘1>51]-
_[o 1“-1 0 1] _14 (1) 8
|10 0 10 4 9 1
"0 10 1 0 0
R
- 4 =21
-4 1 0
13 -2 1]
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Continuing, we can check this by direct calculation of the matriz. Observe

T(a(x —2)* + bz —2)+c)=a(i —2)? +b(i — 2) + ¢
=al-1—-4i+4]+0(i—2)+c
=3a—2b+c+i(—4a+0)

-4 1 0

Thus, [T(a(o -2 +0(e~2)+ ) = (~da+ 0,30 20+0) henee [Tl = | 51 1

] . Which

agrees nicely with our previous calculation.

3.4.4 coordinate change of linear transformations of column vectors

We specialize Proposition [3.4.5 in this subsection in the case th@t V =F"and W = F™. In
particular, the result of Proposition makes life easy; Pg 5 = [B]718] likewise, Py 5 = [7]71[7]

Proposition 3.4.7.

Using the notation developed in this subsection

[Tl = 3~ M[T1p4 18] 1B]-

The standard matrix [77] is related to the non-standard matrix [T 5 by:

T35 = B TIB).

)

Proof: Proposition with V = F" and W = F™ together with the result of Proposition [3.4.3
give us the first equation. The second equation follows from the observation that for standard bases
B and v we have [§] = I, and [y] = I,,. O

Example 3.4.8. Let 3 = {(1,0,1),(0,1,1),(4,3,1)}. Furthermore, define a linear transformation
T :R3 = R3 by the rule T(z,y,2) = (2 — 2y + 2z, = — z, 2z — 3y + 2z). Find the matriz of T
with respect to the basis 5. Note first that the standard basis is read from the rule:

x 2z — 2y + 2z 2 -2 2 T
T( Y ): Tr—z =11 0 -1 Y
z 20 — 3y + 2z 2 -3 2 z

Next, use the proposition with 3 =% (omitting the details of calculating [3]~")

1/3 —2/3 2/37[2 -2 2

B 'TA = | —1/2 1/2  1/2 1 0 -1
1/6 1/6 —1/6_ 2 -3 2

—_ O

0 4
13
i 11

1/3 —2/3 2/37[4 0 4
= -1/2 1/2 1/2|]|0 -1 3
1/6 1/6 —1/6 | | 4 —1 1

Il
S O
|
S = O
_ o O
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Therefore, in the B-coordinates the linear operator T takes on a particularly simple form. In

particular, lf/B = {f17f27f3} theﬁ

T(jvga 2) =4zfi —yfo+2f3
This linear transformation acts in a special way in the fi, fo and fs directions. The basis we
considered here is called an eigenbasis for T'. We study eigenvectors and the associated problem
of diagonalization later in this course.

3.5 theory of dimensions for maps

This section is yet another encounter with a classification theorem. Previously, we learned that
vector spaces are classified by their dimension; V' = W iff dim(V') = dim(W). In this section, we’ll
find a nice way to lump together many linear transformations as being essentially the same function
with a change of notation. In this section, matrix congruence is the measure of sameness. Given
A, B € F™*" we say A and B are matrix congruent if there exist invertible matrices P, Q for
which

B =PAQ.

nXn

In contrast, two square matrices A,B € F are said to be similar if there exists an invertible

matrix P for which
B =P AP

Both similarity and congruence give equivalence relations on appropriate sets of matrices. In the
context of square matrices these are not the same concept of similarity. From the viewpoint of
linear transformations, we encounter matrix congruence when changing coordinates in the domain
and codomain of a given linear transformation in an independent fashion. On the other hand, we
encounter similarity transformations when changing coordinates for the matrix of a linear trans-
formation on a given vector space where we use the same basis for both the the domain and the
codomain.

It turns out the problem of deciding whether two square matrices are similar is quite difficult.
In contrast, the problem of deciding if two matrices are congruent is an easy corollary to the
following theorem which I call the straightening theorem. Essentially, it means we can always
change coordinates on a linear transformation to make the formula for the transformation a simple
projection onto the first p-coordinates;

T(ylv"’aypﬂyp-i-l)"'?yn) = (yla"'ayzwov"'ao)

Later in this course we’ll study other problems where different types of coordinate change are al-
lowed. When there is less freedom to modify domain and codomain coordinates it turns out the
canonical forms of the object are greater in variety and structure. Just to jump ahead a bit, if we
force m = n and change coordinates in domain and codomain simultaneously{lfl then the real Jor-
dan form captures a representative of each equivalence class of matrix up to a similarity transfor-
mation. On the other hand, Sylvester’s Law of Inertia reveals the canonical form for the matrix
of a quadratic form is simply a diagonal matrix with Diag(D) = (—1,...,—1,1,...,1,0,...,0).

15some authors just write 7, myself included, but, technically T = TOQBfl, so... as I'm being pretty careful

otherwise, it would be bad form to write the prettier, but wrong, T'
16 alternatively, we could study the rational canonical form, but I'm leaving that for your next course in linear
algebra, it is discussed in Insel Spence and Friedberg
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Quadratic forms are non-linear functions which happen to have an associated matrix. The coordi-
nate change for the matrix of a quadratic form is quite different than what we’ve studied thus far.
In any event, this is just a foreshadowing comment, we will return to this discussion once we study
eigenvectors and quadratic forms later in this course.

I should mention, the straightening theorem is somewhat similar to the |Singular Value Decom-
position (SVD) Theorem which we may cover towards the conclusion of this course. Essentially,
the Singular Value Decomposition says any linear transformation can be understood as a combina-
tion of a generalized rotation and scaling. You might find this You Tube video by Professor Pavel
Grinfeld useful for gaining a quick appreciation of the SVD.

Please notice I have restated the rank-nullity theorem within the theorem below. We already gave
a matrix-theoretic proof when it was originally stated in Theorem [3.3.18] In contrast, the proof
given below is purely linear algebraic.

Theorem 3.5.1. Straightening Theorem

Let V, W be vector spaces of finite dimension over F. In particular, suppose dim(V) = n and
dim(W)=m. If T: V — W be a linear transformation then

dim(V) = dim(Ker(T")) + dim(Range(T)).
If rank(T") = dim(7'(V')) = p then there exist bases  for V' and ~ for W such that:

oo = [245]-

Proof: Note Ker(7T) < V therefore we may select a basis fx = {v1,...,v;} for Ker(T) where
dim(Ker(T)) = k. Apply the basis extension theorem to extend Sk to a basis for V' as follows:

ﬁ:{wla"wwpavla"-avk}

where p + k = n = dim(V'). Notice wy, ..., w, ¢ span(fk) since otherwise 8 is not LI and hence
not a basis. If € V then there exist z;,y; € F for which z = >0, zjw; + Z;?:l y;v;. Calculate
by linearity of T,

p k p
T(x) = Z%T(wz‘) + Zij(Uj) = Z%T(wi)

since vy,...,v; € Ker(T) gives T'(v1) = --- = T'(vx) = 0. Observe, it follows that the set of p
vectors 7' = {T'(wy),...,T(wp)} serves as a spanning set for Range(T'). Moreover, we may argue
that 4 is a LI set: suppose

aT(w)+ -+ T (wpy) =0 = T(awi+--+cwy) =0
If cowr + -+ + cpwp # 0 then cqwy + -+ + cpw, € Ker(T) = span(Bk) hence § is a linearly

dependent set. This contradicts the LI of 8 hence ciw; + - - - + cpw, = 0. But, then as {wy, ..., w,}
is a subset of the LI set 8 we find ¢; = 0,...,¢, = 0. Consequently, 7' serves as a basis for
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Range(T). Hence, dim(Ker(T)) + dim(Range(T)) = k + p = n. Finally, extend +' to a basis
vy={T(w1),...,T(wp), Upt1,...,Un} for W. Then,

[Ty = [T (wi)ly| - [T (wp) WI[T (01) 5] - - [[T(0r)]5] = [ea] - - - [ep[0] - - 0]

This concludes the proof of the theorem. [J

Corollary 3.5.2. Matrixz Congruence

If A, B € F™™ then there exists P, invertible matrices such that B = PAQ if and only if
rank(A) = rank(B). In other words, two same sized matrices are matrix congruent if and
only if they share the same rank.

Proof: I think I will leave the forward implication as a homework and focus on the converse here.
Suppose rank(A) = rank(B) = p then by the straightening theorem there exist bases 3, 3’ for F"
and ~,~' for F™ for which the matrices of L4 and Lp with respect to the basis are given by:

P

Since [La] = A and [Lp] = B, applying Proposition yields

[Lalsy =DIT'AIB] & [Lpley = 1] B[S

Therefore, [y] 1 A[S] = [/]"' B[B]. Solve for B to obtain B = [y][y]"*A[8][8'] . Let P = [y/][y]~*
and Q = [B][8']7! and note both P and @ are invertible as the matrix of a basis is invertible and
the product of invertible matrices is invertible. Thus B = PAQ and we have shown A and B are
congruent matrices. [

There may be easier ways to prove the result above, my intention was to illustrate how it appears
as a result flowing from the straightening theorem. The result which follows is extremely useful
when it can be used.

Theorem 3.5.3.

Let V' be vector spaces of finite dimension over F. If T': V' — V is a linear transformation
then the following are equivalent:

(1.) T is injective
(2.) T is surjective

(3.) T is an isomorphism

Proof: follows nicely from the rank nullity theorem. If dim(V) =n and T : V — V is a linear
transformation then n = rank(T") + nullity(T).

Suppose (1.) is true; suppose T is injective then Ker(T) = 0 thus nullity(T) = 0 and it follows
rank(T) = n thus T is surjective. Thus (1.) implies (2.).
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Suppose (2.) is true; assume 7' is surjective. Then T'(V) = V hence rank(T) = n and we find
nullity(T) = 0 thus Ker(T) = 0 and hence T is injective. Thus T is an isomorphism since it is a
linear transformation which is both injective and surjective. Thus (2.) implies (3.).

But then (3.) implies (1.) by the definition of isomorphism. It then follows that (1.) and (2.) and
(3.) are equivalent statements. E O

Notice, we can only use this Theorem to circumvent work if we already know the function in ques-
tion is indeed a linear transformation on a given vector space of finite dimension. But, if that is
settled, this Theorem gives us license to claim injectivity and surjectivity after verification of either
one. This should remind you of the case of maps on finite sets; if T : S — S is a function and
#S < oo then T is surjective iff T is injective. While V() generally has infinitely many vectors, the
basis construction brings a finiteness which is a large part of why finite-dimensional linear algbera
has such simple structure.

3.5.1 a detour into matrix theory

As we noted before, the straightening theorem asserts: there exists a choice of coordinates which
makes a given linear transformation a projection onto the range. However, the proof of the theorem
did not entirely explain how to find such coordinates. We next investigate a calculational method
to find 3, for which the theorem is realized@

Suppose T € L(V,W) where dim(V) = n and dim(W) = m. Furthermore, suppose 3/ =
{v1,... v} and v/ = {w}, ..., w,,} are bases for V and W respective. We define [T]g./ as usual:

[Tlgy = [T (01)]y ] [T (vy)]]
There exists a product of elementary m X m matrices £, for which
Rl = rref( [T],BI’Y,) = E1 [T]BI'Y/

Let p be the number of pivot columns in R;. Observe that the last (m — p) rows in R; are zero.
Therefore, the last (m—p) columns in R} are zero. Gauss-Jordan elimination on R} is accomplished
by multiplication by E5 which is formed from a product of n X n elementary matrices.

Ry = rref(RT) = E,RT

Notice that the trivial rightmost (m — p) columns stay trivial under the Gauss-Jordan elimination.
Moreover, the nonzero pivot rows in R; become p-pivot columns in R which reduce to ey, ... ,€p
standard basis vectors in R"™ for Ry (the leading ones are moved to the top rows with row-swaps if
necessary). In total, we find: (the subscripts indicate the size of the blocks)

] | Opx (1m—
]_ungT:[el|...|e 0]---|0] = | -2 px(m—p)
! g Otn—p)xp | Otn—p)x (m—p)

17please ask me if this is unclear, this is a common proof technique to establish equivalence of multiple statements.
8my apologies, the 4’ in the discussion which follows is logically divorced from our previous use of 4" in the proof
of the straightening theorem
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Therefore,

)} | Ops (m—
P x|
- Otn—p)xp | O(n—p)x(m—p)

Transposition of the above equation yields the following:

)} | Opx (-
Er[T)gy By = { P px(n—p) ]
T2 Om—p)p | Om—p)x(n—p)

If 3, are bases for V' and W respective then we relate the matrix [T, to [T]g as follows:
T)o = (B0 ©5 [Ty [0y 0 051,

Therefore, we ought to define 5 by imposing [®g o(I)El] = FE; and v by [<I>70<I>;,1] = EY. Using
L (v) = Av notation for Ey, BT

Lp =®p-0;" &  Lgr=0,°0)

Thus,

-1
-1 _ F-1 -1 __ &1 -1
o' =gt & @7 = (Lgre®y) =e3loLph

and we construct 5 and -y explicitly by:
B={(@5 Lp)(e)}ior 7 ={(® e Lyp) ()}

Note the formulas above merely use the elementary matrices and the given pair of bases. The
I, 0}

discussion of this page shows that 5 and v so constructed will give [T]g = [ 010

Continuing, to implement the calculation outlined in the previous page we would like an efficient
method to calculate Fq and E5. We can do this much as we did for computation of the inverse. I
illustrate the idea belowflok

Example 3.5.4. Let A = . If we adjoin the identity matriz to right the matrixz which

e
N O =W
W = Ot

1
is constructed in the Gauss-Joran elimination is the product of elementary matrices P for which
rref(A) = PA.
1 3 4|1 0 0 0 10 1[0 O 1 0
B 1450100 |O0O11/00 —1/2 1/2
reflA =refl g 1o 01 0T |00 0l1 0 12 —32
1 2 30001 0 00f01 1 -2
We can read P for which rref(A) = PA from the result above, it is simply
0 0 1 0
p_ |00 —1/2 172
110 1/2 -3/2
01 1 —2

95ee Example 2.7 on page 244 of Hefferon’s Linear Algebra for a slightly different take built on explicit computation
of the product of the elementary matrices needed for the reduction
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Next, consider row reduction on the transpose of the reduced matriz. This corresponds to column
operations on the reduced matriz.

1 0001 0O 100 0(0 -1 1
rrefl(rref(A))T|Is) =rref| 0 1 0 0/0 1 0|=|0 1 0 00 1 0
1 10 0(0 01 00001 1 -1
0 -1 1
LetQ=|10 1 0 and define R by:
1 1 -1
0 -1 1 1 0 00 1 000
RT =Qlrref(A))T =10 1 0 01 00|=|01200
1 1 -1 1 100 0 0 0
Finally, R = (Q[rref(A)]1)T = rref(A)QT hence R = PAQT. In total,
1 0]0 0 0 1 0 1 3 4 0 0 1
0 1/o| |0 o0 —1/2 1/2 s D
0 00| |10 1/2 32101 L0
0 0]0 01 1 -2 1 2 3

There is nothing terribly special about this example. We could follow the same procedure for a
general matrix to find the explicit change of basis matrices which show the matrix congruence of

A to [ Iég 8 ] where p = rank(A).



Chapter 4

Jordan Form

Chains of vectors stretch,
Jordan whispers in blocks tight—
Dreams of lines made straight. EXTRANEOUS G, 2025

Given two linear transformations on a finite dimensional vector space V(IF) when is it the case that
they share the same formula ? In other words, given T': V' — V and S : V — V both linear, when
does there exist bases 3 and ~ for V' such that [Tg 3 = [S],,. Notice coordinate change gives that

[S)yy = P71 [S]a,6P.

If T and S have the same formula in different coordinate systems then there will exist an invertible
matrix P for which

[T =P '[S)ssP.

Notice that if this is true for basis 8 then it is also true for any other basis J since

Tlas=Q '[TssQ &  [Slgs=Q '[S]s56@Q

for some change of basis matrix ). Thus

Q '[T56Q = P'Q'[S)s5,sQP.

which yields the following if we solve for [Ts

[Tls5 = QP'Q7'[S]5,QPQ ™" = (QPQ™ ) '[Sls5(QPQ ™).

Consequently, if the matrix of 7" and the matrix of S are similar in view of one basis choice then
their matrices will be similar in any other choice of basis. We find that deciding whether two
linear transformations on V' have the same formula is equivalent to deciding whether a given pair of
matrices A, B € F"*" are similar. Recall, A and B are similar if there exists an invertible matrix
R for which

B=R'AR.

Similarity is an equivalence relation on F™*™ and our goal in this chapter is to understand how to
categorize the equivalence classes of this relation. It turns out, over C the answer is elegantly given
by the Jordan form. However, over R, we must use the real Jordan form. For a more abstract
field, the Jordan form may or may not be helpful since it requires a certain polynomial equation
to have solutions in the field. I should mention, another competitor in this space of concepts is the

119
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rational cannonical form. It does not require the polynomials which define it to have roots in
the field, thus it is a more general construction. That said, the Jordan form is more often seen in
applications and it will provide sufficient challenge for this course. I leave the rational cannonical
form for your next course in Linear AlgebraH

4.1 structure of subspaces

The first two subsections in this section flow together as a coherent nariative. The third subsection
combines the material of this section with our previous work on quotient spaces.

4.1.1 independent subspaces

I will begin this section by following an elegant constructionﬂl found in Morton L. Curtis’ Abstract
Linear Algebra pages 28-30. The results we encounter in this section prove useful in later chapters
where we study eigenvectors.

Recall the construction in Example [2.1.11] this is known as the external direct sum. If V, W are
vector spaces over R then V' x W is given the following vector space structure:

(vi, w1) + (v2, w2) = (v1 + v2, w1 + wa) & c(v,w) = (cv, cw).

In the vector space V' x W the vector (Oy, 0y ) = Oy xw. Although, usually we just write (0,0) = 0.
Furthermore, if Sy = {v1,...,v,} and By = {w1,...,wy} then a basis for V' x W is simply:

B ={(vi,0)|i € No} U{(0,wy)|j € Nip}
I invite the reader to check LI of 5. To see how S spans, please consider the calculation below:
(2,y) = (z,0) + (0, y)

= (2101 + - + 20, 0) 4+ (0, yrw1 + - - Ym W)
= xl(vl,O) + -+ :En(Un,O) + yl(oawl) + - ym(oawm)

Thus $ is a basis for V' x W and we can count #(3) = n+m hence dim(V x W) = dim (V') +dim(W).
This result generalizes to an s-fold cartesian product of vector spaces over F:

Proposition 4.1.1.

If Wi, Ws, ..., W, are vector spaces over [ with bases 1, B2, ..., 8s respective then
Wi x Wy x --- x Wy has basis

(B1 % {0} x -+ x {0}) U ({0} x iy x -+ x {0 U++- U ({0} x {0} X -+ x fi)
hence dim(W7 x Wy x -+ x Wy) = dim(W;) + dim(Wa) + - - - + dim(W5).

Proof: left to reader. [J

The Example below illustrates the claim of the Proposition above:

it can reasonably be covered in Math 422 where we have more machinery for the theory of polynomial factoring
at our disposal
2T don’t use his notation that A® B = A x B, I reserve A @ B to denote internal direct sums.
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Example 4.1.2. Find a basis for P2(R) x R?*2 x C. Recall the monomial basis {1,z, 2%} for P,(R)
and the unit-matriz basis { E11, E12, Ea1, B} for R?*2 and {1,i} serves as the basis for C as a real
vector space. Hence

p= {(17 0, O)a (l‘, 0, O)a ('7;23 0, O)? (07 En, 0)7 (Oa Ena, O)v (O, Eo, 0)7 (07 Esa, 0)7 (0, 0, 1)3 (0> 0, 2)}
serves as a basis for the nine dimensional real vector space Py(R) x R?*2 x C.

The question to ask is when is it possible to find an isomorphism between a given vector space
V and some set of subspaces of V whose sum forms V. It turns out there are several ways to
understand such a structure and we devote the next page or so of the notes towards exploring a
number of equivalent characterizations.

Notice the notation Wy + Wy = {x1 + 29 | 1 € Wi, 29 € Wa} generalizes to:
Wi+Wo- -+ Wiy ={x1+z2+--+ax | v, € W; foreachi=1,2,...,k}

where Wy, Ws, ..., W} are subspaces of some vector space.

Definition 4.1.3.

Wy, Wo,... Wi, <V and V=W, + Wy +--- W then we say V is the internal direct
sum of the subspaces Wi, Wy, ..., Wy if and only if for each © € V there exist unique
r; € W, fori=1,2,...,k such that x = 1 + 22 + - - - + .. When the above criteria is met
we denote this by writing

V=W eWysd. ---pW,

I follow some arguments I found in Chapter 10 of Dummit and Foote’s Abstract Algebra. 1 found
these are a bit easier than what I've seen in undergraduate linear texts, so, I share them here:

Theorem 4.1.4.

HEWy,.... W <Vand V =W;j +--- 4+ Wy is finite dimensional over F then the following are
equivalent:

(1) m: Wy x -+ x Wy — V defined by 7(x1,...,25) = 1 + -+ - + x is an isomorphism,
)y w,nWi+---+W;oq1+ Wi+ -+ Wg) ={0} for each j =1,... k,

8.) V=W & - @® W or, to be precise, for each x € V there exist unique x; € W; for
1=1,...,k for which x = x1 + - - - + g,

(4.) if B; is a basis for W; for i = 1,...,k then = 5y U---U By is a basis for V,

(5.) ifz; e Wyfori=1,...,kand 1 +---+x =0 then 1 =0,--- ,a; = 0.

Proof: suppose 7 : Wy x -+ - x Wy, — V defined by mw(z1,...,z5) = 21+ - -+ 2 is an isomorphism.
Suppose x € W; N (Wi + -+ W1 + Wjp1 + -+ Wg). We have x € Wj and x € Wy + -+ +
Wi_1+ Wjq1 + - -+ Wy, thus there exist z; € W; for ¢ # j for which

=z 4 Azt Tt Aay = oo Fr o —rtrato =0
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1

Since 7 is an isomorphism 7! is a linear and 771(0) = 0 and

-1
™ (961+--~+96j_1—x+$€j+1+---+xk):(961,---,$j—17—33,90j+17--~,96k)=0

hence z = 0. Thus W; N (W + - + W1 + W1 +--- + W) = {0} for each j =1,..., k. This
completes the proof that (1.) implies (2.).

Next, suppose W; N (Wy + -+ W1 + Wjp1 +--- + Wy) = {0} foreach j=1,...,k. Let z € V
then as V.= Wy + --- + Wy, there exist x; € W; for which x = z1 4+ - - - + x,. Suppose y; € W; for
which z = y1 + - - - + y,. Notice z; :x—zi#xi and y; :x—zi#yi thus

Yj—x; = (x—ij) — (x—Zyj) :—Z(xj-i-yj) e+ +W;aa+Wiga+---+ Wy
iZ oy i7j
and as y; —x; € W we find y; —ax; e W;N (Wi + -+ W1 + Wi +--- + Wy) = {0}. Thus
yj = x; for arbitrary j = 1,..., k. This completes the proof that (2.) implies (3.).

Suppose V=W & --- @& Wy. Let §; = {v;j, | 1 < ji < m;} serve as a basis for W; for i =1,... k
where we've defined dim(W;) = m;. Let x € V. There exist unique x; € W; for i = 1,... k for
which ¢ = 21 + - - - 4+ x. Since W; = span(p;) there exist ¢; j, € F such that

m;
Ti = § :Ciyji”i,jr

Ji=1
Therefore,
mi mp k. my
x = E CLj Uy ot E Ck,jix Vk,ji, = E E  Ci j Vi g,
Jji1=1 Je=1 i=1 j;=1

The calculation above shows § = (1 U --- U B is a spanning set for V. Next we prove linear
independence of 5. Suppose

k. my

E E Cij;Vij; = 0.

i=1 j;=1

Since 0 = 0+ - -- + 0 by uniqueness we find

m;
E Cij;Vij; =0

Ji=1
and by linear independence of 3; we find ¢; ;, = 0 for i = 1,...,k and it follows that 3 is linearly

independent. This completes the proof that (3.) implies (4.).

Suppose if §; is a basis for W; for i = 1,...,k then = 1 U--- U By is a basis for V' (use the
same notation as in the previous portion of the proof). Let x; € W; for i = 1,...,k and suppose
x1 + -+ +x, = 0. Further, suppose ¢; j, € F such that

m;
Ti= Y Cijvig,e

Ji=1
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Since 1 + - -+ + zp = 0 we find

m;
E Cij;Vij; =0

Ji=1
thus ¢; ;, = 0 for all 4, j; and it follows x; = 0 for ¢ = 1,...,k. This completes the proof that (4.)
implies (5.).

Suppose z; € W; for i = 1,...,k with z1 + --- + 2 = 0 implies x1 = 0,...,z = 0. Let
m: Wiy x - x Wi, = V be defined by 7(z1,...,25) = x1 + -+ + x5. We seek to show 7 is an
isomorphism. We begin by establishing the linearity of w. Let x,y € Wy x --- x W}, and ¢ € F then

cx+y=c(ry,...,xp)+ (y1,...,y%) = (cx1 + y1,. .., Tk + Yi)
by the definition of the vector space structure on the Cartesian product. Thus,
m(cx+y) = (cx1 +y1)+ -+ (cop +yp) =clxr + -+ x) +y1 + -+ yp = cm(z) + 7(y).
Next, to show 7 is injective consider x € Ker(n),
(@) =x1+ - +x,=0

thus 1 = 0,...,2; = 0 and hence x = 0 and we find Ker(m) = 0 thus 7 is injective. Finally, let
x € V and recall we presuppose V' = W + - -+ Wy at the outset of this theorem. Thus, there exist
x; € Wi fori=1,...,k for which x = z1 + - - - + x;. Observe,

m(T1,...,¢k) =21+ -+ = 2.

Thus 7 is a surjection. In summary, 7 is a linear bijection and is thus an isomorphism. This
completes the proof of (5.) implies (1.). Logically, the equivalence of all five statement follows. [J

The proof above is lengthy, but it is not diﬂicullﬂ Any subset of it would make a totally reasonable
homework or test question. The neat thing is that we are now free to consider any of these as the
definition of independent subspaces. To be honest, I usually take (2.) paired with the data
V =Wy + -+ Wy as the definition of V. = W1 & +--- + ®W}. As I mentioned, when I wrote
these notes initially I was following Morton L. Curtis’ Abstract Linear Algebra text, so I probably
chose the definition to follow that text.

The case k = 2 is most interesting since condition (2.) simply reads that Wi N Wy = {0}. If
V =W + Wy and W1 N Wy = {0} then we say that W;, Wy are complementary subspaces.

Example 4.1.5. If F(R) is the set of functions on R then since we have the identity:

@) =5 (1@ + -0) + 5 (10 - 5-2)

for all z € R. For example, recall cosh(z) = 1(e” — e™®) and sinh(z) = 3(e® — e™®) hence
e® = cosh(x) + sinh(z). We note:
fern(@) = 3 1@+ J(=2) & foaala) = 5 (J(2) — f(=2)

2

31 gave an in-class presentation of a proof in my Math 321 Lectures of 3-8-17 and 3-10-17, this may or may not
be an improvement on those arguments
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$atisfy feven(—x) = feven(x) and foqi(—x) = — foqq(x) for each x € R. You can easily verify
the set of even functions Fc(R) and the set of odd functions Fo(R) are subspaces of F(R). Since
f = feven + fodd for any function f we find F(R) = F.(R) + Fo(R). Moreover, it is easy to verify
that Fe(R)NF,(R) = {0}. Therefore, the subspaces of even and odd functions form complementary
subspaces of the space of functions on R; F(R) = Fe(R) & F»(R).

Example 4.1.6. Let A be an n X n matriz over F then notice that:
1 Ty, L T
A=—-(A+A)+-(A-A")
2 2
it follows that F™*™ is the direct sum of the complementary subspaces of symmetric and antisym-

metric matrices. I leave the details as a homework problem. I gave you the essential hint here.

A convenient notation for spans of a single element v in V a vector space over R is simply vR. 1
utilize this notation in the examples below.

Example 4.1.7. The cartesian plane R? = e1R & esR.

Example 4.1.8. The complez numbers C = R @ iR. We could discuss how extending i* = —1
linearly gives this an algebraic structure. We have a whole course in the major to dig into this
example.

Example 4.1.9. The hyperbolic numbers H = R @ jR. We could discuss how extending j* = 1
linearly gives this an algebraic structure. This is less known, but it naturally describes problems
with some hyperbolic symmetry.

Example 4.1.10. The dual numbers N =R @ eR. We could discuss how extending €2 = 0 linearly
gives this an algebraic structure.

The algebraic comments above are mostly for breadth. We focus on linear algebraﬁ in these notes.
Naturally we should consider extending the discussion to more than two subspaces.

Example 4.1.11. Quaternions. H = RGiR® jR® LR where i’ = j2 = k? = —1 andij = —ji = k
and jk = —kj = i and ki = —ik = j. QOwur notation for vectors in most calculus texts has a
historical basis in Hamilton’s quarternions.

Unfortunately, trivial pairwise intersections do not generally suffice to give direct sum decomposi-
tions for three or more subspaces. The next example illustrates this subtlety.

Example 4.1.12. Let Wi = (1,1)R and W5 = (1,0)R and W5 = (1,1)R. It is not hard to verify
W1+ Ws + W3 = R2 and Wy N Wy = Wy N W3 = Wo N W3 = {0}. However, it is certainly not
possible to find an isomorphism of R? and the three dimensional vector space Wi x Wy x Wi.

“4a vector space paired with a multiplication is called an algebra. The rules i> = —1,j2 = 1 and €? = 0 all serve to
define non-isomorphic algebraic structures on R2. These are isomorphic as vector spaces. I'll discuss the concept of
an algebra further in the next chapter.
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4.1.2 invariant subspaces and internal direct products

We now explain the interesting relation between the direct sum decomposition of a vector space V'
and the block-structure for a matrix of a linear transformation on V.

Definition 4.1.13.

If T:V — V is a linear transformation on the vector space V over F and W < V is a
subspace of V' for which T (W) C W then we say W is an T-invariant subspace of V. We
let Ty : W — W denote the map defined by Ty (z) = T'(x) for each z € W.

Notice that T'|y : W — V whereas Ty : W — W. The map Ty is only well-defined if the subspace
W is T-invariant. In particular, T-invariance of W gives us that T'(z) is in W, that is, the map
Tw : W — W is into W. To show a map f: A — B is well-defined we need several things. First,
we need that each element a in A produces a single output f(a). Second, we need that each output
f(a) is actually in the codomain B.

Something very interesting happens when V =W; & W @ --- @ W, and each W is T-invariant.

Theorem 4.1.14.

Suppose T' : V' — V is a linear transformation and W; < V are such that T'(W;) < W; for
each j =1,...,s. Also, suppose V. =W; & --- ® W, where dim(W;) =d; and dy + --- + ds =
n = dim(V). Then there exists a basis § = 1 U f2 U -+ U s for V formed by concatenating
B; basis for W; for j =1,2,...,s for which

0 | My|---1 0 .
[Tlgp= "1 | = diag(My, My, ..., M),
0| 0 |---|MM,

and Mj = [Tw;lp, p; for j = 1,2,...,s.

Proof: let ; be a basis for W; then #(8;) = d; for j = 1,2,...,s. Let us denote §; =
{vja,vj2,. ., v54, ) for j =1,2,...,s. Furthermore, by we have that 8= UBU---UfS is
a basis for V. If v;; € f; then

T(vm‘) S Wj = T(Um) =cCcvj1+ -+ Cd; Vs d,

thus the column vector in [T 3 corresponding to the basis vector v;; only is nonzero in rows corre-
sponding to the §; part of the basis. It follows that [T]g g is block-diagonal where M; is the d; x d;
matrix over F which is the matrix of Ty, with respect to the 8; matrix; that is M; = [Tw,]g, s,- O

A block diagonal matrix allows multiplication where the blocks behave as if they were numbers.
See Section [1.4.6] where we studied how block-multiplication works. I should mention, we can add
matrices of different sizes following the pattern above:
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Definition 4.1.15.

If M; ¢ F%*d for j = 1,2,...,s then we define M; & My & --- & M, € F™ " where
n=d; +do+---+ds and

My| O |---]0
0 |Mz|---] 0
Mi®oM & &M= : )

Certainly this is not standard addition as A ® B # B & A. But, it is a fun new way to make new
matrices from old. To be clear, A® B is the direct sum of A and B. With this langauge, Theorem
is formulated as follows: when V is a direct sum decomposition of T-invariant subspaces then
there exists a matrix for which the matrix of T is likewise formed by a direct sum of submatrices.
V=W ®---@® W, and T is Wj-invariant for each j = 1,...,s then if 3; is basis for W, and
B8 =01 U---UfSs then

[T]ﬂﬁ = [Twl]ﬂlﬁl ©® [TWQ]ﬂ2,52 ©-- D [TWs]ﬂsﬁs'
Let me conclude with the pair of examples which I began our in-class discussion on 3-8-17.

Example 4.1.16. Let T : P3(R) — P3(R) be defined as T = d/dx. In particular T (az® + bx? +
cx +d) = 3ax? + 2bx + c. Thus, for the basis B = {1,x, 22, 23} we find matriz:

[T, = [[TW)]I[T(2)]s|[T(2*)]s[T(2%)]5] = [[0]s][1]g][2]5][327] 5] =

Notice, Range(T) = span{l,z,x?} is an invariant subspace of T however the remaining x> vector
has T(z®) = 322 so Range(T) + span(x3) is not a direct sum decomposition.

Example 4.1.17. Let S = d?/dz? on P3(R). Calculate,

Thus (by inspection) we find invariant subspaces Wi = span{1,2%} and Wy = span{z,x3}. Let
y1 = {1,2?} and o = {x, 23} and v = vy Uye = {1,22, 2,23} and we find

0 2 0 6
We have [S]%v = [SWJ%m > [SWz]'yzm = [ 00 ] @ [ 00 ]

There is a bit more to say here, but it requires a concept we introduce towards the final story arc
of this course. See §6.1.2| for the interplay between independent subspaces and quotients.



4.2. EIGENVECTORS AND DIAGONALIZATION 127

4.2 eigenvectors and diagonalization

Let us begin with the definition of a diagonalizable transformation and matrix:

Definition 4.2.1.

Let T': V — V be a linear transformation over a vector space V over F. If there exists
a basis # for which [Tz 3 is diagonal then T is said to be diagonalizable. Likewise, if
A € F™ "™ is similar to a diagonal matrix then A is diagonalizable.

Notice that the matrix of a diagonalizable transformation is necessarily diagonalizable. If § =
{v1,...,v,} is such that [T]g 5 is diagonal then there exist scalars A1, ..., A, € IF, possibly repeated,

such that
A1

[T]s,8 = = [M\e1] - [Anen).
An

Thus [T'(v;)]g = A\ie; and we find T'(v;) = A\jv; for i =1,...,n.

Definition 4.2.2.

If T:V — V is a linear transformation on a vector space V over F then v # 0 is an
eigenvector with eigenvalue A\ € F if T'(v) = Av. Likewise, a matrix A € F"*" has
eigenvector x # 0 with eigenvalue \ € F if Az = Az. A basis of eigenvectors is known as
an eigenbasis.

Notice if T'(v) = Av then [T g[v]g = A[v]g. This calculation shows that the coordinate vector of
an eigenvector is itself an eigenvector of the matrix of the transformation. It follows we may study
the problem of finding eigenvectors for a given transformation by selecting a basis and working out
the eigenvectors for the matrix with respect to the basis. We should also note, diagonalizability
of a matrix or transformation amounts to deciding whether or not there exists an eigenbasis for
the matrix or map. We will soon see examples which demonstrate that not all transformations are
diagonalizable. I often motivate the quest for the Jordan form as a method to deal with pesky
non-diagonalizable objects.

Theorem 4.2.3.

Let A € F™*" then A\ € F is an eigenvalue of A if and only if det(A — A\I) = 0.

Proof: if A € F is an eigenvalue of A then there exists x # 0 for which Az = Az thus (A—A\)x = 0.
Thus A — A\ is a noninvertible matrix with det(A — A\I) = 0.

Conversely, if det(A — AI) = 0 then the matrix A — AI is non invertible so the columns of A — AT
are linearly dependent which implies there exists x # 0 for which (A — AI)z = 0. Thus Az = Az
which proves A € F is an eigenvalue of A. U

If T:V — V is a linear transformation on a finite dimensional vector space V (F) with basis 5 then
det(T) = det([T]p,5. Thus,

det(T — Ndy) = det([T — )\Idv]gﬁ) = det([T]ﬂHB — )

as [Idy|g g = I. Therefore we find the natural corollary to the above theorem:



128 CHAPTER 4. JORDAN FORM

Corollary 4.2.4.

If T:V — V is a linear transformation on a finite dimensional vector space V(F) with
eigenvalue A € F if and only if det(T" — Aldy ) = 0.

Definition 4.2.5.

The characteristic polynomial of A is given by p(s) = det(A — sI). Likewise, the
characteristic polynomial of 7" is given by p(s) = det(T — sld)

Notice the characteristic polynomial defined has the form:
p(t) = (=)™ + cp 1 t" 1+ et 4
Polynomials of operators are understood by interpreting multiplication as composition.

Definition 4.2.6.

If T:V — V is a linear transformation on a vector space V over F then T° = Idy and
T' =T and TF¥*' = ToT* for all k € N. If f(z) = co + c17 + - - + cx* then we define:

f(T)=co+erT+ -+ T

We use Id, =1 and cld, = c for convenience of exposition.

Example 4.2.7. Let T(z,y) = (—y,z) for all (x,y) € R? then A= [T] = ( 0 _01 ) then

det(T — sI) :det< _18 :i > =52+ 1.

Since s> +1 # 0 for all s € R we find T has no eigenvalues and hence T is not diagonalizable.
However, it may be interesting to note p(s) = s> + 1 has p(T) = T? + Id and T-T(z,y) =
T(T(z,y)) = T(~y,z) = (—x,—y) = —Id(z,y) thus T?> = —Id and we find p(T) = 0 (this is read
p(T) is identically zero). This exemplifies the Cayley Hamilton Theorenﬂ which states that the

a linear transformation solves its own characteristic equation. Another way to appreciate this is
via the matrixz formalism:

p(A):A2+I:<(1) *01 >2+<(1) ?):0.

Remark 4.2.8. dependence on field.

Notice that s2+1 = (s +1i)(s — i) over C. If the previous example was defined with domain
C? then T(z,w) = (—w, z) would define T which is diagonalizable with eigenvalues \ = =i.
Our inability to diagonalize T' in the previous example can be remedied by enlarging our
field of scalars. This is not always possible as the next example will show.

T’ll hopefully properly state and prove this result later in this chapter
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Example 4.2.9. Let V = Py(R) the space of polynomials of degree at most 2 with real coefficients.
Define T = d/dx by
T(az* 4+ bx + ¢) = 2ax + b

Notice T?(ax? + bz + ¢) = 2a and T3 = 0. Use basis B = {2°, 2,1} and let [T)z3 = A we find

0 00
A= ([T (@*)]s|[T(2)]s[T(1)]] = [[22]5][L]5][0]5] = g (1) 8
Thus,
-s 0 0
p(s)=det| 2 —-s 0 |=-5
0 1 -—s

We find the eigenvalues of T are A\ = 0 with an algebraic multiplicity of three. What are the
eigenvectors of T ¢ We seek v = ax® + bx + ¢ for which T(v) = 0v = 0 which gives 2ax +b = 0
and hence a =0 and b= 0. Thus v = c is the form of an eigenvector with eigenvalue zero; that is,
the constant polynomials are the only eigenvectors of the differentiation operator. We find T is not
diagonalizable since it is not possible to form an eigenbasis for T. Note dim (V') = 3 yet we cannot
even find two linearly independent eigenvectors for T.

Apparently it is fairly easy to find maps and matrices which are not diagonalizable. Our first
example was a rotation in the plane by 7 /2 radians and our second example is mere differentiation.
If your world of linear transformations only goes up to diagonalizable objects then clearly we're
missing a big part of the overarching story. That said, for the remainder of this section we’ll look
at some important properties of eigenvectors and some indirect methods to test diagonalizability.

Proposition 4.2.10.

Let A € F™*", then zero is an eigenvalue if and only if A~! does not exist.

Proof: if A\ = 0is an eigenvalue then there exists z # 0 for which Az = 0. Suppose A~! existed then
Az = 0 implies A= Az = A~10 hence = = 0 which is a contradiction. Therefore, A~! does not exist.

Conversely, if A~! does not exist then there must be a linear dependence amongst the columns of A.
Otherwise, the columns of A form a basis for F” and so Av; = e; has a solution for i = 1,...,n and
we may form A~! = [vy]-- - |v,] which is a contradiction. Thus A has a linear dependence amongst
its columns and so there exists x # 0 for which Az = 0. Consequently, A = 0 is an eigenvalue for
A O

I tried to give relatively complete arguments for the proposition above. If we remembered more
matrix theory from the previous course the proof could be considerably shorter. If in doubt about
the detail you've shown in a proof, you can ask me whether or not you're on target. Sometimes I
can give a helpful hint or at least let you know your current argument is circular etc.

Proposition 4.2.11.

Let A € R™"™ where n is odd, then there exists at least one real eigenvalue.
Let A € C™*™ then there exist n-eigenvalues, possibly repeated.
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Proof: notice p(t) is an n-th order polynomial. Over R, any polynomial of odd degree has at least
one real zero. We can prove this assertion carefully by an application of the intermediate value
theorem on a sufficiently large interval. Similarly, over C, we know the Fundamental Theorem of
Algebra states an n-th order polynomial over C has n-zeros possibly repeated. [

Proposition 4.2.12.

If A e F™™ " then A has n eigenvalues A\, Ag, ..., A, then det(A) = AjAg- - Ay

Proof: If A € F"*™ then A has n eigenvalues A1, Ao, ..., A\, € F then the characteristic polynomial
p(t) = det(A — tI) factors over F:

p(t) = (=1)"(t = A1)t = A2) -~ (t = An)

since p(A\;) = 0fori =1,2,...,n. Notice p(0) = det(A). However, we also know p(0) is the constant
term in the standard form of p(¢). Thus,

(—1)”(—)\1)(—)\2) cee (—)\n) = )\1A2 v )\n = det(A). O

Proposition 4.2.13.

If A € F™™ has e-vector v with eigenvalue A then v is a e-vector of A* with e-value A*.

Proof: let A € F™"*" have e-vector v with eigenvalue \. Consider,
AFy = A Ay = AF P = MAF2 40 = N2AF 2y = o= W
The - -- is properly replaced by a formal induction argument. [.

Proposition 4.2.14.

Let A be a upper or lower triangular matrix then the eigenvalues of A are the diagonal
entries of the matrix.

Proof: follows immediately from Proposition 77 since the diagonal entries of A— Al are of the form
Aji — X hence the characteristic equation has the form det(A—AI) = (A11 —A)(A22—A) -+ - (App— )
which has solutions A = A4;; for i =1,2,...,n. O

Likewise, as a diagonal matrix is both upper and lower triangular we find the diagonal entries are
the eigenvalues of such a matrix.

Proposition 4.2.15.

Let A € C?*2. The eigenvalues are determine the det(A) and trace(A):

det(A) = A1 A2 & trace(A) = A1 + Ag.

Proof: we know Proposition [4.2.12|yields det(A) = AjAg. If A = [ (cz b ] then

d

a-t b ]:(t—a)(t—d)—bc.

p(t):det[ ol
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Algebra reveals p(t) = t> — (a + d)t + ad — bc and completing the square yields:

a+d=+/(a+d)?+ 4bc
AL = 5

Let A1 = Ay and Ag = A_. Observe A\; + A2 = a + d = trace(4). O

In fact, the proposition above also applies to A € C**". We can shovaI7 trace(A) = Z?Zl Aj where
Aj are eigenvalues of A and Proposition explained why the determinant is the product of
all the e-values in such a case. In fact, this is also true for A € F™**" provided the characteristic
polynomial of A factors into a product of possibly repeated linear factors.

Proposition 4.2.16.

If A € F" "™ has e-vector vy with e-value A1 and e-vector vy with e-value Ay such that
A1 # A2 then {vy,v2} is linearly independent.

Proof: Let v, v9 have e-values A1, Ay respective and assume towards a contradction that ve = kvg
for some nonzero constant k. Multiply by the matrix A,

Av1 = A(kvg) = /\11}1 = k)\gvg
But we can replace v; on the L.h.s. with kv hence,
/\1]6?)2 = k)\g’l)g = k()\l — )\2)1}2 =0

Note, k # 0 and v # 0 by assumption thus the equation above indicates A\; — Ay = 0 therefore
A1 = Ao which is a contradiction. Therefore there does not exist such a & and the vectors are
linearly independent. [J

A direct argument is also possible. Suppose {vi,v2} is a set of nonzero vectors with Avy = Ajv;
and Avy = Agvg suppose ci1v1 + covg = 0. Multiply by A — A1,

Cl(A — )\1[)1)1 + CQ(A — /\1[)1)2 =0 = CQ(/\Q — )\1)1)2 =0

as Ao — A1 # 0 and vo # 0 hence co = 0. Multiplication by A — Aol likewise reveals ¢; = 0.
Therefore, {v1,va} is LI. You can choose which proof you think is best.

Proposition 4.2.17.

If A € F*"*" has eigenvectors vy, va, ..., v with eigenvalues Ay, Ag,..., A\ € F such that
i # A; for all i # j then {v1,vs,...,v;} is linearly independent.

Proof: I begin with a direct proof. Suppose vy, v, ..., v, are e-vectors with e-values A1, Ao, ..., \x €
[F such that \; # A; for all ¢ # j. Suppose cjvi + cova + - - - 4 cvy, = 0. Multiply by Hf;ll(A —\1),

k-1 k—1 k—1
C1 H(A — )\Z’I)Ul + ot 1 H(A — )\iI)Uk—l + ¢k H(A — )\il)vk =0
1=1 1=1 1=1

Sthis is simple to prove once we have established the Jordan form, and we could prove this for diagonalizable
matrices, I've asked it on tests before, it’s not too hard a problem
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Consider that the terms in the product commute as:
(A= NI)(A—NI) =A% — (N — A\)A+ NN = (A= NI)(A—NI).

It follows that we can bring (A — A;I) to the right of the product multiplying the j-th summand:

k-1 k—1 k—1
o [J(tA= XD (A= MDvi+- 4oy [ (A= MDA = Mo Dopoy + o [[(A = NiDog =0+
i#1 iAk—1 i=1

Notice, for i # j, (A — NI)v; = Nvi — A\ju; = (A — Aj)v; # 0 as A; # A and v; # 0. On the
other hand, if i = j then (A — \;I)v; = A\jv; — \jv; = 0. Therefore, in x we find that terms with

coefficients ¢1, s, ..., ci_1 all vanish. All that remains is:
k—1
Ck H(A — )\Z'I)Uk =0 *3
i=1

We calculate,

k—1 k—2 k—2
cr [J(A = NDve = [J(A = MI)(A = Mo Dve = ce(Me — Aoo1) [ [ (A = AiDw,
=1 =1 =1
k—3
= cp( Mk — A—1)(Ap — Ap—2) H(A — Nl )y
=1

= (A — Me—1) (A — Ag—2) - - (Mg — A)vg.

However, as v, # 0 and A\, # \; for i = 1,...k — 1 it follows from the identity above that %3
implies ¢ = 0. Next, we repeat the argument, except only multiply * by Hf:f (A — \;) which
yields c¢;_1 = 0. We continue in this fashion until we have shown ¢y = co = -+ = ¢, = 0. Hence
{v1,...,vx} is linearly independent as claimed. [J

I am fond of the argument which was just offered. Technically, it could be improved by including
explicit induction arguments in place of ---. The next argument is similar to our initial argument
for two vectors.

Proof: Let e-vectors vi,va, ..., vt have e-values A1, Ao, ..., A\;. Let us prove the claim by induction
on k. Note kK = 1 and k = 2 we have already shown in previous work. Suppose inductively the
claim is true for £ — 1. Consider, towards a contradiction, that there is some vector v; which is a
nontrivial linear combination of the other vectors:

vj = 11 + cavg + -+ G + -+ Cpup

Multiply by A, -
Avj = c1Avy + coAvy + -+ - + ¢jAvj + - - + Ay,
Which yields,
Ajvj = c1A1V1 + CoAov2 + - - A AU - e AR

But, we can replace v; on the 1.h.s with the linear combination of the other vectors. Hence

/\j [61’01 + Ccovg + - -+ 67'173 + -+ ckvk] = Cc1A\1v1 + Aoy + -+ + Cj)\j’l)j + o+ AU
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Consequently,

o —

Cl(>\j —A)vy + 02()\]' — A2)vg + -+ + Cj()\j — )\j)vj + -+ Ck()\j —Ap)vp =0

However, this is a set of £ — 1 e-vectors with distinct e-values linearly combined to give zero. It
follows from the induction claim that each coefficient is trivial. As \; # A; for ¢ # j it is thus
necessary that ¢; = ca = --- = ¢ = 0. But, this implies v; = 0 which contradicts v; # 0 as is
known since v; was assumed an e-vector. Hence {v1,...,v;} is LI as claimed and by induction on
k € N we find the proposition is true. [

Further structure theory of eigenvectors is considered later in this chapter. I'll conclude by explain-
ing why our proofs for the matrix case also inform our study of linear transformations.

Proposition 4.2.18.

If T € L(V,V) for a vector space V over F"*" has eigenvectors vy, ve, . . . , vy with eigenvalues
A1, A2, ..., A, € Fsuch that \; # Aj for all i # j then {vi,v2, ..., v} is linearly independent.

Proof: pick a basis for V, set A = [T]g 3 and observe T'(v) = Av implies [T'(v)]z = A[v]g. Thus,
as [T'(v)]g = [T)g,glv]g we find A[v]g = Alv]g. That is, the coordinate vector of each eigenvector
in V is a column vector which is an eigenvector of A = [T']g 3 with the same eigenvalue. Apply
Proposition [£.2.17] to find a set of linearly independent e-vectors of A. Finally, use the isomorphism
<I>El : F” — V to show the set of e-vectors in V' are LI. [J

4.3 eigenbases and eigenspaces
If we have a basis of eigenvectors then it is called an eigenbasis. For a linear transformation:

Definition 4.3.1. eigenbasis for linear transformation

Let T : V — V be a linear transformation on a vector space V over . If there exists a
basis f = {vi,v2,...,v,} of V such that such that T'(vj) = A\jv; for some constant A\; € F
then we say  is an eigenbasis of T

Recall, a diagonal matrix D is one for which D;; = 0 for ¢ # j. The matrix of a linear transfor-
mation with respect to an eigenbasis will be diagonal with e-values as the diagonal entries:

Proposition 4.3.2.

If T:V — V is a linear transformation and 7" has an eigenbasis 8 = {fi,..., fo} where f;
is an eigenvector with eigenvalue \; for j = 1,...,n then
M O -0
0 X -+ 0
[T]BHB = : : . :
0 0 - A\




134 CHAPTER 4. JORDAN FORM

Proof: In general, T35 = [[T(f1)ls | [T(f2)lg | -+ | [T'(fn)]s]. However, as v; is an eigenvector
we have T'(vj) = Ajv;. Moreover, by definition of 5 coordinates, [f;]g = e; € F" hence:
[Tlpp = [Mf)ls | Dafals | - | [Anfals]
= [/\161 ’ /\262 ’ ’ )\nen }

Thus, [T)gp is diagonal with A, Ag,..., A, on the diagonal as claimed. [J

Now would be a good time to read Example [3.4.8 again. There we found the matrix of a linear
transformation T : R?® — R3 is diagonal with respect to an eigenbasis. As we have seen, there exist
linear transformations which can not be diagonalized. However, even for those transformations,
we may still be able to find a basis which partially diagonalizes the matrix. In particular, this
brings us to the definition of the );-eigenspace. We will soon see that the restriction of the linear
transformation to this space will be diagonal.

Definition 4.3.3. cigenspace and geometric vs. algebraic multiplicity

Let T': V. — V be a linear transformation. We define the set of all eigenvectors of T’
with eigenvalue A; adjoined the zero-vector is the \;-eigenspace denoted by £ or simply
&j. The dimension of &y, is known as the geometric multiplicity of A;. The algebraic
multiplicity of ); is the largest m € N for which number of times (¢ — A;)™ appears as a
factor of the characteristic polynomial p(t).

I will provide examples once we focus on the matrix analog of the definition above. For the moment,
we just have a few more theoretical items to clarify:

Proposition 4.3.4.

If T:V — V is a linear transformation and &) is an eigenspace of T' then £, < V.

Proof: notice T'— A - Id is a linear transformation on V and £, = Ker(T'— X -Id) < V. O

Often I drop the Id and simply write 7" — X in the place of T'— X\ - Id.

Proposition 4.3.5.

If T:V — V is a linear transformation and &) is an eigenspace of T then T'|g, = Ad|g, .
Moreover, if 3 is a basis for £y then [T'|¢, |58 = 1.

Proof: if w € £, then T'(w) = Aw = M dg, (w) hence T'|g, = A dg,. The fact that
[T)e,]p,8 = Al follows from the same argument as was given in Proposition m ]

Suppose the characteristic polynomial of a given linear transformation completely factors over
the given field F. If the algebraic and geometric multiplicities are equal for each eigenvalue of a
transformation then the transformation is diagonalizable.
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Theorem 4.3.6.

If T:V — Vis a linear transformation with distinct e-values A1, Ao ..., A\ with geometric
multiplicities g1, ¢go,...,gr and algebraic multiplicities ai,as,...,ar respective such that
aj = gj forall j € Ny and a1 +ag+---+ar =dim(V). Then V=60 E - @&
where & = {x € V |T(x) = Ajz}. Moreover, the matrix of 7' with respect to a basis
B =p1UPB2U---U By where j; is basis for £ from j =1,2,...,k is diagonal with:

Diag([T]g,ﬂ) = ()\1, 0o .,/\1}, )\2, 50 .,)\2, 000 ,)\k, 000 ,)\k).

91 g2 9k

Proof: Suppose the presuppositions of the theorem are true. Since dim(E;) = g; there exist basis
B with |5;| = g; for j =1,2,..., k. Suppose z; € §; for j =1,2,...,k and

1 +ax9+---4+x=0

— Z Tj € &
J#i
Let L =[], (T — \) notice T'(x;) = Miw; and thus L(z;) = [],.,(T — A)(2i) = [[.(A — A
Observe Hl#()\i — A1) # 0 since we assume Aq, ..., \; are distinct. Note also,

—ij Z—ZH(T—)\l)xJ

J#i Ji LA

Without loss of generality, for convenience of exposition, let us suppose ¢ = 1 hence

ZCI?] = H T— )\l)xg — H(T )\l LL’3 — — H T— )\l

Jj#i I#1 1#1 1#1

But, then, as the operators T'— Ay,...,T — A\ commute with each other we are free to rearrange
the products above such that 7' — \; appears as the rightmost factor operating on x;,

If there exists x; # 0 then

> x| == [ @ =T =Xz — [[ (@ =2)(T = Xg)as—--— [[ (@ = X)(T = Ap)zn

i 1£1,2 1£1,3 1£1,k

But, by definition of eigenspace, (T' — Aj)z; = 0 for each j hence L( Zj# xj) = 0. But, we
previously calculated that L(z;) = [],_,;(T —N) (@) = [[,2;(Ai — M)z # 0 which is a contradiction.
Consequently, z; = 0 for i = 1,..., k. Therefore, criteria (5.) of Theorem is met and we find
V=6E@&E @ @& The remaining claim of the theorem is immediate upon application of

Proposition O

In retrospect, the proof of Proposition is based on a very similar calculation. Notice we can
prove Proposition by taking the case that all the geometric multiplicities are simply one. I
could edit the notes to remove the earlier proof, but I leave it since I think the detail in the previous
proof may help better prepare the reader for the proof given in this section.

The geometric multiplicity cannot be larger than the algebraic multiplicity.



136 CHAPTER 4. JORDAN FORM

Proposition 4.3.7.

If T:V — V is alinear transformation with eigenvalue A with algebraic multiplicity a and
geometric multiplicity g then g < a.

Proof: Suppose g is the geometric multiplicity of X\. Then there exists a basis {v1,va,..., vy} for
&\ < V. Extend this to a basis = {v1,...,0g,Vg41,...,v,} for V. Observe,

n

n g
T (Z a:ivi> = Zl’iT(Ui) + Z l’iT(Ui) (4.1)
=1 =1

1=g+1
g n
= Z Ax;v; + Z .I’Z'T(vi).
i=1 i=g+1

Recall, [T)gp = [[T'(v1)]g]---|[T(vn)]g]. Our calculation above implies that first g columns are
given as follows:

[T = [Mea| - [Aeg|[T(vg+1)]g] - - [[T'(vn)]5]-

Thus, the matrix of 7" with respect to basis  has the following block-structure:

S ALY

We calculate the characteristic polynomial in x by an identity of the determinant: the determinant
of an upper-block-triangular matrix is the product of the determinants of the blocks on the diagonal

det([T)gp — al) = det(Aly — xly)det(C — xly—g) = (A — 2)det(C — x1,,—g).
Thus there are at least g factors of (x — \) in p(x) hence a > g. O

Theorem implies that for each eigenvalue A there exists at least one eigenvector v € Null(T' —
AId). This fact together with the proposition above shows that for each eigenvalue A; of a linear
transformation 7" we have 1 < g; < aj. We saw in the previous section that if 7" is diagonalizable
then the basis for which [T]g g is diagonal is an eigenbasis for T'. Conversely, if 7' has an eigenbasis
then T is diagonalizable. The calculations and theory of this section show that T is diagonalizable
if and only if the characteristic polynomial completely factors and each eigenspace has dimension
which matches the algebraic multiplicity of the eigenvalue. In the section after next we deal with
the case that the geometric multiplicity is smaller than the algebraic multiplicity. In other words,
we’ll deal with the non-diagonalizable case in the future section on Jordan forms. But, first, we
should look at some of the theoretical developments which underly the Jordan form.

4.4 Invariant Subspaces and the Cayley Hamilton Theorem

I am following parts of §5.4 of Friedberg, Insel and Spence’s Linear Algebra.

Definition 4.4.1.

Let T': V — V be a linear transformation. A subspace W < V is a T-invariant subspace
if T(W) C W. For such T we define Ty : W — W by Tw(z) = T'(x) for each x € W.
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Notice the restriction of a linear map to a subspace is necessarily a linear map. In particular,
if S:V — Vis a linear transformation and U < V then S|y : U — V is a linear map given by
Sly(xz) = S(z) for each x € U. Notice that Ty : W — W is a linear transformation on W. We
can think of Ty as the restriction to W where the codomain V' has been replaced by W. This
construction is only reasonable if the map is T-invariant. In fact, there are many such cases:

0, V, Ker(T), T(V)
are all T-invariant subspaces for a linear map on V.
An interesting way to create a T-invariant subspace which contains a given vector x € V is to

consider
W = spanf{z, T(z), T*(z), T*x), ...,T"x), ...}

where T*(z) = T(T* !(z)) for each k € N. This subspace of V is known as the T-cyclic subspace
generated by x.

Proposition 4.4.2.

Let T be a linear map on V and x € V. Then

W = span{T"(z) | k € NU{0}} = (z)

is a T-invariant subspace of V. We call (x) the T-cyclic subspace generated by = under 7.

Proof: Note I is a subspace since it is formed by a span. If y € W then there exist ¢ € F, with
¢ # 0 for only finitely many choices of k and

oo
y=>Y aT"z)
k=0
Operate on y by T to obtain

o0 oo o0
T(y)=T (Z cka(x)> => aT(TH @) = T (x) e W
k=0 k=0 k=0
since T'(y) is a finite linear combination of powers of T acting on x. O

We could ask, given a subspace W < V', does there exist € V for which W = (z) 7 What do you
think, is it always possible 7 Certainly if we pick the wrong x, like say = = 0 then the subspace
generated by x is merely the zero subspace; (0) = 0. What about « # 0 ? Notice that {z,T'(z),...}
then contains at least one nonzero vector hence dim(x) > 1. It seems like there is some hope to
express a subspace in the form W = (z). However, not every subspace is T-invariant. Therefore, not
every subspace is T-cyclic. That said, the following proposition gives many T-invariant subspaces
including eigenspaces and generalized eigenspaces.

Proposition 4.4.3.

Let f(t) € F[t] be a polynomial with coefficients in the field F. If T': V' — V is a linear
map then Ker(f(T)) is a T-invariant subspace.
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Proof: suppose f(z) =ag+aix+---+a,a” then f(T) =ag+a1T +---+a,T". Notice f(T) is a
linear transformation and Ker(f(T)) is a subspace since the kernel of a linear map is a subspace.
It remains to prove Ker(f(T)) is a T-invariant subspace. Suppose = € Ker(f(T)). Notice that
f(T)T =T f(T) since T commutes with powers of 7" and scalar multiplication. Here multiplication
of operators is understood as repeated composition. Hence,

Therefore, T'(x) € Ker(f(T)) and this proves T'(Ker(f(T))) C Ker(f(T)). O

There are many applications of the above proposition. Notice that eigenspace £y = Ker(T — \) is
T-invariant since it is of the form Ker(f(T)) where f(z) =z — A.

Theorem 4.4.4.

Let T be a linear map on a finite dimensional vector space V with invariant subspace W.
The characteristic polynomial of Ty, divides the characteristic polynomial of T

Proof: let Sy be a basis for W. Let dim(W) = k and dim(V) = n. Extend Sy by adjoining
vectors in 3/ C V —W such that 8 = By U’ is a basis for V. Since T(W) C W we find T'(Bw) C fw
thus the matrix for T" has the form
Ths=| % o)
’ 0 C
Moreover, by construction, [Tg,, s, = A. Let P(t) and Py (t) be the characterisitic polynomials
of T and Ty respective. Observe,

At B

P(t) = det 0 Ot .

:| = det(A — tl)det(C — tI,_j) = Py (t)det(C — tI,_y). O

What follows is Theorem 5.21 from §5.4 of Friedberg, Insel and Spence’s Linear Algebra.

Theorem 4.4.5.

Let T be a linear map on a finite dimensional vector space V, and let W = (x) where
dim(W') = k. Then,

(a.) {z,T(x),...,T" 1} is a basis for W

(b.) If apx + a1T(x) + - - - + ap_1T* 1 (z) + T*(x) = 0 then the characteristic polynomial
of Ty is given by Py (t) = (—1)*(ag + a1t + - - - + ap_1tF =1 +t¥).

Proof: see §5.4 of Friedberg, Insel and Spence’s Linear Algebra. The argument for (a.) is neat. [J

Example 6 see §5.4 of Friedberg, Insel and Spence’s Linear Algebra on page 315 illustrates how
the above theorem allows for calculation of characteristic polynomials without use of determinants.
This is a curious calculation, but certainly determinants are a far more clear path in most instances.
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Theorem 4.4.6. Cayley-Hamilton Theorem

Let T be a linear map on a finite dimensional vector space V(F) with characteristic poly-
nomial P(t). Then P(T) = 0.

Proof: if z = 0 then P(T)(z) = 0 since P(T) is a linear map. Suppose x # 0. Let W = (x) with
dim(W) = k. By part (a.) of Theorem there exist ag,ay,...,a—1 € F for which

apr + ayT(x) 4 - -+ ap_1 T 1 (z) + TF(z) = 0.
Moreover, the characteristic polynomial of Ty has form

Py (t) = (=D)*(ag + art + - - - + ap_1t" L+ t5).
Thus,
Py (T)(x) = (=1 (aotar T+ +ap T* 1+ TF) (2) = (=1)*(apz+ar T (@) + - +ap T (2)+T"(x)) = 0.
Theorem [4.4.4) implies P(T') = f(T)Pw (T) for some polynomial f(¢). Thus,

P(T)(z) = f(T)(Pw (T)(x)) = f(T)(0) = 0

Since P(T)(x) =0 for all x € V we find P(T) =0. O

4.5 Theory of the Jordan Form

Friedberg, Insel and Spence develop the full theory of the Jordan form in Chapter 7 of Linear
Algebra. 1 merely quote a few especially interesting high points of their development with a focus
on their use of polynomial arguments. I think the role polynomial algebra plays is somewhat
surprising and it brings some new calculational methods which may be new to most students. That
said, if you wish the full logical development then please read the text carefully.

Definition 4.5.1.

A generalized eigenspace of eigenvalue A for a linear transformation T : V. — V is
denoted K. We define = € K if there exists a positive integer k such that

(T — NFz = 0.

Theorem 7.1 from page 478 of Friedberg, Insel and Spence’s 5-th Ed. of Linear Algebra states:
Theorem 4.5.2.

Let T be a linear operator on a vector space V, and let A be an eigenvalue of 7. Then
(a.) K is T-invariant subspace of V' and &, < K,
(b.) For any eigenvalue p of T such that p # X\ we find K (K, = {0}.

(c.) For any scalar p # A, the restriction of T'— pul to K is one-to-one and onto.

See page 478-479 for the proof. Part (b.) is particularly interesting in the use of polynomial algebra.
I would like to discuss that part in lecture.
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Theorem 4.5.3.

Let T be a linear operator on a finite dimensional vector space V such that the characteristic
polynomial splits. Suppose that A is an eigenvalue with algebraic multiplicity m. Then

(a.) dim(K)) < m,

(b.) K= Ker((T — M)™).

See page 479 for the proof, it relies in part on the Cayley Hamiliton Theorem.

Theorem 4.5.4.

Let T be a linear operator on a finite dimensional vector space V' such that the characteristic
polynomial splits, and let Aq, Ag, ..., A\x be the distinct eigenvalues of 1. Then, for every
x €V, there exist unique vectors v; € K, for i =1,2,... k, such that

r=v+vy+---+ v

Proof is on page 480 and it involves interesting polynomial algebra once more.

Theorem 4.5.5.

Let T be a linear operator on a finite dimensional vector space V such that the characteristic
polynomial (t —A\p)™ (¢ — Xg)™2 - - (t — A\g)™* splits. Fori =1,2,...,k let 5; be an ordered
basis for K,. Then

(a.) Binp; =0 fori#j.
(b.) B=p1UP2U---U P is an ordered basis for V.

(c.) dim(K)y,;) =m, for all 4.

The following appear as a Corollary to the result above:

Corollary 4.5.6.

Let T be a linear operator on a finite dimensional vector space V such that the characteristic
polynomial of T" splits. Then T is diagonalizable if and only if £, = K, for every eigenvalue
of T.

What remains of §7.1 in Friedberg, Insel and Spence’s 5-th Ed. of Linear Algebra is covered in some
sense by the next section. I suspect it would be wise to read these notes first then read §7.1 and
§7.2 to get some sense of how my assertions here are proved. I'll try to present some of the proofs in
lecture, but we will not have time for the full body of the argument. The dot-diagrams in §7.2 give
a strategy for calculation which I don’t really explain in these notes. On the other hand, Friedberg,
Insel and Spence’s 5-th Ed. of Linear Algebra does not explain the idea of complexification or the
real Jordan form as I do here. It’s best to read both.

4.6 generalized eigenvectors and Jordan blocks

We begin again with the definition as it applies to a linear transformation.
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Definition 4.6.1.

A generalized eigenvector of order k with eigenvalue A with respect to a linear transfor-
mation T : V — V is a nonzero vector v such that

(T - Md*v=0 & (T —Md)*tv#o0.

The existence of a generalized eigenvector of order k with eigenvalue A implies the null space
Null[(T — Ad)*~'] # 0. However, if k& > 2, this also implies Null[(T — A d)*~2?] # 0. Indeed, if
there exists a single generalized eigenvector of order k it follows that:

(T — MNd), (T = XId)*2, ..., T —\Id

all have nontrivial null spaces. This claim is left to the reader as an exercise. If you would like
more complete exposition of this topic you can read Insel Spence and Friedberg. I am trying to get
to the point without too much detail here.

Definition 4.6.2.

A k-chain with eigenvalue )\ of a linear transformation 7' : V' — V is set of k& nonzero
vectors vy, va, . . ., vy such that (T'— AId)(vj) = vj_1 for j = 2,...,k and v; is an eigenvector
with eigenvalue \; T — AId)(vy) = 0.

Of course, the reason we care about the chain is what follows:

Theorem 4.6.3.

‘A k-chain with e-value X for T': V' — V is a set of LI generalized e-vectors order 1,..., k. ‘

Proof: Let {v,...,v;} be a k-chain with e-value A for 7. By definition (7" — AId)(v;) = 0.
Consider:
(T — Md)(v2) =v; = (T — Md)*(ve) = (T — Md)(v1) = 0.

Thus vy is a generalized e-vector of order 2. Next, observe
(T — Md)(v3) =va = (T — Md)*(v3) = (T — Md)*(vq) = 0.

Thus wvs is a generalized e-vector of order 3. We continue in this fashion until we reach the k-th
vector in the chain:

(T = Md)(vp) =vp_1 = (T —Md)*(vp) = (T — Md)* vp_1) = 0.
Thus vy is a generalized e-vector of order k. To prove LI of the chain suppose that:
c1v1 + cav2 + -+ - + ¢ = 0.
Operate successively by (T — AId)’ for j =k —1,k—2,...,2,1 to derive first ¢, = 0 then ¢;_; = 0

then continuing until we reach ca = 0 and finally ¢; = 0. 0.

It turns out that we can always choose generalized eigenvectors such thay they line-up into chains.
The details of the proof of the theorem that follow can be found in Insel Spence and Friedberg’s
Linear Algebra and most graduate linear algebra texts. They introduce an organizational tool
known as dot-diagrams to see how to arrange the chains. We can go a long way by just finding
e-vectors and building chains from there, but, there is more to explain about chains.
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Theorem 4.6.4. Jordan basis theorem

Let V' be a vector space over F. If T': V' — V is a linear transformation with eigenvalues in
F then there exists a basis for V' formed from chains of generalized e-vectors. Such a basis
is a Jordan basis. Moreover, up to ordering of the chains, the matrix of 7" is unique and
is called the Jordan form of T’

Proof: see Chapter 7 of Insel Spence and Friedberg’s fifth edition of Linear Algebra. [J

The matrix of T with respect to a Jordan basis will be block-diagonal and each block will be a
Jordan block. For brevity of expositionm consider T' : V' — V which has a single k-chain as it a

basis for V, = {v1,va,...,v;} is a k-chain with e-value A for T
T(v1) = Ay, T(ve) = Avg+ o1, ...y, T(vk) = Mg + vp—1
Thus the matrix of T has the form:

X 1 0 0 0]

0 X1 0 0

Tlgp=1: + & ... @

0O 00 --- X1
(000 -+ 0 A|

To be clear, all the diagonal entried as A and there is a string of 1’s along the superdiagonal. All
other entries are zero. In some other texts, for example Hefferon, it should be noted the Jordan
block has 1’s right below the diagonal. This stems from a different formulation of the chains.

Definition 4.6.5.

Let N=FEp o+ FEy3+---+E4_14 € F9%d he the matrix which is everywhere zero except
where it is one on its superdiagonal. We define the d x d-Jordan block by Jz(\) = A\gI + N.
A matrix J € F"*" is said to be in Jordan Form if it is a block-diagonal matrix with
Jordan blocks on the diagonal; J = Jg, (A1) @ - -+ @ Jg, (Ag).

To be explicit,

[0 1 0 0 --- 0]
0010 --- 0
N:E12+E23+"'+Ed71,d: : : : Do :
00 0O0 --- 1
(0000 - 0]

and you can verify N% = 0 yet N%~! = E;4 # 0. This is the quintessiential nilpotent matrix of
order d. Let me give a few examples before we continue our study of chains. All of the matrices
below are in Jordan formPt

1+2 0 0 0 2 10 0
0 3+4i 0 0 02 0 0
A= 0 0 5+46i 0 Ad2=14 0 3 ¢
0 0 0 7+8 00 0 4

"you doubt this?
8a good exercise is formulating these directly in terms of the block-notation; for instance A4 = Jo(0) ® J1(2).
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6 1 0
As=10 6 1 Ay = , As = diag(Ay, Ag, Az, Ay) € C14*14,

0 0 6
In particular, every diagonal matrix is in Jordan form where the Jordan-Blocks are all 1 x 1. Gener-
ally, the Jordan form is the next best thing to a diagonal matrix. In fact, we could prove Ao, Az, Ay
and Aj are not diagonalizable. Now we return to our study of chains.

Perhaps you wonder why even look at chains? Of course, the Jordan basis theorem is reason
enough, but another reason is that they appear somewhat naturally in differential equations. Let’s
examine how in a simple example.

Example 4.6.6. Consider T = D on Py = span{l,z,2?}. Clearly T(1) = 0 hence vy = 1 is an
eigenvector with eigenvalue X\ = 0 for T. Furthermore, as T(x) = 1 and T(x?) = 2x it follows

010
Tlgpg= |0 0 2 |. Thus T has only zero as an e-value and its algebraic multiplicity is three.
000
If we consider v = {1,x,2%/2} then this is a 3-chain with e-value A = 0. Note:
010
T(1)=0,T(z) =1,T(z*/2) =2 = [T],,=|0 0 1
000

There are more exciting reasons attached to the study of the matriz exponential, see Chapter
It’s deja vu all over again.

Definition 4.6.7.

A generalized eigenvector of order k with eigenvalue A\ € F with respect to a A € F"*"
is a nonzero vector v such that

(A=XD*v=0 & (A-XDFlw#o.

Naturally, the chains are also of interest in the matrix case:

Definition 4.6.8.

A k-chain with eigenvalue \ of A € F"*" is a set of k nonzero vectors vy, va, ...,V
such that (A — A\ )v; = vj_q for j =1,2,...,k and v; is an eigenvector with eigenvalue A;
(A — )\I)Ul = 0.

The analog of Theorem is true for the matrix case. However, perhaps this special case with
the contradiction-based proof will add some insight for the reader.

Proposition 4.6.9.

Suppose A € F"*" has e-value A and e-vector v; then if (A — AI)ve = v; has a solution then
v9 is a generalized e-vector of order 2 which is linearly independent from wv.

Proof: Suppose (A —AI)vy = vy is consistent then multiply by (A —AI) to find (A —AI)%vy = (A—
A )vy. However, we assumed v; was an e-vector hence (A—\I)v; = 0 and we find vy is a generalized
e-vector of order 2. Suppose v9 = kvq for some nonzero k then Avy = Akvi = kAvi = Avg hence
(A — AXl)va = 0 but this contradicts the construction of vy as the solution to (A — Al)ve = v;.
Consequently, vs is linearly independent from vy by virtue of its construction. [J.
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Example 4.6.10. Let’s return to Ezample and look for a generalized e-vector of order 2.

11
RecallA—[O 1

u =1 for convenience). Let’s complete the chain: find vo = [u,v]? such that (A — Iug = uy,

[8 é][g]:[é] = wv=1, uis free

Any choice of u will do, in this case we can even set uw =0 to find

=8

Notice, {u1,u2} is not an eigenbasis for A, however, it is a Jordan basis for A.

} and we found a repeated e-value of Ay = 1 and single e-vector uy = [ (1) ] (fix

Theorem 4.6.11.

Any matrix A € F™*" with eigenvalues all in F can be transformed to Jordan form J by a

similarity transformation based on conjugation by the matrix [5] of a Jordan basis 5. That
is, there exists Jordan basis 3 for F* such that [3]7tA[3] = J

Proof: apply Theorem to the linear transformation T'= L4 : R — R". [

The nicest examples are those which are already in Jordan form at the beginning:

1 100
Example 4.6.12. Suppose A = 8 (1) (1) 1 it is not hard to show that det(A—\I) = (A—1)* =
0 0 0 1
0. We have a quadruple e-value A\ = Ay = A3 = Ay = 1.
01 00 S1
o000 o
0=U=Di=144 01| 7 7=
00 0O 0

Any nonzero choice of s1 or ss gives us an e-vector. Let’s define two e-vectors which are clearly
linearly independent, ity = [1,0,0,0]7 and iy = [0,0,1,0]7. We’ll find a generalized e-vector to go
with each of these. There are two length two chains to find here. In particular,

01 00 s1 1
L 0 000 se2 | |0 _ _
(A=Diz =1 = 00 0 1 s 1= 1o = s895=1,8=0, 51,53 free
0 000 S4 0
I choose s1 = 0 and s3 = 1 since I want a new vector, define iz = [0,0,1,0]T. Finally solving

(A — )ity = iy for iy = [s1,52,53,54)7 yields conditions sy = 1,82 = 0 and s1,s3 free. I choose
iy = [0,0,0,1]T. To summarize we have four linearly independent vectors which form two chains:

—

(A—I)(u)gzﬁl, (A—I)ﬁlzo (A—I)ﬁ4:ﬁ2, <A—I)ﬁ2:0
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The matrix above was in an example of a matrix in Jordan form. When the matrix is in Jordan
form then the each elemement of then standard basis is an e-vector or generalized e-vector.

Example 4.6.13.

2 1.0 0 00 0O
021 00UO0O00O0
00 2 00UO0O00O0
A— 000 3 10O00O0
00003100
000 O0O03 10
000 0O0O0OZ 3O

0000000 4,

Here we have the chain {ey, ez, e3} with e-value Ay = 2, the chain {e4.e5, eg, e7} with e-value Ay = 3

and finally a lone e-vector eg with e-value A3 = 4

I do not attempt to give a full account of the calculational method to compute the Jordan form,
but I will give some further guidelines based on a simple observation:

Ker(S) < Ker(S?) < Ker(S?%) <
In particular, if we apply the general result above to the case S =T — A we have
Ker(T — \) < Ker(T — \)? < Ker(T — \)?

This means £, < Ker(T — \)? < --- < K. Notice that K includes all eigenvectors, generalized
eigenvectors of order two, three, etc. In short, K contains all possible k-chains of eigenvalue A for 7.
Some things cannot happen. For instance, we cannot have dim(Ker(T—\)) < dim(Ker(T—\)11).
The dimensions of the kernels of descending powers of " — A must decrease.

Example 4.6.14. Suppose T : V — V is a linear transformation with

dim(Ker(T —3)) =2,
dim(Ker(T — 3)?) = 4,
dim(Ker(T — 3)3) = 5,
dim(Ker(T — 3)*) =6,
dim(Ker(T — 3)°) = 6

This tells me there are 2-chains of generalized eigenvectors with A = 3. One of these chains is
a 2-chain, the other is apparently a 4-chain. If {vi,ve,v3,v4} is the 4-chain and {w1,ws} is the
2-chain then

& = Ker(T — 3) = span{wy,v1},
Ker((T — 3)%) = span{wy, wa, v1,v2},
Ker((T — 3)%) = span{wy, wa,v1, v2, v3},
K3 = Ker((T — 3)1) = span{wy, ws, v1,v2, v3, 04},
(T—-3)%)

(
Ker(

T = span{wy, w2, V1, V2, U3, V4 },
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Continuing, suppose

&
g
=
)
=
N
_|_
L =

From this I deduce there are three A = —1 chains of lengths 2,3 and 5. Using {x1,x2}, {y1,v2,y3}
and {z1, 22, 23, 24, 25} to denote these chains,

E_1=Ker(T+1) = span{z1,y1, 21},
KGT((T +1 2 = Span{x17x27ylay2521522}7
Ker((T +1)%) = span{x1, 2,91, Y2, Y3, 21, 22, 23},

Span{xla x2,Y1,Y2,Y3, 21, 22, 23, 24}7

Spa’n{$17 r2,Y1,Y2,Y3, 21,22, 23, 24, 25}

)
)7)
( )?)
Ker((T +1)%)
K_1=Ker((T +1)%)

Without further information, for all we know, I am wrong and K_1 includes further vectors. How-
ever, if we know dim (V') = 16 then we can be sure that K_; is as claimed above and V = Ks® K_;.
Moreover,

/B = {U}hwg,U17’1)277)3,7)4,.’E1,.T2,y1,y2,y3,2’1,2’2,2’3,24,25}
18 a Jordan basis for which

[T]fgﬁ = J2(3> ® J4(3) D Jg(—l) ) Jg(—l) ) J5(—1).

Example 4.6.15. Suppose dim(V) =9 and the linear transformation T : V — V has

dim(Ker(T — 7))
dim(Ker(T —7)?)
dim(Ker(T —7)%)

7
8,
9

Then there exists 8 for which [T)g = Diag(7,7,7,7,7,7) @ J3(7).
Example 4.6.16. Suppose the linear transformation T : V — V has
dim(Ker(T —4)) = 3,
dim(Ker(T — 4)%) = 2.

This is impossible. Since Ker(T — 4) < Ker((T — 4)?) we find a 3-dimensional subspace of a
2-dimensional space. This cannot be.

Example 4.6.17. Suppose dim(V') = 12 and the linear transformation T : V — V has

dim(Ker(T — 2))
dim(Ker(T — 2)?)
dim(Ker(T — 2)3)

Then there exists B for which [T)g = J3(2) & J3(2) @ J3(2) & J3(2).

4,
8,
12
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4.7 complexification

In this section we study how a given real vector space is naturally extended to a vector space over
C. It is interesting to note the construction of the complexification of V' as a particular structure
on V x V is the same in essence as Gauss’ construction of the complex numbers from R2.

4.7.1 concerning matrices and vectors with complex entries

To begin, we denote the complex numbers by C. As a two-dimensional real vector space we can
decompose the complex numbers into the direct sum of the real and pure-imaginary numbers;
C = R@iR. In other words, any complex number z € R can be written as z = a + ib where
a,b € R. It is convenient to define

IfA=a+iBeC fora,BeR then Re(\)=a, Im(A):ﬁ\

The projections onto the real or imaginary part of a complex number are actually linear transfor-
mations from C to R; Re : C — R and Im : C — R. Next, complex vectors are simply n-tuples of
complex numbers:

‘C”I{(zl,zQ,...,zn) | zje(:}\.

Definitions of scalar multiplication and vector addition follow the obvious rules: if z,w € C ™ and
c € C then

(z+w); =z +w; (c2)j = czj
for each j = 1,2,...,n. The complex n-space is again naturally decomposed into the direct sum of
two n-dimensional real spaces; C » = R” @iR". In particular, any complex n-vector can be written
uniquely as the sum of real vectors are known as the real and imaginary vector components:

Ifv=a+ibeC" for a,b € R" then Re(v)=a, Im(v)=>». ‘

Recall z = z 4+ iy € C has complex conjugate z* = = — iy. Let v € C™ we define the complex
conjugate of the vector v to be v* which is the vector of complex conjugates;

(v7); = (v5)"

for each j = 1,2,...,n. For example, [1 +4,2,3 —i|* = [1 —,2,3 +14]. It is easy to verify the
following properties for complex conjugation of numbers and vectors:

(v+w)" =v" +w", (cv)* = ™™, vt =,

Complex matrices C"™*" can be added, subtracted, multiplied and scalar multiplied in precisely the
same ways as real matrices in R"™*™. However, we can also identify them as C™*™ = R™*" @ {R™*"
via the real and imaginary part maps (Re(Z));; = Re(Z;j) and (Im(Z2));; = Im(Z;;) for all i, j.
There is an obvious isomorphism C ™*" = R 2m*27 which follows from stringing out all the real
and imaginary parts. Again, complex conjugation is also defined component-wise: ((X +1Y)*);; =
Xi; — 1Y It’s easy to verify that

(Z+W)Y =Z+W*, (2 =c2Z", (ZW) =Z*W*

for appropriately sized complex matrices Z, W and ¢ € C. Conjugation gives us a natural operation
to characterize the reality of a variable. Let ¢ € C then c is real iff ¢* = ¢. Likewise, if v € C "
then we say that v is real iff v* = v. If Z € C™*"™ then we say that Z is real iff Z* = Z. In short,
an object is real if all its imaginary components are zero. Finally, while there is of course much
more to say we will stop here for now.
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4.7.2 the complexification

Suppose V is a vector space over R, we seek to construct a new vector space V¢ which is a natural
extension of V. In particular, define:

V([j:{(l',y) |I’,y€V}
Suppose (z,y), (v,w) € V¢ and a + ib € C where a,b € R. Define:
(y)+ (vw)=(@+v,y+w) & (a+ib):(z,y) = (az — by, ay + bx).

I invite the reader to verify that V¢ given the addition and scalar multiplication above forms a
vector space over C. In particular we may argue (0,0) is the zero in Vg and 1 - (z,y) = (x,y).
Moreover, as z,y € V and a,b € R the fact that V is a real vector space yields ax — by, ay+bzx € V.
The other axioms all follow from transferring the axioms over R for V to V¢. Our current notation
for V¢ is a bit tiresome. Note:

Since R C C the fact that V¢ is a complex vector space automatically makes V¢ a real vector space.
Moreover, with respect to the real vector space structure of V¢, there are two natural subspaces of
Ve which are isomorphic to V.

Wi =(1+10) -V =V x {0} & Wy=(0+17) - V={0} xV

Note Wy + Wy = Ve and Wi N Wy = {(0,0)} hence Ve = Wi @ Wy. Here @ could be denoted @r
to emphasize it is a direct sum with respect to the real vector space structure of V¢. Moreover, it
is convenient to simply write Vo = V @ iV. Another notation for this is Vg = C ® V where ® is
the tensor product. This is perhaps the simplest way to think of the complexification:

To find the complexification of V(R) we simply consider V(C). In other words, replace
the real scalars with complex scalars.

This slogan is just a short-hand for the explicit construction outlined thus far in this section.
Example 4.7.1. IfV =R then Vo =R ® iR =C.

Example 4.7.2. If V =R" then Vo = R" & :R" = C".

Example 4.7.3. If V = R™*" then Vg = R™*" @ iR™*™ = C™*".,

We might notice a simple result about the basis of V¢ which is easy to verify in the examples given
thus far: if spang () = V then spanc(8) = V.

Proposition 4.7.4.

’Suppose V over R has basis f = {v1,...,v,} then f is also a basis for V¢ ‘

Proof: let 8 = {vi,...,v,} be a basis for V over R. Notice, f C V¢ under the usual identification
of V- < Vi as described in this section. Let z € V¢ then there exist x,y € V for which z = z 4 y.
Moreover, as x,y € spang () there exits z;,y; € R for which z = Z;‘:l zjv; and y = Z;‘Zl Yjv;.

Thus,

n n n
Z=x+1y = ijvj +iZijj = Z(xj +iy;)v; € spang(f)
j=1 j=1 j=1
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Therefore, 3 is a generating set for V¢. To prove linear independence of 3 over C suppose ¢; =
a; + 1b; are complex constants with real parts a; € R and imaginary coefficients b; € R. Consider,

n

n n n
chvj =0 = Z(aj +ibj)vj = Zajvj +1 ijvj =0
j=1 Jj=1

J=1 J=1

Therefore, both > "_; aju; = 0 and 377 bju; = 0. By the real LI of 8 we find a; = 0 and b; =0
for all j € N, hence ¢; = a; +tb; = 0 for all j € N, and we conclude §3 is linearly independent in
Ve and thus 3 is a basis for the complex vector space V. O

If we view Vi as real vector space and if § is a basis for V then § U i3 is a natural basis for V.
Although, it is often useful to order the real basis for V¢ as follows: given 8 = {vi,ve,...,v,}
construct OS¢ as

Bc = {v1,iv1,v2, 109, ..., Up, 10y}

Example 4.7.5. If V. = RJt] then Vo = R[t] & iR[t]| = C[t]. Likewise for polynomials of limited
degree. For example W = Py is given by spang{1,t,t*} whereas W¢ = spang{1,1,t,it, 2, it*}.

From a purely complex perspective viewing an n-complex-dimensional space as a 2n-dimensional
real vector space is ackward. However, in the application we are most interested, the complex vector
space viewed as a real vector space yields data of interest to our study. We are often interested
in solving real problems, but a complexification of the problem at times yields a simpler problem
which is easily solved. Once the complexification has served its purpose of solvablility then we have
to drop back to the context of real vector spaces. This is the game plan, and the reason we are
spending some effort to discuss the complexification technique.

Example 4.7.6. If V. = L(U, W) then Ve = L(UW)@iL(U,W). If T € Vi then T = L1 +iLy for
some Ly, Ly € V. However, if B is a basis for U then [ is a complex basis for Uc thus T extends
uniquely to a complex linear map Tc : Uc — We. Therefore, we find Ve = Lc(Uc, We)

Example 4.7.7. As a particular application of the discussion in the last example: if V = L(R™, R™)
then Vo = Lc(C™,C™). Note that isomorphism and complexification intertwine nicely: V = R™*"
and CQV 2 C @ R™*™ qs Ve = C™*",

The last example brings us to the main-point of this discussion. If we consider 7" : R™” — R™ and we
extend to T : C™ — C™ then this simply amounts to allowing the matrix of 7' be complex. Also,
conversely, if we allow the matrix to be complex then it implies we have extended to a complex
domain. The formula which defines the complexified version of a real linear transformation is
simply:

Te(x +1y) =T(x) + 4T (y)

for all z,y € V. This idea is at times tacitly used without any explicit mention of the complexifi-
cation. In view of our discussion in this section that omission is not too dangerous. Indeed, that
is why in other courses I at times just allow the variable to be complex. This amounts to the
complexification procedure defined in this section.

4.7.3 complexification for 2nd order constant coefficient problem

I’ll illustrate the techinique of complexification in the study of differential equations. To solve
ay” + by’ + cy = 0 we try to use the real solution y = e*. Since v/ = AeM and y” = \2eM

af +by +ey=0 = arZeM +breM 4 ceM =0
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then as eM # 0 we can divide by it to reveal theﬂ auxillary equation of a\? + b\ + ¢ = 0.
If the solution to the auxillary equation is real then we get at least one solution. For example,
Y +3y +2y =0gives N2+ 3\ +2= (A +1)(A+2) =0 this \; = —1 and Ay = —2 and the general
solution is simply y = c1e ™t + coe 2.

On the other hand, if we try the same real approach to solve 3" + 3 = 0 then we face A2 +1 = 0
which has no real solutions. Therefore, we complexify the problem and study z” + z = 0 where
z = x + iy and z,y are real-valued functions of t. Conveniently, if A = « + i is complex then
z = eM = e®(cos Bt + isin Bt) and we can derive 2/ = Ae and 2’ = A2eM hence, by the same
argument as in the real case, we look for (possibly complex) solutions of aA\?> +bA+c = 0. Returning
to our y” +y = 0 example, we now solve A? + 1 = 0 to obtain A = %i. It follow that z; = e and
29 = e~ are complex solutions for z” + 2z = 0. Notice, z = x+iy has 2/ = 2’ +iy’ and 2" = 2" + iy
thus 2” + z = 0 implies 2" + iy” + x + iy = 0 thus 2" + z +i(y” + y) = 0 (call this x). Notice the
real and imaginary components of x must both be zero hence z” + x = 0 and y” + y = 0. Notice,
for z = e = cost + isint we have & = cost and y = sint. It follows that cost and sint are real
solutions to y” + y = 0. Indeed, the general solution to ¥ +y = 0 is y = ¢y cost + cosint. To
summarize: we take the given real problem, extend to a corresponding complex problem, solve the
complex problem using the added algebraic flexibility of C, then extract a pair of real solutions
from the complex solution. You might notice, we didn’t need to use e~ since e ™ = cost — isint
only has data we already found in e®.

The case y” + 2y’ +y = 0 is more troubling. Here A2 + 2\ + 1 = (A +1)2 hence A = —1 twice. We
only get y = e~! as a solution. The other solution y = te™! arises from a generalized eigenvector
for a system of differential equations which corresponds to y” + 2y’ +y = 0. The reason for the ¢
is subtle. We will discuss this further when we study systems of differential equations.

4.8 complex eigenvalues and vectors for real linear maps

By now it should be clear that as we consider problems of real vector spaces the general results,
especially those algebraic in nature, invariably involve some complex case. However, technically
it usually happens that the construction from which the complex algebra arose is no longer valid
if the algebra requires complex solutions. The technique to capture data in the complex cases of
the real problems is to complexify the problem. What this means is we replace the given vector
spaces with their complexifications and we extend the linear transformations of interest in the
same fashion. It turns out that solutions to the complexification of the problem reveal both the
real solutions of the original problem as well as complex solutions which, while not real solutions,
still yield useful data for unwrapping the general real problem. If this all seems a little vague, don’t
worry, we will get into all the messy details for the eigenvector problem.

Definition 4.8.1.

If T :V — V is a linear transformation over R then the complexification of 7' is the
natural extension of T" to I¢ : Vo — Vi where Ve =V @1V given by:

Te(x +iy) =T(z) +iT(y)

for all x + iy € V. If v € V¢ is a nonzero vector and A € C for which Tt (v) = Av then we
say v is a complex eigenvector with eigenvalue )\ for 7'

T usually call it the characteristic equation, but, I’d rather not at the moment
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Example 4.8.2. Consider T = D where D = d/dx. If \ = a+if then e\ = e**(cos(fx)+isin(Bx)
by definition of the complex exponential. It is first semester calculus to show D¢ (e’*) = e . Thus
e is a complex e-vector of Te with complex e-value X. In other words, e for complex \ are
complez eigenfunctions of the differentiation operator.

Suppose = {f1,..., fn} is a basis for V; spang () = V. Then, Proposition showed us that 3
also serves as a complex basis for Vg, spanc(5) = Ve. It follows that the matrix of T with respect
to B over C is the same as the matrix of T" with respect to 8 over R. In particular:

[Te(f)ls = [T(fi)]s-

Suppose v is a complex e-vector with e-value A then note T¢(v) = Av implies [Tt|gglv]s = Av]g
where [v]g € C". However, [I¢c]gs = [T]g,s. Conversely, if [T']3 3 viewed as a matrix in C"*™ has
complex e-vector w with e-value A then v = @/gl(w) is a complex e-vector for Tr with e-value A.
My point is simply this: we can exchange the problem of complex e-vectors of T for the associated
problem of finding complex e-vectors of [Tz 3. Just as we found in the case of real e-vectors it
suffices to study the matrix problem.

Definition 4.8.3.

Let A € R™", If v € C" is nonzero and Av = Av for some A\ € C then we say v is a
complex eigenvector with complex eigenvalue A of the real matrix A.

The solutions of the characteristic equation are eigenvalues.

Proposition 4.8.4.

Let A € R™" then A € C is an eigenvalue of A iff det(A — A\I) = 0. We say P()\) =
det(A — M) the characteristic polynomial and det(A — AI) = 0 is the characteristic
equation.

Proof: a complex e-vector of A is an e-vector of linear transformation L4 : C" — C” and the
possible eigenvalues of L4 are solutions of det(A — A\I) = 0 since [L4] = A. O

The complex case is different than the real case for one main reason: the complex numbers are an
algebraically closed field. In particular we have the Fundamental Theorem of Algebra@

Theorem 4.8.5.

Fundamental Theorem of Algebra: if P(x) is an n-th order polynomial complex coefficients
then the equation P(x) = 0 has n-solutions where some of the solutions may be repeated.
Moreover, if P(x) is an n-th order polynomial with real coefficients then complex solutions
to P(x) = 0 come in conjugate pairs. It follows that any polynomial with real coefficients
can be factored into a unique product of repeated real and irreducible quadratic factors.

A proof of this theorem would take us far of topic here{ﬂ I state it here to remind us of the
possibilities for solutions of the characteristic equation P(\) = det(A — A\I) = 0 which is simply an
n-th order polynomial equation in A.

0sometimes this is stated as ”there exists at least one complex solution to an n-th order complex polynomial

equation” then the factor theorem repeated applied leads to the theorem I quote here.
"there is a nice proof which can be given in our complex variables course
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Proposition 4.8.6.

If A€ C™™ then A has n eigenvalues, however, some may be repeated and/or complex.

Proof: observe P(\) = det(A — AI) =0 is an n-th order polynomial equation in A. [J

In the case A € R ™" the complex e-vectors have special structurd™]

Proposition 4.8.7.

If A € R™™ has complex eigenvalue A\ and complex eigenvector v then \* is likewise a
complex eigenvalue with complex eigenvector v* for A.

Proof: We assume Av = \v for some A € C and v € C "*! with v # 0. Take the complex conjugate
of Av = M to find A*v* = A\*v*. But, A € R ™" thus A* = A and we find Av* = A*v*. Moreover,
if v # 0 then v* £ 0. Therefore, v* is an e-vector with e-value \*. [J

This is a useful proposition. It means that once we calculate one complex e-vectors we almost
automatically get a second e-vector merely by taking the complex conjugate.

Proposition 4.8.8.

If A € R™*"™ has complex e-value A = a+i/3 such that 8 # 0 and e-vector v = a+ib € C "*!
such that a,b € R™ then \* = a — (8 is a complex e-value with e-vector v* = a — ib and
{v,v*} is a linearly independent set of vectors over C.

Proof: Proposition showed that v* is an e-vector with e-value \* = a — i. Notice that
A # A* since 8 # 0. Therefore, v and v* are e-vectors with distinct e-values. Note that Proposition
is equally valid for complex e-values and e-vectors. Hence, {v,v*} is linearly independent
since these are complex e-vectors with distinct complex e-values. [

Proposition 4.8.9.

If A € R™ " has complex e-value A = a+i/3 such that 3 # 0 and e-vector v = a+ib € C "*!
such that a,b € R™ then a # 0 and b # 0.

Proof: Expand Av = A\v into the real components,
A = (a+i6)(a+ib) = aa — pb+i(Ba + ab)

and
Av = A(a + ib) = Aa +iAb

Equating real and imaginary components yeilds two real matrix equations,

Aa=oa—Bb and Ab= Ba-+ ab

Suppose a = 0 towards a contradiction, note that 0 = —fgb but then b = 0 since 5 # 0 thus
v = 0+ 40 = 0 but this contradicts v being an e-vector. Likewise if b = 0 we find Sa = 0 which

2potice, in Lecture on March 25 of 2016, I presented these results for a linear transformation and I think the
arguments I gave there are an improvement on those offered here
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implies @ = 0 and again v = 0 which contradicts v being an e-vector. Therefore, a,b £ 0. [

Let T be a linear transformation on a R? such that v = a + ib is a complex eigenvector with
A = a +if. The calculations above make it clear that if we set v = {a, b} then

o = [T, e, )= | % 2.

Of course, to be careful, we should prove {a, b} is a LI before are certain - is a basis.

Proposition 4.8.10.

IfAeR™™and A = a+i8 € C with o, € R and 8 # 0 is an e-value with e-vector
v=a+ib € C ™! and a,b € R" then {a, b} is a linearly independent set of real vectors.

Proof: Add and subtract the equations v = a + b and v* = a — ib to deduce

a=3(v+vx) and b= g (v—v¥)

Let ¢1, co € R then consider,

cra+eb=0 = c1[3(v+vx)] + ca[F (v —v¥)] =0
= [01 — Z.CQ}'U + [Cl + iCQ]U* =0
But, {v,v*} is linearly independent hence ¢; — ica = 0 and ¢; 4+ ico = 0. Adding these equations
gives 2¢; = 0. Subtracting yields 2ico = 0. Thus ¢; = ¢2 = 0 and we conclude {a, b} is linearly

independent set of real vectors. [J

Proposition 4.8.11.

If Ae R ™" and \; = o +183; € C with o, 8; € R and 3; # 0 is an e-value with e-vector
v; = aj +1ib; € C" and a;,b; € R" for j = 1,2...,k then {a1,b1,a2,ba,...,a, by} is a
linearly independent set of real vectors.

Proof: should be similar to that of Proposition I leave the details to the reader. O

4.9 examples of real and complex eigenvectors

And now, the examples! Note, we should see all the propositions exhibited in these examples.

4.9.1 characteristic equations

Example 4.9.1. Let A = [g 91]. Find the eigenvalues of A from the characteristic equation:

3—-A 0

det(A — \I) = det 8 _1-1

—B-AN(-1-N)=MN+1(\A-3)=0

Hence the eigenvalues are A1 = —1 and Ao = 3. Notice this is precisely the factor of 8 we saw
scaling the vector in the first example of this chapter.
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Example 4.9.2. Let A = . Find the eigenvalues of A from the characteristic equation:

NI— DO
=S

w‘% NI
w

D=

det(A— X)) =d AR =G -N+3=0-1+3=0
et( J=det| 2 g P =GN =) g =
227

i

Well how convenient is that? The determinant completed the square for us. We find: A\ = %:ti
It would seem that elliptical orbits somehow arise from complex eigenvalues

Example 4.9.3. Given A below, find the eigenvalues. Since the matriz is upper triangular the
determinant is calculated as the product of the diagonal entries:

2— A 3 4
= det(A-X)=] 0 5-x 6 |=@2-N6-N(T-N

2 3
A=10 5
0 0 0 0 7T—A

N =

Therefore, A1 =2, =5 and A3 = 7.

Remark 4.9.4. eigenwarning

Calculation of eigenvalues does not need to be difficult. However, I urge you to be careful
in solving the characteristic equation. More often than not I see students make a mistake
in calculating the eigenvalues. If you do that wrong then the eigenvector calculations will
often turn into inconsistent equations. This should be a clue that the eigenvalues were
wrong, but often I see what I like to call the ”principle of minimal calculation” take over
and students just adhoc set things to zero, hoping against all logic that I will somehow not
notice this. Don’t be this student. If the eigenvalues are correct, the eigenvector equations
are consistent and you will be able to find nonzero eigenvectors. And don’t forget, the
eigenvectors must be nonzero.

4.9.2 real eigenvector examples

31

Example 4.9.5. Let A = [ 3 ]

] find the e-values and e-vectors of A.

3—-A 1

det(A—)\I):det[ 3 1o

] =B3-MN1-XN)=-3=X—-4Ax=X\—-4)=0
We find Ay =0 and Ao = 4. Now find the e-vector with e-value A\ = 0, let u; = [u,v]T denote the
e-vector we wish to find. Calculate,

a-onm= 31 v = [0 ]= 10 )
Obuviously the equations above are redundant and we have infinitely many solutions of the form
3u + v = 0 which means v = —3u so we can write, u; = [ —gu } =u [ _13 ] In applications we
often make a choice to select a particular e-vector. Most modern graphing calculators can calcu-

late e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful
choice for certain applications as we will later discuss. If you use a calculator it would likely give
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Uy = \/%T) [ _13 ] although the v/10 would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors ug = [u,v]T such that (A — 4I)us = 0. Notice that u,v
are disposable variables in this context, I do not mean to connect the formulas from the A = 0 case
with the case considered now.

-1 1 u| | —ut+v | |0
(A_“)“l_[?, —3][@]_[311—3@]_[0}
Again the equations are redundant and we have infinitely many solutions of the form v = u. Hence,

Uy = [ Z ] =u [ 1 ] s an eigenvector for any u € R such that u # 0.

Remark 4.9.6.

It was obvious the equations were redundant in the example above. However, we need not
rely on pure intuition. The problem of calculating all the e-vectors is precisely the same as
finding all the vectors in the null space of a matriz. We already have a method to do that
without ambiguity. We find the rref of the matriz and the general solution falls naturally
from that matriz. I don’t bother with the full-blown theory for simple examples because there
is no need. However, with 3 X 3 examples it may be advantageous to keep our earlier null
space calculational scheme in mind.

0 0 —4
Example 4.9.7. Let A= | 2 4 2 find the e-values and e-vectors of A.
2 0 6
-A 0 —4
O=det(A—X)=det| 2 4-—X 2
2 0 6— A
= (4= N)[-A6-\)+8]
= (4= N[\ —6X+3]
=—A—-49)N-4)(A—-2)

Thus we have a repeated e-value of \; = Ay = 4 and \3 = 2. Let’s find the eigenvector uz = [u, v, w]”

such that (A — 21 )usz = 0, we find the general solution by row reduction

-2 0 —4]0 10 2100 2w — 0 -2
rref| 2 2 2 |0|=|01 —-1|0 = v—w—_O = |lus=w| 1
2 0 410 00 01O B 1

Next find the e-vectors with e-value 4. Let uy = [u,v,w]|’ satisfy (A — 4I)u; = 0. Calculate,

-4 0 —410 1 010
rref| 2 0 2 ]0|=]100 0]0 = utw=0
2 0 210 00 0|0

Notice this case has two free variables, we can use v,w as parameters in the solution,

U —w 0 -1 0 -1
up=1| v | = v =v| 1 |+w 0 = |uy=wv| 1 and us = w 0
w w 0 1 0 1
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I have boxed two linearly independent eigenvectors uy, us. These vectors will be linearly independent
for any pair of nonzero constants v, w.

You might wonder if it is always the case that repeated e-values get multiple e-vectors. In the
preceding example the e-value 4 had algebraic multiplicity two and there were likewise two linearly
independent e-vectors. The next example shows that is not the case.

11

Example 4.9.8. Let A = [ 0 1

] find the e-values and e-vectors of A.

1-A 1

det(A—)\I):det[ 0 1-2

]:(1-»(1-»:0

Hence we have a repeated e-value of A\1 = 1. Find all e-vectors for \y = 1, let uy = [u,v]T,

(A—I)ul—[g éHH_[g] Toesh ”1_“[(1)]

We have only one e-vector for this system.

I should mention, if A\ is an eigenvalue for A € F"*™ or T : V' — V then there exists at least
one non-trivial eigenvector with eigenvalue A\. We can expect there is at least one eigenvector
if our alleged eigenvalue is correct. In fact, finding otherwise means you need to return to the
characteristic equation and try to solve it more carefully.

1 2 3

Example 4.9.9. Let A = find the e-values and e-vectors of A.

4 5 6
78 9
1—-A 2 3

O=det(A—X)=det| 4 5-X 6
7 8 9-2)

=(1=XN[(B=X(9—A) —48] —2[4(9— ) —42] +3[32 - 7(5 — \)]
= A3 4 15)2 + 18X\
= A\ — 15\ — 18)

Therefore, using the quadratic equation to factor the ugly part,

15+ 3v/33 \ 15— 333
OTIVES = 2T OVS

M=0, = 5

The e-vector for e-value zero is not too hard to calculate. Find ui = [u,v] such that (A—0I)u; = 0.
This amounts to row reducing A itself:

12 3]0 10 —1]0 w0
rref |45 60| =01 2|0 = P77 = u=w| 2
78 9]0 00 00 -

The e-vectors corresponding e-values Ao and A3 are hard to calculate without numerical help. Let’s
discuss Texas Instrument calculator output. To my knowledge, TI-85 and higher will calculate both



4.9. EXAMPLES OF REAL AND COMPLEX EIGENVECTORS 157

e-vectors and e-values. For example, my ancient TI-89, displays the following if I define our matriz
A = mat2,
eigVIl(mat2) = {16.11684397, —1.11684397, 1.385788954¢ — 13}

Calculators often need a little interpretation, the third entry is really zero in disquise. The e-vectors
will be displayed in the same order, they are given from the "eigVe” command in my TI-89,

2319706872 7858302387  .4082482905
eigVe(mat2) = | 5253220933 .0867513393  —.8164965809
8186734994 —.6123275602  .4082482905

From this we deduce that eigenvectors for A1, A2 and A3 are

2319706872 7858302387 .4082482905
up = | .5253220933 Uy = .0867513393 us = | —.8164965809
.8186734994 —.6123275602 .4082482905

Notice that 1/v/6 ~ 0.408248905 so you can see that uz above is simply the u = 1/\/6 case for
the family of e-vectors we calculated by hand already. The calculator chooses e-vectors so that the
vectors have length one.

While we’re on the topic of calculators, perhaps it is worth revisiting the example where there was
only one e-vector. How will the calculator respond in that case? Can we trust the calculator?

11

Example 4.9.10. Recall Example |4.9.8. We let A = [ 01

] and found a repeated e-value of

A1 =1 and single e-vector u; = u [ ] . Hey now, it’s time for technology, let A = a,

0

. , 1. —1.
eigVli(a) = {1,1} and eigVec(a) = [ 0. le—15 ]
Behold, the calculator has given us two alleged e-vectors. The first column is the genuine e-vector
we found previously. The second column is the result of machine error. The calculator was tricked
by round-off error into claiming that [—1,0.000000000000001] is a distinct e-vector for A. It is not.
Moral of story? When using calculator you must first master the theory or else you’ll stay mired
i tgnorance as presribed by your robot masters.

Finally, I should mention that TI-calculators may or may not deal with complex e-vectors ade-
quately. There are doubtless many web resources for calculating e-vectors/values. I would wager
if you Googled it you’d find an online calculator that beats any calculator. Many of you have a
laptop with wireless so there is almost certainly a way to check your answers if you just take a
minute or two. I don’t mind you checking your answers. If I assign it in homework then I do want
you to work it out without technology. Otherwise, you could get a false confidence before the test.
Technology is to supplement not replace calculation.

Remark 4.9.11.

I would also remind you that there are oodles of examples beyond these lecture notes in
the homework solutions from previous year(s). If these notes do not have enough examples
on some topic then you should seek additional examples elsewhere, ask me, etc... Do not
suffer in silence, ask for help. Thanks.




158 CHAPTER 4. JORDAN FORM

4.9.3 complex eigenvector examples

0 1
-1 0
that det(A—M\I) = A\2+1 hence the eigevalues are A = +i. Finduy = [u,v]’ such that (A—il)u; = 0

N ER R R )

-1 — v —u — —u—ww=20 7

Example 4.9.12. Let A = [ } and find the e-values and e-vectors of the matriz. Observe

We find infinitely many complex eigenvectors, one for each monzero complex constant w. In appli-

cations, in may be convenient to set u =1 so we can write, uy = [ 0 ] +1 [ [1) ]

Let’s generalize the last example.

cosf sinf

Example 4.9.13. Let 0 € R and define A = [ Csinf cosf

} and find the e-values and e-vectors

of the matriz. Observe

0 = det(A — ) = det { cosf = A sinf }

—sin€  cosf — A

= (cosf — \)? +sin? 0

= cos?f — 2\ cos @ + \? +sin” 0
=A% —2\cosf + 1

= (A —cosh)? —cos®0 + 1

= (A —cosf)? +sin? 0

Thus X = cos@ £ isinf = et Find uy; = [u,v]T such that (A — e®T)u; =0

0= —ising - sinf }[u}:[g} = —jusinf +vsinfd =0

—sinf —isiné )

If sinf # 0 then we divide by sin@ to obtain v = iu hence u = [u, i)’ = u[l,i]T which is precisely
what we found in the preceding example. However, if sin@ = 0 we obtain no condition what-so-ever
on the matriz. That special case is not complex. Moreover, if sinf = 0 it follows cos = 1 and in
fact A =1 in this case. The identity matriz has the repeated eigenvalue of A =1 and every vector
in R?*1 is an e-vector.

1 10
Example 4.9.14. Let A= | —1 1 0 | find the e-values and e-vectors of A.
0 0 3
1—A 1 0
O=det(A—A)=| -1 1-Xx 0

0 0 33—\
=B-N[1-N?+1]

Hence \y = 3 and Ao = 1+ 4. We have a pair of complex e-values and one real e-value. Notice
that for any n x n matriz we must have at least one real e-value since all odd polynomials possess



4.9. EXAMPLES OF REAL AND COMPLEX EIGENVECTORS 159

at least one zero. Let’s begin with the real e-value. Find uy = [u,v,w]? such that (A — 3I)u; = 0:

-2 1 0|0 1 0 0]0 0
rref| =1 =2 0|0 | =101 0]0 = |lup=w| 0
0 0 010 00 0|0 1

Next find e-vector with Ay = 1 +i. We wish to find uz = [u,v,w]|’ such that (A — (14 )I)ug = 0:

-1 —i 0 0 % S, 0 0 00
0 0 —-1—4]|0 i Y 0 0 11]0

One more row-swap and a rescaling of row 1 and it’s clear that

- 1 0 0 1 2 00 vt iv =0
rref | —1 —i 0 Of=100 1/0 = N = |jug=v| 1
0 0 00

0 0 —1-—il0 w=0

I chose the free parameter to be v. Any choice of a nonzero complex constant v will yield an e-vector
with e-value Ay = 1 +1. For future reference, it’s worth noting that if we choose v =1 then we find

0 1
Ug = 1 +21 0
0 0

We identify that Re(us) = ez and Im(uz) = e;

1 V3
Example 4.9.15. Let B = [ _01 é } and let C' = %/3 2 Define A to be the block
T2 2
matrix _
0 1 0 0
L_[Blo 10l 0 o0
“lojc] | o o L
V3 1
0 0]=% 37 |

find the e-values and e-vectors of the matrix. Block matrices have nice properties: the blocks
behave like numbers. Of course there is something to prove here, and I have yet to discuss block
multiplication in these notes.

B — I 0

det(A—)\I):det[ 0 C

} = det(B — X )det(C — \I)

Notice that both B and C' are rotation matrices. B is the rotation matrixz with 0 = 7 /2 whereas C
is the rotation by 0 = w/3. We already know the e-values and e-vectors for each of the blocks if we
ignore the other block. It would be nice if a block matriz allowed for analysis of each block one at
a time. This turns out to be true, I can tell you without further calculation that we have e-values

3

A= i and \g = % + 7,73 which have complex e-vectors

=e3 +1e4

S = OO
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I invite the reader to check my results through explicit calculation. Technically, this is bad form as
I have yet to prove anything about block matrices. Perhaps this example gives you a sense of why
we should talk about the blocks at some point.

Finally, you might wonder are there matrices which have a repeated complex e-value. And if so are
there always as many complex e-vectors as there are complex e-values? The answer: sometimes.

Take for instance A = [ B0 (where B is the same B as in the preceding example) this

0| B
matrix will have a repeated e-value of A = +i and you’ll be able to calculate u1 = e; + ies and
ug = ez tieyq are linearly independent e-vectors for A. However, there are other matrices for which
only one complex e-vector is available despite a repeat of the e-value.

2 3 1 0
-3 2 0 1 .

Example 4.9.16. Let A = 0 o0 9 3| Youcan calculate N = 2 & 3¢ is repeated and yet
0 0 -3 2

there are only two LI complex eigenvectors for A. In particular, v = a +ib for A = 2 + 3i and v*
for X* = 2 — 3i. From this pair, or just one of the complex eigenvectors, we find just two LI real
vectors: {a,b}. Naturally, if we wish to associate some basis of R* with A then we are missing two
vectors. We return to this mystery in the next section. Note:

[ 2 3e[ )0 o2 0]

The ® is the tensor product. Can you see how it is defined?

4.10 real Jordan form

Consider A € R ™*™. It may not have a Jordan form. Why? We must account for the possibility
of complex eigenvalues for A. We continue the work we began in Section [£.8] here.

Theorem 4.10.1.

If V is an n-dimensional real vector space and T : V' — V is a linear transformation then T’
has n-complex e-values. Furthermore, if the geometric multiplicity of the complexification
of T' matches the algebraic multiplicity for each complex e-value then the complexification is
diagonalizable; in particular, T¢ : Vo — Vi permits a complex eigenbasis 3 for Vo = V @iV
such that [T|gg € C**" is diagonal with the complex e-values on the diagonal. If the
geometric multiplicity of the complexification does not match the algebraic multiplicity for
some complex eigenvalue(s) then it is possible to find a basis of generalized complex e-vectors
for V¢ for which the matrix of the complexified 7" has complex Jordan form. Furthermore,
up to the ordering of the chains of complex generalized e-vectors the Jordan form of the
complexification of T" is unique.

Proof: if V' is a vector space over R then T' € L(V, V') has complexification T¢ : Vo — V. Since C
is algebraically closed the characteristic equation for Tt has n-complex e-values (allowing repeats).

Thus, Theorems and apply. O

Diagonalization of T : Vo — V¢ is interesting, but, we are mostly interested in what the diagonal-
ization reveals about T : V — V. The simplest case is two-dimensional.
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Theorem 4.10.2.

If V is an 2-dimensional real vector space and T : V — V is a linear transformation with
complex eigenvalue A = a + i where 8 # 0 with complex eigenvector v = a + b € V¢ then

the matrix of 7" with respect to v = {a, b} is [T}, = [ _aﬂ i }

Proof: If T has complex eigenvalue A = a4 i where 3 # 0 corresponding to complex eigenvector
v =a+ib for a,b € V. We assume T'(v) = Av hence:

T(a+ib) = (a+1if)(a + ib)
thus, by definition of the complexification,
T(a) 4+ 1T(b) = aa — b+ i(fa+ ab) *

Then, by a modification of the arguments for Proposition [4.8.10] to the abstract context, we have
that {a,b} forms a LI set of vectors for V. Since dim(V') = 2 it follows v = {a, b} forms a basis.
Moreover, from * we obtain:

T(a) = aa— pBb & T'(b) = Ba + ab.

Recall, the matrix [T, = [[T'(a)]4|[T'(b)],]. Therefore, the theorem follows as [T'(a)}, = (o, —f)
and [T'(b)]y = (58, a) are clear from the equations above. [J

It might be instructive to note the complexification has a different complex matrix than the real
matrix we just exhibited. The key equations are T'(v) = Av and T'(v*) = A\*v thus if 6 = {v,v*} is
a basis for Vo =V @ ¢V then the complexification T : Vo — V¢ has matrix:

) 0
[Ts5 = OH(F)M a_if |-

The matrix above is complex, but it clearly contains information about the linear transformation T
of the real vector space V. Next, we study a repeated complex eigenvalue where the complexification
is not complex diagonalizable.

Theorem 4.10.3.

If V is an 4-dimensional real vector space and T : V — V is a linear transformation with
repeated complex eigenvalue A = « + i where 8 # 0 with complex eigenvector v; =
a1 + ib1 € Vi and generalized complex eigenvector vy = ag + iby where (T — A d)(ve) = vy

a B 1 0

. . . -6 a 0 1

then the matrix of 7" with respect to v = {a1, b1, a2,b2} is [T], 5 = 0 0 a 8
0 0 -8 «

Proof: we are given T'(v1) = Avy and T'(v2) = Ave + v1. We simply need to extract real equations
from this data: note v1 = aq + ib; and vy = ao + iby where aq,as2,b1,b0 € V and A = a + if.
Set v = {a1,b1,a2,b2}. The first two columns follow from the same calculation as in the proof of

Theorem Calculate,
T(a2 + ’ibg) = (Oé + Zﬂ)(az + ibg) + (a1 + ibl) = aay — by + aﬂ(ﬁaz + aby + bl).
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Note T'(az + iba) = T'(az) + i1 (b2). Thus T'(a2) = a1 + aaz — Bby hence [T'(a2)], = (1,0, o, —f3).
Also, T'(b2) = by + faz + abs from which it follows [T'(b2)]y = (0,1, 8, ). The theorem follows. [

Once more, I write the matrix of the complexification of T for the linear transformation considered
above. Let 6 = {vy, v, v}, v5} then

a+if 1 0 0

_ 0 a+iB| 0 0

Thss = 0 0 |a—if 1
0 0 0 «a—if

The next case would be a complex eigenvalue repeated three times. If 6 = {v1,v2,vs, v}, v3,v5}
where (T'— \)(v3) = va, (T'— X)(v2) = v1 and (T' — X)(v1) = 0. The complex Jordan matrix would
have the form:

X1 0l0o 0 o
0O XN1l0 0 0
00 MO 0 0
Tlos= |0 0™ 1 o0
00 0/l0 X 1
00 0[O0 0 X\

In this case, if we use the real and imaginary components of vy, va, v3 as the basis v = {a1, b1, ag, b2, as, b3}
then the matrix of T': V — V will be formed as follows:

T« B8 1 0 0 0
-5 o 0 1 0 O
0 0 o« B 1 0
[T]%W/ = 0 0 _B a 0 1 (42)
0 0 0 0 a 8
L 0 0 0 0 -8 a ]

The proof is essentially the same as we already offered for the repeated complex eigenvalue case.
In Example we encountered a matrix with a repeated complex eigenvalue with geometric
multiplicity of one. I observed a particular formula in terms of the tensor product. I think it
warrants further comment here. In particular, we can write an analogus formula here for the 6 x 6
matrix above:

100 010
10

[T]W:[_aﬂg]@ 010 +[01]® 00 1

00 1 000

If T has a 4-chain of generalized complex e-vectors then we expect the pattern continues to:

Tho=| & 2 ]s Y

O = O O

0

0 1 0
[+ [3 2]
1

o O O
o O = O
o O O O
o O o
O O = O
o= O O

The term built from tensoring with the superdiagonal matrix will be nilpotent. Perhaps we will
explore this in the exercises. Hefferon or Damiano and Little etc. has a section if you wish a second
opinion on all this.
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Remark 4.10.4.

I’ll abstain from writing the general real Jordan form of a matrix. Sufficient to say, it is
block diagonal where each block is either formed as discussed thus far in this section or it
is a Jordan block. Any real matrix A is similar to a unique matrix in real Jordan form up
to the ordering of the blocks.

Example 4.10.5. To begin let’s try an experiment using the e-vector and complex e-vectors for
found in Example[{.9.1 We’ll perform a similarity transformation based on this complex basis:
8 =1{(,1,0),(—i,1,0),(0,0,1)}. Notice that

1 —1 0 1] i 10

Bl=]1 10| = [,6’]‘1:5 i 10

01 0 2

Then, we can calculate that
1 - 1 0 1 10 i —1 0 142 0 O
Bl TA[B] = = i 10 -1 10 1 1 0|= 0 1—i 0
2

0 0 2 0 0 3 0 01 0 0o 3

Note that A is complex-diagonalizable in this case. Furthermore, A is already in real Jordan form.

We should take a moment to appreciate the significance of the 2 x 2 complex blocks in the real
Jordan form of a matrix. It turns out there is a simple interpretation:

a —b
b a
(@ — \)? +b% = 0 hence we have complex eigenvalues X = a & ib. Denoting r = Va? + b2 (the
modulus of a +ib). We can work out that

2 E e T A B B | v i

Example 4.10.6. Suppose b # 0 and C = { ] We can calculate that det(A — \I) =

Therefore, a 2 X 2 matrixz with complex eigenvalue will factor into a dilation by the modulus of the
e-value || times a rotation by the argument of the eigenvalue. If we write A = rexp(if) then we
can identify that r > 0 is the modulus and 3 is an arugment (there is degeneracy here because angle
is multiply defined).

Transforming a given matrix by a similarity transformation into real Jordan form is a generally
difficult calculation. On the other hand, reading the eigenvalues as well as geometric and algebraic
multiplicities is a simple matter given an explicit matrix in real Jordan form.

2 300

-3 2 00 . .
Example 4.10.7. Suppose A = 0 05 1| I can read \1 = 2 + 3t with geometric and

0 0 0 5

algebraic multiplicity one and Ay = 5 with geometric multiplicity one and algebraic multiplicity two.
Of course, A =2 — 3i is also an e-value as complex e-values come in conjugate pairs.
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0 3 1 000
-3 0 0 1 00
Example 4.10.8. Suppose A = 8 8 _03 g 8 8 . I read \y = 3i with geometric multi-
0 0 0 0 5 0
| 0 0 0 0 0 5 |
plicity one and algebraic multiplicity two. Also Ao = 5 with geometric multiplicity and algebraic

multiplicity two.
Let us conclude with introducing a standard notation for real Jordan blockﬂ

Definition 4.10.9.

Suppose a + i3 € C with 5 # 0 then

a g 1 0
Rg(a+iﬁ):{aﬁ g] &  Ry(a+iB) = —0/5 g 2 }5
0 0 -8 «

and the matrix given in Equation defines Rg(a + i3). Generally,

Rop(a+iB8) = Re(a +iB) ® Iy + Iy ® N.

4.11 systems of differential equations

Systems of differential equations are found at the base of many nontrivial questions in physics,
math, biology, chemistry, nuclear engineering, economics, etc... Consider this, anytime a problem
is described by several quantities which depend on time and each other it is likely that a simple
conservation of mass, charge, population, particle number,... force linear relations between the time-
rates of change of the quantities involved. This means, we get a system of differential equations.
To be specific, Newton’s Second Law is a system of differential equations. Maxwell’s Equations
are a system of differential equations. Now, generally, the methods we discover in this chapter will
not allow solutions to problems I allude to above. Many of those problems are nonlinear. There
are researchers who spend a good part of their career just unraveling the structure of a particular
partial differential equation. That said, once simplifying assumptions are made and the problem is
linearlized one often faces the problem we solve in this chapter.

We show how to solve any system of first order differential equations with constant coefficients.
This is accomplished by the application of Jordan basis for the matrix of the system to the matrix
exponential. I’'m not sure the exact history of the method I show in this chapter. In my opinion,
the manner in which the chains of generalized eigenvectors tame the matrix exponential are reason
enough to study them. I have left some redundant definitions in this chapter, I hope it makes this
more readable. I would default to the earlier definition if a definition given in this chapter seems
in disagreement on some point. If in doubt, please ask.

13please forgive me for not giving a proper definition of the Kronecker product ®, I hope the pattern is clear from
the examples in this section
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I should mention, the results of this Chapter allow generalization. We could develop theorems for
calculus of an F-valued function of a real variable. But, we content ourselves to focus on R and C
as is convenient to the applications of interest.

4.11.1 calculus of matrices

A more apt title would be ”calculus of matrix-valued functions of a real variable”.

Definition 4.11.1.

A matrix-valued function of a real variable is a function from I C R to R™*". Suppose
A: T CR — R™ " issuch that A;; : I C R — R is differentiable for each 7, j then we define

% = 1%

which can also be denoted (A');; = Aj;. We likewise define [ Adt = [[ Aj;dt] for A with

integrable components. Definite integrals and higher derivatives are also defined component-

wise.

2t 3t?
4¢3 5t
definition above. calculate; to differentiate a matrix we differentiate each component one at a time:

v [ ] - [2 )

Example 4.11.2. Suppose A(t) = [ I'll calculate a few items just to illustrate the

o |2 6t
Alt) = [ 12¢% 20753]

Integrate by integrating each component:

2 3 2 tQ‘Q 753|2
. t“+c1 t°+co . 0 0 . 4 8
/A(t)dt_[t‘l—i-c;; t5+04] /OA(t)dt_ A2 a2 _[16 32]
s 2

Proposition 4.11.3.

Suppose A, B are matrix-valued functions of a real variable, f is a function of a real variable,
c is a constant, and C' is a constant matrix then

(1.)
(2.)

(AB)' = A'B + AB' (product rule for matrices)
(
(3.) (CAY =CA
(
(
(

AC) = A'C

(4.) (fA) =f A+ fA
(5.) (cA) =cA
(6.)

where each of the functions is evaluated at the same time ¢ and I assume that the functions
and matrices are differentiable at that value of ¢t and of course the matrices A, B, C are such
that the multiplications are well-defined.

A+B)Y =A+ DB
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Proof: Suppose A(t) € R™*™ and B(t) € R"*P consider,

(AB)/ij di((AB)zj) defn. derivative of matrix
=43, AiByj) defn. of matrix multiplication
= Zk i (Aszkj) linearity of derivative
=D [CZ‘”“ By + A, dgth]B | ordinary product rules
= Zk ddt““ Bk] + 35 Air—g%  algebra

= (A'B)ij + (AB');; defn. of matrix multiplication
= (A'B + AB');; defn. matrix addition

as 1, j were arbitrary in the calculation above. The proof of (2.) and (3.) follow

this proves (1.)
1.) since C constant means C’ = 0. Proof of (4.) is similar to (1.):

quickly from (

(fA),; = L((fA)) defn. derivative of matrix
%( fAij) defn. of scalar multiplication

— % Aij + fd:;‘;j ordinary product rule
— (%A + f%)ij defn. matrix addition
— (% A+ f %)ij defn. scalar multiplication.

The proof of (5.) follows from taking f(¢) = ¢ which has f’ = 0. I leave the proof of (6.) as an
exercise for the reader. [J.

To summarize: the calculus of matrices is the same as the calculus of functions with the small
qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix mul-
tiplication is the main distinguishing feature.

Since we’re discussing this type of differentiation perhaps it would be worthwhile for me to insert
a comment about complex functions here. Differentiation of functions from R to C is defined by
splitting a given function into its real and imaginary parts then we just differentiate with respect
to the real variable one component at a time. For example:

d 2t

.o . d t
dt(e cos(t) +ie* sin(t)) = — (e* cos(t)) +z—(e2 sin(t))

dt i
(2th cos(t) — e sin(t)) + (2 sin(t) + e* cos(t))

242 + i) (cos(t) + isin(t)) = (2 4 i)eFL,
where I have made use of the identity'?| e*T%¥ = (cos(y) +isin(y)). We just saw that d AL\

which seems obvious enough until you appreciate that we just proved it for A = 2 4+ z We make
use of this calculation in the next section in the case we have complex e-values.

4.11.2 the normal form and theory for systems

A system of ODEs in normal form is a finite collection of first order ODEs which share dependent
variables and a single independent variable.

1. (TLZl)%:AHw-f—f

Mor definition, depending on how you choose to set-up the complex exponential, I take this as the definition in
calculus II
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2. (n=2) % = Apx + Ay + f1 and % = Aoz + Agy + fo we can express this in matrix
normal form as follows, use x = 1 and y = 2,

-l an][n]-[R]

dr Ao Az || T2 f2

This is nicely abbreviated by writing dZ/dt = AZ + fwhere Z = (x1,x9) and f: (f1, f2)
whereas the 2 x 2 matrix A is called the coefficient matrix of ths system.

3. (n = 3) The matrix normal form is simply

d
ﬁ A A Az ) bil
TE = | A A A 2 |+ | fe
s As1 Azy Ass 3 f3

Expanded into scalar normal form we have dzl = A1z + Apxo + A1z + f1
and %2 = Ay 21 + Agoxo + Aosws + fo and H2 = Agyzy + Asows + Aszzs + f3.

Generally an n-th order system of ODEs in normal form on an interval I C R can be written as
d”"' Zj 1 Aijzj + fi for coefficient functions A;; : I C R — R and forcing functions f; : I C
R — R. You might consider the problem of solving a system of k-first order differential equations
in n-dependent variables where n # k, however, we do not discuss such over or underdetermined
problems in these notes. That said, the concept of a system of differential equations in normal form
is perhaps more general than you expect. Let me illustrate this by example. I’ll start with a single
second order ODE:

Example 4.11.4. Consider ay” + by +cy = f. We define x1 =y and o = 3y'. Observe that

1 1
i=w2 & wy=y'=——(f by —cy) = ~(f —bra —cm)

IR EAAI A

] is called the companion matrix of the second order ODE ay” +

Thus,

The matriz [
by' +ey=f.

The example above nicely generalizes to the general n-th order linear ODE.

0 1
—c/a —b/a

Example 4.11.5. Consider aoy™ + a1y™ + - 4+ ap_19/ + any = f. Introduce variables to
reduce the order:

=Y, €T = y/7 xr3 = y//v s Tp = y(n_l)

From which is is clear that 'y = xy and xy = x3 continuing up to !, | = x, and ), = y™. Hence,

r a1 _ On-1
Qo Qo

T xg——m—l—f

Once again the matriz below is called the companion matrix of the given n-th order ODE.

[ :C/1 i i 0 1 0o --- 0 07 [ 1 ] [0 ]
b 0 0 1 .- 0 0 9 0
: _ . ) ) : ) ) 4o

x4 0 0 0 0 1 Tp_1 0

B B R i el B B B




168 CHAPTER 4. JORDAN FORM
The problem of many higher order ODEs is likewise confronted by introducing variables to reduce
the order.

Example 4.11.6. Consider y" + 32’ = sin(t) and 2" + 6y’ — x = e'. We begin with a system of
two second order differential equations. Introduce new variables:

/ /
L =x, T2=Y, X3=T, T4=1Y

It follows that =% = 2" and x)y = y" whereas x| = x3 and xt, = x4. We convert the given differential
equations to first order ODEs:

o+ 3z3 =sin(t) & b+ 614 — 21 = €

Let us collect these results as a matrix problem:

z, 00 1 0][m 0

x 00 0 1 T9 0
= +

xh 10 0 6 T3 et

x) 00 -3 0 Ty sin(t)

Generally speaking the order of the normal form corresponding to a system of higher order ODE
will simply be the sum of the orders of the systems (assuming the given system has no reundancies;
for example 2”4+ 4" = x and 2" — 2 = —y” are redundant). I will not prove the following assertion,
however, it should be fairly clear why it is true given the examples thus far discussed:

Proposition 4.11.7. linear systems have a normal form.

A given systems of linear ODEs may be converted to an equivalent system of first order
ODEs in normal form.

For this reason the first order problem will occupy the majority of our time. That said, the method
of the next section is applicable to any order.

Since normal forms are essentially general it is worthwhile to state the theory which will guide our
work. I do not offer all the proof here, but you can find proof in many texts. For example, in Nagel
Saff and Snider these theorems are given in §9.4 and are proved in Chapter 13.

Definition 4.11.8. linear independence of vector-valued functions

Suppose v : I € R — R" is a function for j = 1,2,...,k then we say that {U7,¥a,..., Uy} is

linearly independent on [ iff Z§:1 c;U;(t) =0 for all t € I implies ¢; =0 for j =1,2,... k.

We can use the determinant to test LI of a set of n-vectors which are all n-dimensional vectors. It
is true that {¥,0a,...,0,} is LI on I iff det[v/ (¢)|Ua2(t)|- - |Un(t)] # O for all ¢ € I.

Definition 4.11.9. wronskian for vector-valued functions of a real variable.

Suppose ¥; : I € R — R" is differentiable for j = 1,2,...,n. The Wronskian is defined
by W(ﬁ],ﬁg, 5000008 t) = det[ﬁ} |172| ... |17n] for each t € I.

Theorems for wronskians of solutions sets mirror those already discussed for the n-th order problem.
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Definition 4.11.10. solution and homogeneous solutions of dZ/dt = AZ + f

Let A : I — R™™ and f: I — R™ be continuous. A solution of dv/dt = AV + f on
I C R is a vector-valued function Z : I — R”™ such that dZ/dt = AZ+ f for allt € I. A
homogeneous solution on I C R is a solution of dv//dt = Av.

In the example below we see three LI homogeneous solutions and a single particular solution.

Example 4.11.11. Suppose ' = x — 1, y =2y — 2 and 2’ = 3z — 3. In matriz normal form we
face:

x’ 100 x -1
y |=10 2 0 y |+ —2
2! 0 0 3 z -3
It is easy to show by separately solving the the DEqns that © = cre' 41, y = coe®*+2 and z = c3e3+3.

In vector notation the solution is

cret +1 et 0 0 1
Ft)=| ¥ +2 | =c1 | 0 |ca| €® |e3| O |+ 2
c3e +3 0 0 e3t 3

I invite the reader to show that S = {T1, %2, T3} is LI on R where T1(t) = (et,0,0), Fo(t) = (0, €%, 0)
and 3(t) = (0,0, e3"). On the other hand, T, = (1,2, 3) is a particular solution to the given problem.
In truth, any choice of ¢y, co, c3 with at least one nonzero constant will produce a homogeneous
solution. To obtain the solutions I pointed out in the example you can choose ¢c; = 1,co = 0,c3 =0
to obtain Z1(t) = (€!,0,0) or ¢; = 0,co = 1,c3 = 0 to obtain Za(t) = (0,€%,0) or ¢; = 0,¢c0 =
0,c3 = 1 to obtain Z3(¢) = (0,0, 3).

Definition 4.11.12. fundamental solution set of a linear system dZ/dt = AZ + f

Let A: 1 — R™™ and f: I — R™ be continuous. A fundmental solution set on I C R
is a set of n-homogeneous solutions of d/dt = AT+ f for which {Z1, T, ..., Zn} is a LI set
on I. A solution matrix on I C R is a matrix X is a matrix for which each column is
a homogeneous solution on /. A fundamental matrix on I C R is an invertible solution
matrix.

Example 4.11.13. Continue Examplel|j.11.11. Note that S = {¥1, %2, ¥3} is a fundamental solu-
tion set. The fundamental solution matriz is found by concatenating Iy, Ts and Ts:

et 0 0
X = [fl‘fﬂfg] = 0 €2t 0
0 0 e
Observe det(X) = ete?te3! = 5 £ 0 on R hence X is invertible on R.
0 0 —4
Example 4.11.14. Let A=| 2 4 2 define the system of DEqns ‘é—f = AZ. I claim that the
2 0 6
0 —e*t —2¢2t
matriz X (t) = | e 0 e2t is a solution matriz. Calculate,
0 €4t 62t
00 —4 0 —ett —2¢% 0 —dett —4e?
AX =12 4 2 et 0 e | =1 4t 0 2e2t
2 0 6 0 ettt e 0 dett  2e%



170 CHAPTER 4. JORDAN FORM

0 —dett —4e?

On the other hand, differentiation yields X' = | 4e* 0 2¢?t |, Therefore X' = AX.
0 4ett 2e2t

Notice that if we express X in terms of its columns X = [T1|T2|T3] then it follows that X' =

[fll|f2/‘f3 /] and AX = A[fl‘lefg] = [AfllAfg‘Afg] hence

T =A% & T = ATy & T3 = AT

We find that #1(t) = (0,e*,0), Zo(t) = (—e*,0,e*) and T5(t) = (—2e?, €2, ) form a fundamen-
tal solution set for the given system of DEqns.

Theorem 4.11.15. Let A: I — R™™"™ and f: I — R™ be continuous.

(1.) there exists a fundamental solution set {71, Za,..., &y} on I

(2.) if t, € I and %, is a given initial condition vector then there exists a unique solution
Z on I such that Z(t,) = 7,

(3.) the general solution has the form ¥ = 7}, + &), where ), is a particular solution
and T is the homogeneous solution is formed by a real linear combination of the
fundamental solution set (Z, = c1Z1 + c1&1 + -+ - + ¢ @n)

The term general solution is intended to indicate that the formula given includes all possible solu-
tions to the problem. Part (2.) of the theorem indicates that there must be some 1-1 correspondance
between a given initial condition and the choice of the constants c¢1, ¢, . . ., ¢, with respect to a given
fundamental solution set. Observe that if we define ¢ = [c1, ca, . . ., ¢,]T and the fundamental matrix
X = [#1|Z2] - - - |¥,] we can express the homogeneous solution via a matrix-vector product:

Tp = XC=c1@1 + a1+ + ey = Z(t) = X (t)C+ Zp(t)

Further suppose that we wish to set Z(t,) = Z,. We need to solve for ¢
To = X(to)C+ Tp(ts) = X(to)C= T — Zp(ts)
Since X ~!(t,) exists we can multiply by the inverse on the right and find
&= X7 (to) [Fo — Tp(to)]

Next, place the result above back in the general solution to derive

We can further simplify this general formula in the constant coefficient case, or in the study of
variation of parameters for systems. Note that in the homogeneous case this gives us a clean
formula to calculate the constants to fit initial data:

Z(t) = X)X t,) T (homogeneous case)
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Example 4.11.16. We found ©' = —y and y' = = had solutions x(t) = ¢y cos(t) + casin(t) and

. _ _ | cos(t) sin(t) _
y(t) = cysin(t) —ca cos(t). It follows that X (t) = [ sin(t) —cos(t) | Calculate that det(X) = —1
cos(t)  sin(t)
sin(t) — cos(t)
then the solution is given by

H1) = X(OX-1(t.)5 = [ cos(t)  sin(t) } [cos(to) sin(t,) } {a }

sin(t) — cos(t) sin(t,) — cos(to) b

to see that X 1(t) = [ ] Suppose we want the solution through (a,b) at time t,

This concludes our brief tour of the theory for systems of ODEs. Clearly we have two main goals
past this point (1.) find the fundamental solution set (2.) find the particular solution.

4.11.3 solutions by eigenvector

We narrow our focus at this point: our goal is to find nontrivia]lg solutions to the homogeneous
constant coefficient problem ‘fl—f = A¥ where A € R ™*". A reasonable ansatz for this problem is

that the solution should have the form # = e*ii for some constant scalar A\ and some constant
vector 4. If such solutions exist then what conditions must we place on A and 4?7 To begin clearly
i # 0 since we are seeking nontrivial solutions. Differentiate,

d At = At = At~
—e™u| = |e™|u = Ne™U
Hence % = AZ implies \eMil = AeMi. However, eM # 0 hence we find M = Aw. We can write

the vector A as a matrix product with identity matrix I; A = A\[4. Therefore, we find

(A= AD)i=0]

to be a necessary condition for the solution. Note that the system of linear equations defined by
(A — M@ =0 is consistent since 0 is a solution. It follows that for @ # 0 to be a solution we must
have that the matrix (A — AI) is singular. It follows that we find

|det(A—AT) =0]

a necessary condition for our solution. Moreover, for a given matrix A this is nothing more than an
n-th order polynomial in A hence there are at most n-distinct solutions for A. The equation det(A —
AI) = 0 is called the characteristic equation of A and the solutions are called eigenvalues. The
nontrivial vector 4 such that (A — AI)d = 0 is called the eigenvector with eigenvalue . We
often abbreviate these by referring to ”e-vectors” or ”e-values”. Many interesting theorems are
known for eigenvectors, see a linear algebra text or my linear notes for elaboration on this point.

Definition 4.11.17. eigenvalues and eigenvectors

Suppose A is an n x n matrix then we say A € C which is a solution of det(A—AI) = 0 is an
eigenvalue of A. Given such an eigenvalue A a nonzero vector « such that (A — A)d =0
is called an eigenvector with eigenvalue .

15nontrivial simply means the solution is not identically zero. The zero solution does exist, but it is not the solution

we are looking for...
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Example 4.11.18. Problem: find the fundamental solutions of the system x' = —4x —y and
/
y =5z + 2y

Solution: we seek to solve Z—f = AZ where A = [ _54 _21 ] . Consider the characteristic equation:
—4-X -1
det(A—)\I)—det[ 5 2_)\]
=(—4-N)(2-XN)+5
=M +2\-3
=A+3)(A=1)
=0
We find A1 = 1 and Ay = —3. Next calculate the e-vectors for each e-value. We seek U = [u, U]T

such that (A — I)i; = 0 thus solve:

-5 -1 U 0 . U
[5 1}{0}—[0} :>5uv—0:>v—5u,u750:>u1—[_5u}

Naturally we can write @y = u[l, —5]7 and for convenience we set u = 1 and find @1 = [1,—5]7 which

gives us the fundamental solution |Z1(t) = e'[1,—5]T |. Continu to the next e-value Ay = —3 we
seek iy = [u,v]T such that (A + 31)iiz = 0.

(2212 ]=]0] = cwmvmo = vmwaro = me[ )]

Naturally we can write iy = u[l,—1]7 and for convenience we set u = 1 and find iy = [1,—1]T

which gives us the fundamental solution | Zy(t) = e 3![1,—1]T |. The fundmental solution set is given

by {¥1, T2} and the domains of these solution clearly extend to all of R.

We can assemble the general solution as a linear combination of the fundamental solutions Z(t) =
1% + coZo. In particular this yields

1 _ 1 crel + coe™3t
- o — - t 3t _ 1 2
Z(t) = 171 + coly = cre [ 5 ] + coe [ _1 ] = [ Bejel — e
Thus the system 2/ = —4z — y and 3y = 5z + 2y has scalar solutions z(t)cie! + coe™! and
y(t) = —5cret — coe 3t Finally, a fundamental matrix for this problem is given by
¢ -3t
= = € €
x-S .

%the upcoming u,v are not the same as those I just worked out, I call these letters disposable variables because
I like to reuse them in several ways in a particular example where we repeat the e-vector calculation over several
e-values.
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Example 4.11.19. Problem: find the fundamental solutions of the system ¥’ = —3x andy’ = —3y

-3 0

0 -3 ] . Consider the characteristic equation:

Solution: we seek to solve ‘fl—f = AZ where A = [

- -3-A 0 _ 9
det(A—)\I)—det{ 0 _3_/\}—()\4-3) =0
We find Ay = —3 and A2 = —3. Finding the eigenvectors here offers an unusual algebra problem; to
find @ with e-value A = —3 we should find nontrivial solutions of (A + 3I)u = [ 8 8 } { Z } = 0.

We find no condition on u. It follows that any nonzero vector is an eigenvector of A. Indeed, note
that A = =3I and A@ = —314 hence (A+3I)i = 0. Convenient choices for @ are [1,0]T and [0,1]T
hence we find fundamental solutions:

fl(t):eSt[é]:[eo?)t} & fg(t):e3t[(1)]:[693t].

We can assemble the general solution as a linear combination of the fundamental solutions
—3t

0
z(t) = cie™3 and y(t) = coe™3'. Finally, a fundamental matrix for this problem is given by

e 3t 0
0 €—3t :| .

Z(t) =1 + ¢ [ 693t ] Thus the system 2’ = —3z and 3’ = —3y has scalar solutions

X = 7|7 = [

Example 4.11.20. Problem: find the fundamental solutions of the system ' = 3x + vy and

/ J—

y =—4dr—y

Solution: we seek to solve fl—f = AZ where A = [ _34 _11 ] . Consider the characteristic equation:
— 1
det(A — \I) = det [ 3_4)\ 1o ]
=A=3)(A+1)+14
=X -2\ +1
=(A-1)7
=0

We find \y =1 and Ay = 1. Let us find the e-vector iy = [u,v]? such that (A — I)i; =0

2 1 U 0 S u
[_4 —2][1}]_[0] = 2u+v=0 = v=—-"2u u#0 = ul_[—Qu]

1
We choose u = 1 for convenience and thus find the fundamental solution T1(t) = € [ 9 ]
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Remark 4.11.21.

In the previous example the algebraic multiplicity of the e-value A = 1 was 2. However,
we found only one LI e-vector. This means the geometric multiplicity for A = 1 is only
1. This means we are missing a vector and hence a fundamental solution. Where is 7
which is LI from the & we just found? This question is ultimately answered via the matrix
exponential.

Example 4.11.22. Problem: find the fundamental solutions of the system ' = —y and vy’ = 4x

0 -1 . . .
pr } . Consider the characteristic equation:

Solution: we seek to solve %€ = AZ where A = [ 40

-2 -1

det(A — \I) :det[ PR

} =X 4+4=0 = \=+2.

This e-value is a pure imaginary number which is a special type of complex number where
there is no real part. Careful review of the arguments that framed the e-vector solution reveal that
the same calculations apply when either A or @ are complex. With this in mind we seek the e-vector
for X = 2i: let us find the e-vector iy = [u,v]! such that (A — 2il)ii; =0

-2 -1 U 0 . . S U
{ 4 —22’}[0]_[0} = 2iu—v=0 = v=2u, u#0 = ul—[ziu}

Let u = 1 for convenience and find i, = [1,2i]7. We find the fundamental complex solution

i 7=l [ 212 ] = (cos(2t) + isin(2t)) [ 212 ] - [ 25 Siifé)tff;ﬁf{%) }

Note: if T = Re(Z)+iIm(Z) then it follows that the real and imaginary parts of the complex solution

are themselves real solutions. Why? Because differentiation with respect to t is defined such that:

di  dRe(%) +idlm(:v)

dt — dt dt
and AT = A[Re(¥) + iIm(Z)] = A Re(Z) + iAIm(¥). However, we know d¥/dt = AZ hence we
find, equating real parts and imaginary parts separately that:
dRe(Z) dIm(Z)
dt dt

Hence @1 = Re(%) and @2 = Im(Z) give a solution set for the given system. In particular we find
the fundamental solution set

= AIm(%)

= ARe(z) &

fult) = [ —(;Ossif(tQ)t) } £ Bl = [ 2222?2) } '

We can assemble the general solution as a linear combination of the fundamental solutions

Y cos(2t) sin(2t) ;L ;L

Z(t) = [ _2sin(21) ] + ¢ [ 2c0s(2t) | Thus the system 2’ = —y and ¥y’ = 4x has scalar
solutions

x(t) = ¢1 cos(2t) + cosin(2t) and y(t) = —2¢ sin(2t) + 2c¢9 cos(2t). Finally, a fundamental matrix
for this problem is given by

cos(2t) sin(2t)
—2sin(2t) 2cos(2t)

X = [71)o] = {
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Example 4.11.23. Problem: find the fundamental solutions of the system x' = 2x —y and
/
y = 9x 4+ 2y

2

-1
9 9 } . Consider the characteristic equation:

Solution: we seek to solve % = AZ where A = [

2—-A -1

det(A—)\[):det[ 9 92_1\

} =(A—2)*+9=0.
Thus A = 2+ 3i. Consider A = 2+ 3i, we seek the e-vector subject to (A — (24 3i)I)d = 0. Solve:

-3 -1 U 0 . . L U
{ 9 —Si}{v]_{O} = Biu—v=0 = v=-3iu, u#0 = UI_|:—3iu:|

We choose u =1 for convenience and thus find the fundamental complex solution

8

=0 [ ] = eostan wisintan | | e[ gl

Therefore, using the discussion of the last example, we find fundamental real solutions of the system
by selecting real and imaginary parts of the complex solution above:

2t cos(3t) ]

nilt) = [ 32 sin(3t) b ») = [ ) ] '

—3e% cos(3t)

We can assemble the general solution as a linear combination of the fundamental solutions
) = o [ e?t cos(3t) ] . [ e? sin(3t)

3e? sin(3t) 2| —3e2 cos(3t)
has scalar solutions z(t) = c1e? cos(3t) + c2e?!sin(3t) and y(t) = 3c1e?! sin(3t) — 3cge?t cos(3t).
Finally, a fundamental matrix for this problem is given by

} Thus the system 2’ = 2z — y and v/ = 9z + 2y

e? cos(3t) e sin(3t)

X = [#]2s) = [ 3e?tsin(3t) —3e* cos(3t) |

2 0 0
Example 4.11.24. Problem: we seek to solve ‘fl—f = AZ where A= | -1 —4 -1
0 5 2

Solution: Begin by solving the characteristic equation:

2—A 0 0
O=det(A—X)=det| -1 —-4-Xx -1
0 5 2—A
=(2-N)[A=2)(A+4)+5]
(2—=XN\=1)(X\+3).

Thus A1 = 1, A2 = 2 and A3 = —3. We seek i1 = [u,v,w]” such that (A — I)id; = 0:

1 0 0 U 0 w=0 u— )

-1 -5 -1 v | =10] = a = B = ur=v| 1
0 5 1 w 0 ovw+w=20 w = —Hv 5
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Choose v = 1 for convenience and find iy = [0,1,—5]". Neat, seek iy = [u,v,w]’ such that
(A - 2[)@2 =0:
0 0 0 i 0 1
1 6 -1||v]|=|0| = "7 SU__O“’ =0 4 w“___()u = dy=u| 0
0 ) 0 w 0 - - -1
Choose u = 1 for convenience and find iz = [1,0,—1]T. Last, seek i3 = [u,v,w]? such that
(A+3@)us = 0:
5 0 0 U 0 5w — 0 w=0 ) 0
-1 -1 -1 v |=10 = 504+ 5w = 0 = w— —v = uz=v| 1
0 5) 5 w 0 - o -1

Choose v = 1 for convenience and find iz = [0,1,—1]T. The general solution follows:

0 1 0
Zt)=ciet | 1 | +ce®| 0 | +eze@| 1
-5 -1 -1

The fundamental solutions and the fundamental matrix for the system above are given as follows:

0 et 0 0 et 0
(1) = et , To(t) = 0 , T3(t) = e 3t , X(t) = et 0 e3¢
_5et 2t _e3t _Ret 2t _ 3t

200
Example 4.11.25. we seek to solve % = A7 where A= 0 2 0
1 0 3

Solution: Begin by solving the characteristic equation:

2—A 0 0
det(A—M)=det| 0 2-X 0 | =(2-XN2-N)B-)\)=0.
1 0 3—A

Thus A\; = 2, A2 = 2 and \3 = 3. We seek i1 = [u,v,w]” such that (A — 2I)i; = 0:

00 0 u 0 u
00 0 v =10 “+}”_0 = ”_fr_ee = @=| v
1 0 1 w 0 v ree w = u _u

There are two free variables in the solution above and it follows we find two e-vectors. A convenient
choice isu =1 andv =0 oru =0 and v = 1; i = [1,0,-1]7 and w3 = [0,1,0]". Next, seek
i3 = [u,v,w]’ such that (A — 31)iz =0

-1 0 O U 0 u=20 0
0 -1 0 v =10 = v=20 = dg=w]| 0
1 0 0 w 0 w free 1

Choose w = 1 for convenience to find iz = [0,0,1]7. The general solution follows:

1 0 0
Z(t) = ce?t |0 +ee? | 1 | +e3e 3| 0
—1 0 1
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The fundamental solutions and the fundamental matrix for the system above are given as follows:

et 0 0 et 0 0
(t) = 0 |, @)= |, HBH)=| 0 |, X(t) = 0 e 0
_€2t 0 6_3t —€2t 0 6_3t

2 1 0
Example 4.11.26. we seek to solve Z—’f = AZ where A= 0 2 0
1 3

Solution: Begin by solving the characteristic equation:

2-) 1 0
det| 0 2—-X 0 =(2-N*(B-)) =0.
1 -1 3-2)

Thus A\1 = 2, Ao = 2 and \3 = 3. We seek i1 = [u,v,w]? such that (A — 2I)i; = 0:

0O 1 0 U 0 v =0 v =0 U
0 0 0 v |=10 = +_—0 = = = 0
1 -1 1 w 0 = = —u

Choose u = 1 to select iy = [1,0,—1]T. Next find iy such that (A —3I)iy =0

-1 1 0 U 0 —u+v=0 u=20 0
0O -1 0 v | =10 = —v =0 = v=20 = U= 0
1 -1 0 w 0 w free w free w

Choose w =1 to find iy = [0,0,1]T. We find two fundamental solutions from the e-vector method:

1 0
51 (t) = €2t 0 & fl (t) = eSt 0
-1 1

We cannot solve the system at this juncture since we are missing the third fundamental solution ¥s.
In the next section we will find the missing solution via the generalized e-vector/ matrix exponential
method.

700
Example 4.11.27. we seek to solve % = AZ where A= | 0 7 0
00 7
Solution: Begin by solving the characteristic equation:
T—A 0 0
det| 0 7-X 0 =(7-)N?=0.
0 0 7T—A
Thus \1 = 7, Aa = 7 and A3 = 7. The e-vector equation in this case is easy to solve; since
A—T71 =71 — 71 = 0 it follows that (A — 7I)i = 0 for all @ € R3. Therefore, any nontrivial
vector is an eigenvector with e-value 7. A natural choice is @y = [1,0,0]7, @y = [0,1,0] and
i3 = [0,0,1]7. Thus,
1 0 0 C1
:E(t) =cie | 0 | 4™ | 1 | +e3e™| 0| =€ | e
0 0 1 c3
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-2 0 0
Example 4.11.28. we seek to solve % = AZ where A = 4 -2 0
1 0 -2
Solution: Begin by solving the characteristic equation:
—2-=A 0 0
det(A — XI) = det 4 —2—-Xx 0 =-(A+2)P3=0.
1 0 —2—=A

Thus A\; = —2, Ay = =2 and \3 = —2. We seek i1 = [u,v,w]? such that (A + 2I)i; = 0:

0 00 u 0 u=20 0
4 0 0 v | =10 = v free = U=| v
1 00 w 0 w free w

Choose v = 1,w = 0 to select iy = [0,1,0]7 and v =0,w = 1 to select iy = [0,0,1]T. Thus we find
fundamental solutions:

0 0
fl(t) == 6_% 1 & fg(t) == 6_2t 0
0 1

We cannot solve the system at this juncture since we are missing the third fundamental solution Zs.
In the next section we will find the missing solution via the generalized e-vector/ matrixz exponential
method.

2 1 -1
Example 4.11.29. we seek to solve % = AZ where A= -3 -1 1
9 3 -4
Solution: Begin by solving the characteristic equation:
2—A 1 -1
det(A—X)=det| -3 —1-—2\ 1
9 3 —4— A

=2-NA+1)A+4) =3 —[3(A+4) -9 — [-9+9(\+1)]
= (2NN +51+1 -31—-3-9)\

=N BN X +2X 24100 4+2—-121—3

=N -3\2-3x-1

=—-(A+1)°

Thus A1 = —1, \g = —1 and \3 = —1. We seek ity = [u,v,w]’ such that (A+ I)i; = 0:

3 1 -1 v 0 3ut+v—w=20 w = 3u . v
-3 0 1 v =10 = Sutw=0 = o= w— 3 =0 = U = 0
9 3 -3 w 0 o o o 3u

Choose u = 1 to select @y = [1,0,3]T. We find just one fundamental solution: | & = e [1,0,3]7 |
We cannot solve the problem in it’s entirety with our current methods. In the section that follows
we find the missing pair of solutions.
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0 1 0
Example 4.11.30. we seek to solve = AZ¥ where A= 0 0 1
1 -1 1

Solution: Begin by solving the characteristic equation:

-2 1 0
det(A—X)=det| 0 —-X 1
1 -1 1=X
= ANA-1) +1]+1
=M+ A2-A+1

=-NA-1)—-(A-1)
=(1-N\+1)

Thus A\1 = 1, Ao = i and \3 = —i. We seek ity = [u,v,w]’ such that (A — I)ii; = 0:

-1 1 0 U 0 U
—u+v=0 v=1u .

0o -1 1 v | =10 = vt w=0 = w— = U=\ u

1 =10 w 0 o o U

Choose u = 1 thus select iy = [1,1,1]7. Now seek iy such that (A — il )iy = 0

-t 1 0 U 0 v =1u U
0 —i 1 v |=10 = w=w=i(iu)=—u = U= | iu
1 -1 1—4 w 0 (t—Nw=u—v —u

Set uw =1 to select the following complex solution:

‘ 1 e’f cos(t) + isin(t) cos(t) sin(t)
Ft)y=¢€e| i | = ie' | = | dcos(t)—sin(t) | =| —sin(t) | +i| cos(t)
-1 —ett — cos(t) — isin(t) — cos(t) —sin(t)

We select the second and third solutions by taking the real and imaginary parts of the above complex
solution; To(t) = Re(Z(t)) and Z3(t) = Im(Z(t)). The general solution follows:

1 cos(t) sin(¢
Ft)=cre' | 1 | +ca| —sin(t) | +c3| cos(t)
1 — cos(t) — sin(t)

The fundamental solution set and fundamental matrix of the example above are simply:

el cos(t) sin(t) el cos(t)  sin(t)
Fr=| e |, To=| —sin() |, T3=| cos(t) & X=|¢é —sin(t) cos(t)
el — cos(t) —sin(t) el —cos(t) —sin(t)
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4.11.4 solutions by matrix exponential

Recall the Maclaurin series for the exponential is given by:

o
t 1, 1
t 2 3
= —:1 t —t —t ...
e Zﬂ gt ot

This provided the inspiration for the definition given below]

Definition 4.11.31. maltriz exponential

Suppose A is an n X n matrix then we define the matrix exponential of A by:

=AY 1 1 .
A _ _ A2 43
e —jgo i —I+A+2A +6A +

Suppose A = 0 is the zero matrix. Note that
0 L o

Furthermore, as (—A)7 = (—1)7AJ it follows that e=4 =T — A+ 1A% — 143+ ... Hence,

1 1 1 1
efe ™ = <I+A+2A2+6A3+.--><I—A+2A2—6A3+...>

:IA+1A21A3+-~+A(IA+1A2+--~>+1A2<IA+~-->+1A3I+---
2 6 2 2 6
1 1

_ _ }2_212_7373_1313
=T A= At DA = A% SAT = AT D AT DA S AT

=1

I have only shown the result up to the third-order in A, but you can verify higher orders if you
wish. We find an interesting result:

(eMHt=eA4 = det(e?) # 0 = columns of A are LI.

Noncommutativity of matrix multiplication spoils the usual law of exponents. Let’s examine how
this happens. Suppose A, B are square matrices. Calculate e*5 to second order in A, B:

1 1
eAth :I+(A+B)+§(A+B)2+-~ =I+A+B+§(A2+AB+BA+B2) 4o
On the other hand, calculate the product e?e? to second order in A, B,

1 1 1
eAeB:(I+A+§A2+-~-)(I+B—I—§B2+---):I+A+B+§(A2+2AB+B2)+---

7the concept of an exponential actually extends in much more generality than this, we could derive this from more
basic and general principles, but that has little to do with this course so we behave. In addition, the reason the series
of matrices below converges is not immediately obvious, see my linear notes for a sketch of the analysis needed here
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We find that, to second order, ee® — e*B = 1(AB — BA). Define the commutator [4, B] =
AB — BA and note (after a short calculation)

1
cAeB — JATB+3[ABl+--

When A, B are commuting matrices the commutator [A, B] = AB — BA= AB — AB = 0 hence
the usual algebra ete? = eAtB applies. It turns out that the higher-order terms in the boxed
formula above can be written as nested-commutators of A and B. This formula is known as the
Baker-Campbell-Hausdorff, it is the essential calculation in the theory of matrix Lie groups (which
is the math used to formulate important symmetry aspects of modern physics).

Let me pauseﬁ to give a better proof that AB = BA implies ede® = e4*B. The heart of the

argument follows from the fact the binomial theorem holds for (A 4+ B)* in this context. I seek to
prove by mathematical induction on k that (A + B)¥ = S°F (Z)Ak_”B”. Note k = 1 is clearly

n=0

true as ((1)) = (}) =1and (A + B)! = A+ B. Assume inductively the binomial theorem holds for

k and seek to prove k + 1 true:
(A+B)*! = (A+ B)*(A+ B)

k
k
= ( < >Ak”B"> (A+ B) : by induction hypothesis

0
k "k
=) ( )Ak‘"AB” +> < >Ak‘”B”+1 : AB = BA implies B"A = AB"
n
Ak-‘rl—an + Z k Ak—an+1

n

Continuing,

n

Mk
:Ak+1
>
Ny k
— Ak+1 k+1-n pn k+1
= A +;[<n>+(n_1>]f1 B"+ B

k
k+1
= AR 4 Z < + >A’C+1_"B” + Bk+1 : by Pascal’s Triangle

k k—1
(A+ B)k-i-l _ Ak—H + Z (k) Ak+l—an + Z (:) Ak—an-i-l + Bk:-i—l
n=1 n=0
> n—1

k
Ak+1_an+Z( k )Ak+1—an+Bk+1
n=1

n
n=1

k+1
n

n=0

18you may skip ahead if you are not interested in how to make arguments precise, in fact, even this argument has
gaps, but I include it to give the reader some idea about what is missing when we resort to + - - - -style induction



182 CHAPTER 4. JORDAN FORM

Which completes the induction step and we find by mathematical induction the binomial theorem

for commuting matrices holds for all £ € N . Consider the matrix expontial formula in light of the

binomial theorem, also recall (kzl) = n!(kkin)!,

[e.e]

1
eAtB = kz k|(A+B)
0

_szml k—n) Ak i

k=0 n=0

_Zzn' _n Ak npn

k=0 n=0
B S
n! (k—n)
k=0n=0

On the other hand, if we compute the product of e with e® we find:

ee” = —A/ ZZE?AJ

il
j:OJ' =" j=0n=0

It followﬂ that ede? = eATB. We use this result implicitly in much of what follows in this section.

Suppose A is a constant n x n matrix. Calculatd®)]

[o.¢]
% [ea:p(tA)} = % [ kl!tkAk} defn. of matrix exponential
k=0
o0
= Z % [%tkAk} since matrix exp. uniformly conv.
k=0
o0
= Z %tkilAk A* constant and (tk) = kb1
k=0
o
— AZ (k_ll)!tk—lAk—l since k! = k(k — 1)l and AF = 4451,
k=1
= Aexp(tA) defn. of matrix exponential.

I suspect the following argument is easier to follow:

Llexp(tA)) = (I +tA+ L1247 + L3A% + )
= 5+ FtA) + 5 G2 A%) + %%(ts/ﬁ}
=A+ tA2 + 1t2A% 4+
=A(I +tA+ 32A% +--)
= Aexp(tA). O

9after some analytical arguments beyond this course; what is missing is an explicit examination of the infinite
limits at play here, the doubly infinite limits seem to reach the same terms but the structure of the sums differs

20the term-by-term differentiation theorem for power series extends to a matrix power series, the proof of this
involves real analysis
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Whichever notation you prefer, the calculation above completes the proof of the following central
theorem for this section:

Theorem 4.11.32.

Suppose A € R™*". The matrix exponential e!4 gives a fundamental matrix for % = AZ.

Proof: we have already shown that (1.) e’ is a solution matrix (£[e'1] = Ae') and (2.)
(et~ = 7t thus the columns of e*4 are LI. O
It follows that the general solution of ‘Zl—f = A7 is simply #(t) = *4¢ where & = [c1,ca,...,cn]T

determines the initial conditions of the solution. In theory this is a great formula, we’'ve solved
most of the problems we set-out to solve. However, more careful examination reveals this result is
much like the result from calculus; any continuous function is integrable. Ok, so f continuous on an
interval I implies F' exists on I and I/ = f, but... how do you actually calculate the antiderivative
F? It’s possible in principle, but in practice the computation may fall outside the computation
scope of the techniques covered in calculuﬂ

Example 4.11.33. Suppose 2’ = z,vy' = 2y, 2’ = 3z then in matriz form we have:

/

T 1 00 T
y | =10 20 Y
z 0 0 3 z

The coefficient matriz is diagonal which makes the k-th power particularly easy to calculate,

k

100 1 0 0
AF=1020] =0 2 0
00 3 0 0 3"
o0 10 0 o1k 0 0
. .
= exp(tA) = Z 1o 28 0| = 0 Ay %2’“ 0
— k o k
k=0 0 0 3 0 0 o 13"
e 0 0
= exp(tA)=| 0 €* 0
0 0 e*
Thus we find three solutions to ¥’ = Ax,
el 0 0
zi(t)=1 0 zo(t) = | € z3(t)=1| 0
0 0 e3t

t

In turn these vector solutions amount to the solutions x = ety =0,2 =0 orz =0,y = e*,2 =0

orxz=0,y=0,z=e3. Itis easy to check these solutions.

Of course the example above is very special. In order to unravel the mystery of just how to calculate
the matrix exponential for less trivial matrices we return to the construction of the previous section.

2Hor example, S % or [ e~*"dz are known to by incalculable in terms of elementary functions
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Let’s see what happens when we calculate et for @ and e-vector with e-value \.

tAZ _ JMA=NHA)

e : added zero anticipating use of (A — A\I)u =0,

— et)J-i—t(A—)\])ﬁ

= M tA-A) g : noted that ¢t\I commutes with ¢(A — \I),
= M etA-A g . a short exercise shows M = eI

2
= e”<I+t(A—)\I) + A - /\I)2+~->U

2
= A1+ (A = D)+ (A = ADPi )

e : as it was given (A — AI)@ = 0 hence all but the first term vanishes.

The fact that this is a a solution of ' = AZ was already known to us, however, it is nice to see it
arise from the matrix exponential. Moreover the calculation above reveals the central formula that
guides the technique of this section. The magic formula. For any square matrix and possibly
constant \ we find:

2 Lk
e = M T+ HA- M)+ S (A-AD? 4o ) =S La— Ak,
2 2

When we choose A\ as an e-value and multiply this formula by the corresponding e-vector then
this infinite series truncates nicely to reveal e*i. It follows that we should define vectors which
truncate the series at higher order, this is the natural next step:

Definition 4.11.34. generalized eigenvectors and chains of generalized e-vectors

Given an eigenvalue A a nonzero vector @ such that (A — AI)P@% = 0 and (A — AX)P~1d # 0
is called an generalized eigenvector of order p with eigenvalue \. If uy,s,. .., 4, are
nonzero vectors such that (A — X\ )u; = u;—q for j = 2,3,...,p and 4 is an e-vector with
e-value A then we say {1, s, ...,u,} forms a chain of generalized e-vectors of length p.

In the notation of the definition above, it is true that uy is a generalized e-vector of order k with
e-value \. Let’s examine k = 2,

(A—)\I)ﬂé:ﬁl = (A—/\I)ZﬁQZ(A—AI)ﬁlzo.
Then suppose inductively the claim is true for k which means (A — A )*i;, = 0, consider k + 1
(A = M)tk y1 = Uy, = (A= ADM gy = (A= A, = 0.

Hence, in terms of the notation in the definition above, we have shown by mathematical induction
that uy is a generalized e-vector of order k with e-value A.

I do not mean to claim this is true for all kK € N. In practice for an n X n matrix we cannot find
a chain longer than length n. However, up to that bound such chains are possible for an arbitrary
matrix.
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Example 4.11.35. The matrices below are in Jordan form which means the vectors e; =
[1,0,0,0,0] etc... e5 =1[0,0,0,0,1]7 are (generalized)-e-vectors:

21000 41000
02100 04000
A=[0 0 2 0 O & B=|005 00
00031 0006 0
0000 3 0 000G

You can easily calculate (A —2I)e; = 0, (A —2I)ex = ey, (A —2I)eg = ez or (A—3[)es = 0,
(A —2I)es = eq. On the other hand, (B —4I)e; = 0, (B —4[)ea = e; and (A —5I)es = 0 and
(A—6I)es =0, (A—6I)es = 0. The matriz B needs only one generalized e-vector whereas the
matriz A has 3 generalized e-vectors.

Let’s examine why chains are nice for the magic formula:
Example 4.11.36. Problem: Suppose A is a 3 x 3 matrix with a chain of generalized e-vector

i1, U, Us with respect to e-value A = 2. Solve ‘fl—f = AZ in view of these facts.

Solution: we are given (A —2I)u; = 0 and (A — 2)dy = 1y and (A — 21)us = U. It is easily
shown that (A — 2I)%iy = 0 and (A — 21)3i3 = 0. It is also possible to prove {iy, iz, 3} is a LI
set. Apply the magic formula with A = 2 to derive the following results:

1. 71(t) = iy = e?ily (we've already shown this in general earlier in this section)
2. To(t) = ity = e (Tidy + t(A — 2)iiy + 5 (A — 21)2ds + - -- ) = € (ily + til).

3. note that (A — 21)%i3 = (A — 2I)iiy = i1 hence:
- tA -~ 2 (7 Lt 2 2t/ - L
Z3(t) = ez =e (IU3+t(A—2I)U3+§(A—QI) u3+---):e (U3+tug+§'u1).

2
Therefore, | Z(t) = cre?li; + 626%(1—[2 +tuy) + 03e2t(173 + tily + 51_[1) is the general solution.

Perhaps it is interesting to calculate e!4[i;|i|i3] in view of the calculations in the example above.

Observe:
€tA[

e P
U + tuy U3+tu2+2u1}

ﬁ1’ﬁ2|ﬁ3] = [etAﬁl‘etAﬁﬂetAﬁg] = €2t |:?Z1

I suppose we could say more about this formula, but let’s get back on task: we seek to complete the
solution of the unsolved problems of the previous section. It is our hope that we can find generalized
e-vector solutions to complete the fundamental solution sets in Examples [4.11.20} 4.11.26}}4.11.28|

and L11.29
Example 4.11.37. Problem: (returning to Example |4.11.20) solve % = AZ where A =

A

1
Solution: we found A\ =1 and Ay = 1 and a single e-vector i1 = { 9 ] Now seek a generalized

e-vector iy = [u,v]T such that (A — I)ily = i1,

2 1 U 1 . U
[ }[v}_[—Q] = 2ut+v=1 = v=1-2u, u#0 = ul_[l—Qu}
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We choose u = 0 for convenience and thus find iia = [0,1]7 hence the fundamental solution

fg(t):etAf[Q:et([—l—t(A—I)_|-...)u—’2:et(ﬁ2+tu_i):et I: 1_t2t ]

1 It
Therefore, we find | Z(t) = cie [ o | e | o |}

Example 4.11.38. Problem: (returning to Example |[4.11.26)) solve ‘Cil—f = AZ where

2 1 0
A=10 2 0
1 -1 3

Solution: we found A\; = 2, Ay = 2 and A3 = 3 and we also found e-vector iy = [1,0,—1]T with
e-value 2 and e-vector iy = [0,0,1]T. Seek i3 such that (A — 2I)u3 = iy since we are missing a
solution paired with Ao = 2.

0 1 0 U 1 1 1 U

00 0f|v|=]0| = _ 1”+_w _ ., = w”___u = d= 1

1 -1 1 w —1 - - —u
Choose u = 0 to select iy = [0,1,0]7. It follows from the magic formula that Z3(t) = e*Ais =

et (i3 + ti). Hence, the general solution is

1 0 t
Zt)=c1e® | 0 | 4| 0 | +e3e® | 1
-1 1 —t

Once more we found a generalized e-vector of order two to complete the solution set and find #3
in the example above. You might notice that had we replaced the choice u = 0 in both of the
last examples with some nonzero uw then we would have added a copy of ¥; to the generalized
e-vector solution. This is permissable since the sum of solutions to the system #’ = AZ is once
more a solution. This freedom works hand-in-hand with the ambiguity of the generalized e-vector
problem.

Example 4.11.39. Problem: (returning to Example |4.11.28) we seek to solve ‘fl—f = A7

-2 0 0
where A = 4 -2 0
1 0o -2

Solution: We already found A\; = —2, Ay = —2 and A3 = —2 and a pair of e-vectors iy = [0,1,0]7
and v =0,w = 1 to select iy = [0,0,1]7. We face a dilemma, should we look for a chain that ends
with i, = [0,1,0]7 or is = [0,0,1]7 2 Generally it may not be possible to do either. Thus, we set
aside the chain condition and instead look for directly for solutions of (A + 2I)?i3 = 0.

00 0 000 000
(A+20)* =14 0 0 4 00|=|000
100 100 000
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Since we seek i3 which forms a LI set with iy, it is natural to choose iz = [1,0,0]”. Calculate,

.
[\

fg(t) = etAﬁg, = 6_2t(I7,_l:3 + t(A =+ 2[)7,_1:3 + E(A + 2[)21_[3 =+ - ) (4.3)
[ 1 0 00 1
=e 2| 0|+t 4 00 0
L O 1 00 0
[ 1
—e 2| 4
|t
Thus we find the general solution:
0 0 1
Et)=cre® | 1 | +ce | 0 | +c3e7 | 4t
0 1 t
Example 4.11.40. Problem: (returning to Example 4.11.29)) we seek to solve Cfi—f = A%
2 1 -1
where A= -3 —1 1
9 3 -4
Solution: we found A\; = —1, Ao = —1 and A3 = —1 and a single e-vector iy = [1,0,3]T. Seek s
such that (A + Ity = Uy,
31 -1 Y 1 u+v—w=1 w = 3u o 0
-3 0 1 v | =10 Cu4w=0 Cw—3u+1 Uy = | 1
9 3 3| |w 3 = rewee 0
where we set w =0 for convenience. Continuing, we seek i3 where (A + I)is = s,
31 -1 Y 0 Ju+tv—w=0 w=143u w=143u
-3 0 1 v | =11
—Jut+w=1 v=w— 3u v=1

Choose u = 0 to select i3 = [0,1,1]T. Given the algebra weve completed we know that
(A+ Dy = (A+ DT = (A+1D*T3 =0, (A+ D=1, (A+Diz=10, (A+I)0=1

These identities paired with the magic formula with A = —1 yield:

2
o & ety =e iyt td) & etAﬁ?,:e*t(angmﬁ;al)

Therefore, we find general solution:

1 t 0
Ft)=cre ' | 0 | +epe | 1 | deget | 1+t+ %
3 3t 142

The method we’ve illustrated extends naturally to the case of repeated complex e-values where
there are insufficient e-vectors to form the general solution.
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Example 4.11.41. Problem: Suppose A is a 6 x 6 matriz with a chain of generalized e-vector
i1, U, Uz with respect to e-value A = 2 +1i. Solve ‘fi—f = AZ in view of these facts.

Solution: we are given (A— (2+41i)1 )iy =0 and (A — (2+1d)I)iuy =ty and (A— (2+4))us = Us.
It is easily shown that (A — (2+ 1))ty = 0 and (A — (2 +i)I)3i3 = 0. It is also possible to prove
{1, U2, Us} is a LI set. Apply the magic formula with A\ = (2 4 @) to derive the following results:

1. #1(t) = ety = ety (weve already shown this in general earlier in this section)
2. Zy(t) = ity = T [y + (A~ 2+ D) Dida+ 5 (A= (240)])%da +- - - ) = e (i@ + 1),

3. note that (A — (2 +i)I)?%u3 = (A — (2 +i)])iiz = 6, hence:
, +2 . +2
T3(t) = et ity = ) (Iﬁg+t(A—(2+i)I)ﬁg+§(A—(2+i)I)2713+- ) = e(2+l)t(ﬁg+tﬁg+§ﬁl).

The solutions T1(t), Z2(t) and Z3(t) are complez-valued solutions. To find the real solutions we
select the real and imaginary parts to form the fundamental solution set

{Re(iﬁ), [m(.iﬁ), Re(fg), Im(i’é), Re(fg), Im(f;),)}

I leave the explicit formulas to the reader, it is very similar to the case we treated in the last section
for the complex e-vector problem.

Suppose A is idempotent or order k then A*~! % I and A* = I. In this case the matrix exponential
simplifies:

t2 tk_l tk tk+1
etA:I+tA+§A2+~--+ A’f—1+( ++--~>I

(k—1)! ko (k+1)!
However, tk—k, + % +o=et—1—t— % — = % hence we can calculate e*4 nicely in such a

case. On the other hand, if the matrix A is nilpotent of order k then A*~! £ 0 and A* = 0. Once
again, the matrix exponential simplifies:

k-1

t2 t

tA 2 k-1
=T1+4+tA+ A"+ + A

c 2 (k—1)!

Therefore, if A is nilpotent then we can calculate the matrix exponential directly without too much
trouble... of course this means we can solve T’ = A without use of the generalized e-vector method.

Example 4.11.42. Problem: solve the system given in Example [4.11.29)) by applying the

2 1 -1
Cayley Hamilton Theorem to A= | -3 -1 1
9 3 -4

Solution: we found p(A\) = —(\ —1)2 = 0 hence —(A — I)3 = 0. Consider the magic formula:

2 3 2
M= I A=)+ SA— I+ (A= 4 ) =T+ (A~ 1)+ (A~ 1)
Calculate,
1 1 -1 —11 -4 5
A-T=1| -3 -2 1 & (A-I?*=| 12 2 —4

9 3 =5 —45 —-12 19
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Therefore,
T4t—HE o2 —t 4 3
2
e =et | —3t4+6t2 1-2+t>  t— 27
o — 452 3612 15— 19

The general solution is given by Z(t) = ¢

Example 4.11.43. Consider for example, the system
o =x+y, Y =3v-y
We can write this as the matrix problem
1 [1 1 x
y ] 13 -1]ly
— N——— e
dz/dt A z

It is easily calculated that A has eigenvalue \y = —2 with e-vector iy = (—1,3) and Ao = 2 with
e-vectors iy = (1,1). The general solution of dZ¥/dt = AZ is thus

. _ -1 1 —cie 2t 4 cqe?t
7t) = ere™ [ 3 ] + e [ 1 ] N [ 3cie 2 + cpe?t

t

2t

and |y(t) = 3c1e 2 4 cqe

So, the scalar solutions are simply |z(t) = —cre™ 2 + cp€?

Thus far I have simply told you how to solve the system d¥/dt = AZ with e-vectors, it is interesting
to see what this means geometrically. For the sake of simplicity we’ll continue to think about the
preceding example. In it’s given form the DEqn is coupled which means the equations for the
derivatives of the dependent variables x,y cannot be solved one at a time. We have to solve both
at once. In the next example I solve the same problem we just solved but this time using a change
of variables approach.

Example 4.11.44. Suppose we change variables using the diagonalization idea: introduce new
variables T, 7 by P(z,y) = (x,y) where P = [ii1]ils). Note (z,y) = P~1(z,y). We can diagonalize
A by the similarity transformation by P; D = P~'AP where Diag(D) = (—2,2). Note that
A= PDP~! hence d¥/dt = AT = PDP~'Z. Multiply both sides by P~':

dz d(P~ %

1% _pipppiy o A9

dt dt
You might not recognize it but the equation above is decoupled. In particular, using the notation
(z,7) = P~Y(x,y) we read from the matriz equation above that

da dj _

= D(P'%).

at Tt At
Separation of variables and a little algebra yields that T(t) = cie™?' and §(t) = coe?’. Finally, to
find the solution back in the original coordinate system we multiply P~1% = (cre™2!, coe®!) by P to

isolate T,
#t) = -1 1 cre 2t . —cre7 2 4 cpe?t
o 31 coe®t | T | 3epe 2t 4 cpe?t
This is the same solution we found in the last example. Usually linear algebra texts present this

solution because it shows more interesting linear algebra, however, from a pragmatic viewpoint the
first method is clearly faster.

27.
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Finally, we can better appreciate the solutions we found if we plot the direction field (z',y’) =
(z+y, 3z —y) via the "pplane” tool in Matlab. T have clicked on the plot to show a few representative
trajectories (solutions):

X =X+y
i y =3y
!

!
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Chapter 5

Linear Algebra with (Geometry

Vectors intertwine,
inner products sing the truth—
Fourier unfolds. ExXTRANEOUS G, 2025

5.1 analytic geometry for vector spaces

The foundation of analytic geometry rests on the concepts of distance between points and angles
between rays. In this section we define an abstraction of the dot-product known as the inner product
and an abstraction of the geometric vector length known as the norm. Angle between vectors are
also defined since the Cauchy Schwarz inequality allows us to define angle algebraically even in
contexts where direct visualization is impossible. Perhaps a better way to understand what we are
doing in this chapter is this:

We are learning to see geometry through the lense of algebra.
Please note, we consider only vector spaces over R or C in this Chapter.

Definition 5.1.1. inner product

Let V be a vector space over F (either F = R or F = C) then an inner product on V over
F is a mapping (, ) : V x V — F such that

(1) {&+y,2) = (2,2) + (y,2)
(ii.) (ez,y) = c(z,y)
(iii.) (z,y) = (y,2)
(iv.) If 2 # 0 then (z,2) € (0,00)

Given the above structure, we say (V,(, )) forms an inner product space.

Here a + ib = a — ib denotes complex conjugatio In the case F = R axiom (iii.) simply reads
(x,y) = (y,x) which is known as symmetry. It would likely be wise to settle some complex
notation up front here since it will streamline what follows. My apologies for the break in flow
here.

'my apologies, it seems I have used (a +ib)* = a — ib in previous chapters. I am trying to follow Insel Spence and
Friedberg’s Chapter 6 for this current work, so I am going to try to mirror their notation here, the problem is we
soon introduce the adjoint which uses * in a related, but distinct, fashion

191
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Definition 5.1.2. Hermitian adjoint of matrix

Given A € C™*" we define A € C"™*" by (A);; = Aj; forall 1 <i <mand 1 <j <n.
Likewise, the Hermitian adjoint of A is denoted A* and is defined by A* = A", n other
words, A* is the conjugate transpose of A.

In the Physics literature it is common to see a dagger used to denote the Hermitian adjoint of a
matrix or operator; A* = AT, This is a nice option if confusion with * is a problem.

I’ll break from my usual format here since I think an ordered list is helpful here. T'll forego much
of the proof that these definitions support the axioms of an inner product. I encourage the reader
to verify axioms (i.), (ii.), (iii.) and (iv.) hold in each case.

(1.) Let 2,y € R™ then define (z,y) =xey=> 1 ziy; = 2T y.
(2.) Let 2,y € C" then define (z,y) =x+y=> 1 2% = 217.

(3.) Let A, B € R™*" then (A, B) = tr(ABT) defines the Frobenius inner product. Notice, this
formula is simply a slick way of writing out the sum A11B11 + A12B12+ - -+ + Amn Bmn. Let’s
see why:

(A,B) = tr(AB") = zn:(ABT)u' = Zn: zn: Ay (BT)ji = zn: Zn: AijBij

i=1 i=1 j=1 i=1 j=1

(4.) Let X,Y € C™" then (X,Y) = tr(X?T) = tr(XY™). There are other ways to write this
formula. Notice tr(M7T) = tr(M) hence

(X,Y) =tr(XY ")) = tr((Y )T XT) = tr(YXT).

If we write X = A + iB where A, B € R™*™ then note

(X,X) =Y XiXij= > (Ay+iBij)(Ay —iBy) = > (A5 +Bj) = > |X/?
ij—1 ij=1 ij=1 ij—1

where | X;;| = ,/A?j + ij is the usual notation for the length of a complex number. Notice
the calculation above also indicates that (X, X) = (A, A) + (B, B).

(5.) Consider C[0,1] the vector space of all continuous real-valued functions on [0,1]. A natural
inner product is given by the definite integral: if f, g € C[0, 1] then

1
(f,9) = /O F(t)g(t) dt.

I'll explain why axiom (iv.) holds. Notice, if f is continuous on [0, 1] and if there exists
p € [0,1] for which f(p) # 0 then there exists a neighborhood N containing p for which
f(z) # 0 for each z € N. Thus, f # 0 implies

1
(. f) = /0 £(t)%dt > 0

since f(t)? > 0 for each t € N and as f(¢)? > 0 we find the integral cannot be non-positive.
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Consider H = {f : [0,27] — C | f continuous}.

1 2

Here, to be clear, the calculus of functions from R with values in C is simply done component-
wise: if f = fi +ifa and g = g1 + iga where f1, f2,91,92 € C[0,27] = {h : [0,27] —
R | h continuous} then

dfl df2 21 21

2w
G =@ e @i = [ awdei [ R
0 0 0

Notice fi +ifs = fi —ife and thus ff = (f1 +if2)(f1 —if2) = f{ + f3 = |f1 +if2|*. Hence,

27
)= 5= [ roka

Once more, if f(t) # 0 for some tg € [0,27] then |f(t)]> > 0 for all ¢ close to ¢y and as
|£(t)|? > 0 we find axiom (iv.) holds. Observe that

27 27 27
/O (RO +ifat)at = [ e+ [
27 27

= H@)dt—i | fa(t)dt

0 0

27
- /0 (1(t) — i fa(t))dt

27r

Thus f t)dt = [*™ f(t)dt. Consequently, we find axiom (iii.) holds:
1 27 _ 1 2m 1 2 _
(f,9) = f(t)g(t) dt F(g(®)dt = o ; g()f(t) dt = (g, f)-

21 Jo

Let V be a real vector space with basis 5 = {v1,...,v,}. Let z,y € V then define
(z,y) = [z]z+[yls

In other words, if z = z1v1 + - - z,v, and y = y1v1 + - - - + Ynv, then

(T, y) =z101 + - -+ + TpYn.

This construction shows that every finite dimensional vector space may be assigned the struc-
ture of an inner product space. However, there is no reason the geometry implicit within this
construction has much to do with any intuitive geometric structure in V. In any event, this
is an important example as it means we can use geometric techniques even rather abstract
contexts.

Let V' be a complex vector space with basis 5 = {v1,...,v,}. If z,w € V then define
(z,w0) = [2§ [wp.

Once more, this contruction is general. It shows there are many ways to construct an inner
product on a complex vector space.
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It should be fairly evident from the previous pair of examples that the choice of inner product
on a vector space is far from unique. This example further illustrates such freedom. Given an
inner product space (V,(, )) and any positive constant r we define

<x>y>7" = T2<$,y>.

It is easy to verify this is an inner product for V. We will explain the reason for using r? a
little later in this section.

Given a complex inner product space (V,(, )) we may regard V as a real vector space. In
fact, (xz,y)r = Re({x,y)) defines a real inner product on V' as a real vector space. Since for
all z,w € C and ¢ € R, Re(z + w) = Re(z) + Re(w) and Re(cw) = cRe(w) we can calculate

(z+y,2)r = Re({z +y,2)) = Re((z,2)) + Re((y, 2)) = (x, 2)r + (y, 2)r-

and

(cz,y)r = Re({cr, y)) = Re(c(x,y)) = cRe((z,y)) = c{z, y)r.

I leave proof of axioms (iii.) and (iv.) to the reader. They’re simple exercisesﬂ

Proposition 5.1.3.

Let (V,(, )) be an inner product space then

(1.) < chi, y> = Zci@i, y) for all ¢; € F and v;,y € V.
i=1

(2.) (z,cy) =¢(x,y) for all c € F and z,y € V.

(3.) (x,y+2) = (r,y) + (x,2) forall z,y,z € V.
(4.) <x, Z civi> = Z@(x,vi) for all ¢; € F and z,v; € V.

(5.) (x,0) =(0,z) =0 for any z € V.
(6.) Forany z € V, (z,z) =0 iff z = 0.

(7.) If (x,y) = (x, 2) for all z € V then y = z.

n

=1

i=1 i=1

Proof: the proof of (1.) is by induction. Observe (civ1,y) = ci{v1,y) by axiom (ii.). Thus (1.)

Zhere I assume you understand complex numbers and the algebra needed to analyze the real part of a complex
number
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holds for n = 1. Suppose (1.) holds for n and consider
n+1

n
< Z Civ;, y> = <cn+1vn+1 + chi, y> :definition of Z
i=1 i=1
n

= Cpt1(Un+1, Y ch“ y> :by axioms (i.) and (ii.)
n
= cpt1{Unt1,y) + Z ci{v;, Y :induction hypothesis
=1
n+1

- Z Ci<Uia y> :definition of Z
i=1

Therefore, (1.) holds by proof by mathematical induction. To prove (2.) with F = C simply recall
Z = z and use axiom (iii.) in what follows:

(2, cy) = (z,cy) = (ey, x) = c{y,z) = (y,z) =<(z,y)
since Zw = Zw is a property of complex conjugation. In the case F = R we have (z,y) = (y,x) and
hence (2.) simplifies to (z,cy) = (cy,x) = c(y,z) = ¢(x,y). Next, we prove (3.), using axiom (i.)
in the third equality, in the case F = C,

(T, y+2) =(z,y+2) = (y+2z2) =(y,2) +(2,2) = (y,7) + (2,2) = (z,9) + (7, 2).

since z + w = Z 4+ w is a property of complex conjugation. A similar, but easier proof can be given
for (3.) in the case F = R. I leave the proof of (4.) to the reader. The key to the proof of (5.) is
0=0+0. Let x € V and consider, using the additivity proved in (3.)

(x,0) = (x,040) = (x,0) + (x,0) = (z,0)=0.
We conclude the proof of (5.) by nearly the same argument using axiom (i.)

(0,z) =(0+0,z) = (0,z) + (0,z) = (0,z) =0.
To prove (6.) begin by noting = = 0 implies (0,0) = 0 by (5.). Conversely, suppose = € V and
(x,z) = 0. If  # 0 then by axiom (iv.) we have (z,z) € (0,00). Thus x = 0 as 0 ¢ (0,00). This
proves (6.). Suppose (x,y) = (z, z) for all z € V. Consider,

0= <‘T7y> - <LL’, Z) = <.'B,y> + <JZ‘, _Z> = <‘T7y+ (—Z)> = <.73,y - Z>

If y — z # 0 then we find a contradiction since x = y — z would yield (z,z) = (z,y — z) # 0 yet

0 = (x,y — z) by the calculation above. Therefore, y — z = 0 which is to say y = z and we have
shown (7.) is true. O

Definition 5.1.4. norm

Let V' be a vector space over F (either F = R or F = C) then an norm on V over F is a
mapping || , || : V — [0, 00) such that

(i.) |lex| = |e|||z|| for all ¢ € F and xz € V,
(i) llz -+l < o + Iyl for all 2,y € V.,

(iii.) ||z|| = 0 if and only if x = 0.

Given the above structure, we say (V|| , ||) forms a normed linear space.
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The term norm could be replaced with length. The value of ||z is the length of z. We can also
define distance in a normed linear space.

Definition 5.1.5. distance

Let (V,|| ||) be a normed linear space then the distance from x € V to y € V is denoted
d(z,y) and is defined by d(z,y) = ||y — ||

Abstractly, a distance function can be defined on spaces with less structure than a vector space. If
Sisaset and d: S xS — [0,00) has d(z,y) = d(y,x) for all x,y € S and d(z,y) = 0 iff x = y and
d(z,z) < d(z,y) + d(y,z) for all z,y,z € S then (S5,d) is a metric space. A circle in S centered
at p with radius R is the collection of all 2 € S for which d(x,p) = R. For example, in R? we can
define dy(x,y) = ¢/(y1 — 1) + (y2 — 22)P and if p # 2 then the unit-circle is probably not what
you expect:

p = max-norm circle

y
/ \ p=1 taxicab circle
=, p=2 euclidean circle

Analyzing metric spaces and their structure is a typical topic in an introductory analysis class. Let
us return to Linear Algebra once more.

Definition 5.1.6. induced norm

Let (V,(, )) be an inner product space then ||z| = y/(x,z) defines the induced norm.

Thankfully the induced norm is in fact a norm.

Proposition 5.1.7.

Let (V,(, )) be an inner product space and define ||x|| = \/(x, z) for each z € V.
(1.) || - || defines a norm on V'

(2.) Cauchy Schwarz inequality: |(x,y)| < ||z ||y|| for all z,y € V.

Proof: suppose ¢ € F and z € V then

leall = /{ew, ex) = v/ela, 2) = /[P, 2) = /[Py (. 2) = [el ]

Likewise if z = 0 then (x,z) = (0,0) = 0 hence ||z|| = v/0 = 0. Conversely, suppose |z| =
V{x,xz) = 0 then (z,z) = 0 hence x = 0 by (6.) of Proposition To prove the Cauchy Schwarz
inequality we take a somewhat indirect approach. Let z,y € V. If (z,y) = 0 then [(z,y)| =0 <
||z||||ly|| hence the Cauchy Schwarz inequality holds. Hence assume (x,y) # 0 in what follows. Note
there exists A with |[A| = 1 such that A(z,y) € R. Construct a function ) : R — R defined by
Q(t) = ||tAx + y||? for all t € R. Notice Q(t) > 0 since |[tAx + y||*> = (t\z + y,tAz + y) € [0,00) by
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axiom (iv.) of the inner product. Moreover,

Q(t) = (thx, tAz) + (tAz,y) + (y,tAz) + (y,y)
= 22Nz, z) + tA (@, ) + Ay, ) + (y, 1)
= t2w+t( Ma,y) + My, z) ) +H\y,\|_2,‘

A B =

We should verify Q(t) has real coefficients. Identify A = ||z||> and C = ||y||* are clearly real.
To simplify B it is helpful to write (z,y) = re' for some r,0 € R. Hence A\ = e~ notice that
Mz, y) = e ?rei? = r € R with |\ = |e7%| = \/cos2(—0) +sin?(f) = 1 as claimed. Likewise,
calculate (y,z) = (z,y) = re?? = re=® These details will allow us to further simplify B,

B =Xz, y) + My, z) = e el 4 e = 21 = 2|(x,9)|.

Since the quadratic function Q(t) = At?> + Bt + C in t has non-negative values the discriminant
—4AC < 0. Thus,

Az, y))* = 4llzPlyl* <0 = [z, )l < lzlly]-

Finally, we work towards proving Axiom (ii.), the triangle inequality. Suppose z,y € V and observe

lz +yl* = (z +y, 2 +y
= (z,x) + (2, y) + (y,2) + (v, 9)
< [lz[* + Kz, 9)| + [{y.«)| + ly|*  (triangle inequality for C)
< [llf* + 2|z, )| + [yl
< lzll® + 2l ]l + vl (Cauchy Schwarz inequality)

= (Il + llyl)?

~ ~—

thus ||z 4+ y|[ < [lz] + [ly[|. O

Once we have established the Cauchy Schwarz inequality we are free to define the angle between
nonzero vectors. There are a two cases to consider:

e If F = R then the real inner product space V has |(z,y)| < ||z|||ly||. Thus, for z,y # 0 we
find ‘||<g|”|’|?|’>|‘| < 1 and hence — H< il >” < 1. It is a fact of trigonometry that there exists a

(z,y)

unique 6 € [0, 7] for which cosf = EIFE

e If F = C then the complex inner product space V has |(z,y)| < ||z||||y|| where |(z,y)| denotes

the length of the complex number (x,y). Once more, if z,y # 0 we deduce that |||i””;||| <

1. However, we cannot meaningfully write an inequality involving (z,y) alone since it is a
complex quantity in this context. In this case, we have to content ourselves with the fact that

there is a unique e [0, 7/2] for which cosf = |I<;|c| ﬁ@h
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Definition 5.1.8. angle in inner product space

Let (V,(, )) be an inner product space over F with nonzero vectors x,y then we define for

(i.) F =R the Z(z,y) = 6 to be the unique 0 € [0, 7] for which cosf = %

(ii.) F = C the Z(z,y) = 0 to be the unique € [0, 7/2] for which cosf = Hmf@h

I usually refer to 8 as the real angle and 0 as the complex angle. However, please note, these are
both real numbers in the context in which they are defined. In the case of a complex inner product
space we have opportunity to contrast the meaning of real and complex angle in an overlapping
context.

Let V' be a complex inner product space with inner product ( , ). If x,y € V are nonzero then
there are at least two competing ideas to describe the angle between these vectors:

(1.) the complex angle defined by cosf = \Riﬁlﬁlgl‘l where 6 € [0,7/2).

(2.) or, viewing V as a real vector space with inner product given by (z,y)r = Re(z,y), the real
angle between =,y is given by cosf = —~ZWE_ where x|l = /(x,z)r and 0 € [0, 7].

[z llzllylz

I'll illustrate with an explicit example.
Example 5.1.9. Consider v = (1,1 +14) and y = (1 —i,2) in C2. Calculate,
(,y) = (L, 1+d)e(144,2)=1+i+(1+4)(2)=3+3i = (z,9)r=3
(g,2) =(1,14+4)« (1,1 -9)=14+(14+i)(1-49)=3 = (r,x)p=3

y) =(1—14,2)e(144,2) =1 —i)(1+i)+4=6 = (yy)r=0
Hence ||z|lp = ||z]| = V3 and ||yllr = |lyll = V6. Thus

~ 1343 V919 ~

osf = = =1 = 0=0.
V3V6 V18
whereas .
cosf = 3 = 0:7T

V3V6 V2 4

Notice the angle between vectors (1,0,1,1) and (1,—1,2,0) is also w/4. There is an isomorphism
U : C%2 - R* at work here; U(a+ ib,c+id) = (a,b,c,d). In fact, it is more than an isomorphism,
it also preserves the angle between vectors and vector length. We call such a map an isometry.
Perhaps this comment helps make sense of the real angle measured in C2, it is just a complex
notation for R* with the usual Euclidean inner product. The complex angle has its own role as well.
Observe:

I-de=>0-)L1+i)=0—-4,(1-D1+i))=1—i2)=y

thus {x,y) is linearly dependent in C? as a complex vector space. In contrast, there does not exist
a real constant ¢ for which cx =y hence {x,y} is linearly independent in C? as a real vector space.



5.1. ANALYTIC GEOMETRY FOR VECTOR SPACES 199

Consider z, —x € V where z # 0 in a complex inner product space. Observe ||z| = || — z| and
(2, —2)| = | = (z,2)] = [(z,2)] = ]| thus both 2 and {5 both reduce to 1 and hence

L(x,x) =0=L(z,—x).
In contrast, for a real inner product space we can work out that for z # 0,
Llx,x) =0 & L(z,—x)=m.

Obviously the concept of complex angle is not as intuitive as the real angle. You will not find the
complex angle discussed nearly as much as the real angle. In any event, I suppose I ought to define
linear isometry for reference since I just used it in passing in the example above.

Definition 5.1.10. linear isometry

Let (V,(, )v) and (W, (,)w) be an inner product spaces of the same dimension over F then
VU :V — W is a linear isometry if ¥ is an isomorphism for which

for all x,y € V.

In invite the reader to verify that a linear isometry preserves the angle between vectors and the
length of each vector under its action; Ly (z,y) = Zw (¥ (z), ¥(y)) and ||z||v = ||¥(z)||w. It turns
out, if we study all maps which preserve distance between arbitrary pairs of points in R™ then after
some work we can show such a map is a bijection which is formed by the composition of a linear
Fuclidean isometry and a translation. Such maps are called rigid motion&ﬂ

Definition 5.1.11. orthogonal and orthonormal

Let (V,(, )) be an inner product space over F then we say z,y € V are orthogonal if
(x,y) = 0. In this case we write z L y. If S C V and if z,y € S with  # y implies
(x,y) = 0 then we say S is an orthogonal subset of V. If S C V is orthogonal and if each
x € S has ||z|| = 1 then S is an orthonormal subset of V. An orthonormal basis of V'
is a basis of V which is orthonormal. Likewise, an orthogonal basis of V' is a basis of V'
which is orthogonal.

Orthogonality does depend on the choice of base field when there is a choice to be made. Notice
(x,y) = a+ib = 0 only if both a = 0 and b = 0. However, (x,y)r = Re(a + ib) = a only needs
a = 0 to obtain the orthogonal condition (z,y)r = 0. We see orthogonality in the complex sense
implies orthogonality in the real sense. However, orthogonality in the real sense need not imply
orthogonality in the complex sense. For instance, 1 and i are orthogonal in C with respect to the
real Euclidean geometry of C = R2. However, 1 and i are not orthogonal in the complex sense as

(1,3) = 1(—i) = —i # 0.
Proposition 5.1.12.

Suppose z = x +y where x L y then ||z? = ||=||* + |ly||*.

Proof: Suppose z = x + y where (x,y) = 0. Note (y,z) = (z,y) = 0 hence (y,z) = 0. Consider,

21 = (2,2) = (z +y,2 +y) = (@, 2) + {z,9) + (y,2) + (y,9) = l|lz]* + y*. O

31 usually prove this in our Abstract Algebra course, the proof is not entirely obvious, ask if interested




200 CHAPTER 5. LINEAR ALGEBRA WITH GEOMETRY

5.2 orthogonality

In this section we study the properties and creation of orthogonal and orthonormal sets. Many of
the standard bases are orthonormal.

Lo
T T
0 i#j

means dot-product of distinct standard basis vectors is zero and ||e;|| = \/e;o€; = /1 = 1. Thus the
standard basis of R™ is an orthonormal basis.

Example 5.2.1. For R" the standard basis e1, ..., e, has (e;,€j) = e;ee; = 0;; = {

Example 5.2.2. For C" the standard basis e1,...,e, has (e;,e;) = eZTe*j = 0;; and it follows
{e;}_, is an orthonormal basis for the complex vector space C".

Example 5.2.3. For R™*" the standard basis of matriz units E;; defined by (Ejij)i = 005 can
be constructed by products of f; € F™*! and e; € R™! via E;j = fie]T then

(Eij) = i fie] er = 0ridjo
where I have used that f,?fZ = fro fi = Oi and €]T€l =ejee; = 6j. Then calculate,
EyEf = fie] (frel )" = fie] elfi = 6;F

where we introduce Fy, € R™*™ as the m x m matriz unit with 1 in the (i, k)-th component and
zeros elsewhere. Consider then,

m

(Eij, Ey) = tr(EyEYy) = tr(5;Fy) = Z 0i1(Fik)aa = Z5jl5m5ka = 0ikdj1.

a=1 a=1

RmXTL

Thus {Ei; | 1 < i < m,1 < j < n} serves as an orthonormal basis for with the usual

Frobenius inner product. Note, very similar arguments prove {E;; | 1 <i <m,1 < j < n} serves
as an orthonormal basis for C™*™ with the inner product (A, B) = tr(AB*).

Not every natural basis is orthonormal.

Example 5.2.4. Consider P»(R) with basis 3 = {1,x,2%}. Use inner product (f, g) = f_ll f(x)g(x)dx.

1 1 1
<1,1>:/ dr =2, & <x,a:):/ ridr = 2/3, & <x2,x2>:/ atdr = 2/5.

-1 -1 -1

thus ||1]| = V2 and ||z|| = \/2/3 and ||z2| = \/2/5 hence 3 is not normalized. Notice,

1 1
<m,1):/ xdxr =0 & <m,x2):/ 3dr =0

-1 -1

thus x L 1 and x L 2?. However,

(1,2%) = /1 2ide =2/3#0

hence B is not orthogonal.
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Example 5.2.5. Consider H = {f :]0,2x] — C | f continuous}.

1 2w 7
(f,9) == [f(t)g(t)dt.

- 2 0
Let S = {e™ | n € N}. Notice Le™ = ine™ hence [ et dt = Le™ +c. Thus, for m,n € N with

m#n,

2 2
<6imt, eint> _ 1/ g oMt gint gy — 1 / 4 elm=—n)t 1 ';(627r(m7n)i —1)=0.
0 0 27i(

2 o m—n)

Likewise,

2 2
<€int,eint> _ 1/ ﬂemtﬁdt _ i ﬂdt _ 21 .
2m Jo 2 Jo 2T

Thus S is an orthonormal subset of H.

Proposition 5.2.6.

Let (V,(, )) be an inner product space and suppose S = {v1,...,v;} is a set of nonzero
orthogonal vectors.

(1.) S is linearly independent,

k
<5U,7}Z'>
2.) If x € span(S) then z = ;.
( ) p ( ) ; <Ui>vi> ?
k
(3.) If S is orthonormal and z € span(S) then z = Z(w, U5V
i=1
k
Proof: S orthogonal means (v, v;) = 0;;(v;, v;). Suppose z = chvj then
j=1
k k k
<J},’UZ'> = < ZCJ"U]',UZ'> = <$,Ui> = ch<'Ujan> = ch(sij<viavi> = cz-(vi,vz-).
j=1 j=1 j=1

Notice (v;,v;) = ||vi]|*> # 0 as v; # 0 for each i. Therefore, ¢; = &ﬂ;’;_)) and (2.) and (3.) follow.

c;v; then ¢; = i) — 0 thus S is LI hence (1.) is true. O

{vi,01)

Notice, if we suppose z =0 = Z?Zl
The Gram Schmidt Algorithm allows us to replace a linearly independent subset of an inner product
space with an orthogonal set which spans the same subspace as the given set. In other words, this
algorithm means we are free to create an orthonormal basis in the context of an inner product space.
Moreover, since we showed any finite dimensional vector space can be given an inner product this
means are free to create an orthonormal basis in any finite dimensional context. However, it may
or may not be possible to maintain other structures jointly with the desired orthonormality.
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Theorem 5.2.7. Gram Schmidt Algorithm

Let (V,(, )) be an inner product space and suppose S = {v1,...,v,} is a set of linearly
independent vectors. The Gram Schmidt Algorithm is as follows:

e Let v =v;

(v2,01) 1

o Let v, = vy — v
Z g (v],01) 1
po_ o {wswy) g (usvh)
o Let vy =v3 = GEohv1 — Gpahy 2
k—1
/ <Uk7 ;>
e In summary, v, = v, — Z v; for k=1,.
— (v}, ;)
=1 (A 1

Then S" = {v{,..., v} has span(S) = span(S’) and S’ is orthogonal. Let v} ”Ul,”vl for

i=1,...,nand 8" = {v{,...,v} then S” is orthonormal with span(S) = span(S”).

Proof: let S, = {vi,...,v;} define S} = {v},..., v} where v] are defined as described above.
Notice S7 = {v1} thus S] is an orthogonal set of nonzero vectorsﬁ with span(S]) = span(Sy).
Inductively suppose S, is an orthogonal set of nonzero vectors with span(S},) = span(Sy). Consider

wi1 = Sp U{vy,} and suppose towards a contradiction that vy, = 0. Then, by definition of

/
Vkt1>
- (VK vj) u (vk, V)
U1 = Vk+1 — Z 2 vi=0 = Vg1 = Z : ’ vZ € span(S)
i=1 <Uz’vz> i=1 z’ z
thus Sky1 is linearly dependent, but we assumed from the outset that {vi,...,vg11} = Sky1 1S

linearly independent. Thus v, # 0 and we find S}, is a set of nonzero vectors. It remains to
show S}, 41 1s orthogonal. By induction hypothesis we know S;. is orthogonal hence any pair of
vectors taken from S C S, is orthogonal. Consider for 1 < i < k, using the formula for v,
once more,

k Uk+1, j> /
<vk+17 1> <vk+17 z 27/<Ujvvz>

le <U]7UJ>
k
(Vk41,v
Uk:-i—la Z ’/J <,U':’U;>
7j=1 .7’ ]

<Uk+17 z> <Uk+17 z>

R
hypothesis. Hence Sj ., is an orthogonal set of nonzero vectors. Therefore, by proof my mathe-

matical induction we find S}, is a nonzero orthogonal set provided S,, is LI. Moreover, we proved a
nonzero orthogonal set of n-vectors is LI hence S), is LI and as S,, and S], are both LI sets where
S!, C span(Sy) by construction it follows that span(S,) = span(S},). The remaining claims about
S/’ we leave to the reader. [J

where the simplification (v}, v{) = 6;;(vj,v;) is the orthogonality of S; given by the induction

4orthogonality is automatic for a set with one vector
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Remark 5.2.8.

It is also possible to normalize as you go with the Gram Schmidt Algorithm. In particular,
with S = {v1,...,v,} linearly independent subset of (V,(, )) we set v] = Mm. Then
vy = vy — (v2,v])v} and v = mvé Next, v§ = vs — (v3, v} )v] — (v3, v )vY and v§ = m
Etc. In practice, I make more errors with this method, so I've made a habit of separating

the normalization and the orthogonalization in this course.

.

Example 5.2.9. Consider R* with the inner product given by the dot-product. Suppose vi =
(1,0,1,0), vo = (1,1,1,1) and v3 = (0,1,2,1). Then

2
vy =(1,1,1,1) - 5(1507 1,0) = (0,1,0,1).

and

/

V3 e V] V3 eVy 2 2
— =(0,1,2,1) — =(1,0,1,0) — =(0,1,0,1) = (—1,0,1,0).
L Ry pew . ( ) =5l ) =5l ) =( )

Thus S" = {(1,0,1,0),(0,1,0,1),(—=1,0,1,0)} and normalization yields
1 1 1
S ={— —(0,1,0,1), —=(—1,0,1,0)}.
{\/5 ﬁ( ) \/i( )}
Next we return to Example to find an orthonormal basis for P>(R).

(17 07 17 0)7

Example 5.2.10. Consider P»(R) = span(B) where 3 = {1,z,2%}. We use the inner product
(f,9) = f_11 f(x)g(x)dx. Apply the Gram Schmidt algorthism to . We set vi = 1 and note
(1,2) =0 thus v = x — (1,2)1 = x. Consider,

21 2 2/3
v§=x2—<x’> —<x’$>x:x2—ilzx—f.
(1,1) (x, ) 2 3

Normalization requires some calculation,

1 1 2 1 2 1 2 4 2 18 — 10 8
ro 2 4 2
= —< | dx = ——z+ - |dr=-—=-+-= = —
(v3,v5) /1 (:C ) T /1 (a: x ) T

Thus,

Hence, S" = {%, \/gx, \/g (322 — 1)} is an orthonormal basis for Po(R). These are examples of

Legendre polynomials.

Legendre polynomials are a particular instance of a set of orthogonal polynomials. There is
a vast literature of how orthogonal polynomials provide solutions to famous problems of math-
ematical physics. For instance, the Legendre polynomials appear in the multi-pole expansion of
electricity and magnetism. Hermite polynomials appear in the solution of Schrodinger’s Equation
for the Hydrogen atom. There are lengthy texts focused on detailing the gory formulas for all such
problems. You can also find these formulas using modern CAS software.
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Proposition 5.2.11.

Let (V,(, )) be a finite dimensional inner product space. Then there exists an orthonormal
n

basis f = {wi,...,w,} and x = Z(x,wi>wi for any z € V.

i=1

Proof: choose a basis for V and apply the Gram Schmid algorithm to create an orthonormal basis
for V. Apply part (3.) of Proposition to complete the proof. [

There is also a nice formula for the matrix of a linear transformation given an orthonormal basis.

Proposition 5.2.12.

Let (V,(, )) be an inner product space with orthonormal basis f = {vi,...,v,} and
T:V — V is a linear transformation then if [T 3 = A then A;; = (T'(vj), v;).

Proof: if 8 = {v1,...,v,} is an orthonormal basis then (®g(z)); = (z,v;). If T': V. — V then
T)gp = [[T(v1)lg|---|[T(vn)]g) hence [T]g 3 = A implies A;; = ([T'(v})]p)i = (T'(vj),vs). O

Definition 5.2.13. orthogonal complement

Let (V,{, )) be an inner product space. If S C V and S # () then the orthogonal
complement of S is S* which is defined by S* = {z € V | (x,y) =0 for all y € S}.

Notice (0,%) = 0 for all y € V hence 0+ = V. Likewise, as (x,y) = 0 for all y € V implies 2 = 0
implies V- = {0}. Both of these simple claims hold for any inner product space V.

Example 5.2.14. Consider R with the dot-product,
{Bg}J' = spani{ey,es}, {eg}J‘ = span{ey,es}, {el}J‘ = span{ea,es}

and
{e1,e2}" = span{es}, {e1 ez}’ = span{es}, {e2,e3}t = spanf{e}

Example 5.2.15. Consider R2*? with the Frobenius inner product. Then
{Ev1, Ess, E1g + Exi} - = span(E1z — Eay).
Notice the proposition below holds for infinite dimensional V' and W.

Proposition 5.2.16. complement of subspace and complement of basis coincide

Let (V,(, )) be an inner product space. If W = span(f) then W+ = g+.

Proof: Let 2 € W+ then (z,y) = 0 for all y € W. Hence (z,v;) for each v; € 3 C W and
we find z € . Thus W+ C L. Next, suppose 2 € B+ then (z,v) = 0 for each v € 8. Let

k
w € W = span(f) then there exist ¢; € F and v; €  for which w = Z ¢;v;. Observe,
i=1
k
(o) = S e w0 = D E(0) =0
i=1 i=1

thus z € W+. Hence, 8+ C W+ and we conclude W+ = g+. O
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Proposition 5.2.17. subspace and its complement

Let (V,(, )) be a finite dimensional over F with subspace W then V =W @ W+,

Proof: let dim(W) = k and suppose Sy = {v1,...,vx} is an orthonormal basis for W. Extend
Bw to a basis for V' and orthonormalize that basis to create the orthonormal basis 8 = By U ' =
{v1,...,v,} for V. Notice Sy C B by the Gram Schmidt algorithm. Notice W+ can be shown to
be a subspace by the subspace test. Note, 0 € W since (0,w) = 0 for all w € W hence W+ # (.
Let 2,y € W+ and ¢ € F then (x,w) = 0 and (y,w) = 0 for all w € W by definition of W+~. Hence,

(cx +y,w) = c(z,w) + (y,w) = c¢(0) +0=10.

Therefore, cx +y € W+ and we conclude W+ < V. Suppose z € WNWL thenz € W and z € W+
hence (z,z) = 0 thus x = 0. Tt follows W N W+ = {0}. Notice 8’ = {vgy1,...,v,} € W since
(vj,v;) =0asi# jwhen1<i<kandk+1<j<n and once more we apply Proposition
Notice 8 ¢ W+ implies n — k < dim(W+). Recall Theorem gives that

dim(W + W) = dim(W) 4 dim(W+) — dim(W n W)
hence as W + W+ <V we have dim(W + W) < n we deduce
dim(W + W) =k +dim(Wh) <n = dim(Wt) <n—k.

Thus n — k < dim(W+) < n — k and we have shown dim(W+) = n — k. Hence W + W+ has
dim(W + W) = dim(W) + dim(W+) = k +n — k = n and we conclude W + W+ =V and thus
Wewt=v.0O

The proof above can be shortened by showing W+ < V separately. It may well be possible to prove
W + W+ =V without appealing to Theorem I decided to use it here to illustrate its power.
We should also note that W N W+ = {0} can be shown even in the infinite dimensional context.
In what follows, notice we only assume W is finite dimensional, it could be the case that V is of
infinite dimension.

Proposition 5.2.18. subspace complement

Let (V,(, )) be an inner product space and suppose W is a finite dimensional subspace of
V. Let x € V then there exist unique vectors y € W and z € W+ such that z = y + z.

k
Moreover, if {wy,...,wy} is an orthonormal basis for W then y = Z(az, w;)Wj.
j=1
Proof: apply the Gram Schmidt algorithm to create an orthonormal basis § = {v1,...,v;} for
k

W. We have (v;,v;) = d;;. Let € V and construct y = Z(a:,vj>vj. Observe y € span(f) = W.
j=1
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Next, construct z = z — y hence z = y + z. Next we show z € W,

(2,0j) = (& =y, v5)

= (z,v;) — (Y, v5)

Thus (vj,z) = 0 for all j = 1,...,k. Therefore, applying Proposition we find z € W+,
Suppose 4/ € W and 2/ € W+ such that + = ¢/ + 2/ then y+ 2 =9 + 2 and ¢/ —y = 2z — 2.
Observe y,y' € W implies v/ —y € W. Likewise, 2,2/ € W+ implies z — 2/ € W+. Hence
v —y,z—2 e WNW+ ={0} thus ¢/ —y = 0=z — 2’ hence y = 4/ and z = 2’ which proves the
desired uniqueness for y and z. [

Proposition 5.2.19. closest vector

Let (V,(, )) be an inner product space and suppose W is a finite dimensional subspace
of V. Let € V then if y € W and z € W+ such that © = y + z then y is the vector in
W closest to « and z is the vector in W+ closest to z. Here we define closest vector in
S <V tox €V to be the vector in sg € S for which ||z — sg|| < ||z — s|| for all s € S.

Proof: by Proposition [5.2.18|if = € V then there exist unique y € W and z € W+ for which
x=1y+ z. Let w € W and consider

lz = wl* = lly + 2 = wl* = lly — wl|* + |||

since y,w € W implies y —w € W and z € W+ gives (y — w) L z hence the Pythagorean identity
holds. Observe ||z — wl||? > ||z||? with equality in the case y = w. In other words, y is the closest
point in W to x and the distance from x to y is given to be ||z —y|| = ||z|| which means the distanceﬂ
from z to W is given by | z||. Likewise, if we consider 2’ € W+ then

lz = 212 =y + 2 = 2|1 = IyllI* + |2 = &/I”

asy L (z—2') and hence z € W+ is the point closest to x. In fact, the distance from x to z is seen
to be [|y[| as [l — z[| = [ly[|.

We define Projy and Orthy based on the decomposition V =W ¢ W+.

Sdistance from a point to an extended object is sometimes understood as the smallest possible distance which is
attained between points in the object and the given point. Or, as may be the case in analysis, the infinimum of all
such possible distances since outside our context the distance of closest approach may not actually be attained except
in some limiting sense. For example, if we take y = |z| and delete the origin from its graph and ask how far it is
from (0,—1) the answer is 1 even though there is technically no point on the origin-deleted y = |z| graph which is
distance 1 from (0, —1).
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Definition 5.2.20. projection

Let V be a finite dimenional inner product space with subspace W. If {ws,...,wi} is an
orthonormal basis for W then we define: Projy : V. — W and Orthy : V — W by

k k
Projw(x Z (x, wj)w & Orthy (z Z (x, wj)w
7j=1 7j=1

for each z € V.

In view of Proposition [5.2.19] we see that the projection and orthogonal projection with respect to
W give us formulas to select closest points in W or W+.

Proposition 5.2.21.

Let W < V where V is a finite dimensional inner product space then Projy : V — W
and Orthy : V. — W+ are linear transformations and Projy o Projyy = Projw and
Orthy ° Orthy = Orthy . Moreover, Projy,1. = Orthy and Orthy,. = Projy. Finally,

Idy = Projw + Orthyy.

Proof: I leave this for the reader. It is a good exercise. You ought to be able to prove it using
techniques which have been used to prove the other results in this section. [

We conclude this section with a theorem which is nearly a restatement of Proposition [5.2.17} Once
more I leave the proof to the reader, but we have shown most of this already in this section.

Proposition 5.2.22.

Let S = {v1,...,v;} be an orthonormal set in (V,(, )) with dim(V) = n. Then,

(i.) S can be extended to an orthonormal basis {v1, ..., Vg, Vgt1,...,0,} for V,
(ii.) If W = span(S) then {vg 1, ...,v,} is an orthonormal basis for S+ = W+,
(iii.) For any subspace W of V., dim (V) = dim(W) + dim(W+).

5.3 theory of adjoints

Let V be a finite dimensional inner product space with orthonormal basis § = {vi,...,v,}. Let
T :V — V be a linear transformation then ([Tg3):; = (T'(v;),vs). Suppose we define S : V — V
to be the linear transformation on V' for which [S]} 5 = [Tg; that is, ([S]g8)ji) = ([T]s,8)is-
Thus,

([S]g,8)5i = (S(vi), vj) = (vj, S(vi)) = (T'(v;),vi)
We find (T'(vj),v;) = (vj, S(v;)) for all 4, 5. It follows by properties of the inner productﬁ that

(T'(x),y) = (2,5(y))

Sthis is a good exercise for the reader, it also makes a nice test question
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for all ,y € V. Suppose R:V — V is linear and (T'(z),y) = (x, R(y)) for all z,y € V then

(x, R(y)) = (T'(x),y) = (z, S(y))

for all x,y € V. Thus it followsﬂ R(y) = S(y) for all y € V. Thus, R = S and we deduce there
is a unique linear transformation S for which (z,S(y)) = (z,T(y)) for all x,y € V. Moreover,
[S15 5 = [T]p,5- But, as we know (A*)* = A hence ([S]; 5)* = [T} 5 thus [T]} 5 = [S]s,s-

The arguments above support the existence of the adjoint of a linear transformation on a finite
dimensional inner product space. In the infinite dimensional context it may or may not be the case
that the adjoint of a linear transformation exists.

Definition 5.3.1. adjoint of a linear transformation

Let V be an inner product space and let T : V' — V be a linear transformation. Then we
call the unique linear transformation 7% : V' — V for which (T'(x),y) = (z,T*(y)) for all
x,y € V the adjoint of T provided such a transformation exists.

Proposition 5.3.2.

Suppose T : V — V is a linear transformation on a finite dimensional inner product space
with orthnormal basis 8 then

(i.) T™ exists and [T5 5 = [T"]3,5,
(ii.) (z,T(y)) = (T*(z),y) for all z,y € V.

Proof: the proof of (i.) is found at the beginning of this section.
To prove (ii.) consider, since (T'(y),z) = (y,T*(x)) for all z,y € V we find (T'(y),z) = (y, T*(z))
thus, by axiom (iii.) of the inner product, (z,T(y)) = (I"*(x),y) for all z,y € V. O

Remark 5.3.3.

For a real matrix, A* = A" — AT, This simplifies the calculation of the adjoint in the
context of real inner product spaces.

Example 5.3.4. Consider D : Py(R) — P3(R) where D(az® + bx 4+ ¢) = 2ax + b. Let B =
{%, \/gzc, \/g (3332 — 1)} and recall from Example|5.2.100 we know that B is an orthonormal basis

T
for Py(R) with respect to the inner product (f,g) = / f(x)g(x)dx. Calculate,
—1

D <\2> —0 = coly([Dsg) = 0.

and

. V3

3 3
D ( 2x> =\5= \/§<\/§> = coly([D]gg) = 8

Tagain, a good exercise, we didn’t quite prove this, we have proved (x,y) = (z,%) for all y € V implies z = z, but
this isn’t quite that pattern



5.3. THEORY OF ADJOINTS 209

and
5. 5 3 0
D 3 (3z° —1) | =6z 3= 2% V15 = col3([D]gp) = | V15
0
0 V3 0 0 0 0
Thus [Dlgg= | 0 0 15 |. Hence [D*]sgs=| V3 0 0 | which means
0 0 0 0 V15 0

*<a+b\[ac+c\[ (322 —1>_a\f\[x+bf\[ (322 —1)

Example 5.3.5. Consider H={f :]0,2x] — C | f continuous}.

1 2w

(0) =5 | FOsD

Form V = span{e®, %t €3} < H and recall from Ezample that B = {e®, e €3} forms an
orthonormal basis for V' with respect to the given inner product. Define T :'V — V by

T(ae® + be* 4 ce®) = (a +ib)e + (b+ic)e®™ + (c + ia)e®

Hence,
1 ¢+ 0 1 0 —2
Tlsp=10 1 i | = [Tpp=[Tlzp=| —i 1
i 0 1 0 —i 1

which implies
T*(ae® 4 be*™ 4 ce3) = (a —ic)e™ + (b —ia)e®™ + (c — ib)e>.
It is also possible to calculate the adjoint without explicit use of an orthonormal basis.

Example 5.3.6. Consider T : R?*? — R2*2 defined by T(A) = MA where M is a given 2 x 2
matriz. We wish to find T* for which (T'(A), B) = (A, T*(B)). Using the Frobenius norm, we need:

tr(MABT) = tr(A(T*(B))T)

Notice tr(MABT) = tr(ABTM). Thus we find (T*(B))T = B'M. Hence, T*(B) = M"B.

Proposition 5.3.7.

Suppose V' is an inner product space and S,T € L(V') for which S*,T* € L(V). Let ¢ € F.
Then, S+ T,cT, ST, T, Id all have adjoints and

(i.)
(ii.)
(iii.)
(iv.)
(v.) Id* = Id.

S Ty = 54 T,
cT)* =¢l™,
ST)" = T8*,
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Proof: I'll prove (iii.) and leave the rest as exercises. Let z,y € V and observe:

((ST)(x),y) = (S(T(2)),y) = (T(x),5*(y)) = (2, T°(5"(y))) = (=, (T"5")(y))-

Therefore, ST has an adjoint and (ST)* = T*S*. O

We should note there are corresponding results for matrices and their adjoints.

Proposition 5.3.8.

Let A,B € F"*" and ¢ € F then Ly : F* — F” defined by La(z) = Az for all x € F™ has
(La)* = Ly~ and
(i) (A+B)*=A*+ B*,
(ii.) (cA)* =cAx,
(iii.) (AB)* = B*A*,
(iv.) (A%)" = 4,
(v.) I*=1.

Proof: If L : F™ — F” is defined by L4(x) = Az for all x € F™ then observe
(La(x),y) = (A2)"y = 2" ATy = 2T ATy = 2" A%y = (2, A%y) = (&, La-(y))

Therefore, (La)* = Ly+. Observe Layp = La+ Lp and L.y = c¢Ly and LaLp = Lap and
L; = Id. Thus,

Liaypy = (Latp)" = (La+ Lp)* = (La)" + (Lp)" = La~ + Lps = La+y p+

and as Ly = Ly if and only if M = N we find (A + B)* = A* + B*. Now, you might ask yourself,
is there an easier way to prove (i.). Sure. Note (4 + B)T = AT + BT and M + N = M + N thus

(A+B)*=(A+B)T = AT + BT = AT + BT = A* + B".

Likewise,

(AB)* = (AB)T = BTAT = BTAT = B*A*,

Proofs of the remaining items can be proved either by exploiting the correspondence with the
previous proposition or via explicit calculations based on properties of transposition and complex
conjugation. [

Remark 5.3.9.

We could discuss the method of least squares at this point. However, I have already covered
this topic in Math 221 so I place the emphasis here elsewhere.
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5.4 diagonalization in inner product spaces

Proposition 5.4.1.

Let (V;(, )) inner product of finite dimension and suppose T': V' — V' is a linear map. If
T has an eigenvector with eigenvalue A then T™ has an eigenvector with eigenvalue .

Proof: Suppose T'(v) = v for v # 0. For any z € V' we calculate:
0=(0,z) = ((T' = A)(v), ) = (v, (T = A)"(x)).

Thus v L (T — A\)*(z) for all z € V. Consequently, v € Range(T* — )t We know that B
Range(T* — X\)* @ Range(T* — X\) = V. Since v # 0 we find Range(T* — \) # V. Since T* — X is
a linear map on V it satisfies the rank nullity theorem:

dim(V) = dim(Ker(T* — X)) + dim(Range(T* — X))

and we deduce dim(Ker(T* — A)) > 1. Therefore, there exists y € V' for which (T™ — M(y) =0
hence y is an eigenvector with eigenvalue A for T*. [

Definition 5.4.2. split polynomial

Let f(x) € F[x] then f(x) is split over F if all factors of f(z) are linear;

f(@) =alx—A)(x—X2) - (z— Ap).

Theorem 5.4.3. Schur’s Theorem:

Let (V,(, )) inner product of finite dimension and suppose T': V' — V is a linear map such
that Pr(z) = det(T — x) splits. Then there exists an orthonormal basis v for V' such that
[T, is upper-triangular.

Proof (sketch): since Pr(x) splits it follows all the eigenvalues of T" are in F hence a Jordan basis
for T exists. Note, the Jordan form is upper triangular and if we apply the Gram Schmidt algorithm
then it processes the Jordan basis from first to last and the process preserves the upper-triangular
shape of the matrix of 1. [J

Insel Spence and Friedberg, 5th edition, give a proof on page 367 which is based on weaving together
a handful of results shown in their homework exercises.

Definition 5.4.4. normal operator

Let V be an inner product space and 7' € L£(V). We say T is normal if TT* = T*T.
Likewise, A € F"*™ is normal if AA* = A*A.

Proposition 5.4.5.

If V is a finite dimensional inner product space with orthonormal basis 8 and T' € L(V) is
normal then [T]g g is normal.

Proof: let 5 = {v1,...,v,} be an orthonormal basis for V and suppose T': V' — V is normal.
Consider, since 1" is normal,
[TTgp = [T"Tlgp
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However, the matrix of a composition is the product of the matrices for the transformations com-
posed. That is,

[T15,8T"5,5 = [T7],8[T]s,5-

Hence [T 3 is normal. [

cosf —sinf
sinf cosf
of R™™ we find A is normal. Since A is the matriz of L 4 with respect to the orthonormal standard
basis for R™ we deduce L4 is normal.

Example 5.4.6. Let A = { ] then AAT =T = AT A and as A* = AT in the context

Notice L4 in the above example is the rotation in the plane by angle 6. This is not diagonalizable
as it is clear such a rotation has no eigenvector (unless § = 0 or § = 7). Normal transformations
need not be diagonalizable.

Example 5.4.7. If A € R™" and AT = A then AAT = AA = AT A hence A is normal. Likewise,
if B € R"™" and BT = —B then B'B = —BB = B(—B) = BB hence B is normal. Furthermore,
L4 and Lp are normal transformations on R™.

Proposition 5.4.8.

Let V be an inner product space and 7' € £(V') normal. Then,
1) 1T ()| = |1T*(z)| for all z € V,

(ii.) T — c is normal for every c € F,
(iii.) if T(z) = Az for x # 0 then T*(x) = Az,

(iv.) if Ay # Ay are eigenvalues of T' with eigenvectors x1, o, then x; L xs.

Proof: Suppose T': V — V is normal. Let x € V,
1T (2)]? = (T(x), T(x)) = {x, T*(T(2))) = {x, T(T*(x))) = (T*(2), T"(x)) = |T"(x)||*.
Thus | T(z)|| = ||T%*(x)|| for all x € V and (i.) is true. Let ¢ € F and note (T'—¢)* = T* —¢. Thus,
(T—)"(T—c)=(T"—¢) (T —c)=T"T — cT" — ¢TI + ce.

Likewise,
(T—c)(T—c)=(T—-¢)(T"—2¢)=TT" — T —¢T + cc.

Recall T' normal means T*T = TT* hence (T — ¢)*(T' —¢) = (T — ¢)(T — ¢)* and we conclude
T — ¢ is normal and the proof of (ii.) is complete. Suppose there exists z # 0 and A € F for which
T(x) = Ax. Apply (i.) to see that

(T = N)(@)[| = (T = )" ()]

However, (T'—\)(z) = T'(x)— Az = 0 hence ||(T'—X)(z)|| = 0 and thus ||(T—X)*(x)|| = 0. Therefore,
(T — \)*(z) = 0 which yields T*(z) = Az which completes the proof of (iii.). Let A, A2 € F with
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A1 # Ao and suppose there exist 1,z # 0 for which T'(z1) = Az and T'(x2) = Agz. Consider,
)

Az, x2) = (Mix1, T2

(

= (T'(z1),22)
(
(

Thus (A2 — A1)(z1,22) = 0 and since \; # Ao we find (x1,x2) = 0 thus z1 L zo. O

Theorem 5.4.9. In complex vector space, orthonormally diagonalizable iff normal.

If V is a finite dimensional complex inner product space and 7' € £(V') then T is normal if
and only if there exists an orthonormal eigenbasis for 7.

Proof: suppose 7" is normal over V (C) then Pr(z) = det(T —x) splits and thus by Schur’s Theorem

there exists an orthonormal basis § = {v1,...,v,} for which A = [T g is upper-triangular. Notice
T(v1) = A11v; thus vp is an eigenvector with eigenvalue A\; = Aj;. Inductively suppose vy, ..., V1
are eigenvectors of 1" with eigenvalues A1,...,A_1. Consider 1 < j < k£ — 1 and note upper-

triangularity of A implies

K
T(vk) = Argor + Aggg + -+ + Ajpvj + -+ + Aggop = > Aivs
i=1

Observe,
k k
(T(og),v5) = Y Awlvi,vj) = Y Aiij = Ajp.
i=1 i=1
However, by definition of [Tg g since 3 is orthonormal; A, = (T'(vg),v;) = (v, T™(v;)). Next, by
the induction hypothesis and orthonormality of S,
Ajp = (vk,ijj> = \j(vg,vj) = 0.

Consequently, we find T'(vy) = Agrvr and so Ay = Agg. Thus, by induction, we find § is an or-
thonormal eigenbasis for T

Assume there exists an orthonormal eigenbasis 5 = {v1,...,v,} for T. In particular, T'(v;) = A\v;
fori=1,...,n and (v;,v;) = 0;;. Let A= [T]g 3 and calculate

Aij = (T(vj),vi) = (Njuj, vi) = Aj{vj, vi) = Ajji.

Consequently, (A*);; = A;8;;. Calculate,

(A*A)y; = Z(A*)ikAkj = Zrk@k)\j(;jk = \i\;6ji
k=1 k=1
(AA™)i = Ai(A)ij =) Mbridibh; = Ajhidiy = AiX;dji
k=1 k=1
Thus A*A = AA* and thus T is normal since [T]g 3 = A is normal. [J
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Example 5.4.10. Consider H = {f : [0,2n] — C | f continuous}.

f(t)g(t) dt.

1 2

(f:9)

Following arguments in Example we can show B = {e™ | n € Z} forms an orthonormal
subset of H. Notice V. = span(f) form an interesting infinite dimensional subspace of H. In
fact, dim(V) = Nq since it has a countably infinite basis. Define R : V. — V by R(e™) =
et gnd L.V =V by L(e™) = ¢!Vt These are right and left shift operators on the basis
B =1 ..,e 2 e 1 e &2t ). It can be shown that R and L are normal, however, neither
R nor L are orthonormally diagonalizable. This illustrates the fact that the assumption of finite
dimensionality in the theorem above is a necessary one.

Insel Spence and Friedberg, 5th edition, give arguments on pages 369-370 which flesh out the claims
of the example above.

Definition 5.4.11. Hermitian or self-adjoint operator

Let V be an inner product space and T' € L(V). We say T is self-adjoint or Hermitian
if T'=T*. Likewise, A € F"*" is self-adjoint or Hermitian if A = A*.

Proposition 5.4.12.

If V is a finite dimensional inner product space and assume 7' € L(V') is self-adjoint. Then,

(i.) every eigenvalue of T is real

(ii.) if V' is a real inner product space then Pp(x) = det(T — x) splits.

Proof: let T': V — V be a linear map on the finite dimensional inner product space V' and suppose
T* =T. If there exists © # 0 and A\ € F for which T'(z) = Az then

Mz, z) = o, z) = (T(2),2) = (x, T*(2)) = (x, T(z)) = (x, \z) = Mz, z).

However, z # 0 hence (x, ) # 0 and we find A = X and we have shown (i.) is true. Next, suppose
V' is a real inner product space with orthonormal basis 8. Let [T]g 3 = A € R"*" and note T* =T
implies A* = A. Define Ly : C* — C" by La(z) = Az for each x € C". Note, det(Ls — x) is split
over C. However, L4 is self-adjoint hence every eigenvalue of L4 is real. Recall T" and [T]g 3 have
the same characteristic polynomial hence det(T — x) is split over R. [

Theorem [5.4.9] is very similar to what follows. The essential difference is that normality implies
the characteristic polynomial splits over C whereas we need the self-adjoint criteria to be sure the
eigenvalues are real in the context of a real inner product space. That said, the proofs of both
theorems are rather similar.

Theorem 5.4.13. Orthonormally diagonalizable iff self-adjoint.

If V is a finite dimensional real inner product space and T' € L£(V') then T is self-adjoint if
and only if there exists an orthonormal eigenbasis for 7.

Proof: Let V be a finite dimensional real inner product space. Suppose T' € L(V) is self-adjoint.
Then Proposition [5.4.12] shows the characteristic polynomial of 7" is split. Then we can repeat the
proof given for Theorem to see there exists an orthonormal eigenbasis for T'.
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Conversely, assume there exists a real orthonormal eigenbasis = {vy,...,v,} for T In particular,
T(v;) = Aw; for i = 1,...,n and (v;,v;) = 0;; and A\; € R. Let A = [T 3 and calculate

Aij = (T(vj), vi) = Ajuj, vi) = Aj(vj,vi) = Ajdji = Nidij = Aji.

thus A = AT and so A = A* as AT = A* for real matrices. Thus T = T*. [
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Chapter 6

Abstract Linear Algebra

Curved space softly bends,
Tensors weave the laws of force—
Math’s quiet scaffold. EXTRANEOUS G, 2025

A quotient vector space is formed when we take some subspace and assign it to be zero in
the newly formed space. When we form a quotient space by squashing the kernel of a linear
transformation this brings us to the creation of an isomorphism from the quotient space and the
range of the linear map. The first isomorphism theorem is not unique to linear algebra, there is a
similar theorem found in multiple branches of mathematics. Next we study the dual space, dou-
ble dual space and annihilators which gives us a rather different way to formulate a given problem. F_-]

We then turn to study multilinear maps. Bilinear and trilinear maps are described in detail as
well as their components. A bilinear form on an n-dimensional vector space is essentially given by
an n x n matrix. However, a multilinear map with more than two inputs corresponds to an object
with n-indices. We place indices up or down to reflect the nature of the index as it relates to either
V or its dual V*. These so-called contravariant and covariant indices change coordinates inversely
much the same as components and bases. A basis for the set of multilinear maps is provided by
forming ® (tensor) products of basis and dual bases. We then introduce symmetric and antisym-
metric multilinear maps and we find there is a natural connection between the determinant and
antisymmetric maps. This leads us to group certain collections of tensor products into so-called
A-products. At this stage, the A-product of dual vectors gives us a method to construct a particular
antisymmetric map on V. Our initial section is very heavily computational and coordinate-based.
Our second exposure to A later in the chapter has a more abstract algebraic flavor.

Next we turn to the problem of describing an algebra. In short, an algebra is simply a vector
space paired with a multiplication. This leads us to our penultimate §[6.6/on wedge product viewed
as an abstract algebra. This section does not view wedge products of vectors or dual vectors as
multilinear maps. Instead, we begin with the algebraic properties of A and attempt to derive and
define concepts from that algebraic basis. Of course, all the algebraic properties are present when

'For example, in manifold theory, one may describe a distribution on an n-dimensional manifold as a smooth
assignment of a subspace in each tangent space. We can describe such a k-dimensional distribution either with a local
basis of k defining vector fields or instead with a local basis of (n — k) defining one-form fields. A smooth assignment
of a dual vector is known as a one form. In linear algebra we do not study vector fields or smooth assignments of
other objects. Our attention is focused on a given vector space, or from the perspective of manifold theory, we focus
on a single point.

217
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we construct the wedge product from particular multilinear maps, but we can think of the multi-
linear maps as just a particular model which exhibits the structure of the exterior algebra. In fact,
we could also build the exterior algebra on a subset of matrices if we were so inclinedﬂ We find a
new method to study determinants in terms of the structure of the exterior algebra. This leads us
to find an elegant proof that det(AB) = det(A)det(B) as well as to the characterization of linear
dependence of less than n-vectors in an n-dimensional context.

Finally, we conclude by studying linear geometry. A vector space paired with a metric is a linear
geometry. A metric is a bilinear, symmetric, nondegenerate form. Every inner product is a metric.
However, not every metric is an inner product. For instance, we study the Minkowski metric which
underlies the spacetime of Special Relativity. The concept of the Reisz vector generalizes here to
the so-called musical morphisms. We describe how to change a vector to a dual vector or how
to change a dual vector to a vector. These musical morphisms give natural isomorphisms from
tensors of differing types. Physicists make wide use of such isomorphisms in the formulation of
Physical laws where a scalar is typically formed by the contraction of covariant and contravariant
indicesﬂ The set of all metric-preserving maps is also of interest. These isometries give us a
better understanding of the meaning of a particular geometry. For example, the origin-preserving
isometries of Euclidean geometry are simply the orthogonal transformations. In contrast, the
Lorentz transformations appear as origin preserving isometries of the Minkowski metric.

6.1 quotient vector space

Let us begin with a discussion of how to add sets of vectors. If S, T C V a vector space over F then
we define S + T as follows:
S+T={s+t|seS, teT}

In the particular case S = {z} it is customary to write
c+T={x+t|teT}
we drop the {} around z in this special case.

Definition 6.1.1. Coset

’Let V be a vector space with z € V and W <V then z + W is a coset of V.

Example 6.1.2. If W = span{(1,0)} is the z-azis in R? then (a,b) + W is the the horizontal line
given by equation y = b. You can easily see (0,b) + W = (a,b) + W. Each coset is obtained by
translating the x-axis to a parallel horizontal line.

Example 6.1.3. If W = {A € R™" | AT = A} then X + W is a coset in the square matrices.
Geometrically, it is o linear manifold of the same dimension as W. I can’t picture this one directly.

Example 6.1.4. Consider A € F"™*" and b € F™. Let S be the solution set of Ax =b. Recall we
may express x € S as x = c1v1+- - -+, Uy +p where Av; =0 fori=1,...,v where v = nullity(A).
In other words, x = xj, + x, where Axp, = 0 and Az, =b. We find the solution set is a coset of
the nullspace of A; S = x, + Null(A). The solution set to a nonhomogeneous system of equations
is not a subspace with respect to the standard addition of column vectors. However, the solution
set is a parallel translate, or a affine space or linear manifold of dimension of the nullity of the
coefficient matriz.

2if you are interested, ask, I can make a homework of this
3beyond this, there are also spinorial equations, I would like to give a talk on spinors some time, ask if interested
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Example 6.1.5. Let L be a linear differential operator and g a given function then Lly] = g
defines a differential equation. If V is the set of all smooth functions then we can define the
homogeneous solution set to be W = {y € V | Lly] = 0} = Ker(L). If L is an n-th order
differential operator then we learn in the differential equations course that the gemeral solution set
of Lly] = g can be expressed as

y=cayr+---+cln+Yp

where yi1, . ..,yn € W are linearly independent so-called homogeneous solutions of the differential
equation and y, is so-called particular solution for which Lly,] = g. In the langauge of cosets,
we see y is a general solution implies y € y, + W where L{yp] = g.

Quotient space of V by W is the set of all such cosets of W. We now work towards motivating
the definition of quotient space. In particular, we need to show how it has a natural vector space
structure induced from V.

Proposition 6.1.6.

Let V be vector space over F and W < V. Then x4+ W =y+ W iff t —y € W.

Proof: Suppose x + W = y+ W. If p € x + W then it follows there exists wy € W for which
p=x+ w;. However, as x + W C y+ W we find x + w; € y + W and thus there exists wy € W
for which x + wy = y 4+ ws. Therefore, y — x = w1 — wo € W as W is a subspace of V.

Conversely, suppose z,y € V and © — y € W. Thus, there exists w € W for which x — y = w and
so for future reference x = y+w or y =  —w. Let p € x + W hence there exists w; € W for which
p =z + wi. Furthermore, as W is a subspace we know w,w; € W implies w + w1 € W. Consider
then, p=x4+w; =y+w+w; € y+ W. Therefore, xt + W C y + W. A similar argument shows
y+W Cax+W hencex + W =y+W. O

Proposition 6.1.7.

Let V be vector space over F and W < V. Then x4+ W =W iff x € W.

Proof: if x + W = W then z + w € W for some w hence x + w = wy. But, it follows z = w1 — w
which makes clear that z € W as W < V.

Conversely, if x € W then consider p = x + w; € x + W and note x + w; € W hence p € W and
we find z + W C W. Likewise, if w € W thennote w=z4+w—zandw—x € W thusw € t + W
and we find W C x + W. Therefore, x + W =W. O

Observe that Proposition [6.1.6| can be reformulated to say x + W is the same as y+W if y =z +w
for some w € W. We say that x and y are coset representatives of the same coset iff t+W = y+W.
Suppose 1 + W = 2o+ W and y1 + W = yo + W; that is, suppose x1, zo are representatives of the
same coset and suppose y1, yo are representatives of the same coset.
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Remark 6.1.8. a contrast between cosets and subspaces

Notice the difference between a coset and subspace. Two points in a subspace when added
are once more in the subspace. However, the sum of two points in a coset need not be in
the coset. Perhaps it is an interesting homework question to consider; if z,y € z + W then
when is z +y € z+ W 7 In view of the above proposition, it should be an easy question.

Proposition 6.1.9.

Let V be vector space over F and W < V. If 1+ W =29+ W and y1 + W = yo + W and
ceFthenzy+y1 + W =20 4+y2+ W and cx1 + W = caxas + W.

Proof: Suppose 1 + W = 29 + W and y; + W = yo + W then by Proposition we find
T — o1 = w, and Y2 — Y2 = wy for some w,,w, € W. Consider

(T2 +y2) — (1 + Y1) = T2 — 21 + Y2 — Y1 = Wy + Wy,

However, w;,w, € W implies w, + w, € W hence by Proposition we find z1 +y1 + W =
x9 4+ yo + W. I leave proof that cx; + W = cxo + W as an exercise to the reader. [J

The preceding triple of propositions serves to show that the definitions given below are independent
of the choice of coset representative. That is, while a particular coset represetative is used to make
the definition, the choice is immaterial to the outcome.

Definition 6.1.10.

We define V/W to be the quotient space of V' by W. In particular, we define:
VIW={z+W |zeV}
and for all x + W,y + W € V/W and c € F we define:

+W)+y+W)=z+y+W & clz+W)=cx+W.

Note, we have argued thus far that addition and scalar multiplication defined on V/W are well-
defined functions. Let us complete the thought:

Theorem 6.1.11.

If W <V a vector space over F then V/W is a vector space over F.

Proof: if x + W,y +W € V/W note (x + W)+ (y+ W) and c¢(x + W) are single elements of V/W
thus Axioms 9 and 10 of Definition [2.1.1] are true. Axiom 1: by commutativity of addition in V' we
obtain commutativity in V/W:

(+W)+w+W)=z+y+W=y+ao+W=>uy+W)+@x+W).
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Axiom 2: associativity of addition follows from associativity of V,

(T4+W)+[(y+W)+ z+W)] =z +W +[(y + 2) + W] defn. of + in V/W
=z+(y+z2)+W defn. of + in V/W
=@x+y +z+W associativity of + in V
=[(z+y)+ W]+ (=z+W) defn. of 4+ in V/W
=[(z+W)+y+W)|+(=z+W) defn. of + in V/W.

Axiom 3: note that 0+ W = W and it follows that W serves as the additive identity in the quotient:
(+W)+(0+W)=24+04+W =2+ W.

Axiom 4: the additive inverse of x + W is simply —x + W as (x + W) + (—x + W) =W.
Axiom 5: observe that
llz+W)=1-2+W=zx+W.

I leave verification of Axioms 6,7 and 8 for V/W to the reader. I hope you can see these will easily
transfer of the Axioms 6,7 and 8 for V itself. O]

The notation x + W is at times tiresome. An alternative notation is given below:
2] =+ W
then the vector space operations on V/W are
[+l =le+y] & cla] =ea].

Naturally, the disadvantage of this notation is that it hides the particular subspace by which the
quotient is formed. For a given vector space V many different subspaces are typically available and
hence a wide variety of quotients may be constructed.

Example 6.1.12. Suppose V =R3 and W = span{(0,0,1)}. Let [(a,b,c)] € V/W note
[(a,b,¢)] = {(a,b,2) | z € R}

thus a point in V/W s actually a line in V. The parameters a,b fix the choice of line so we expect
V/W is a two dimensional vector space with basis {[(1,0,0)],[(0,1,0)]}.

Example 6.1.13. Suppose V =R? and W = span{(1,0,0),(0,1,0)}. Let [(a,b,c)] € V/W note

[(a7b7 C)] = {(3773/76) | x,y € R}

thus a point in V/W is actually a plane in V. In this case, each plane is labeled by a single
parameter ¢ so we expect V/W is a one-dimensional vector space with basis {[(0,0,1)]}.

Our claims about constructing a basis for the quotient space of the preceding pair of examples are
easily affirmed by applying the following proposition:
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Proposition 6.1.14.

If W <V and V is finite-dimensional then dim(V/W) = dim(V') — dim(W). If § is a basis for
V and By C [ serves as a basis for W then if v = 8 — By then v+ W serves as basis for V/W.

Proof: Suppose dim(V) = n and dim(W) = k. Let § = {w1,...,wi} be a basis for W. Extend
ptoy={wi,...,wk,v1,...,V—} a basis for V. Observe that w; + W =W for j = 1,...,k as
w; € W for each j. Since Oy = W we certainly cannot form the basis for V/W with 3. However,

we can show {v; + W}"=F serves as a basis for V/W. Suppose
ci(vr + W) +ea(va+ W)+ +epp(vnp + W) =Opy =0+ W
thus, by the definitions of coset addition and scalar multiplication,
(civ1 + coug + -+ + CpgUp—k) + W =W

it follows c1v1 4+ cova + - - -+ cp_pvp_r € W. But, this must be the zero vector since by construction

the vectors vy, ..., v,k are outside span(f). Thus cjv; + covy + -+ - + ¢—pVp—r = 0 and hence by
linear independence of v we find ¢y = ¢ = -+ = ¢, = 0. Suppose z+W € V/W then there exist
zj,y; € F for which z = Z?:l zjwj + S F yiv; thus
k n—k n—k n—k
z+ W = ijwj —I—Zyivi+W = Zyivi—i—W = Zyi(vi+W).
j=1 i=1 i=1 i=1

Thus, span{vi + W, ... ,v,_ + W} =V/W. It follows {v; + W, ..., v, + W} is a basis for V/W
and we count dim(V/W) =n — k = dim(V) — dim(W). O

Notice the proof outlines a method to derive a basis for the quotient space; first find a basis for the
subspace forming the quotient. Second, extend to a basis for the total space. Then the basis for
the quotient is simply the cosets represented by the extension.

Example 6.1.15. Let V = R[z]| and let W =R the set of constant polynomials.
[ap + a1z + -+ apz"] ={c+ax+ -+ ax" | c€ R}
Perhaps, more to the point,
[ap + a1z + -+ + apx"] = [a1x + - - - + apz"]
In this quotient space, we identify polynomials which differ by a constant.

We could also form quotients of F(R) or P, or C*°(R) by R and it would have the same meaning;
if we quotient by constant functions then [f] = [f + ¢].

The quotient space construction allows us to modify a given transformation such that its reformula-
tion is injective. For example, consider the problem of inverting the derivative operator D = d/dx.

D(fy=f & D(f+o=/f
thus D is not injective. However, if we instead look at the derivative operator 0nE| a quotient space
of differentiable functions of a connected domain where [f] = [f + ¢| then defining D([f]) = f’
proves to be injective. Suppose D([f]) = D([g]) hence f' = ¢’ so f —g = c and [f] = [g]. We
generalize this example in the next subsection.

4to be careful, I only modify the domain of the derivative operator here, note the output of D is not an equivalence
class. Furthermore, perhaps a different symbol like D should be used to write D([f]) = f" as D # D
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6.1.1 the first isomorphism theorem

I’ll begin by defining an standard linear map attached the quotient construction:

Definition 6.1.16. Let V be a vector space with W < V.

The quotient map 7 : V — V/W is defined by n(z) =z + W for each x € V.

We observe 7 is a linear transformation.

Proposition 6.1.17.

’The quotient map w: V' — V/W is a linear transformation.

Proof: suppose z,y € V and ¢ € F. Consider
mlecx+y)=(cx+y)+W=(cx+ W)+ y+W)=cla+W)+ (y+ W) =cr(z) + n(y). O

When W is formed as the kernel of a linear transformation the mapping 7= takes on a special
significance. The m map allows us to create isomorphisms as described in the theorem below:

Theorem 6.1.18. First Isomorphism Theorem of Linear Algebra

If T:V — U is alinear transformation and W = Ker(7') has quotient map 7 then the mapping
T :V/W — U defined implicity by Ter = T is an injection. In particular, T'(x + ker(T)) =
T(x) for each x + ker(T") € V/W. Moreover, V/ker(T') = T(V).

Proof: to begin we show T is well-defined. Of course, T(x) € U for each € V hence T is into
U. Is T single-valued? Suppose z + Ker(T) = y + Ker(T) then y — x € Ker(T') hence T(y — z) = 0
which gives T'(z) = T(y). Thus, T(x + Ker(T)) = T(x) = T(y) = T(y + Ker(T)). Therefore, T is
single-valued.

Next, we show T is a linear transformation. Let z,y € V and ¢ € F. Consider,
Te(x+W)+y+W))=T(cx+y+W)=T(cx+y) =cT(x)+T(y) =cT(x+W)+T(y+W).

We find linearity of T follows naturally from the definition of V/W as a vector space and the
linearity of T'.

We now turn to the question of injectivity of T. Let # + W,y + W € V/W where W = ker(T')
and suppose T(z + W) = T(y + W). It follows that T'(z) = T(y) thus T'(x — y) = 0 and we find
x —y € W = ker(T) which proves = + ker(T) = y + ker(T). We have shown T is injective.

The isomorphism of V/ker(T') and T'(V') is given by 7" : V/ker(T') — T'(V') where T"(z + ker(T')) =

T(x+ker(T)) =T(x). lf y=T(x) € T(V) then clearly T"(x 4+ ker(T)) = y hence T" is a surjection
and hence an isomorphism as we have injectivity from our work on 7. [J

The last paragraph simply says that the injective map T’ can be made into a surjection by reducing
its codomain to its range. This is not surprising. What may be surprising is how this theorem can
be used to see isomorphisms in a terribly efficient manner:
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Example 6.1.19. Consider V. x W/({0} x W) and V. To show these are isomorphic we consider
T(v,w) =wv. It is simple to verify that T : V. x W — V is a linear surjection. Moreover, Ker(T) =
{(0,w) | we W} ={0} x W. The first isomorphism theorem reveals V. x W/({0} x W)~ V.

Example 6.1.20. Consider S : R™" — R™*" defined by S(A) = A+ AT. Notice that the range
of S(A) is simply symmetric matrices as (S(A))T = (A+ AT)T = AT 4+ (AT)T = A+ AT = S(A).
Moreover, if AT = A the clearly S(A/2) = A hence S is onto the symmetric matrices. What is the
kernel of S? Suppose S(A) =0 and note:

A+ AT =0 = AT = —A.
Thus Ker(S) is the set of antisymmetric matrices. Therefore,
S'([A]) = A+ AT
is an isomorphism from R™™/Ker(S) to the set of symmetric n X n matrices.

Example 6.1.21. Consider D : P — P defined by D(f(x)) = df /dz. Here I denote P = R|x],the
set of all polynomials with real coefficients. Notice

Ker(D) = {f(z) € P | df /dz = 0} = {f(x) € P | f(z) = c}.

In this case D is already a surjection since we work with all polynomials hence:

D([f(2)]) = f'(=)

is an isomorphism. Just to reiterate in this case:
D([f@)) =D(g@)]) = f(@)=4() = fl@)=g@)+c = [f@)]=]g)]

Essentially, D is just d/dz on equivalence classes of polynomials. Notice that P P/Ker(D)
is a mapping you have already studied for several months! In particular,
—=-1
D (f(z)) ={F(z) | dF/dx = f(x)}
Just to be safe, let’s check that my formula for the inverse is correct:
—=—1,= —=-1
D (D([f(#)]) =D (df/dx) = {F(z) | dF/dx = df /dz} = {f(z) + ¢ | c € R} = [f(z)].
Conversely, for f(x) € P,

——1

DD (f(x)) = DUF(2) | dF/dx = f(2)}) = f().

Perhaps if I use a different notation to discuss the preceding example then you will see what is
happening: we usually call ﬁ_l(f(x)) = [ f(z)dx and D = d/dx then

di/fd:c:f & /di(f—i—cl)da::f—FcQ

In fact, if your calculus instructor was careful, then he should have told you that when we calculate
the indefinite integral of a function the answer is not a function. Rather, [ f(z)dz = {g(z) | ¢'(z) =
f(z)}. However, nobody wants to write a set of functions every time they integrate so we instead
make the custom to write g(x)+ ¢ to indicate the non-uniqueness of the answer. Antidifferentiation
of f is finding a specific function F' for which F'(z) = f(x). Indefinite integration of f is the
process of finding the set of all functions [ fdz for which % [ fdz = f. In any event, I hope you
see that we can claim that differentiation and integration are inverse operations, however, this is in
the understanding that we work on a quotient space of functions where two functions which differ
by a constant are considered the same function. In that context, f + ¢ = f + ca.
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Example 6.1.22. Consider D : P» — P defined by
D(az? 4+ bx +¢) = 2ax + b

Observe D([az?+bx +c]) = 2ax +b defines a natural isomorphism from Py /R to Py where I denote
Ker(D) = R. In other words, when I write the quotient by R I am identifying the set of constant
polynomials with the set of real numbers.

Example 6.1.23. Consider F(R) the set of all functions on R. Observe, any function can be
written as a sum of an even and odd function:

1) =5 (1) + 1-0)) + 5 () - 1)

Furthermore, if we denote the subspaces of even and odd functions as Fepen < F(R) and Foqq <
F(R) and note FepenNFoaq = {0} hence F(R) = Fepen ® Fodqa- Consider the projection T : F(R) —
Feven clearly Null(T) = Foqq hence by the first isomorphism theorem, F(R)/Foqa = Feven-

Example 6.1.24. Continuing Fxample this example will be most meaningful for students
of differential equations, however, there is something here for everyone to learn. An m-th order
linear differential equation can be written as Lly] = g. Here y and g are functions on a connected
interval I CR. There is an existence theorem for such problems which says that any solution can
be written as

Y=Yn+Yp

where L{yp] = 0 and L[yp] = g. The so-called homogeneous solution y,, is generally formed from
a linear combination of n-LI fundamental solutions y1,ys2,...,Yn as

Yh = C1Y1 + c2Y2 + -+ + CpYn-

Here Lly;] = 0 fori = 1,2,...,n. It follows that Null(L) is n-dimensional and the fundamental
solution set forms a basis for this null-space. On the other hand the particular solution y, can be
formed through a technique known as variation of parameters. Without getting into the techni-
cal details, the point is there is an explicit, although tedious, method to calculate y, once we know
the fundamental solution set and g. Techniques for finding the fundamental solution set vary from
problem to problem. For the constant coefficient case or Cauchy FEuler problems it is as simple as
factoring the characteristic polynomial and writing down the homogeneous solutions. Enough about
that, let’s think about this problem in view of quotient spaces.

The differential equation L]y] = g can be instead thought of as a function which takes g as an input
and produces y as an output. Of course, given the infinity of possible homogeneous solutions this
would not really be a function, it’s not single-valued. If we instead associate with the differential
equation a function H : V' — V/Null(L) where H(g) = y+ Null(L) then the formula can be compactly
written as H(g) = [yp]. For convenience, suppose V.= C°(R) then dom(H) =V as variation of
parameters only requires integration of the forcing function g. Thus H=' : V/Null(L) — V is an
isomorphism. In short, the mathematics I outline here shows us there is a one-one correspondance
between forcing functions and solutions modulo homogeneous terms. Linear differential equations
have this beautiful feature; the net-response of a system L to inputs g1, ..., gr is nothing more than
the sum of the responses to each forcing term. This is the principal of superposition which makes
linear differential equations comparitively easy to understand.
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6.1.2 on direct sums and quotients
Proposition 6.1.25.
If V= A® B then V/A X B.

Proof: Since V= A x B under n: A x B — V with n(a,b) = a + b it follows for each v € V there
exists a unique pair (a,b) such that v = a + b. Given this decomposition of each vector in V' we
can define a projection onto B as follows: define g : V' — B by mp(a +b) = b. It is clear 7p is
linear and Ker(mp) = A thus the first isomorphism theorem gives V/A = B. [0

It is interesting to study how the matrix of T and the matrix of T are related. This is part of a
larger story which I tell now[]

Recalﬂ , if V' permits a direct sum decomposition in terms of invariant subspaces W1, ..., W) then
there exists a basis 8 for V' formed by concatenating the bases (1, ..., 8r for W1, ..., W} respective.
Moreover [T 3 is in block-diagonal form where each block is simply the matrix of the restriction
of T|lw, : W; — W; with respect to 5;. What follows below is a bit different since we only assume
that U is a T-invariant subspace.

Proposition 6.1.26.

Let V be finite a finite dimensional vector space over F. If T': V' — V is a linear transformation
and U <V for which T(U) < U and if By is a basis of U and Sy U 33 is a basis for V' then
A B

[T]ﬁﬁ - |: 0o C :|

where A = [T'|y]gy g, and C = [Ty,ulsy,y .6y, Where Byyy ={vu+U | v € B2}

Proof: let 7" and U be as in the statement of the proposition. The fact that A = [T|v]s, 5,
follows from T(U) < U. Denote fy = {u1,...,ux} and o = {v1,...,v,—k}. Notice, T'(v;) =
Zle Bjju; + Z?;lk Cijvi. We define Ty : V/U — V/U by Tyy(r + U) = T(x) + U (this is
well-defined since we assumed T'(U) < U). Notice,

k n—=k n—k
T(Uj +U) = T(Uj) = Z Biju; + Z Cijv+U = Z Cijv + U. ]
=1 =1 =1

It is interesting to use the result above paired with Proposition[6.1.25| If V = Vi®Voand T : V — V
is a linear transformation for which T'(V1) < Vi and T'(V2) < Vo . We know from Theorem |4.1.14

that for the Vi, V5 concatenated basis 5 = 51U we have [T]3 5 = [ /(1)1 j
2
explicit basis dependence, from Proposition [6.1.26| that
Ar=[Ty]l=[Tw] &  Ay=[Tyw] = [Tyl

In other words, given a block decomposition we can either view the blocks being attached to the
restriction of the map to particular subspaces, or, we can see the blocks in terms of induced maps
on quotients. Similar comments can be made for direct sums of more than two subspaces.

] . It follows, omitting

Shere I follow pages 231-233 of Charles Curtis’ text

Ssee Definition [4.1.13| and Theorem .
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6.2 dual space

Definition 6.2.1.

‘Let V' be a vector space over a field F then the dual space V* = L(V,F). ‘

In the case that dim(V') = oo this algebraic dual space is quite large and it is common to replace
it with the set of bounded linear functionals. That said, our focus will be on the case dim(V') < oo.
Roman’s Advanced Linear Algebra is a good place to read more about the infiinte dimensional case,
or, most functional analysis texts. Let it be understood that dim(V) = n in the remainder of this
section.

We should recall L(V,F) is a vector space over F hence V* is also a vector space over F. The
definition which follows s a natural next step:

Definition 6.2.2.

Let V be a vector space over a field F then the double dual space V** = L(V* F). ‘

We can exchange V', V* and V** in a given application of linear algebra. In the finite dimensional
case these are all isomorphic it is often possible to exchange one of these for the other.

Theorem 6.2.3.

Let V be a finite dimensional vector space over a field IF then V = V* and V = V**

Proof: observe dim(L(V,F)) = dim(F'*") = n = dim(V) thus V* = V. Next, since V** = (V*)*
by construction we have V* = V**. Transitivity of isomorphism yields V = V**. [J

Next, let us explore the explicit isomorphisms which support the result above.

Definition 6.2.4. an evaluation map:

For x € V, let eval, : V* — F be defined by eval,(a) = a(x) for each a € V*.

I invite the reader to confirm that eval, € L(V*,F) hence eval, € V**. Furthermore, the assignment
x +— eval, defines an explicit isomorphism of V' and V**. In other words, ¥ : V — V** defined by

(U(2))(a) = eval,(a) = a(x)

gives a bijective linear transformation from V to V**. In appropriate contexts, we sometimes just
write & = eval,. If I make this abuse, I'll warn you'|

The isomorphism = — eval, is natural in the sense that we could describe it without reference to a
choice of basis. This is also possible for V* if a metricﬁ is given with V. Naturality aside, we can
find an explicit isomorphism via the use a particular basis for V.

"in these notes that is... In §2.6 of Insel, Spence and Friedberg, the notation & is used for eval,.
8a metric on a real vector space is a nondegenerate symmetric bilinear map on V
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Definition 6.2.5.

Let 3 = {v1,v2,...,v,} form a basis for V over F. For each i = 1,2,...,n, define v*
V — F by linearly extending the formula v'(v;) = &;; for all j = 1,2,...,n. We say
B* = {v!,v% ..., v"} is the dual basis to 3.

The position of the indices uﬂ or dovvnlE indicates how the given quantity transforms when we
change coordinates. This notation is fairly popular in certain sectors of abstract math. We write
for 2 € V that the coordinates with respect to 3 = {v1,...,v,} are z!,... 2" in the sense that:

T = g 2oy = 2tog + - + 2",

I know this notation is a bit weird the first time you see it. Just keep in mind the upper-indices
are not powers. We ought to confirm that the dual basis is not wrongly labeled. You know, just
because I call something a basis it doesn’t make it so.

Proposition 6.2.6.

If B* = {v!,...,v"} is dual to basis 8 = {v1,...,v,} for V then:

(1) ifzx= Zagivi then e'(z) = '

=1

(ii.) B* is a linearly independent subset of V*

(iii.) span(f*) = V* and if a = Z a;v" then a(v;) = o for each o € V*
i=1

Proof: most of these claims follow from the defining formula v*(v;) = &;;. Suppose z = Z?:l zIv;
and calculate: by linearity of v* : V' — F we have:

n n n

Jo. | = Joyi(ay:) — IS — pt
Exvj —E:L‘v(v])—gzn&]—x.
j=1 j=1

j=1

To prove (ii.) suppose Y 1 ; ¢;v* = 0. Evaluate on vj,

(ZcZ ) vj) = 0(v;) ZCZ (vj)) =0 = ZCZZJ—O = ¢;=0.

Hence 5* is a LI subset of V*. By construction, it is clear that * C V* hence span(f*) C V*.
Conversely, suppose a € V*. Calculate: for x = Z?:l z7v;, by linearity of a and (i.)

n

n n n
)=« Z:L'ij = ija(v] Za (vj)v'(z) = a= Za(vj)vj
j=1 j=1 j=1

j=1

9up indices are called contravariant indices in physics
%down indices are called covariant indices in physics
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notice we have the desired formula as claimed in (iii.). We’ve shown V* C span(5*) thus V* =
span(£*). O

With the Proposition above in hand it is easy to provide an isomorphism of V and V*. Simply
define ¥ : V — V* by linearly extending the formula W¥(v;) = v* for i = 1,...,n. This makes ¥ an

isomorphism. Let me pause to include a few simple examples:

Example 6.2.7. Let a: F"*" — F be defined by a(A) = trace(A). Since the trace is a linear map
we have o € (F™*™)*.

Example 6.2.8. Let V = F(R) and z, € R. Define a(f) = f(x,). Notice, for f,g €V and c € R,

a(cf + g) = (Cf + g)(xo) = cf(*TO) + g(xo) = Ca(f) + a(g)
thus a € V'*.
Example 6.2.9. Let v € R™ and define a(x) = xev. It is easy to see « is linear hence o € (R™)*.

Example 6.2.10. If V = C[0, 1] then define a(f) = fol xf(x) dx. Observe

1 1 1
alef +9) = /0 £(ef () + g(x)) de = /0 £f(z) de + /0 2g(x)) dx = calf) + alg).

Thus o« € V*.

Definition 6.2.11.

If W <V then define the annihilator of W in V* by ann(W) = {a € V* | a(W) = 0}. ‘

The condition o(W) = 0 means a(w) = 0 for each w € W. There are many interesting theorems
we can state for annihilators. For instance, if Vi < V5 then ann(V2) < ann(V1). We explore some
such theorems in the homework.

Example 6.2.12. Consider V = R*. Let W = span{(1,1,1,1),(1,0,0,0)} then ann(W) = {a €
(RH* | a(1,1,1,1) =0 & «(1,0,0,0) = 0}. Thus, o € ann(W) has

a1=0 & ag+ast+az+as=0 = ay=—a3— oy

we deduce ann(W) = span{e? — e? et — €2}

Example 6.2.13. Consider V = R2*2 and let W be the symmetric 2 X 2 matrices. If o € ann(W)
then for A = AT we have a(A) = 0. In fact, the basis for W is given by {E11, F1a + Fo1, Eos}.
We can extend this to a basis for V' by adjoining E19 — Fo1. The dual basis to the standard matriz
basis is given by EY(Ey) = 0ix0;1. Notice, o = EY — E?1 is in the annihilator since:

a(A) = (B — B*')(A) = (B — E*")(A11E11 + A19E12 + A1 Eoy + AgaFog) = Ay — Agy = 0.

In fact, span{E'? — E?'} = ann(W).
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6.2.1 transpose of linear map and the up-down notation

The notation I used in Definition [3.3.6]is a perfectly good notation. However, the following notation
is popular in many good books:

Definition 6.2.14.

Let V(F) be a vector space with basis § = {v1,...,v,}. Let W(F) be a vector space with
basis v = {wi,...,wpy}. f T :V — W is a linear transformation then we define the matrix
of T with respect to 3,7 as [T]g € F™*" which is implicitly defined by

ng = ‘I)WC’TC’@? or [T]’BY = [T (v1)]4] - [T (vn)]4]-

Let’s examine how we can express the formula for a linear transformation in terms of the dual basis
and basis. Note we have identities x = Y I, v'(z)v; for any € V and y = 377" | w? (y)w; for any
yeW.

I
M s
NE
gh.
~
B
s
e@
&=

i=1 \j=1
_ ( ; i((mﬂxwm ()
i=1 j=1

Thus

In this formalism, the row-index j is written as a superscript whereas the column-index 7 is written
as a subscript. The formula

W (T(w)) = (([773)’

can be useful to derive formulas of coordinate change. Another rather neat aspect of this notation
is seen in the construction of the transpose of a linear transformation.

Theorem 6.2.15.

Suppose V and W are finite dimensional vector spaces with bases 8 and 7 respective. Further
suppose L : V — W is a linear transformation. Then L! : W* — V* given by

(LH(@)(v) = a(L(v))

. T
for each o € W* and v € V' defines a linear transformation such that [Lt]f . = ([L]g)
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Proof: suppose a,c € W* and x € V and ¢ € F then calculate

(L'(ca + 0))(z) = (ca+ 0)(L(x))
= ca(L(x ))+0(L(ﬂf)
= (cL¥(@)) (z) + (L'(0)) (=
= (eZ4(a) + 14(0)) ().

Therefore L*(ca+0)) = cL*(«) + L'(o). Similarly, we can verify (L'(a)) (cz +y) = ¢ (L'()) (z) +
(Lt(a)) (y) hence L! is indeed a mapping from W* to V* and L! is itself a linear map. Suppose
B =A{vi,...,vn} and v = {wy, ..., wy} are bases for V' and W respective and their dual basis are
denoted by 8* = {v!,...,v"} and v* = {w!,...,w™}. The matrix of L' : W* — V* with respect
to these bases is calculated via:

(L]0 = [[L @)+ [[EH(w™)] ]
Thus

coly([ L']7) = [L'(w')]s-
= (L' (w)(v1), ..., L (w') (vn))
= (wi(L(m)), . ﬂUi(L(Un)))

which provides the j-th component of the i-th column is:

(1212 = witwg) = (123)’

J

* T
Therefore, [Lt]f* = ([L]g) where T denotes the transpose of the matrix. [J
The up/down index notation is cute, but, I think I will forego this notation elsewhere. This section
is partly based on §2.6 of Insel, Spence and Friedberg. I believe there are a number of worthwhile
exercises to deepen our understanding of dual space. I will probably assign some of those.

6.3 multilinearity and the tensor product

A multilinear mapping is a function of a Cartesian product of vector spaces which is linear with
respect to each ”slot”. The goal of this section is to explain what that means. It turns out the set
of all multilinear mappings on a particular set of vector spaces forms a vector space and we’ll show
how the tensor product can be used to construct an explicit basis by tensoring a bases which are
dual to the bases in the domain. We also examine the concepts of symmetric and antisymmetric
multilinear mappings, these form interesting subspaces of the set of all multilinear mappings. Our
approach in this section is to treat the case of bilinearity in depth then transition to the case of
multilinearity. Naturally this whole discussion demands a familarity with the preceding section.



232 CHAPTER 6. ABSTRACT LINEAR ALGEBRA

6.3.1 Dbilinear maps

Definition 6.3.1.

Suppose Vi, Vo are vector spaces then b: V7 x Vo — R is a binear mapping on V; x V5 iff
for all z,y € Vi, z,w € Vo and ¢ € R:

(1) blecx+y,2z) = cb(z,z)+by,z) (linearity in the first slot)
(2.) blz,cz+w) = cb(z,z)+ bz, w) (linearity in the second slot).

bilinear maps on V x V

When Vi = Vo =V we simply say that b: V x V — R is a bilinear mapping on V. The set of
all bilinear maps of V' is denoted 7T 02 V. You can show that TO2 V forms a vector space under
the usual point-wise defined operations of function addition and scalar multiplicationEl Hopefully
you are familar with the example below.

Example 6.3.2. Define b: R" xR™ — R by b(z,y) =x -y for all xz,y € R™. Linearity in each slot
follows easily from properties of dot-products:

blecx+y,z)=(cx+y) - z2=cx-2+4+y-2z=ch(x,z)+ by, 2)
bx,cy+z)=x-(cy+z2)=cx-y+z-z=cblz,y)+ bz, z).
We can use matrix multiplication to generate a large class of examples with ease.

Example 6.3.3. Suppose A € R ™" and define b : R™ x R" — R by b(x,y) = =7 Ay for all
x,y € R™. Observe that, by properties of matriz multiplication,

blex +y,2) = (cx +y)T Az = (ca’ + yT)Az = caT Az + yT Az = cb(, 2) + b(y, 2)
bz, cy+z) = 2T A(cy + 2) = caT Ay + 2T Az = eb(x, y) + b(z, 2)
for all z,y,z € R™ and c € R. It follows that b is bilinear on R™.

Suppose b : V x V — R is bilinear and suppose § = {ej,e2,...,e,} is a basis for V' whereas
B* ={el, e, ...,e"} is a basis of V* with e/(e;) = &5

b(z,y) = b< Zzn;xlez jzn;yjej > (6.1)

= Z b(z'ei, ye;)

ij=1

4,j=1

= > bles ej)e’ (@) (y)
ij—=1

Therefore, if we define b;; = b(e;, e;) then we may compute b(z,y) = > 21", bijz'y’. The calculation

above also indicates that b is a linear combination of certain basic bilinear mappings. In particular,
b can be written a linear combination of a tensor product of dual vectors on V.

11 .
sounds like homework
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Definition 6.3.4.

Suppose V is a vector space with dual space V*. If o, 8 € V* then we define a®f : V xV —
R by (a® 8)(z,y) = a(z)B(y) for all z,y € V.

Given the notatiorﬂ preceding this definition, we note (¢! ® e/)(x,y) = e'(x)e’(y) hence for all
z,y € V we find:

b(x,y) = Z blei,e;)(e' ® /) (x,y) therefore, |b= Z bei, ej)e’ @ e

1,j=1 1,j=1

We ﬁndﬁ that T3V = span{e’ ® ej_}ijl- Moreover, it can be arguedﬁ that {e’ ® ej};fj:1 is a
linearly independent set, therefore {e' ® ej}?’jzl forms a basis for T; 02 V. We can count there are n?

vectors in {e’ ® e’ }ijl hence dim( T02 V) =n’

If V= R" and if {€'}"; denotes the standard dual basis, then there is a standard notation for

the set of coefficients found in the summation for b. In particular, we denote B = [b] where
Bij = b(e;, e;) hence, following Equation

bz,y) = i 'y’ blei, ) = Enj zn:wiBijyj =2"By

ij=1 i=1 j=1

Definition 6.3.5.

Suppose b: V x V — R is a bilinear mapping then we say:
1. b is symmetric iff b(x,y) = b(y,x) for all z,y € V

2. b is antisymmetric iff b(x,y) = —b(y,x) for all z,y € V

Any bilinear mapping on V' can be written as the sum of a symmetric and antisymmetric bilinear
mapping, this claim follows easily from the calculation below:

o) = 5 () +60:0) + 5 (o) b))

~
symmetric antisymmetric

We say S;; is symmetric in ¢, j iff S;; = S); for all ¢, j. Likewise, we say A;; is antisymmetric in
i,7iff A;; = —Aj; for all 4, 5. If S'is a symmetric bilinear mapping and A is an antisymmetric bilinear
mapping then the components of S are symmetric and the components of A are antisymmetric.
Why? Simply note:
S(ei,ej) = S(ej,e,;) = Sij = Sji
and
A(ei,ej) = —A(ej,ei) = Ai_j = _Aji'

You can prove that the sum or scalar multiple of an (anti)symmetric bilinear mapping is once more
(anti)symmetric therefore the set of antisymmetric bilinear maps A%(V) and the set of symmetric

12perhaps you would rather write (¢! ® e/)(x,y) as €' ® €’ (x,y), that is also fine.
3with the help of your homework where you will show {e’ ® e’ Yij=1 C TéV
1yes, again, in your homework
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bilinear maps STYV are subspaces of T9V. The notation A%(V) is part of a larger discussion on
the wedge product, we will return to it in a later section.

Finally, if we consider the special case of V' = R" once more we find that a bilinear mapping
b:R"xR" — R has a symmetric matrix [b]7 = [b] iff b is symmetric whereas it has an antisymmetric
matric [b]T = —[b] iff b is antisymmetric.

bilinear maps on V* x V*

Suppose h : V* x V* — R is bilinear then we say h € T02V. In addition, suppose 5 = {ej, ea,..., e}
is a basis for V whereas 8* = {e!,e?,...,e"} is a basis of V* with €’(e;) = &;;. Let o, 3 € V*

h(a, B) = h< gaiei, zz:lﬁjej ) (6.2)

= Z h(cue', Bjel)
ig=1

= Z aiﬁjh(ei, 63)

3,j=1
— Z h(e',e?)a(e;)B(e;)
ij—1

Therefore, if we define h"/ = h(e?,e’) then we find the nice formula h(a, 3) = doij=1 h¥ea;B;. To
further refine the formula above we need a new concept.

The dual of the dual is called the double-dual and it is denoted V**. For a finite dimensional vector
space there is a cannonical isomorphism of V' and V**. In particular, ® : V — V** is defined by
O (v)(a) = a(v) for all & € V*. It is customary to replace V' with V** wherever the context allows.
For example, to define the tensor product of two vectors x,y € V as follows:

Definition 6.3.6.

Suppose V is a vector space with dual space V*. We define the tensor product of vectors
x,y as the mapping x @ y : V* x V* 5 R by (z ® y)(«, 8) = a(z)B(y) for all z,y € V.

We could just as well have defined x ® y = ®(z) ® ®(y) where ® is once more the cannonical
isomorphism of V and V**. It’s called cannonical because it has no particular dependendence on
the coordinates used on V. In contrast, the isomorphism of R™ and (R")* was built around the
dot-product and the standard basis.

All of this said, note that a(e;)B(e;) = e; ® ej(a, B) thus,

h(a,ﬂ) = Z h(ei, ej)ei & ej(a, ﬁ) = |h= Z h(ei’ ej)ei ® e;

i,j=1 ,j=1

We argue that {e; ® e;}7,_; is a basiﬁ

""T§V is a vector space and we’ve shown Tj (V) C span{e; ® e;};';—; but we should also show e; ® e; € Tj and
check for LI of {e; ® e;}7 ;=1-
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Definition 6.3.7.

Suppose h : V* x V* — R is a bilinear mapping then we say:
1. h is symmetric iff h(«, 8) = h(5, ) for all o, € V*

2. h is antisymmetric iff h(«, 5) = —h(5, ) for all a, € V*

The discussion of the preceding subsection transfers to this context, we simply have to switch some
vectors to dual vectors and move some indices up or down. I leave this to the reader.

bilinear maps on V x V*

Suppose H : V x V* — R is bilinear, we say H € T}V (or, if the context demands this detail
H € T, 'V). We define a ® x € T} 1(V) by the natural rule; (o ® x)(y, 8) = a(z)B(z) for all
(y,B) € V. x V*. We find, by calculations similar to those already given in this section,

n n
H(y,p)= Y H’y'g; and H=)> H'cwe

i,j=1 ,j=1

where we defined H; I = Hiej,el).

bilinear maps on V* x V

Suppose G : V* x V — R is bilinear, we say G € T}V (or, if the context demands this detail
G € T',V). We define 2 ® @ € T*, V by the natural rule; (z ® a)(8,y) = B(x)a(y) for all
(B,y) € V* x V. We find, by calculations similar to those already given in this section,

GBy)=> G By’ and G=> G ;@6

i,j=1 i,j=1

where we defined G* = G(e', ej).

6.3.2 trilinear maps

Definition 6.3.8.

Suppose Vi, Va, V3 are vector spaces then T : V7 x Vo x V3 — R is a trilinear mapping on
Vi x Vo x Vs iff for all u,v € Vi, w,x € Va. y,z € V3 and ¢ € R:

(1.) T(cu+v,w,y) = I(u,w,y)+T(v,w,y) (linearity in the first slot)
(2.) T(u,cw+z,y) = (u,w,y)+T(u,z,y) (linearity in the second slot).
(3.) T(u,w,cy+2) = cI'(u,w,y)+T(u,w,z) (linearity in the third slot).

IfT:V xV xV — Ris trilinear on V x V x V then we say T is a trilinear mapping on V and
we denote the set of all such mappings T :.? V. The tensor product of three dual vectors is defined
much in the same way as it was for two,

(a®B@7)(,y,2) = a(z)B(y)V(2)
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Let {e;}" is a basis for V with dual basis {e!}?"; for V*. If T is trilinear on V it follows

n
T(z,y,z Z kax yl 2F and T= Z Tijke' ® €’ ® e*
1,5,k=1 1,5,k=1

where we defined Ty = T'(e;, ej,ex) for all 4,5,k € N,,.

Generally suppose that V7, V, V3 are possibly distinct vector spaces. Moreover, suppose Vi has basis
{ei};2,, V2 has basis {fj}~”21 and V3 has basis {gi};2,. Denote the dual bases for Vi*, V5", V5 in
the usual fashion: {e'}!",, {f7}" i1 {gF}7L,. With this notation, we can write a trilinear mapping
on Vi x Vi x V3 as follows: (where we define T55, = T'(es, fj, 9x))

ny n2 N3 ny n2 N3 ‘ ‘
T(z,y,z ZZZTZJkl‘yz and T:ZZZTUWZ@fJ@)Qk
i=1 j=1 k=1 i=1 j=1 k=1

However, if V1, V5, V3 happen to be related by duality then it is customary to use up/down indices.
For example, if T: V x V x V* — R is trilinear then we writ

n

i7j7k:1

and say T € Ty V. On the other hand, if S : V* x V* x V is trilinear then we’d write

n
T = Z S e ®e;®er
i joh=1

and say T € T?,V. I'm not sure that I've ever seen this notation elsewhere, but perhaps it could
be useful to denote the set of trinlinear maps T : V x V* x V — R as Ty}, V. Hopefully we will
not need such silly notation in what we consider this semester.

There was a natural correspondance between bilinear maps on R™ and square matrices. For a
trilinear map we would need a three-dimensional array of components. In some sense you could
picture T : R™ x R™ x R” — R as multiplication by a cube of numbers. Don’t think too hard
about these silly comments, we actually already wrote the useful formulae for dealing with trilinear
objects. Let’s stop to look at an example.

Example 6.3.9. Define T : R? x R? x R? = R by T(z,y,2) = det(z|y|z). You may not have
learned this in your linear algebra courselzl but a nice formulﬂ for the determinant is given by the

Levi-Civita symbol,
3

det(A) = Z €ijk A Ajo A3
i k=1

18we identify e with its double-dual hence this tensor product is already defined, but to be safe let me write it out

in this context ¢’ ® e/ ® ex(x,y, @) = e (x)e? (y)aler).

Y maybe you haven’t even taken linear yet!

18actually, I take this as the definition in linear algebra, it does take considerable effort to recover the expansion
by minors formula which I use for concrete examples
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note that coli(A) = [Ai1], cola(A) = [Ai2] and col3(A) = [Ais]. It follows that

3
—
T(xayVZ)Z E Eijkxlyjz
ij,k=1

Multilinearity follows easily from this formula. For example, linearity in the third slot:

3
T(x,y,cz+w) = E eijna'y! (cz +w)F
i g1
3
= E eina’y? (c2F + wh)
i g1
3 3
=c E eijk:zzy]zk + E (—:Z'jk:zzy]wk
1,7,k=1 1,7,k=1

=dl(z,y,2) + T(z,y,w).

Observe that by properties of determinants, or the Levi-Civita symbol if you prefer, swapping a pair
of inputs generates a minus sign, hence:

T(l’,y,Z) = —T(y,l‘,Z) = T(y,z,:z:) = —T(Z,y,l‘) = T(Z,.%,y) = —T(LL',Z,y)
IfT:V xV xV — Ris a trilinear mapping such that
T(l"’y, Z) = —T(y,x,z) = T(y,z,x) = —T(Z,y,.l‘) = T(vaay) = _T(xwzay)

for all ,y,z € V then we say T is antisymmetric. Likewise, if S: V x V x V — R is a trilinear
mapping such that

S(‘T’yvz) = _S(y,ﬂ}‘,Z) = S(y,Z,CC) = —S(Z,y,l‘) = S(Z,S[T,y) = —S(CC,Z,y)-

for all z,y,z € V then we say T is symmetric. Clearly the mapping defined by the determinant
is antisymmetric. In fact, many authors define the determinant of an n X n matrix as the antisym-
metric n-linear mapping which sends the identity matrix to 1. It turns out these criteria unquely
define the determinant. That is the motivation behind my Levi-Civita symbol definition. That
formula is just the nuts and bolts of complete antisymmetry.

You might wonder, can every trilinear mapping can be written as a the sum of a symmetric and
antisymmetric mapping? The answer is no. Consider T : V xV xV — R defined by T = e! ®e?®e3.
Is it possible to find constants a, b such that:

el =l @@ el @e?2®e®

where [...] denotes complete antisymmetrization of 1,2,3 and (...) complete symmetrization:

1
el we?wed = s [6123 L2l B12 321 213 6132]

For the symmetrization we also have to include all possible permutations of (1,2, 3) but all with +:

6(1 ® 62 ® 63) — é [6123 + 6231 + 6312 + 6321 + 6213 + 6132]
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As you can see:

a+b
6

b—a

(€321 4 213 4 (132)
6

aell ®e2® e’ +bel @ e ® e = (6123 + ¥ 4 6312) +
There is no way for these to give back only e' ® e? ® e3. I leave it to the reader to fill the gaps
in this argument. Generally, the decomposition of a multilinear mapping into more basic types is
a problem which requires much more thought than we intend here. Representation theory does
address this problem: how can we decompose a tensor product into irreducible pieces. Their idea
of tensor product is not precisely the same as ours, however algebraically the problems are quite
intertwined. TI’ll leave it at that unless you’d like to do an independent study on representation
theory. Ideally you’d already have linear algebra and abstract algebra complete before you attempt

that study.

6.3.3 multilinear maps

Definition 6.3.10.

Suppose Vi, Vs, ...V}, are vector spaces then T': V7 x Vo x - -+ XV}, — R is a k-multilinear
mapping on V; x Vo x - - x V} iff for each ¢ € R and x1,y1 € Vi, x2,y2 € Vo, ..., T,y € Vi

T(x1,...,cxj +yj,...,x5) =cT(x1,..., 25, ...,25) + T(T1,...,Yjs. .., Tk)

for j = 1,2,...,k. In other words, we assume 7' is linear in each of its k-slots. If T is
multilinear on V" x (V*)* then we say that T € T° V and we say T is a type (r, s) tensor
on V.

The definition above makes a dual vector a type (1,0) tensor whereas a double dual of a vector a
type (0,1) tensor, a bilinear mapping on V' is a type (2,0) tensor and a bilinear mapping on V* is
a type (0,2) tensor with respect to V.

We are free to define tensor products in this context in the same manner as we have previously.
Suppose a1 € Vi, as € V5, ... ap € V7 and vy € Vy,v3 € Vo, ..., v, € V}, then

a1 ®ag® - ® og(vi,v2,...,v,) = ar(vy)az(ve) - - - oy ()

It is easy to show the tensor produce of k-dual vectors as defined above is indeed a k-multilinear
mapping. Moreover, the set of all k-multilinear mappings on Vi x Vo x -+ x Vi clearly forms a
vector space of dimension dim(Vy)dim/(V2) - - - dim(V}) since it naturally takes the tensor product of
the dual bases for Vi*, V', ..., V" as its basis. In particular, suppose for j = 1,2,...,k that V; has
basis {E;i},2, which is dual to {EJZ}:Z ; the basis for V;*. Then we can derive that a k-multilinear
mapping can be written as

ni n2 Nk

i1=112=1 =1

If T is a type (r,s) tensor on V then there is no need for the ugly double indexing on the basis
since we need only tensor a basis {e;}"; for V and its dual {e'}"_; for V* in what follows:

n n
T — Z Z TJIJQ"ijseil ®€i2®"‘®eir®ej1 ®€j2®.”®€js‘

11%2...0p
i1yir =1 j1,ede=1
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permutations

Before I define symmetric and antisymmetric for k-linear mappings on V' I think it is best to discuss
briefly some ideas from the theory of permutations.

Definition 6.3.11.

A permutation on {1,2,...p} is a bijection on {1, 2,...p}. We define the set of permutations
on {1,2,...p} to be ¥,. Further, define the sign of a permutation to be sgn(c) =1 if o is
the product of an even number of transpositions whereas sgn(o) = —1 if o is the product
of a odd number transpositions.

Let us consider the set of permutations on {1,2,3,...n}, this is called S,, the symmetric group,
its order is n! if you were wondering. Let me remindlﬂ you how the cycle notation works since it
allows us to explicitly present the number of transpositions contained in a permutation,

a:@ ’ g b . g) s o= (12)(356) = (12)(36)(35) (6.3)

recall the cycle notation is to be read right to left. If we think about inputing 5 we can read from
the matrix notation that we ought to find 5 — 6. Clearly that is the case for the first version of
o written in cycle notation; (356) indicates that 5 — 6 and nothing else messes with 6 after that.
Then consider feeding 5 into the version of o written with just two-cycles (a.k.a. transpositions ),
first we note (35) indicates 5 — 3, then that 3 hits (36) which means 3 — 6, finally the cycle (12)
doesn’t care about 6 so we again have that o(5) = 6. Finally we note that sgn(c) = —1 since it is
made of 3 transpositions.

It is always possible to write any permutation as a product of transpositions, such a decomposition
is not unique. However, if the number of transpositions is even then it will remain so no matter
how we rewrite the permutation. Likewise if the permutation is an product of an odd number of
transpositions then any other decomposition into transpositions is also comprised of an odd number
of transpositions. This is why we can define an even permutation is a permutation comprised by
an even number of transpositions and an odd permutation is one comprised of an odd number of
transpositions.

Example 6.3.12. Sample cycle calculations: we rewrite as product of transpositions to deter-
min if the given permutation is even or odd,

o = (12)(134)(152) = (12)(14)(13)(12)(15) = sgn(o) = —1
A = (1243)(3521) = (13)(14)(12)(31)(32)(35) = sgn(\) =1
~ = (123)(45678) = (13)(12)(48)(47)(46)(45) = sgn(y) =1

We will not actually write down permutations in the calculations the follow this part of the notes.
I merely include this material as to give a logically complete account of antisymmetry. In practice,
if you understood the terms as the apply to the bilinear and trilinear case it will usually suffice for
concrete examples. Now we are ready to define symmetric and antisymmetric.

19or perhaps, more likely, introduce you to this notation
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Definition 6.3.13.

A k-linear mapping L : V x V x --- x V — R is completely symmetric if
L(z1,...,x,. .,y yx) = L(x1, .o,y ooy Ty o Tk)

for all possible x,y € V. Conversely, if a k-linear mapping on V has
L(zy,...,2z,...,y,...,xp) = =L(z1,...,Y,..., &, ..., Tp)

for all possible pairs x,y € V then it is said to be completely antisymmetric or alter-
nating. Equivalently a k-linear mapping L is alternating if for all 7 € 3,

L(xr, Tryy -y Txp) = Sgn(m)L(x1, 22, ..., Tk)
The set of alternating multilinear mappings on V' is denoted AV, the set of k-linear alter-

nating maps on V is denoted A¥V. Often an alternating k-linear map is called a k-form.
Moreover, we say the degree of a k-form is k.

Similar terminology applies to the components of tensors. We say T;,;,.. s, is completely symmetric
indy,io,. .., 0 i Ty b = Tia(l)ia(g)---io(k) for all o € 3. On the other hand, T;,;,. ;, is completely
antisymmetric in 41,142, .. 4 iff Tj4,. 4, = sgn(a)Tiv(l)iU ooy fOr all o € g, It is a simple
exercise to show that a completely (anti)symmetric tensor*’| has completely (anti)symmetric com-

ponents.

The tensor product is an interesting construction to discuss at length. To summarize, it is asso-
ciative and distributive across addition. Scalars factor out and it is not generally commutative.
For a given vector space V we can in principle generate by tensor products multilinear mappings
of arbitrarily high order. This tensor algebra is infinite dimensional. In contrast, the space AV of
forms on V' is a finite-dimensional subspace of the tensor algebra. We discuss this next.

6.4 wedge product

We assume V' is a vector space with basis {e; }} ; throughout this section. The dual basis is denoted
{e! i, as is our usual custom. Our goal is to find a basis for the alternating maps on V' and explore
the structure implicit within its construction. This will lead us to call QV the exterior algebra
of V after the discussion below is complete. I should mention, the approach here is inelegant and
concrete. There are far more efficient, slick, and imcomprehensible ways to build QV using abstract
algebra. I encourage the reader to seek those out once they know more abstract algebra. To give
a sketch, basically any algebraic object you wish to construct can be built from forming an appro-
priate quotient where you divide by whatever you wish to treat as zero. We examine this concept
of ® or A defined via a formal quotient in Math 422 if anywhere.

6.4.1 wedge product of dual basis generates basis for AV

Suppose b: V x V — R is antisymmetric and b = ZZJ':1 bz-jei ® e/, it follows that b;j = —bj; for all

1,7 € N,,. Notice this implies that b; = 0 for ¢ = 1,2,...,n. For a given pair of indices i, j either

2%n this context a tensor is simply a multilinear mapping, in physics there is more attached to the term
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1< jorj<iori=j hence,

b= Zbijei ®€j +sz’j€i ®€j + Zbijei ®€‘j

1<J 7<i =]
1<J 1<t
= Z bijei ® el — Z bjiei X el
1<J 1<t
= Z bklek (%9 el — Z bklel & ek
k<l k<l
= Z bkl(ek ® el — ¢ & ek). (6.4)
k<l

Therefore, {eF @ ¢! — e! @ e¥|l,k € N,, and [ < k} spans the set of antisymmetric bilinear maps on
V. Moreover, you can show this set is linearly independent hence it is a basis fo A2V. We define
the wedge product of € A el = eF @ el — el @ e¥. With this notation we find that the alternating
bilinear form b can be written as

n

1.

b= Z bklek Ael = Z ibijez A el
k<l i,7=1

where the summation on the r.h.s. is over all indice@ Notice that e A ¢/ is an antisymmetric
bilinear mapping because e A e/(x,y) = —e’ A e/ (y, z), however, there is more structure here than
just that. It is also true that e’ A e/ = —e/ A e’. This is a conceptually different antisymmetry, it
is the antisymmetry of the wedge produce A.

Suppose b : V x V x V — R is antisymmetric and b = sz’kzl bijkei ® el ® e, it follows that
bijk = bj]ﬂ‘ = bkij and bijk; = —bkﬁ = _bjik = bikj for all 7,7,k € N,,. Notice this implies that
biii = 0 for ¢ = 1,2,...,n. A calculation similar to the one just offered for the case of a bilinear
map reveals that we can write b as follows:

b= Z bijk<ei®ej®ek+ej®ek®ei+ek®ei®ej
i<j<k
—ek®ej®ei—ej®ei®ek—ei®ek®ej) (6.5)

Define ei/\ej/\ek :ei®ej®ek+ej®ek®ei+ek®ei®ej—ek®ej®ei—ej®ei®ek—ei®ek®ej
thus

n

S 1 S
b= E bije’ Nel A e = g gbz‘jkez Ael A eF (6.6)
i<j<k ij,k=1 """

and it is clear that {e! Ae/ Ae¥ | 4,5,k € N, and i < j < k} forms a basis for the set of alternating
trilinear maps on V.

2lyes there is something to work out here, probably in your homework
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Following the patterns above, we define the wedge product of p dual basis vectors,
i1 12 . ip i (1) in(2) e in(p)
et Ne?N--Ne Zﬂezpsgn(w)e ®eT - Qe (6.7)
If x,y € V we would like to show that
ETNERN NPy, )= €T AER AN (L Ly, ) (6.8)

follows from the complete antisymmetrization in the definition of the wedge product. Before we
give the general argument, let’s see how this works in the trilinear case. Consider, e’ A e/ A e¥ =

:ei®ej®ek+ej®ek®ei+ek®ei®ej—ek®ej®ei—ej®ei®ek—ei®ek®ej.

Calculate, noting that €' ® e/ ® e¥(z,y,2) = €' (z)e’ (y)eF(2) = 2y’ 2* hence

NI NeF(x,y,2) = alyl 2P+ alyF L 4 aFyis) — abylat — adyi gl
Thus,
NI NeF(x, z,y) = 2l yF + 1l Ryt 4 aF Ry — byt — ad Rk — atey
and you can check that e’ Ael A eF (1,y,2) = —€e' Al NeF (z, z,y). Similar tedious calculations prove

antisymmetry of the the interchange of the first and second or the first and third slots. Therefore,
e’ A el AeF is an alternating trilinear map as it is clearly trilinear since it is built from the sum of
tensor products which we know are likewise trilinear.

The multilinear case follows essentially the same argument, note

e NN NER(. .. Ty Thy e ) = ZWEE Sgn(w)leru) .. 'Z,U;ﬂ(j) ,..x;:(k) . .x;w(m (6.9)
ya
whereas,
el A2 A A eip(' Ty ey Ty ) — Z s Sgn(a)mif(l) -"x;”““) ,..x;v(g') .. .x;a(m' (6.10)
gCZp

Suppose we take each permutation o and subsitute 6 € ¥, such that o(j) = §(k) and o(k) = 6(j)
and otherwise ¢ and o agree. In cycle notation, d(jk) = o. Substitution § into Equation

eil/\eiQ/\-~~/\ei”(...,azk,...,xj,...)
:Za . sgn(6(jk))a} t5(1) --mf(")--m;‘”’“) ._.x;)é(m
_ 6(1) Zé(k) 5 (5) t5(p)
_—Zézsgn ey
:—e“/\e”/\---/\e”’(...,xj,...,a;k,...) (6.11)

Here the sgn of a permutation o is (—1)" where N is the number of cycles in o. We observed
that ¢( ]k) has one more cycle than § hence sgn(d(jk)) = —sgn(d). Therefore, we have shown that
e Ne N Netr € APV

Recall that ¢! A e/ = —el A€’ in the p = 2 case. There is a generalization of that result to the
p > 2 case. In words, the wedge product is antisymetric with respect the interchange of any two
dual vectors. For p = 3 we have the following identities for the wedge product:

ei/\ej/\ek:—ej/\ei/\ek:ej/\ek/\ei:—ek/\ej/\ei:ek/\ei/\ej:—ei/\ek/\ej
N—— N—— N—— N—— N——

swapped swapped swapped swapped swapped
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I’ve indicated how these signs are consistent with the p = 2 antisymmetry. Any permutation of
the dual vectors can be thought of as a combination of several transpositions. In any event, it is
sometimes useful to just know that the wedge product of three elements is invariant under cyclic
permutations of the dual vectors,

enednef=el NP net =eF net Ned
and changes by a sign for anticyclic permutations of the given object,
enednef =—el NetNeb = —eFnel nel = —ef NeF Al

Generally we can argue that, for any permutation 7 € 3,:

ETNERN-- A = sgn(m)eltD) A A A el

This is just a slick formula which says the wedge product generates a minus whenever you flip two
dual vectors which are wedged.

6.4.2 the exterior algebra

The careful reader will realize we have yet to define wedge products of anything except for the dual
basis. But, naturally you must wonder if we can take the wedge product of other dual vectors or
morer generally alternating tensors. The answer is yes. Let us define the general wedge product:

Definition 6.4.1. Suppose a € APV and 3 € A?V. We define I, to be the set of all increasing lists
of p-indices, this set can be empty if dzm(V) is not sufficiently large. Moreover, if I = (i1, 12,...,ip)
then introduce notation el = e A2 A --- A et hence:

1 . N .
o = Z Hailhmil,e“ ANe2AN---Ner :Z—oqe Z aje

Q1,090 ip=1 I I€T,

and
n

1 , 1
= D Bimge NeEA Nt =3 el = 3 Bye
J1,J250dq=1 J JETL,

Naturally, ' Ne? = et Ae2 A--- Nete Aelt NeB2 A -+ A ela and we defined this carefully in the

preceding subsection. Define a A 3 € APTIV as follows:

alNp= ZZ OqBJe Ae’

Again, but with less slick notation:

n n
1 : : . :
aNf= Z Z p'qlazm ipBira.. ]qe PAETA - AET N NN A

11,02, yip=1 J1,52;--1Jq=1

All the definition above really says is that we extend the wedge product on the basis to distribute
over the addition of dual vectors. What this means calculationally is that the wedge product obeys
the usual laws of addition and scalar multiplication. The one feature that is perhaps foreign is the
antisymmetry of the wedge product. We must take care to maintain the order of expressions since
the wedge product is not generally commutative.
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Proposition 6.4.2.

Let a, 8, be forms on V and ¢ € R then

(7) (a+B)ANy=aAy+ LAy distributes across vector addition
(74) ahN(B+vy)=aAB+aAy distributes across vector addition
(7i7) (ca) N\B=aA (cB)=c(anp) scalars factor out
(iv) alN(BAY)=(aAB) Ay associativity

I leave the proof of this proposition to the reader.

Proposition 6.4.3. graded commutivity of homogeneous forms.

Let a, 8 be forms on V of degree p and q respectively then

aANB=—-(-1PIgAa

Proof: suppose a =) ; %el is a p-formon V and =3, %e‘] is a g-form on V. Calculate:

alp= ZZ—(M@]@ Aet

by defn. of A,

= E E 7@10416 Ae’ coeflicients are scalars,

quZ—Bjoqe Ael

= (-1P5 A
Let’s expand in detail why e/ A el = (=1)P%! A e’/. Suppose I =
(J1,72+ -+, Jq), the key is that every swap of dual vectors generates a sign:
el Nel =et Ne2 A AeP At Ne2 A N el

= (=1)9et A2 A AePTI A A2 A Nede Al

= (—1)9(=1)%et A2 A A2 ATt N2 A AedT A ettt Aetr

= (=119 (=)t NP2 A AT AT N2 A

p—factors
= (—1)Pe’ nel.

Example 6.4.4. Let o be a 2-form defined by
a=ae' Ae? +be? Aed

And let B be a 1-form defined by
B = 3¢t

(1,12, ...

A et

9

(details on sign given below)

ip) and J =
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Consider then,
aAB = (aet Ae? +be? Aed) A (3eh)
= (3aet ANe? Ael +3be? Ned A el (6.12)
= 3bel Ae? A el
whereas,
BAa =3et A(aet Ae?+ be? Aed)
= (3ae' ANel Ae? +3bel Ae? Aed (6.13)

s0 this agrees with the proposition, (—1)P1 = (—=1)2 = 1 so we should have found that a A3 = B A .
This illustrates that although the wedge product is antisymmetric on the basis, it is not always
antisymmetric, in particular it is commutative for even forms.

The graded commutivity rule a A 3 = —(—1)??3 A « has some suprising implications. This rule is
ultimately the reason AV is finite dimensional. Let’s see how that happens.

Proposition 6.4.5. linear dependent one-forms wedge to zero:

‘Ifa,ﬁev*anda:cﬁforsomeceRthena/\B:O. ‘

Proof: to begin, note that 5 A 5 = —F A hence 26 A 8 = 0 and it follows that 8 A 8 = 0. Note:
aNB=cBANB=rc0)=0
therefore the proposition is true. [

Proposition 6.4.6.

Suppose that a1, as, ..., a, are linearly dependent 1-forms then

ar Nag N\ -+ Nay = 0.

Proof: by assumption of linear dependence there exist constants cq,ca,...,c, not all zero such
that
craq + cop + - - cpay = 0.

Suppose that ¢ is a nonzero constant in the sum above, then we may divide by it and consequently
we can write g in terms of all the other 1-forms,
-1

o = o (cloq + -+ cp10k—1 + Qg + o0+ Cpozp)
k

Insert this sum into the wedge product in question,

arNag A...Napy =ar Nas A NagN--- Nay
=(—ci/er)oa Nag A=~ Nag A=+ Aoy
+(—co/cp)or Aaa A== Nag A+~ N + -
H(—cp—1/ck)or Aag A= Nag—1 A+ Nay (6.14)
+H(—cCpri/ck)or Aaa A= Nogypr A AN + -+
+(—cp/ex)or Aaa A== Nap A+ N ay
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We know all the wedge products are zero in the above because in each there is at least one 1-form
repeated, we simply permute the wedge products till they are adjacent and by the previous propo-
sition the term vanishes. The proposition follows. [J

Let us pause to reflect on the meaning of the proposition above for a n-dimensional vector space
V. The dual space V* is likewise n-dimensional, this is a general result which applies to all finite-
dimensional vector space@ Thus, any set of more than n dual vectors is necessarily linearly
dependent. Consquently, using the proposition above, we find the wedge product of more than n
one-forms is trivial. Therefore, while it is possible to construct A*V for k > n we should understand
that this space only contains zero. The highest degree of a nontrivial form over a vector space of
dimension n is an n-form.

Moreover, we can use the proposition to deduce the dimension of a basis for APV, it must consist
of the wedge product of distinct linearly independent one-forms. The number of ways to choose p
distinct objects from a list of n distinct objects is precisely "n choose p”,

n n!
= for 0 <p<n. 6.15
<P> (n—p)'p! =P= (6.15)

Proposition 6.4.7.

If V is an n-dimensional vector space then A*V is an (")—dimensional vector space of p-
forms. Moreover, the direct sum of all forms over V has the structure

QV=RoA'Ve - -A" VAV

and is a vector space of dimension 2"

Proof: define A°V = R then it is clear A*V forms a vector space for k = 0,1,...,n. Moreover,
AV N APV = {0} for j # k hence the term ”direct sum” is appropriate. It remains to show
dim(AV') = 2" where dim(V) = n. A natural basis 8 for QV is found from taking the union of the
bases for each subspace of k-forms,

B={l,e" et ne2 .. e NN Ne | 1< <ip<--- <, <n}

But, we can count the number of vectors IV in the set above as follows:

weteas (D) en ()4 ()

Recall the binomial theorem states
n
(at+b)"=>" <Z> a" b = a" 4 na" b4 - 4 nab™ Tt b
k=0
Recognize that N = (1 + 1)™ and the proposition follows. [J
We should note that in the basis above the space of n-forms is one-dimensional because there is

only one way to choose a strictly increasing list of n integers in N,,. In particular, it is useful to note
A"V = span{e! Ne? A---Ne™}. The form e! Ae? A--- Ae™ is sometimes called the the top—fornﬂ

2Zhowever, in infinite dimensions, the story is not so simple
20r volume form for reasons we will explain later, other authors begin the discussion of forms from the consideration
of volume, see Chapter 4 in Bernard Schutz’ Geometrical methods of mathematical physics
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Example 6.4.8. exterior algebra of R? Let us begin with the standard dual basis {e',e*}. By
definition we take the p = 0 case to be the field itself; A°V = R, it has basis 1. Neat, A1V =
span(et,e?) = V* and A2V = span(e! A €?) is all we can do here. This makes AV a 22 = 4-
dimensional vector space with basis

{1,e!,e2 el A%}

Example 6.4.9. exterior algebra of R® Let us begin with the standard dual basis {e',e?, e3}.

By definition we take the p = 0 case to be the field itself: A°V = R, it has basis 1. Next, A'V =

span(el,e?, e3) = V*. Now for something a little more interesting,

A%V = span(e' Ae? et Aed e? Ae?)

and finally,
A3V = span(e' Ae? Ae?).

This makes AV a 2% = 8-dimensional vector space with basis
{1,eh,e2,e3 et Ae? et Aed e A et Ae? A ed)
it 1s curious that the number of independent one-forms and 2-forms are equal.

Example 6.4.10. exterior algebra of R* Let us begin with the standard dual basis {e', €2, e3, e*}.

By definition we take the p = 0 case to be the field itself: A°V = R, it has basis 1. Next, A'V =

span(el,e?,e3,et) = V*. Now for something a little more interesting,

A%V = span(e! Ae? et Aed el Net e A e? Neted Aet)
and three forms,
A3V = span(e! ANe2 Aed el Ne?2 Aet et Aed Aet e Aed Aet).

and A3V = span(e! Ne? Ne3). Thus AV a 2* = 16-dimensional vector space. Note that, in contrast
to R3, we do not have the same number of independent one-forms and two-forms over R*.

Let’s explore how this algebra fits with calculations we already know about determinants.

Example 6.4.11. Suppose A = [A1]|Az]. I propose the determinant of A is given by the top-form

on R? via the formula det(A) = (e! A e?)(A1, A3). Suppose A = [ Z Z ] then A1 = (a,c) and

Ag = (b,d). Thus,

det [ Z Z ] = (e! A e?)(Ay, As)

= ad — be.

I hope this is not surprising!
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Example 6.4.12. Suppose A = [A1]|A3|As]. I propose the determinant of A is given by the top-
form on R3 via the formula det(A) = (e! Ne2 Ae3) (A1, As, A3). Let’s see if we can find the expansion
by cofactors. By the definition we have e* A e? A e? =

=l +eleedel+ldeedl el —Boelre —?el®e’ —el@ed®e?
=@l -Eoe?) - ol et @ -l
—el@(®Aed) -2 (el Ae)+ e @ (el Ae?).

1 submit to the reader that this is precisely the cofactor expansion formula with respect to the first

a b c
column of A. Suppose A = | d e f | then Ay = (a,d,g), Ay = (b,e,h) and A3 = (c, f,1).
g h 1

Calculate,

det(A) = e'(A1)(e* A €®)(Ag, A3) — e2(A1)(e! A e?)(Ag, A3) + 3(A1)(e! A w?)(Ag, A3)
= a(e? N e3)(Ag, A3) — d(e* A e3)(Ag, A3) + g(e! A w?)(Ag, Az)
=a(ei — fh) —d(bi — ch) + g(bf — ce)

which is precisely my claim.

6.4.3 connecting vectors and forms in R?
There are a couple ways to connect vectors and forms in R3. Mainly we need the following maps:

Definition 6.4.13.

Given v =< a,b,c >€ R3 we can construct a corresponding one-form w, = ae' + be? + ce?
or we can construct a corresponding two-form &, = ae? A e+ bed3 A el + cel A e?

Recall that dim(A'R3) = dim(A%R3) = 3 hence the space of vectors, one-forms, and also two-
forms are isomorphic as vector spaces. It is not difficult to show that wy, 4cp, = wy, + cwy, and
Dyitev, = Py, + Py, for all vy, vy € R3 and ¢ € R. Moreover, w, = 0 iff v = 0 and &, = 0 iff
v = 0 hence ker(w) = {0} and ker(®) = {0} but this means that w and ® are injective and since
the dimensions of the domain and codomain are 3 and these are linear transformations?¥ it follows
w and ® are isomorphisms.

Example 6.4.14. Supposev =< 2,0,3 > andw =< 0,1,2 > then w, = 2e'+3e> and w,, = e>+2¢3.
Calculate the wedge product,
Wy Awy = (2¢ 4 3€®) A (e® + 2¢3)
= 2e! A (€ +2€3) + 3e3 A (e + 2¢3)
=2t Ae?ddel NedP 3P Ae? 63 A e
=32 Nned —4e3 Nel 4+ 2e! AP
=P 342>

= By (6.16)

Coincidence? Nope.

24this is not generally true, note f(x) = 2 has f(x) = 0 iff z = 0 and yet f is not injective. The linearity is key.
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Proposition 6.4.15.

Suppose v, w € R3 then wy, A wy = Pyxw Where v x w denotes the cross-product which is
defined by v x w = Z?,j,k:l e .

Proof: sounds like an enjoyable homework problem. I leave it for the reader. .

6.5 an introduction to algebra

Intuitively, I view an algebra as a set of generalized numbers which allow addition and multiplication
in a way which is similar to our common number systems such as R or C. However, the general
definition of an algebra probably forbids the phrase similar for many practioners of mathematics
since in general algebras include multiplications which are non-associative and noncommutative.
Let us state a formal definition for our reference:

Definition 6.5.1.

An algebra is a vector space over a field F which has a multiplication x : A x A — A.
We assume the multiplication satisfies distributive properties:

rx(y+z)=xzxy+a*z & (x4+y)*z=cx2+y*xz

for all z,y,z € A. We also assume scalar multiplication and * interact in the following
fashion:

c(zxy) = (cx)*y =z * (cy)
for all ¢ € F and z,y € A. If there exists I € A for which [ xx = x = x x I for each
x € A then A is unital with multiplicative identityﬁ I If x%x(y*z)=(zxy)*z for all
z,y,2 € A then A is an associative algebra. If x xy = yxz for all z,y € A then A is a
commutative algebra.

In practice, we often use juxtaposition to denote the multiplication in an algebra.

Example 6.5.2. Let F™"*™ with multiplication given by the usual matriz multiplication. Then F™"*™"
18 an associative unital algebra where the multiplicative identity is the identity matriz.
Example 6.5.3. Complex numbers C form an algebra with multiplication defined by
(x +iy)(a+1ib) = xa — yb+ i(xzb + ya).
Here i = —1 and this is a commutative, associative algebra with multiplicative identity 1. Since

every nonzero element has a multiplicative identity, the complex number system is an example of a
field.

Example 6.5.4. Hyperbolic numbers H form an algebra with multiplication defined by
(z + jy)(a+ jb) = za + yb + j(xb + ya)

Here j2 = 1 and this is a commutative, associative algebra with multiplicative identity 1. Notice
G+D(G—-1)=42-1=0wyetj+1,j—1%#0. Thus j £1 cannot have a multiplicative inverse.
Elements like j £ 1 are zero divisors. It turns out that z = x + jy with y = *x give all the zero
divisors in ‘H. The hyperbolic numbers are not a field.
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Example 6.5.5. Null numbers I' form an algebra with multiplication defined by

(x +ey)(a+eb) = xa+ e(xb+ ya)

Here €2 = 0 and this is a commutative, associative algebra with multiplicative identity 1. Null

numbers are not a field since € # 0 yet €2 = 0 means € is a zero-divisor. There are many zero
divisors, I leave it for the reader to find a complete description.

Example 6.5.6. Let A =TF" where

(xlv cee 727”) * (3/17 cee ,?/n) — (ﬁlyla ... 7xnyn)

This is known as the direct product algebra. It defines an associative, commutative algebra
where the multiplicative identity is given by (1,...,1).

If we study R? with the direct product algebra then we can show it is isomorphic to an earlier
example. Which do you think it is 7 I suppose I should define isomorphic in this context. In
general the term isomorphism has different meanings in different context, but it always means a
structure-preserving bijection. The question is, which structure.

Definition 6.5.7.

Two algebras A and B are said to be isomorphic if they are isomorphic as vector spaces
with an isomorphism ¥ : A — B for which V(z xy) = VU(z) » U(y) for all z,y € A. To
be more pedantic, if A has multiplication x4 and B has multiplication xg then we require
U(zxay) = ¥(z)*p ¥(y)

Here is an example of an algebra isomorphism we have already studied this term.

Example 6.5.8. Let V' be a vector space of dimension over F. Recall L(V') is the set of all linear
transformations on V. If T, S € L(V') then notice T~ S € L(V) and

(T1+T2)°S:T105—|—T2°S & To(Sl—I-SQ):TOSl—I-TOSQ

Moreover, To(SeR) = (T°S)°R hence ° is associative. Composition is unital since Idy : V — V
where Idy(x) = x has Teoldy = T = Idy°T. If dim(V) = n then there exists a basis [ =
{vi,...,vn} for V and the mapping V(T') = [T g defines an isomorphism of L(V) and F"*" as
associative algebras over F. Likewise, ¥ : L(F™) — F"*" given by W(T') = [T] gives an isomorphism.

There is much more to say about algebras, but I will restrain myself to stop here. Feel free to ask
me more in office hours if you are interested. There is a later chapter in Dummit and Foote where
some deeper theory can be found, but probably that will make better sense after you've worked
through Math 421.

I’'m mostly including this brief introduction as a set-up for the exterior algebra which is our primary
interest. Essentially, the exterior algebra is equivalent to the theory of determinants. Since you
saw the low-tech theory of determinants in the elementary matrix course, I think it is interesting
to attack determinants here in a vary different fashion. I got the idea for this chapter from Mortin
Curtis’ Abstract Linear Algebra which is a delightful little book which I might use as the required
textbook some future term.
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6.6 wedge product and determinants

Remark: this section does not treat the wedge product as multilinear maps. Here we describe
QV as a formal algebraic system which we use to ultimately define the determinant. In the early
part of this section we are still using past knowledge of determinant to see what to expect from
the exterior algebra. However, by the conclusion of this section we’ve shown how the abstract
algebraic construction of the wedge-product allows us to implicitly define the determinant. We find
a particularly easy proof that det(AB) = det(A)det(B) as a result. If you have a sense of deja vu
as you study this, that is to be expected. There is some redundancy between this section and the
past section.

Given a vector space V of dimension n over F there exists an associative algebraic structure known
as the exterior algebra of V. We use the notation A to denote the multiplication. In general,

n
OV =PMV=8VOMV - oAV
k=0
where AgV =T, A1V =V and generally AV consists of sums of k-fold wedge products of vectors.
Let us make the exterior algebra explicit for F2 and F3. Our ultimate goal is to use this algebra to
define the determinant and study its properties.

6.6.1 exterior algebra over [F?

Recall F2 = span{ey, ea} then we define e; A ej = —ej ANe; for 1 <i,5 <2. Thus e; Ae; = —e; Ne;
hence e; A e; = 0. Anytime we have a repeated element under the wedge product the result will be
zero. The wedge product satisfies the usual distributive laws. In particular,

(aeq + bea) A (cer + dea) = aey A (cer + dea) + bea A (ce1 + des)
= ace1 A ey + adey N ey + beeg N e + bdes A es
= (ad — bc)ey N es.
Here Q(F?) = span{1, e, ea,e1 Aea} is a 22 = 4-dimensional vector space. We say 1 is a zero-vector
and e; A ey is a two-vector. Notice the appearance of the determinant in the formula above. In

a ¢

particular, if A = [ b d

] then det(A) = ad — be. Note Ae; = aej + bes and Aey = cej + deg thus

’Ael N Aey = det(A)er A es. ‘

6.6.2 exterior algebra over [F?

Note F? = span{ey, ea, e3} and suppose e; A ej = —ej ANe; for 1 <i,5 < 3. We find e; Aep = 0,
ea Neg = 0 and ez A ez = 0. In contrast, e; Ae; # 0 for 1 < ¢ < j < 3. It is convenient to use
{ea Nes,e3 Aer,er Aea} as the basis for Ay(IF3). On the other hand, A3(F3) = span{e; A ea Ae3}.

A A Ags An A Axs
Consider A = | Ag; A9y Aoz | then Aeg = | Ao | and Aes = | Aoy | and Aes = | Aog
A3z Az Ass Az Aszg A3z

Then
Aei N\ Aey = (Ar1e1 + Agreg + Asies) A (Arger + Aogses + Aszges)
= (A11A — A1 A12)er Nea + (A11 A3y — Az1Ar2)er A ez + (A21Asa — AzjAgg)ea Aes
=ae; Neg +bey Aeg+ ces Aes
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The expression above only involves the first two columns of A and we’ve introduced a, b, ¢ for brevity
of calculations below. Next we take the wedge product with the third column;

Aey N\ Aeg N\ Aes = [aer A ea + bey Aes + cea Aes] A [Aiser + Aazeq + Asses)
= aAssze1 ANeg Aes +bAgger Aes Aeg + cAises Aes Aey
= (aAs3 — bAa3 + cAiz) e Nea Aes
= ([A11A22 — A1 A12] A3z — [A11A30 — A31A12] Aoz + [A21 Azo — A31 Ago]A13) e1 Nea Aes

You might recognize the coefficient of e; A ez A e3 as the determinant of A formed by the cofactor
expansion of the third column of A. If we did the algebra differently then we would naturally
have derived other expansions by minors. For example, if we had calculated Aes A Aes first then
calculated Aej A (Aea A Aes) then the resulting expression would have produced the expansion of
the determinant with respect to the first column.

’Ael A Aeg N\ Aes = det(A)ey A eg A es.

6.6.3 the exterior algebra over a vector space

Given a vector space V over F we define AgV =F and A; = V. Then
ALV = span{vi ANva A+~ ANvg | v1,...,0, €V}

elements of A,V are known as k-vectors of Ay V. The wedge product gives a multiplication for
which the product of a p-vector and g-vector gives a (p+ ¢)-vector; A : AV x AV — Api V. The
external direct sum of k-vectors ranging from k = 0,...,n is known as the exterior algebra of V'
and it is denoted by

OV =PMV=MVeMVe oAV
k=0

The properties of the wedge product include linearity:
(cx+y)Nz=cxANz+yAz & zA(cz+w)=cxANz+zANw
for each c € F and x,y, z,w € QV. The wedge product is also associative:
eA(YyANz)=(xAy)Az.

If x € A)V and y € A,V then
rAy=(—1)PlyAz

describes the graded-commutativity of the wedge product. If p is a non-negative integer then
x € A,V is an even-vector if p is even whereas z is an odd-vector if p is odd. Notice even vectors
commute with every vector in 2V whereas odd vectors anticommute with other odd Vectors{zﬂ

262 and y anticommute if z Ay = —y A . Likewise, © and y commute if t Ay =y Az
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Remark 6.6.1. k-forms verses k-vectors

If we use the dual space V* and form wedge products of dual vectors then such objects are
commonly called k-forms. For example, a dual vector is also called a 1-form. However, to
be clear, there is a more sophisticated use of the term k-form which might be better known
as a k-form field. In the same way a vector is different than a vector field a form-field is
different than a k-form. We could study the smooth assignment of a k-form at each point in
space. Such an object is known as differential form. There is a calculus of differential forms
which is typically studied in a course on manifold theory. I cover the theory of differential
forms on Euclidean space in my Advanced Calculus course. Come join us.

6.6.4 definition of determinant

The notation below is very helpful at times.

Definition 6.6.2.

€i,..4, i the completely antisymmetric symbol which is defined to be antisymmetric
in any exchange of indices and €., = 1.

Example 6.6.3. ¢15 = 1 and ea; = —1 whereas €11 = €99 = 0.

Example 6.6.4. €193 = €931 = €312 = 1 and €391 = €913 = €139 = —1 whereas the other 21-values
of €1 are zero.

Generally, €;, . 4, has n! nonzero values of which half are 1 and half are —1. The antisymmetric
symbol could be used to formulate the wedge product. The following lemma will be central to
connecting the wedge product to the determinants (we’ve not defined determinant yet in these
notes, but I know you saw them in your previous course on linear algebra)

Lemma 6.6.5.

ey N---Nej, =€ €1 /N Nen.

Proof: if any pair of indices is repeated then both sides of the equation in the lemma are zero. If
J1,-..,Jn are distinct then there exists a rearrangement to the list 1,...,n to ji, ..., j, by swapping
entries as needed. If the net number of swaps is even then ¢;, . ;, = 1 and

ej, N---Nej, =er A Nep.
whereas if the net number of swaps is odd then ¢;, ;, = —1 and
ej, N---Nej, =—er AN---Nep. U

For an n-dimensional vector space the maximum number of vectors whose wedge product is non-
trivial is n. I’ll prove the result for F" as that is our primary application.

Proposition 6.6.6.
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If v1,...,v, € F" then there exists a unique D € [ for which

VA Av, =Der A--- Aey.

Proof: suppose v; = Zﬁ Aj,iej, for 1 <14 < n then calculate

VI ANV, = ZAjllejl VANCIEVAN ZAjnnejn
jl jn

Jisesdn
= E €j1...jnAj11 ~--Ajnn61 N+ Nep.
jl""7jn

Let D=3, . €.j.Aj1-+Aj,n and the proposition follows. [J

Using the notation above we note A = [vy|- - |v,] hence we make the following definition:

Definition 6.6.7.

Let A € F™*™ then det(A) € F is the unique constant for which

coli(A) A -+ Acol,(A) = det(A)er A -+ Aep.

In view of the proof of Proposition we find the following formula for the determinant:
det(A) = > € gnApt Ajn.
J1yeedn
Notice I = [e1]- - |e,] hence
coly(I)N -+ Necolp,(I)=er A+ Nep
thus det(I) = 1. Next we derive det(cA) = c"det(A) for A € F"*" and c € F,
coli(cA) N -+ Ncoly(cA) = det(cA)er A -+ Nepy
and as col;(cA) = ccol;(A) for i =1,...,n we find
c"coly(A) N\ -+ A col,(A) = det(cA)ey A -+ Ney

thus
cdet(A)er A -+ Ney =det(cA)er A+ Ney

therefore ¢"det(A) = det(cA). Let me record this result for future reference.

Proposition 6.6.8.

If AeF"" and ¢ € F then det(cA) = c"det(A).

Remark 6.6.9. determinant of transpose

In view of the development thus far I suspect there is a simple proof that det(A) = det(AT).
But, I've not found it yet and the proof in the other approach is somewhat technical.
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6.6.5 wedge product proofs for determinants

Proposition 6.6.10.

ET:F"x--- xF* — T is defined by

T(v1,...,v,) =det(vi]|---|vp)

then T is an antisymmetric n-linear map for which T'(ey,...,e,) = 1. Moreover, T is the
unique n-linear antisymmetric map which maps (eq,...,e,) to 1.

Proof: we already showed det(e;|---|e,) = 1. Suppose v1,...,vy, w; € F" and c € F,
det(vi|---|cvj +wj| - jvp)er A+ Nep = (6.17)

=01 A Aevj +wi) A Ay
=cUi A ANVGA-- Ao+ A Awj A= Aoy
= (cdet(v] - - |vj] -+ - |vp) + det(vr] - - - |wj] -+ |op))er A=~ Nep

Thus equating coefficients of e; A - -+ A e, we find
det(v1] -+ |evj +wj| - - - |vp) = cdet(vy| - - - |vj| - - - |vp) + det(vr] - - - |wj] - - - [vg)
Thus T is an n-linear map. Furthermore, since
VIA- - ANUNA- NN ANV == A AU A ANV A AUy

we find
det(on] -+~ [oi] -+ o]+~ [on) = ~det(oa] < [eg] -+ o] <o)

thus T is antisymmetric.

Suppose S is an antisymmetric n-linear map and S(ey,...,e,) = 1. If v1,..., v, € F" and suppose
v; =3, Ajiej, for 1 <i < nthen A =[v]---[v,] and

S(vi,...,vp) = S( ZAjllejl, e 7ZAjnnejn)
- -

Ji

= Z A]ll e AjnnS(ej17 e 7ejn)
j17“')jn

= > AjrAjnei g S(en, . en)
jlvn-’jn

= > Ajr A€
jlw-wjn

= detlvy| - - |vg]

=T(v1,...,vp). O

Matrix multiplication naturally extends to k-vectors.
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Definition 6.6.11.

Let A € F™*" then for vq,...,v; € F™"™ we define

A(i AN+ ANog) = Avp A -+ - N\ Awg,

Since matrix multiplication is associative we derive the identity below

(AB)(v1 A--- Avg) = (AB)vy A -+ A (AB)vg
A(Bvy) A--+ N A(Bug)
A((Bvi) A+ A (Bwg))
A(B(v1 A -+ Awg)).

Proposition 6.6.12.

Let A, B € F"*" then det(AB) = det(A)det(B).

Proof: by definition of the determinant we note
coly(AB) A -+ A col,(AB) = det(AB)ey A -+ - Nep,.

Likewise, coli(B) A -+ A col,(B) = det(B)e1 A -+ - A e,. Multiply by A and apply the definition of
matrix multiplication on a n-vector,

Acoli(B) N --- N Acolp(B) = det(B)Aer N - -+ N\ Aey,.
Since ABe; = Acol;(B) = col;(AB) for 1 < i < n the equation above implies
coly(AB) A -+ A colp,(AB) = det(B)Aey A - -+ N\ Aey,.
Consequently, by the definition of the determinant,
det(AB)e1 A -+ Ney, = det(B)det(A)ey A--- Ney,

thus det(AB) = det(B)det(A) which completes the proof. [

The traditional proof offered for the product identity of determinants is based on a casewise analysis
of elementary matrices. The proof above is far easier, but it does require some preparation.

6.7 linear dependence and the wedge product

You hopefully recall from your previous course that a set of n-vectors in F” is linearly independent
if and only if the determinant of the matrix formed by gluing the vectors together is nonzero.
Likewise, a zero determinant signals a linear dependence amongst the columns forming such a
matrix. Short of some clever modification, it seems the determinant only helps us with a particular
type of question. For example, the determinant wouldn’t seem to say anything directly about linear
dependence of a set of two vectors in F” where n > 3.
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Proposition 6.7.1.

‘ Suppose z,y € F". If {x,y} is linearly dependent then x A y = 0.

Proof: If {z,y} is linearly dependent then there exists k € F for which y = kz thus z Ay =
xA(kx)=kxANx=0sincezANz=—-zAzx implieﬂx/\xzo. O

The contrapositive of the above result says if A y # 0 then {z,y} is linearly independent.
Proposition 6.7.2.

’Suppose Z1,...,x, € F If {x1,..., 2%} is linearly dependent then x; A --- A xg = 0.

Proof: if {z1,...,zx} is linearly dependent then there exists x; for which z; = >, ¢jz; then

AN ANZp=T1 A+ A Zcixi N ANxg

i#]
chﬂl/\'“/\l’i/\“'/\fﬂk
i#]
:Z:I:cizi/\:vi/\xl/\---/\$k.
i#]

where in the last line z; A --- A 2 does not include x; and the £ depends on how many wedge
products needed to be swapped in order to move z; A x; to the start of the expression. Then,
xiANx; =0 for all i # j hence z1 A--- Az =0. O

Notice the contrapositive of the proposition gives us the statement: if x1 A --- Az # 0 then
{z1,...,x} is linearly independent.

Remark 6.7.3. meaning of the wedge product as it pertains to generalized volume.

The magnitude of a wedge product says something about volume in the generalized sense.
For example, x A y has a magnitude which corresponds to the parallelogram with edges x
and y. Likewise, Ay A z in some sense represents the oriented volume with edges x, y and
z. Notice, in R? we have the identity

x Ay Az =det(z|y|z)er N ez Aes

and det(z|y|z) = x+(y X 2z) is the triple product which gives the signed-volume of the
parallel-piped with edges x, y and z. In general, x; A --- A x; has a magnitude which
corresponds to the signed k-volume of the convex-hull generated by z1,...,x. Sometimes
people say that determinants are volumes. That is a shorthand for saying determinants
allow the calculation of volume. Likewise, wedge products are volumes. However, the
wedge product in R™ naturally allows the calculation of volume for any sub-dimensional
object. In contrast, the determinant only directly allows for calculation of n-volume in R".
Of course, determinants are more than that, you may recall Cramer’s Rule or the classical
adjoint formula for the inverse of a matrix. Many interesting objects can be formulated
with determinants.

2Ttechnically, I am assuming our field is one in which 2 # 0, this is often the case, but the binary number system
and its extensions have 1 +1 = 0.



258 CHAPTER 6. ABSTRACT LINEAR ALGEBRA

Another interesting rabbit to chase here is the connection between k and (n — k)-volumes.
If W C R" is k-dimensional then W+ is (n — k)-dimensional. Geometrically, it is intuitively
clear that W fixes W+ and vice-versa. I can specify a plane through the origin either by
the span of its tangent vectors or via the normal line. That reciprocity extends far beyond
lines and planes. An algebraic aspect of this duality is seen in the correspondence between
k-vectors and (n — k)-vectors. It turns out there is an isomorphism between A;xR™ and
A, _R™. In fact, this isomorphism also preserves lengths of multivectors. Perhaps we will
return to this vague paragraph later in the course.

Finally, we should recall the application of the determinant to invertibility of matrices.

Theorem 6.7.4.

Let A € F"*™ then
(1.) det(A) # 0 if and only if A~! exists,

(2.) det(A) =0 if and only if Az = 0 has a nonzero solution.

Proof: let A = [v1]---|vy)].
(1.) Suppose det(A) # 0 then

Vi A Avp =det(A)er Ao ANey #0
thus vy, ..., v, are linearly independent. Therefore, vy, ..., v, serves as a basis for F” and we find
Aw; = e; has a unique solution for each i = 1,...,n and hence A™! = [wy]|---|w,]. Conversely, if
A~L exists then A=A = I and thus det(A~!)det(A) = det(I) = 1 thus det(A) # 0.
(2.) Suppose det(A) = 0 then if Az =0 implies = 0 we find

rv1 + -+ xpv, =0

implies 1 = 0,...,x, = 0 thus vy, ..., v, is linearly independent hence

VIA Aoy, =det(A)er A Nep 0

thus det(A) # 0 which a contradiction. Thus there exists x # 0 for which Az = 0. Conversely, if
Ax = 0 for some x # 0 then we find a linear dependence amongst the columns of A which is to say
v1,..., U, are linearly dependent and

vi A Avp =det(A)er A< Nep =0

hence det(A) = 0. O

The usual proof I offer in Math 221 is accomplished via some subtle elementary matrix arguments.

6.8 bilinear forms and geometry, metric duality

The concept of a metric goes beyond the familar case of the dot-product. This is a bit more general
than an inner-product. Every inner product is a metric. However, not every metric is an inner-
product. The general theory of metrics is far more complicated than that of inner-products. We
only give an introduction here.
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6.8.1 metric geometry

A geometry is a vector space paired with a metric. For example, if we pair R"™ with the dot-
product you get Euclidean space. However, if we pair R* with the Minkowski metric then we
obtain Minkowski space.

Definition 6.8.1.
If V is a vector space and g : V x V — R is

(i.) bilinear: g € TYV,
(ii.) symmetric: g(x,y) = g(y,x) for all z,y € V,

(iii.) nondegenerate: g(z,y) = 0 for all z € V implies y = 0.

the we call g a metric on V.

If V = R" then we can write g(z,y) = 27 Gy where [g] = G. Moreover, g(x,y) = g(y,z) implies
GT = G. Nondegenerate means that g(x,y) = 0 for all y € R" iff z = 0. It follows that Gy = 0
has no non-trivial solutions hence G~ exists.

Example 6.8.2. Suppose g(z,y) = xTy for all x,y € R™. This defines a metric for R", it is just
the dot-product. Note that g(x,y) = Ty = 2T Iy hence we see [g] = I where I denotes the identity
matriz in R "7,

Example 6.8.3. Suppose v = (v°, 01,02, v3),w = (w°, w!, w? w3) € R* then define the Minkowski
product of v and w as follows:

0,0

g(v,w) = —0"w® 4+ vl + v?w? 4 v3w?

It is useful to write the Minkowski product in terms of a matrix multiplication. Observe that for
z,y € R,

-1 0 0 O yY
0 100 !
_ .00 1,1 2 2 3,3 _ (.0 1 .2 3 Yol — .t
g(z,y) = =2y’ + 'yt + 2?y* + 2%y’ = (a0 2! 2? 2?) 0 010 e = zlny
0 00 1) \¢°

where we have introduced n the matriz of the Minkowski product. Notice that n* = n and det(n) =
—1 # 0 hence g(x,y) = x'ny makes g a symmetric, nondegenerate bilinear form on R*. The
formula is clearly related to the dot-product. Suppose v = (v°,7) and w = (w°, @) then note

g(v,w) = ="’ + 7@
For vectors with zero in the zeroth slot this Minkowski product reduces to the dot-product. However,
for vectors which have nonzero entries in both the zeroth and later slots much differs. Recall that
any vector’s dot-product with itself gives the square of the vectors length. Of course this means that
Z-Z=0iff £ =0. Contrast that with the following: if v = (1,1,0,0) then

g(v,v) ==1+1=0

Yet v # 0. Why study such a strange generalization of length? The answer lies in physics. I'll give
you a brief account by defining a few terms: Let v = (v°,v!,v%,v3) € R* then we say
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1. v is a timelike vector if < v,v > < 0
2. v s a lightlike vector if < v,v > = 0
3. v is a spacelike vector if < v,v > > 0

If we consider the trajectory of a massive particle in R* that begins at the origin then at any later
time the trajectory will be located at a timelike vector. If we consider a light beam emitted from
the origin then at any future time it will located at the tip of a lightlike vector. Finally, spacelike
vectors point to points in R* which cannot be reached by the motion of physical particles that pass
throughout the origin. We say that massive particles are confined within their light cones, this
means that they are always located at timelike vectors relative to their current position in space
time. If you’d like to know more I can reccomend a few books.

At this point you might wonder if there are other types of metrics beyond these two examples.
Surprisingly, in a certain sense, no. A rather old theorem of linear algebra due to Sylvester states
that we can change coordinates so that the metric more or less resembles either the dot-product or
something like it with some sign-flips. Perhaps I will prove this result in lecture. Another interesting
result to consider is Hurwitz Theorem that the only real normed division algebras are R, C the
four dimensional quaternions and finally the eight dimensional octonions. Such mathematics is the
beginning of many interesting stories we ought to tell.



Chapter 7

Appendix on Modular Arithmetic

I do not expect you to be able to prove the results proved in this chapter. However, I would like you
to be able to do modular arithmetic and be able to decide whether or not a given modular integer
has a multiplicative inverse. So, this chapter is a bit overkill, but I err on the side of curiousity
here.

7.1 7Z-Basics

Let’s start at the very beginning, it is a good place to start.

Definition 7.1.1. The integers 7. are the set of natural numbers N together with 0 and the negatives
of N. It is possible to concretely construct (we will not) these from sets and set-operations.

From the construction of Z it is clear (we assume these to be true)

1. the sum of integers is an integer

2. the product of integers is an integer

3. the usual rules of arithmetic hold for Z

Much is hidden in (3.): let me elaborate, we assume for all a, b, c € Z,

a+b=b+a
ab = ba
a(b+c) =ab+ ac
(a+b)ec = ac+ be
(a+b)+c=a+(b+c)
(ab)c = a(bc)
a+0=0+a=a
la = al.

Where we assume the order of operations is done multiplication then addition; so, for example,
ab + ac means to first multiply a with b and a with ¢ then you add the result.

261
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Let me comment briefly about our standard conventions for the presentation of numbers. If I write
123 then we understand this is the base-ten representation. In particular,

123 =1x 102 +2 x 10 + 3.

On the other hand, 1-2 -3 denotes the product of 1,2 and 3 and 1-2-3 = 6. By default, algebraic
variables juxtaposed denote multiplication; zy denotes x multiplied by y. If we wish for symbolic
variables to denote digits in a number then we must explain this explicitly. For example, to study
all numbers between 990 and 999 I could analyze 99z where = € {0,1,...,9}. But, to be clear
I ought to preface such analysis by a statement like: let 99z be the base-ten representation of a
number where x represents the 1’s digit.

7.1.1 division algorithm

Division is repeated subtraction. For example, consider 11/3. Notice repeated subtraction of the
dividing numberﬂ 3 gives:

11-3=38 8—3=25 5—3=2

then we cannot subtract anymore. We were able to subtract 3 copies of 3 from 11. Then we stopped
at 2 since 2 < 3. To summarize,

11 = 3(3) + 2

We say 2 is the remainder; the remainder is the part which is too small to subtract for the given
dividing number. Divide the boxed equation by the divisor to see:

11 2

— =3+

3 3
The generalization of the boxed equation for an arbitrary pair of natural numbers is known as the
division algorithm.

Theorem 7.1.2. positive division algorithm: If a,b € Z with b > 0 then there is a unique
quotient q € Z and remainder r € 7 for which a = gb+1r and 0 < r < b.

Proof (existence): suppose a,b € Z and b > 0. Construct R = {a —nb | ¢ € Z, a —nb > 0}.
The set R comprises all non-negative integers which are reached from a by integer multiples of b.
Explicitly,

R={a,atba+2b,...}N{0,1,2,...}.

To prove R is non-empty we consider n = —|a| € Z yields a — nb = a + |a|b. If @ > 0 then clearly
a+|alb > 0. If a < 0 then |a| = —a hence a+|alb = —|a|+|alb = |a|(b—1) but b € N by assumption
hence b > 1 and we find a + |alb > 0. Therefore, as R is a non-empty subset of the non-negative
integers. We apply the Well-Ordering-Principle to deduce there exists a smallest element r € R.

Suppose 7 is the smallest element in R and r» > b. In particular, » = a — nb for some n € Z. Thus
a—mnb>bhence r’ =a—(n+1)b> 0 hence ' € R and ' < r. But »/ < r contradicts r being the
smallest element. Thus, using proof by contradiction, we find r < b.

'my resident Chinese scholar tells me in Chinese a/b has the ”dividing” number b and the ”divided” number a. I
am tempted to call b the divisor, but the term ”divisor” has a precise meaning, if b is a divisor of a then a = mb for
some n € Z. In our current discussion, to say b is a divisor assumes the remainder is zero.
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Proof (uniqueness): assume ¢,¢' € Z and r,7’ € Z such that a = ¢b+r and a = ¢'b+ 1/
where 0 < 7,7/ < b. We have ¢b +r = ¢'b+ 1’ hence (¢ — ¢')b = r —r’. Suppose towards a
contradiction ¢ # ¢'. Since ¢,q' € Z the inequality of ¢ and ¢’ implies |¢ — ¢/| > 1 and thus
Ir —7'| = |(¢ — ¢')b| > |b| = b. However, 7,7 € [0,b) thus the distancd’] between 7 and ’ cannot be
larger than or equal to b. This is a contradiction, therefore, ¢ = ¢’. Finally, ¢b +r = ¢/b+ 7’ yields
r=r.0

We can say more about ¢ and r in the case b > 0. We have

a r

C T 0= a/b)

That is g is the greatest integer which is below a/b. The function z +— |z | is the floor function.
For example,

£_0'4J = -1, LWJ =3, ln + EJ =n

for all n € Z provided 0 < e < 1. It is easy to calculate the floor function of x when x is presented
in decimal form. For example,

324 324
ST = 204545 = T =20404545. = 324=20(11) + (0.4545..)(11)

We can calculate, 0.4545 - 11 = 4.9995. From this we find

324 =29(11) +5
In other words, % =29+ % The decimal form of numbers and the floor function provides a

simple way to find quotients and remainders.
Consider 456/(—10) = —45.6 = —45 — 0.6 suggests 456 = (—10)(—45) + 6. In the case of a negative
divisor (b < 0) the division algorithm needs a bit of modification:

Theorem 7.1.3. nonzero division algorithm: If a,b € Z with b # 0 then there is a unique
quotient q € Z and remainder r € Z for which

a=qgb+r & 0<r<lb.

Proof: Theorem covers case b > 0. Thus, assume b < 0 hence b’ = —b > 0. Apply Theorem
[7.1.2/to a,V/ € Z to find ¢/, 7’ such that a = ¢'b' +r’ with 0 <+’ < V/. However, ' = —b = |b| as
b < 0. Thus,

a=—q¢b+7

with 0 < 7/ < |b]. Identify ¢ = —¢' and r = 7/ in the case b < 0. Uniqueness is clear from the
equations which define ¢ and r from the uniquely given ¢’ and r’. This concludes the proof as b # 0
means either b < 0 or b > 0. [J

The selection of the quotient in the negative divisor case is given by the ceiling function = — [x].
The notation [z] indicates the next integer which is greater than or equal to . For example,

[456/(—10)] = —45, [3.7] =4, [n—¢]=n

for all n € Z given 0 < e < 1.

%for a non-geometric argument here: note 0 < r < band 0 <7 < b imply —' <r—7' <b—71' <b. But, ' <b
gives —b < —7r' hence —b < r —r’ < b. Thus |r — r'| < b. Indeed, the distance between r and r’ is less than b.
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Remark 7.1.4. The division algorithm proves an assertion of elementary school arithmetic. For
example, consider the improper fraction 10/3 we can write it as the sum of 3 and 1/3. When you
write 3% what is truly meant is 3+ % In fact, the truth will set you free of a myriad of errors which
arise from the poor notation 3%. With this example in mind, let a,b € N. The division algorithm
simply says for a/b there exists ¢,7 € N U {0} such that a = ¢b + r hence a/b = q + r/b where
0 < r < b. This is merely the statement that any improper fraction can be reduced to the sum of
a whole number and a proper fraction. In other words, you already knew the division algorithm.
However, thinking of it without writing fractions is a bit of an adjustment for some of us.

7.1.2 divisibility in Z

Consider 105 = 3-5-7. We say 3 is a factor or divisor of 105. Also, we say 35 divides 105.
Furthermore, 105 is a multiple of 3. Indeed, 105 is also a multiple of 5, 7 and even 21 or 35.
Examples are nice, but, definitions are crucial:

Definition 7.1.5. Let a,b € Z then we say b divides a if there exists ¢ € 7 such that a = be. If b
divides a then we also say b is a factor of a and a is a multiple of b.

The notation b | @ means b divides a. If b is does not divide a then we write bt a. The divisors of
a given number are not unique. For example, 105 = 7(15) = (3)(35) = (—1)(—105). However, the
prime divisors are unique up to reordering: 105 = (3)(5)(7). Much of number theory is centered
around the study of primes. We ought to give a proper definition:

Definition 7.1.6. If p € N such that n | p implies n = p or n =1 then we say p is prime.

In words: a prime is a positive integer whose only divisors are 1 and itself.

There are many interesting features of divisibility. Notice, every number b € Z divides 0 as 0 = b-0.
Furthermore, b | b for all b € Z as b =b- 1. In related news, 1 is a factor of every integer and every
integer is a multiple of 1]

Proposition 7.1.7. Let a,b,c,d,m € Z. Then,
(i) ifa|bandb|c thena|c,
(ii.) ifa|b and c | d then ac | bd,
(iii.) if m # 0, then ma | mb if and only if a | b
(iv.) if d| a and a # 0 then |d| < |al.

Proof (i.) : suppose a | b and b | ¢. By the definition of divisibility there exist m,n € Z such that
b = ma and ¢ = nb. Hence ¢ = n(ma) = (nm)a. Therefore, a | ¢ as nm € Z.

Proof (ii.) : suppose a | b and ¢ | d. By the definition of divisibility there exist m,n € Z such
that b = ma and d = nc. Subsitution yields bd = (ma)(nc) = mn(ac). But, mn € Z hence we have
shown ac | bd.

31 should mention, I am partly following the excellent presentation of Jones and Jones Elementary Number Theory
which I almost used as the text for Math 307 in Spring 2015. We’re on page 4.
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Proof (iii.) : left to the reader.

Proof (iv.) : if d | a and a # 0 then a = md for some m € Z. Suppose m = 0 then a = (0)d =0
which contradicts a # 0. Therefore, m # 0. Recall that the absolute value function is multiplica-
tive; |md| = |m||d|. As m # 0 we have |m| > 1 thus |a| = |m]|d| > |d|. O

I hope you see these proofs are not too hard. You ought to be able to reproduce them without
much effort.

Theorem 7.1.8. Let ay,...,ax,c € Z. Then,
(i.) ifcla; fori=1,... k then c| (uray + - - + ugag) for all uy, ..., ux € Z,
(ii.) a | b and b | a if and only if a = £b.
Proof (i.): suppose ¢ | ai,c | ag,...,c | ai. It follows there exist my, ma,...,my € Z such that
a1 = cmyq, as = cmy and ay, = cmy. Let uy,us, ..., u; € Z and consider,
uray + -+ ugag = ui(emy) + - -+ ug(emy) = cluymy + -+ - + ugmy).

Notice uymi + - - - + upmy, € Z thus the equation above shows ¢ | (uja; + - -+ 4+ ugag).

Proof (ii.): suppose a | b and b | a. If a = 0 then a | b implies there exists m € Z such that
b =m(0) = 0 hence b = 0. Observe a = +b = 0. Continuing, we suppose a # 0 which implies b # 0
by the argument above. Notice a | b and b | @ imply there exist m,n € Z — {0} such that a = mb
and b = na. Multiply a = mb by n # 0 to find na = mnb. But, b = na hence na = mn(na) which
implies 1 = mn. Thus, m =n =1 or m = n = —1. These cases yield a = b and a = —b respective
hence a = £+b. O

The proof above is really not much more difficult than those we gave for Proposition [7.1.7 The
most important case of the Theorem above is when k& = 2 in part (i.).

Corollary 7.1.9. Ifc| x and ¢ |y then ¢ | (ax + by) for all a,b € Z.
The result above is used repeatedly as we study the structure of common divisors.
Definition 7.1.10. Ifd | a and d | b then d is a common divisor of a and b.

Proposition part (iv.) shows that a divisor cannot have a larger magnitude than its multiple.
It follows that the largest a common divisor could be is max{|al,|b|}. Furthermore, 1 is a divisor
of all nonzero integers. If both a and b are not zero then max{|a|,|b|} > 1. Therefore, if both a
and b are not zero then there must be a largest number between 1 and max{|a|, |b|} which divides
both a and b. Thus, the definition to follow is reasonable:

Definition 7.1.11. If a,b € Z, not both zero, then the greatest common divisor of a and b is
denoted gcd(a,b).

The method to find the greatest common divisor which served me well as a child was simply to a
and b in their prime factorization. Then to find the ged I just selected all the primes which I could
pair in both numbers.

Example 7.1.12.
gcd(105,90) = ged(3-5-7, 2-3-3-5) =3-5 = 15.
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The method above faces several difficulties as we attempt to solve non-elementary problems.

1. it is not an easy problem to find the prime factorization of a given integer. Indeed, this
difficulty is one of the major motivations RSA cryptography.

2. it is not so easy to compare lists and select all the common pairs. Admittedly, this is not as
serious a problem, but even with the simple example above I had to double-check.

Thankfully, there is a better method to find the ged. It’s old, but, popular. Euclid (yes, the same
one with the parallel lines and all that) gave us the Euclidean Algorithm. We prove a Lemma
towards developing Euclid’s Algorithm.

Lemma 7.1.13. Let a,b,q,r € Z. If a = gb+r then gcd(a,b) = ged(b,r).

Proof: by Corollary we see a divisor of both b and 7 is also a divisor of a. Likewise, as
r = a — gb we see any common divisor of a and b is also a divisor of r. It follows that a,b and b, r
share the same divisors. Hence, ged(a,b) = ged(b,r). O

We now work towards Euclid’s Algorithm. Let a,b € Z, not both zero. Our goal is to calculate
gcd(a,b). If a =0 and b # 0 then ged(a,b) = |b|. Likewise, if a # 0 and b = 0 then gcd(a,b) = |al.
Note gcd(a, a) = |a|] hence we may asssume a # b in what follows. Furthermore,

gcd(a,b) = ged(—a, b) = ged(a, —b) = ged(—a, —b).

Therefore, suppose a,b € N with a > lﬂ Apply the division algorithm (Theorem |7.1.2)) to select
q1, 71 such that
a=qb+mr such that 0<r <b.

If r1 = 0 then a = ¢1b hence b | a and as b is the largest divisor of b we find ged(a,b) =b. If 11 #0
then we continue to apply the division algorithm once again to select g2, 72 such that

b= qor1+ 19 such that 0<rog <ry.

If ro = 0 then 71 | b and clearly ged(b,r1) = r1. However, as a = g1b+r; allows us to apply Lemma
7.1.13| to obtain ged(a,b) = ged(b,r1) = r1. Continuing, we suppose 19 # 0 with 71 > 79 hence we
may select g3, r3 for which:

T1L=q3r2 + T3 such that 0<rs<rg.

Once again, if r3 = 0 then ro | 71 hence it is clear ged(ri,r2) = ro. However, as b = gar1 + r2 gives
gcd(b,r1) = ged(r1,r2) and a = q1b + r1 gives ged(a,b) = ged(b,r1) we find that ged(a,b) = ro.
This process continues. It cannot go on forever as we have the conditions:

0< - <rg<rg<ry<b.
There must exist some n € N for which r,41 = 0 yet r,, # 0. All together we have:

a=qb+r,
b= qor1 + o,
T =Qq3T2 +73,...,
Tn—2 = qnTn—1 + Tn,

Tn—1 = Gn+1Tn-

4 . ol .
the equation above shows we can cover all other cases once we solve the problem for positive integers.
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The last condition yields r, | r,—1 hence ged(ryp—1,7,) = 1. Furthermore, we find, by repeated
application of Lemma [7.1.13| the following string of equalities

gcd(a,b) = ged(b,r1) = ged(ry, ) = ged(ra,rs) = -+ = ged(rp—1,Tn) = Tn—1.

In summary, we have shown that repeated division of remainders into remainder gives a strictly
decreasing sequence of positive integers whose last member is precisely gcd(a,b).

Theorem 7.1.14. Euclidean Algorithm: suppose a,b € N with a > b and form the finite
sequence {b,r1,r9,...,mn} for which rny1 = 0 and b,ry,...,r, are defined as discussed above.
Then ged(a,b) = rp,.

Example 7.1.15. Let me show you how the euclidean algorithm works for a simple example.
Consider a = 100 and b = 44. Euclid’s algorithm will allow us to find ged(100,44).

100 = 44(2) 4 12 divided 100 by 44 got remainder of 12
2. 44 =12(3) + 8 divided 44 by 12 got remainder of 8

3. 12 =28(1) + divided 12 by 8 got remainder of 4
4. 8 =4(2) + 0 divided 4 by 1 got remainder of zero

The last nonzero remainder will always be the gcd when you play the game we just played. Here we
find | ged(100,44) = 4‘. Moreover, we can write 4 as a Z-linear combination of 100 and 44. This
can be gleaned from the calculations already presented by working backwards from the gcd:

3. 4=12-8
2. 8 =44 —12(3) implies 4 = 12 — (44 — 12(3)) = 4(12) — 44

1. 12 =100 — 44(2) implies 4 = 4(100 — 44(2)) — 44 = 4(100) — 9(44)

I call this a "Z-linear combination of 100 and 44 since 4,—9 € Z. We find ’ 4(100) —9(44) =4 ‘

The fact that we can always work euclid’s algorithm backwards to find how the gcd(a, b) is written
as ax + by = gcd(a, b) for some z,y € Z is remarkable. I continue to showcase this side-benefit of
the Euclidean Algorithm as we continue. We will give a general argument after the examples. 1
now shift to a less verbose presentation:

Example 7.1.16. Find ged(62,626)
626 = 10(62) + 6
62 =10(6) + 2
6=3(2)+0
From the E.A. I deduce gcd(62,626) = 2. Moreover,

2 =62 — 10(6) = 62 — 10[626 — 10(62)] = 101(62) — 10(626)
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Example 7.1.17. Find ged(240,11).

240 = 11(21) + 9

11 =9(1) + 2
9=2(4)+1
2 =1(2)

Thus, by E.A., ged(240,11) = 1. Moreover,
1=9—2(4) =9 —4(11 — 9) = —4(11) + 5(9) = —4(11) + 5(240 — 11(21))

That is,

[1=—-109(11) + 5(240)

Example 7.1.18. Find gcd(4,20). This example is a bit silly, but I include it since it is an
exceptional case in the algorithm. The algorithm works, you just need to interpret the instructions

correctly.
20=4(5)+0

Since there is only one row to go from we identify 4 as playing the same role as the last non-zero
remainder in most examples. Clearly, ged(4,20) = 4. Now, what about working backwards? Since
we do not have the ged appearing by itself in the next to last equation (as we did in the last example)
we are forced to solve the given equation for the gcd,

20=4(4+1)=4(4) +4 = [20—4(4) =4

The following result also follows from the discussion before Theorem I continue to use the
notational set-up given there.

Theorem 7.1.19. Bezout’s Identity: if a,b € Z, not both zero, then there exist x,y € Z such
that ax + by = ged(a,b).

Proof: we have illustrated the proof in the examples. Basically we just back-substitute the division
algorithms. For brevity of exposition, I assume r3 = ged(a, b). It follows that:

a=qb+rr = r=a—qb
b=qri+r2 = r=b—qn

TL=q3r2+T3 = T3=7T1—(q3"2
where ged(a, b) = r3. Moreover, 19 = b— g2(a — q1b) implies 73 = 71 — g3[b — g2(a — 1b)]. Therefore,
ged(a,b) = a — q1b— gs[b — @2(a — @b)] = a — (@1 — ¢3[1 — @2(a — q)]b.
Identify =1 and y = ¢1 — q3[1 — q2(a — q1)]. O

We should appreciate that x,y in the above result are far from unique. However, as we have shown,
the method at least suffices to find a solution of the equation ax + by = ged(a, b).
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7.2 On modular arithmetic and groups

In this section we assume n € N throughout. In summary, we develop a careful model for Z, in
this section.

Remark 7.2.1. I use some notation in this section which we can omit elsewhere for the sake of
brevity. In particular, in the middle of this section I might use the notation [2] or 2 for 2 € Z,
whereas in later work we simply use 2 with the understanding that we are working in the context
of modular arithmetic. I have a bit more to say about this notational issue and the deeper group
theory it involves at the conclusion of this section.

Definition 7.2.2. a = b mod(n) if and only if n | (b —a).
The definition above is made convenient by the simple equivalent criteria below:

Theorem 7.2.3. Let a,b € Z then we say a is congruent to b mod(n) and write a = b mod(n) if
a and b have the same remainder when divided by n.

Proof: Suppose a = b mod(n) then a and b share the same remainder after division by n. By
the Division Algorithm, there exist ¢1,q2 € Z for which a = g1n 4+ r and b = ¢gan + r. Observe,
b—a= (gn+r7r)—(g1n+r)= (g2 — ¢1)n. Therefore, n | (b — a).

Conversely, suppose n | (b — a) then there exists ¢ € Z for which b — a = gn. Apply the Division
Algorithm to find g1, g2 and r1, 79 such that: a = ¢gzn +r1 and b = gon + ro with 0 < r; < n and
0 <79 < n. We should pause to note |ry — r1| < n. Observe,

b—a=qgn=(qgn+rmr)—(@n+r1)=(q2—q)n+ry—r].
Therefore, solving for the difference of the remainders and taking the absolute value,
g — a2+ q1|n = [r2 — i

Notice |[¢ — g2 + ¢1| € NU{0} and |ro — r1| < n. It follows |¢ — g2 + ¢1| = 0 hence |ro —r1| = 0 and
we conclude r1 = ry. O
Congruence has properties you might have failed to notice as a child.
Proposition 7.2.4. Let n be a positive integer, for all x,y,z € Z,

(i.) x =z mod(n),

(ii.) = =y mod(n) implies y = x mod(n),
(iii.) if x =y mod(n) and y = z mod(n) then x = z mod(n).

Proof: we use Definition throughout what follows.

(i.) Let x € Z then v —2 =0 =0-n hence n | (z — z) and we find z = z mod(n).

(ii.) Suppose x = y mod(n). Observe n | (x — y) indicates  — y = nk for some k € Z. Hence
y —x = n(—k) where —k € Z. Therefore, n | (y — ) and we find y = = mod(n).

(iii.) Suppose =z = y mod(n) and y = z mod(n). Thus n | (y —x) and n | z — y. Corol-
lary indicates n also divides the sum of two integers which are each divisible by n. Thus,
n|[(y—z)+ (2 —y)] hence n | (2 — x) which shows x = z mod(n). O

I referenced the Corollary to prove part (iii.) to remind you how our current discussion fits naturally
with our previous discussion.
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Corollary 7.2.5. Let n € N. Congruence modulo n forms an equivalence relation on Z.

This immediately informs us of an interesting partition of the integers. Recall, a partition of
a set S is a family of subsets U, C S where o € A is some index set such that U, N Ug = 0 for
a # [ and UyepaUy = S. A partition takes a set and parses it into disjoint pieces which cover the
whole set. The partition induced from an equivalence relation is simply formed by the equivalence
classes of the relation. Let me focus on Z with the equivalence relation of congruence modulo a
positive integer n. We deﬁneﬂ

Definition 7.2.6. equivalence classes of Z modulo n € N:
[z] ={y € Z | y = x mod(n)}
Observe, there are several ways to characterize such sets:
z]={y€Z|y=xzmod(n)} ={y€Z|y—x=nkfor some k € Z} = {x +nk | k € Z}.
I find the last presentation of [x] to be useful in practical computations.
Example 7.2.7. Congruence mod(2) partititions Z into even and odd integers:
0] ={2k | k€ Z} & 1 ={2k+1|keZ}

Example 7.2.8. Congruence mod(4) partititions Z into four classes of numbers:

0={4k | keZ}={...,-8,-4,0,4,8,...}

1]={4k+1|kezZ}={..,-7,-3,1,5,9,...}
2 ={4k+2 | keZ}={..,—6,-2,2,6,10,...}
B ={4k+3|kez}={..,—5—-1,3,7,11,...}

The patterns above are interesting, there is something special about [0] and [2] in comparison to [1]
and [3]. Patterns aside, the notation of the previous two example can be improved. Let me share
a natural notation which helps us understand the structure of congruence classes.

Definition 7.2.9. Coset Notation: Let n € N and a € Z we define:
nZ = {nk | k € Z} a+nZ={a+nk| keZ}.
Observe, in the notation just introduced, we have
[a] = a+nZ
Example 7.2.10. Congruence mod(2) partititions Z into even and odd integers:
0] =2Z & 1] =1+ 2Z.
Example 7.2.11. Congruence mod(4) partititions Z into four classes of numbers:

0] =4Z, [1]=1+4Z, [2]=2+4Z, [3]=3+4Z.

Sthere are other notations, the concept here is far more important than the notation we currently employ
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We should pause to appreciate a subtle aspect of the notation. It is crucial to note [z] = [y] does
not imply z = y. For example, modulo 2:

[1] = [3] = [7] = [1000037550385987987987971] & 2] = [-2] = [-42].
Or, modulo 9:
] =[0]=[-8, & [B]=[121=[-6, & [0]=[90] =[-9].

Yet, modulo 9, [1] # [3]. Of course, I just said [1] = [3]. How can this be? Well, context matters. In
some sense, the notation [z] is dangerous and [z],, would be better. We could clarify that [1]2 = [3]2
whereas [1]g # [3]g. I don’t recall such notation used in any text. What is more common is to use
the coset notation to clarify:

1+2Z=3+27Z whereas 1+ 9Z # 3+ 9Z.

I’'m not entirely sure the Proposition below is necessary.

Proposition 7.2.12. Let n € N. We have [x] = [y] if and only if x =y mod(n). Or, in the coset
notation x + nZ =y + nZ if and only if y — x € nZ.

Proof: Observe z € [z]. If [z] = [y] then = € [y] hence there exists k € Z for which z = y + nk
hence x — y = nk and we find z = y mod(n). Conversely, if x =y mod(n) then there exists k € Z
such that y — xz = nk thus x = y — nk and y = = + nk. Suppose a € [z] then there exists j € Z for
which a = nj + x hence a = nj +y —nk =n(j — k) +y € [y]. We have shown [z] C [y]. Likewise,
if b € [y] then there exists j € Z for which b =nj +y hence b=nj+ 2z +nk=n(j+k)+z € [z].
Thus [y] C [z] and we conclude [z] = [y]. O

Notice the proposition above allows us to calculate as follows: for n € N
na+b+nZ=>b+nZ or [na + b] = [b]
for a,b € Z. There is more.
Proposition 7.2.13. Let n € N. If [z] = [2] and [y] = [¢] then
(1) +yl=["+y],
(ii.) [zy] = [2'y]
(iii.) [z —y]=[' -]

Proof: Suppose [z] = [2'] and [y] = [¢/]. Tt follows there exists j, k € Z such that 2/ = nj + = and
y' =nk+y. Notice 2’ £y =nj+x+ (nk+y) =n(j+k)+x+y. Therefore, z+y = 2’ +3y mod(n)
and by Proposition [7.2.12| we find [x £+ y] = [’ & ¢/]. This proves (i.) and (¢ii.). Next, consider:

2y = (nj + x)(nk +y) = n(jkn + jy + xk) + xy
thus 2y’ = xy mod(n) we apply Proposition [7.2.12| once more to find [zy] = [z'y/]. O

We ought to appreciate the content of the proposition above as it applies to congruence modulo n.
In fact, the assertions below all apear in the proof above.
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Corollary 7.2.14. Let n € N. If x = 2’ and y =y’ modulo n then
(i) z4+y=2"+y mod(n),
(ii.) zy = 2’y mod(n),
(iii.) x —y =2’ — ¢y mod(n),
Example 7.2.15. Suppose © +y =3 and x —y = 1 modulo 4. Then, by Corollary [7.2.14 we add
and substract the given congruences to obtain:
20 =4 2y =2

There are 4 cases to consider. Either x € [0], x € [1], x € [2] or x € [3]. Observe,

200) =0 = 4, 2(0) % 2
2(1) = 2 # 4, 2(1) = 2
2(2) =4, 212)=4#£2
2(3) = 2 # 4, 2(3) = 2.

It follows that x € [0] U [2] and y € [1] U [3] forms the solution set of this system of congruences.

The method I used to solve the above example was not too hard since there were just 4 cases to
consider. I suppose, if we wished to solve the same problem modulo 42 we probably would like to
learn a better method.

Proposition [7.2.13| justifies that the definition below does give a binary operation on the set of
equivalence classes modulo n. Recall, a binary operation on a set .S is simply a function from S x S
to S. It is a single-valued assignment of pairs of S-elements to S-elements.

Definition 7.2.16. modular arithmetic: let n € N, define
I+l =le+y]l & [2]ly] = [zy]

for all x,y € Z. Or, if we denote the set of all equivalence classes modulo n by 7/nZ then write:
for each x +nZ,y +nZ € Z/nZ

(x+nZ)+ (y+nZ)=x+y+nZ & (x +nZ)(y +nZ) = xy + nZ.
Finally, we often use the notation Z, = Z/nZ.

Notice the operation defined above is a binary operation on Z/nZ (not Z). Many properties of
integer arithmetic transfer to Z/nZ:

[a] + [b] = [b] + [d]
[a][6] = [b][a]

[a]([6] + [¢]) = [a][b] + [a][c]
(la] + [B])d] = la]le] + [b][¢]
([a] + [b]) + [c] = [a] + ([o] + [c])
([a]B]) ] = [a]([b][c])

[a] + [0] = [0] + [a] = [q]
[1][a] = [a][1].
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Furthermore, for k € N,

[a1] + [ag) + - + [ax] = a1 + a2 + - + ay]

la1][ag] - - - [ak] = [araz - - - ax]
[a]* = [a"].
Example 7.2.17. Simplify [1234] modulo 5. Notice,
1234 =1x 10> +2 x 102 + 3 x 10 + 4.

However, 10 = 2(5) thus,

1234 =1x 253 +2%x 2252 +3x 2.5 +4.

Note, [5] = [0] hence [5*] = [0] for k € N. By the properties of modular arithmetic it is clear that the
10's, 100's and 1000's digits are irrelevant to the result. Only the first digit matters, [1234] = [4].

It is not hard to see the result of the example above equally well applies to larger numbers; if
ak, ak—1,...,a2,a; are the digits in a decimal representation of an integer then [axar_1 - - - aga1] =

[a1] mod(5).
Example 7.2.18. Calculate the cube of 51 modulo 7.

513 = [51][51][p1] = [51)® = [49 + 2]> = [2]°> = [8].
Of course, you can also denote the same calculation via congruence:

51> =51-51-51=2-2.2=8 = [51%]=[8].
The next example is a cautionary tale:
Example 7.2.19. Simplify 7'°° modulo 6. Consider,

[7190] = [7]100 = [1]100 = [1100] = [1].

or, (incorrectly !)
[7190] = [700l] = [71910-+4]) _ [74] = [og] = [4]
The point is this: it is not true that [a*] = [al*].

Naturally, as we discuss Z,, it is convenient to have a particular choice of representative for this set
of residues. Two main choices: the set of least non-negative residues

Ly = {[0]7 [1]7 [2]7 ) [n - 1]}
alternatively, set of least absolute value residues or simply least absolute residues
Zo = {0}, [£1], (2], }
where the details depend on if n is even or odd. For example,

Zs = {[0], [1], [2], [3], [4]} = {[-2], [=1], [0}, [1], [2]}
or,
Zg = {01, [1], [2], 8]} = {[=2], [-1], [0], [1]}
Honestly, if we work in the particular context of Z,, then there is not much harm in dropping the
[-]-notation. Sometimes, I use [z] = . Whichever notation we choose, we must be careful to not

fall into the trap of assuming the usual properties of Z when calculating in the specific context of
modular arithmetic. The example that follows would be very clumsy to write in the [-]-notation.
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Definition 7.2.20. group of units: let n € N define U(n) C Z,, by
U(n) = {x € Z,, | there exists y € Zy, for which zy =1}
In other words, each element of U(n) has a multiplicative inverse.

A well-known theorem gives a simple method to ascertain if [z] € U(n); simply this, [z] € U(n) if
and only if ged(x,n) = 1. This theorem is nearly immediate from Bezout’s Theorem.

Example 7.2.21. In Ezample we found ged(62,626) = 2. This shows 62 does not have a
multiplicative inverse modulo 626. Also, it shows 626 does not have a multiplicative inverse modulo
62.

Example 7.2.22. In Example we found ged(11,240) = 1 and 1 = —109(11) 4 5(240). From
this we may read several things:

[—109] 7! = [11] mod(240) &  [-109]7' = [11] mod(5)

and,

[5]71 = [240] mod(11) &  [5]7! = [240] mod(109).
In terms of least positive residues the last statement reduces to [5]71 = [22]. Of course, we can
check this; [5][22] = [110] = [1].

Remark 7.2.23. At this point our work on the model Z/nZ for Z,, comes to an end. From this
point forward, we return to the less burdensome notation

Zn,=40,1,2,...,n—1}
as a default. However, we are open-minded, if you wish, you can define
Zn={1,2,...,n}

where n serves as the additive identity of the group. Furthermore, we wish to allow calculations
such as: working modulo 5 we have:

3(17) =3(15+2)=3(2) =6 =1
thus 177! = 2 or 37! = 2 etc. Technically, if we define G1, G2, G3 C Z where
G; ={0,1,2}, Go={1,2,3}, G3={10,11,12}

and addition is defined modulo 3 then G1, Gy and G3 are distinct point sets and hence are different
groups. However, these are all models of Zs. In fact, G1,G2, Gs are all isomorphicﬂ Algebraists
will say things like, all of the sets G, G2, G3 are Zs. What they mean by that is that these set are
all to the inutition of a group theorist the same thing. What we define Z,, to be is largely a matter
of convenience. Again, the two main models:

(1.) Zn,=2Z/nZ ={k+nZ | k€ Z} makes Zy, a set of sets of integers, or, a set of cosets of Z.
(2.) Z,=1{0,1,...,n— 1} where Z,, C Z.

In either case, Zy, is not a subgroup of Z, but, for slightly different reasons. In case (1.) the set of
cosets is not a subset of Z so it fails the subset criterion for subgroup. In case (2.) while it is a
subset it fails to have the same additive operation as Z.

Swe will define this carefully in due time, for Fall 2016, this is after Test 1
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7.3 matrices of modular integers

Matrices with entries in Z, are multiplied and added in the usual fashion. In particular,

(A+B)ij = Aij + Byj, (cA)yj = cAyj, (XY)ij =) XiYy
k=1

where A, B € 7P X € 78" and Y € Z;,*?. We can show I;j = d;; has X1 = IX = X for any
matrix. Naturally, the addition and multiplications above are all done modulo n. This has some
curious side-effects:

A+A+---+A=nA=0

n—summands

A square M € ZH*P is invertible only if det(M) € U(n). To prove this we could go through all
the usual linear algebra simply replacing regular addition and multiplication with the modular
equivalent. In particular, we can show the (classical adjoint of M satisfies

Madj(M) = det(M)I

If det(M) € U(n) then there exists det(M)~! € U(n) for which det(M)~1-det(M) = 1. Multiplying
the classical adjoint equation we derive

M (det(M)™! - adj(M)) = det(M) ™! - det(M)I =1.

Thus,

M~ =det(M)~! - adj(M).

Calculation of the inverse in 3 x 3 or larger cases requires some calculation, but, for the 2 x 2 case

2 ] € Z2*2 and ad — be € U(n) then

2] e [4 ]

In the case n = p a prime, U(p) = Z, and the inverse of a matrix M over Z, exists whenever
det(M) # 0. In fact, we can define the general linear group over matrices even when the entries
are not taken from a field.

we have a simple formula: if { CCL

Definition 7.3.1. The general linear group of p X p matrices over Z, is defined by:
GL(p,Zyn) = {A € ZP*P | det(A) € U(n)}.
Moreover, GL(p,Z) = {A € ZP*P | det(A) = +1}.

I will forego proof that the general linear groups are indeed groups at the moment. In fact, we can
define the general linear group for matrices built over any ring in a similar fashion. These suffice
for our current purposes. (my apologies as I have yet to define group in this course, rest assured,
we’ll not miss that in Math 421 ).


https://en.wikipedia.org/wiki/Adjugate_matrix
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Chapter 8

Appendix on Sets and Functions

This brief appendix collects the basic definitions for set theory as well as set-theoretic constructions
involving functions. Ideally these concepts would be explored in the introduction to proofs course.
Probably much of this was covered, but I include it here for review. I’ll begin with basic set
theoretic definitions then we’ll proceed to discuss how functions and sets interact.

8.1 set theory

Definition 8.1.1.

We write x € S to mean = is an element of the set S. A set is often described using
roster notation
S = {z | condition on x}

We also use notation S = {z € U | condition on z} to indicate that € S has = € U subject to
the given condition. Equality of sets is a basic concept:

Definition 8.1.2.

Let A and B be sets. We say A = B if and only if A and B have the same elements. In
other words, x € A implies x € B and = € B implies x € A.

Likewise the concept of subset and superset is of central importance to the application of the
set-concept to mathematics:

Definition 8.1.3.

Let B be a set then we write A C B if for any © € A we have x € B. In this case we say
that A is a subset of B and that B is a superset of A. Moreover, we say B contains A.

The set containing no elements is known as the empty set we denote it by {} or (). Notice it is
vacuously true that ) C A for any set A. If A C B and A # B then A is said to be a proper
subset of B. Notice that set equality can also be understood in terms of subsets; A = B if and only
if AC B and B C A. Often we prove equality of sets by establishing both the containment A C B
and B C A (so-called double containment).
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Definition 8.1.4.

Suppose A and B are sets then we define AUB = {z | x € A or z € B} and we define
ANB={zx |z € Aand x € B}. We say AU B is the union of A and B whereas AN B is
the intersection of A and B.

Notice that AUD = A and ANQ = ( for any set A. Extending unions and intersections to families
of sets which are indexed by some set is also interesting:

Definition 8.1.5.

If A is a set and A, is a set for each a € A then we define the union of A, over A by

U Aq = {z | there exists a € A for which x € A, }.
aEN

Likewise, the intersection of A, over A is given by

ﬂAa:{xlweAaforeachaeA}.
a€cl

In the case our index set A = N then the notations
oo o
U 4, & ﬂ A;
i=1 i=1

can be used for the union and intersection over a countableEl collection of sets Ay, Ao, . ...

Definition 8.1.6.

If A and B are sets then A — B={zr € A |z ¢ B}. Wesay A — B is the complement of
B in A or, as the notation suggests, the set difference of A by B.

Notice A—A=0and A—() = A and ) — A = () for any set A. In some sense the empty set behaves
like zero, but the analogy cannot be stretched too farﬂ

There are many properties of sets to which we should be aware. I'll forego most proofs here in the
interest of saving these as exercises.

Proposition 8.1.7. Let A, B,C be sets then we have
1. set equality by double containment: A C B and B C A if and only if A= B,
2. commutative properties: AUB=BUA and ANB=BNA,
3. associative properties: (AUB)UC =AU (BUC) and (ANB)NC =AN(BNO),
4. distributive properties: AU(BNC)=(AUB)N(AUC) and AN(BUC) = (ANB)U(ANC),

5. idempotent laws: AUA=A and ANA=A,

more on what this means a bit later in this appendix
2T will not attempt it here, but it is possible to build a model of the natural numbers N via a construction with
the empty set and sets of the empty set.
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6. laws of absorption: AU(ANB)=A and AN(AUB) = A,
7. ANB=A—-(A-B),
8. transitivity of inclusion: if AC B and B C C then AC C

Proof: suppose x € AU B then x € A or x € B by definition of AU B. Hence x € Borx € A
and so x € BU A by definition of union. Thus AU B C BU A. Likewise, if z € BU A then x € B
or ¢ € A by definition of AU B. Hence x € A or x € B and so x € AU B by definition of union.
Thus BUA C AU B. Therefore, AU B = BU A by (1.) of this proposition. Proofs of other parts
left for homework. [J

If U is the universal seiﬂ and X C U,
X=U-X

De Morgan’s Laws relate complements of unions and intersections. If A, B are sets in a common
universe of discourse (meaning A, B C U and A =U — A etc. ) then

AUB=ANB & ANB=AUB

Likewise, if Ay, Bo C U where a € A then De Morgan’s Law’s naturally extend:

Ua=N4 & [B=UB

a€A acl a€N a€N

To be explicit, in terms of set-difference we would express De Morgan’s Laws as:

U-JA=(NU-4) & U-[()Ba=|JU-Ba).

aEA aEA aEA aEA

8.2 functions

I’ll begin with the definition of a relation since it may be helpful to place the concept of a function
in a larger context.

Definition 8.2.1.

Let A and B be sets. Then a relation from A to B is a particular subset r C A x B. We
write y = r(x) to mean (z,y) € r. The set A is called the domain of r and the set B is
called the codomain of r. When A = B then we simply say r is a relation on A.

Notice a given = € A could map to many pairs in 7.

Example 8.2.2. If r = {(1,1),(1,2),(1,3),(2,2),(3,3)} describes a relation r then r(1) =1 and
r(1) = 2 and r(3) = 3 whereas 7(2) = 2 and r(3) = 3. It would probably be better to write
r(1) =1,2,3 as to avoid errors which stem from conflating the different values of 1 under r.

The behavior of the relation in the example above is annoying. To avoid such pathology we
introduce a special kind of relation: the function

3this is a matter of convention and context
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Definition 8.2.3.

Let A and B be sets. Then a function from A to B is a relation from A to B for which
(z,y1), (x,y2) € f then y; = yo2. We write y = f(x) to mean (z,y) € f. The set A is called
the domain of f and the set B is called the codomain of f. The notation f: A — B
indicates that f is a function with domain A and codomain B. We also call a function a map
and the notation z +— y implicitly indicates a function f which maps = to y (y = f(z)).

Notice the notation y = f(z) is no longer ambiguous for a function f since the output f(z) from
the input z is a single-value. In other words, a function is a single-valued relation. Sometimes
in higher mathematics or engineering you will find literature which refers to a multiply-valued
function. That would seem to be a contradiction in terms, and I suppose technically it is. But,
in defense of such speech I would point out that the study of such object predates the pedantic
clarity of the modern function.

Example 8.2.4. Let r = {(z,y) € R? | y* = 2} = {(z,y) | y = =/ © € [0,00)}. This is not a
function since most inputs produce two distinct outputs of \/x and —/x.

Definition 8.2.5.
Let A, B be sets and f: A — B. We define the image of S C A under f by:

f(9) ={f(z) [z €S}

If f(A) = B then we say f is an onto or surjective function. We call f(A) the range or
image of f. Likewise, we define the inverse image of 7' C B by:

fT) ={z €Al f(z) € T}.

If f(x) = f(y) implies x = y for any z,y € A then f is a one-to-one or injective
function. If f is both surjective and injective then we say f is bijective or a one-to-one
correspondence of A and B.

A singleton is a set which contains a single element such as {a}. We can characterize injectivity
with inverse images of singletons. Suppose f : A — B is a function and b € B. By definition:

fHY ={z e A| flx) e {b}} ={z e A f(z) = b}

It may be the case that f=1{b} = 0. However, if 7,y € f~1{b} then f(x) = b and f(y) = b hence
f(x) = f(y). Therefore, if f is a one-to-one function then the inverse image of a singleton is either
() or a singleton.

Definition 8.2.6.

If f: A— B and b € B then f~1{b} is the inverse image or fiber of f over b.

Proposition 8.2.7. Suppose A, B are sets and f: A — B.
1. f is an injection if every non-empty fiber is a singleton

2. if for any xz,y € A we define x ~ y whenever f(x) = f(y) then ~ defines an equivalence
relation on A whose equivalence classes are the non-empty fibers of f.
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Proof: the proof of (1.) was given in the discussion above the definition of fiber. To prove (2.)
let us recall the definition of equivalence relation. An equivalence relation on A is a relation on A
which is reflexive, symmetric and transitive. Since f(x) = f(z) for each z € A we find z ~ =
for each x € A hence ~ is reflexive. If z ~ y then f(z) = f(y) thus f(y) = f(z) and y ~ z so ~ is
symmetric. Likewise, if z ~ y and y ~ z then f(z) = f(y) = f(z) thus  ~ z and we deduce ~ is
transitive. Finally, the equivalence class under ~ which contains x € A can be denoted [z] and

[z]={yeAly~azt={yeA| fly)= f(z)}
Note y € f~'{f(x)} means f(y) € {f(x)} thus f(y) = f(x). Thus
[z] = 7 f(2)}.

Definition 8.2.8.

Let A, B,C be sets and f : A — B a surjection and g : B — C a function. Then the
composite of f and g is denoted go f : A — C and is defined by (g° f)(z) = g(f(z)) for
each x € A.

Let A be a set, we denote the identity function on A by Ids : A — A and we define Idy(z) = x
for each = € Af

Definition 8.2.9.

Let f : A — B be a bijection then f~!': B — A is the inverse function of f defined by
f(x) =y if and only if f~1(y) = x.

Notice fof~': B — Band f~'of: A — A In fact, given y = f(x) for some x € A note
(fof D) =ff ) =fla)=y
hence fo f~! = Idp. Likewise, if y = f(x) then
(fref@) =)=y =2

hence f~!'o f = Idy. Often a function is not invertible unless we modify its domain.

Definition 8.2.10.

Let A,B besets and f: A — B. If U C A then f|y : U — B is the restriction of f to U
and we define f|y(z) = f(z) for each x € U. If f|y is injective then the local inverse of
f on U is the inverse function of g : U — f(U).

Notice we replaced B with f(U) so that g would necessarily be both an injection and a surjection
given the condition that f|y is one-to-one. Noteable examples of the local inverse construction
include the even root functions = > X/ which serve as local inverses for x — 2" for any n € N.
The restriction for the even power functions is customarily assigned to be the non-negative real
numbers. Other examples include the inverse trigonometric functions. For instance, tan~! is the
local inverse of tan with respect to U = (—7/2,7/2). Likewise, sin~! is the local inverse of sin
with respect to U = [—7/2,7/2]. Also, cos™! is the local inverse of cos with respect to U = [0, 7].

4Tt is unfortunate that the concept of identity has become far more complicated in our modern degenerate soceity.
You would be driven to believe identity has little to do with reality. In math, the identity function of A is unabiguously
specified by A, no matter what the life experience of A might be.
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In contrast, cosh™! is the local inverse of cosh with respect to U = [0, 00).

To construct a local inverse we must somehow select a subset of the domain of the given function
which includes at most one element in each fiber. This is always possible thanks to the axiom of
choice. We can always select some subset of the domain on which just one element of each fiber
is found. Consequently, it is always possible (in-principle at least) to construct a local inverse of a
given function.

Something beautiful happens in Linear Algebra as we study functions on vector spaces which are
linearﬂ It turns out that the fibers of a given linear transformation all have the same size and that
is determined by what is known as the kernel of the map. When we construct the quotient space
by dividing by the kernel this bring the representatives of the quotient vector space in one-to-one
correspondence with the fibers of the linear map. It follows we are able to create a bijection by
replacing the domain of the linear map with the quotient space by the kernel. This induced map
is related, but different, than the local inverse construction. As you study various branches of
mathematics this story plays out again and again in different contexts as we study bijections in the
context of the given branch.

Once more let us state a few results without proof:

Proposition 8.2.11. Suppose A, B are sets and f: A — B and A1, Ao C A whereas By, B2 C B
1. f(A1NA2) C f(A1) N f(A2),
- f(ALU Ag) = f(A1) U f(A2),

)u

2

3. fHB1U Bs) = fH(B1) U f1(Ba),
4. f” (31032)=f1(31)ﬂf (B),
5. f(A) = f(A1) € f(A—Ay),

6. f~1 (B2~ B1) = f1(B2) - f~1(B).

Proof: I'll give part of the proof of (6.). If # € f~1(By— By) then f(x) € Bo— By. Thus f(z) € By
and f(x) ¢ By. Therefore, x € f~1(B) and x ¢ f~1(By). Hence x € f~1(Bs) — f~1(B;) and we
find f~1(By — By) C f~Y(Bs) — f~1(B1). It remains to show the reverse inclusion to establish the
proof of (6.). I leave proof of the remaining claims as exercises. O

It might be worthwhile to give an example which shows why equality is not found in (1.) for
arbitrary f. Let A; = [0,00) and Ay = (—0o0,0) then A;N Ay = 0. Let f(x) = 22 for all z € R then
f(A1) =[0,00) and f(A2) = (0,00) hence f(A1)Nf(A2) = (0,00). However, f(A1NAs) = f(0) =0
hence f(A1) N1 £(A3) & f(A N As).

Sworry not if this paragraph at first does not make sense, come back to it later
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Appendix on History

Numbers shape the past,
AT uncovers the truth,
History’s math speaks. EXTRANEOUS G, 2025

The ethics of using generative Al to write historical essays raises important questions about
authorship, accuracy, and the potential for bias. While Al can be a useful tool for generating content
quickly and assisting with research, it is crucial to recognize that historical analysis requires careful
interpretation, critical thinking, and a deep understanding of context. Generative AI, though
capable of producing coherent text, lacks the ability to engage in nuanced analysis or the capacity
for moral and ethical reasoning, which are essential when writing about complex historical events.
One of the ethical concerns is the risk of Al perpetuating inaccuracies or biased interpretations,
as it can only reflect the data it has been trained on, which may include flawed or outdated
perspectives. Additionally, using Al to write historical essays without acknowledging its role in the
process can lead to questions of intellectual honesty and accountability. Scholars, educators, and
writers must ensure that Al-generated content is thoroughly vetted and supplemented with human
insight to maintain the integrity of historical discourse and ensure that it respects the nuances and
complexities of the past.

9.1 history of matrices

Matrices have a long and fascinating history, tracing back to ancient civilizations. The earliest
recorded use of matrices can be found in ancient China, in the form of ”"suanshu” (mathematical
books) from the Han Dynasty (around 200 BCE). The Chinese used matrix-like structures to solve
systems of linear equations, but the formalized study of matrices as we know them today didn’t
begin until the 19th century. Matrices were first introduced in a more structured mathematical
context by the British mathematician James Joseph Sylvester and the German mathematician
Carl Friedrich Gauss. Sylvester coined the term ”matrix” in 1850, and around the same time,
mathematicians like Arthur Cayley and Augustin-Louis Cauchy began developing matrix algebra
in earnest, setting the foundation for modern linear algebra.

In the modern era, matrices are indispensable in various fields, particularly in the study of
linear transformations and systems of equations. They serve as powerful tools in disciplines such
as physics, computer science, economics, engineering, and statistics. In linear algebra, matrices are
used to represent and solve systems of linear equations, with applications ranging from electrical
circuits to computer graphics. In computer science, matrices form the backbone of algorithms in
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machine learning, where they are used to represent datasets and transformations. They are also
essential in the analysis of networks and in cryptography, where matrix operations help in the
encoding and decoding of information. The versatility and wide-ranging applications of matrices
in both theoretical and practical contexts underscore their importance in modern mathematics and
applied sciences.

9.2 history of vector spaces

Vector spaces, also known as linear spaces, have a rich history rooted in the development of math-
ematics, particularly in the study of geometry and algebra. The concept of vectors and their
manipulation began with the work of mathematicians like René Descartes, who introduced the
Cartesian coordinate system in the 17th century, providing a framework for geometric objects to
be represented algebraically. The formalization of vector spaces came much later, in the 19th
century, with the development of abstract algebra and linear algebra. The foundational work of
mathematicians such as Hermann Grassmann and Giuseppe Peano in the mid-1800s helped for-
malize the structure of vector spaces. Grassmann, in particular, contributed to the idea of ”linear
independence” and ”linear span,” key concepts in vector space theory. Peano’s work, along with
that of others, further helped shape the modern understanding of vector spaces as sets equipped
with operations like addition and scalar multiplication, subject to specific axioms.

The use of vector spaces spans numerous fields of mathematics and science. In linear alge-
bra, vector spaces form the foundation for the study of linear transformations, systems of linear
equations, and matrix theory. The theory of vector spaces is central in understanding various
mathematical structures and phenomena, from geometry to physics. In physics, vector spaces are
used to describe the state spaces of quantum mechanics, the forces acting on particles, and other
physical quantities that have both magnitude and direction. In computer science, vector spaces
are employed in areas like machine learning, where they represent data in high-dimensional space
for tasks such as classification and clustering. Additionally, vector spaces have applications in sig-
nal processing, economics, and even linguistics, where they can be used to represent and analyze
relationships between words or documents in natural language processing. The abstraction and
versatility of vector spaces make them one of the most powerful and widely used tools in modern
mathematics and applied sciences.

9.3 history of linear transformations

Linear transformations are a fundamental concept in linear algebra with deep historical roots in
the development of mathematics. The formal theory of linear transformations emerged in the 19th
century, alongside the broader development of linear algebra, which focused on solving systems of
linear equations and studying vector spaces. Early contributors to the field, such as Augustin-Louis
Cauchy and Karl Friedrich Gauss, laid the groundwork by studying the behavior of linear map-
pings between vector spaces. However, it was the work of mathematicians like Arthur Cayley and
Ferdinand Frobenius who formally recognized and characterized the idea of a linear transformation
as a map between two vector spaces that preserves the operations of vector addition and scalar
multiplication.
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The concept of a matrix as a representation of a linear transformation also developed in parallel,
particularly with the work of Cayley and the study of determinants, which helped understand the
properties of such transformations.

The use of linear transformations is extensive and spans many fields of mathematics, science,
and engineering. In geometry, linear transformations can describe operations such as rotations,
scaling, and shearing, providing a way to map points and objects from one space to another while
preserving their linear structure. In computer graphics, linear transformations are crucial for ma-
nipulating images and models, enabling scaling, rotating, and translating objects in 2D or 3D space.
In physics, linear transformations help model phenomena such as the behavior of physical systems
under changes of reference frames or the application of certain forces. Furthermore, in computer
science, particularly in machine learning, linear transformations play a significant role in algorithms
for dimensionality reduction, such as principal component analysis (PCA), where data is projected
into a lower-dimensional space to simplify analysis or classification tasks. In addition, linear trans-
formations are pivotal in quantum mechanics, where they are used to describe the evolution of
quantum states. Thus, linear transformations are not only a cornerstone of mathematical theory
but also an essential tool across many applied disciplines.

9.4 history of Jordan Form and eigenvectors

The concept of eigenvectors and eigenvalues has its origins in the study of linear transformations
and matrix theory, and it became a central part of linear algebra in the 19th century. The term
7eigen” comes from the German word for ”own” or ”self,” reflecting the idea that eigenvectors are
vectors that remain in the same direction when a linear transformation is applied, though they
may be scaled by an eigenvalue. The earliest work related to eigenvectors can be traced to the
mathematician Augustin-Louis Cauchy in the early 19th century, who worked on the characteristic
equation of matrices. The formal theory was later developed and refined by mathematicians such
as Carl Friedrich Gauss
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and David Hilbert, who advanced the algebraic understanding of how matrices act on vectors.
The discovery and formalization of eigenvectors and eigenvalues allowed for a deeper exploration of
linear transformations and their associated behaviors, especially in the context of diagonalization
and the spectral theorem.

Eigenvectors and their corresponding eigenvalues have profound applications across various
fields of mathematics and science. In linear algebra, they are essential for understanding matrix
diagonalization, which simplifies the process of solving systems of linear equations, particularly
in cases involving large or complex matrices. In physics, eigenvectors and eigenvalues are used to
describe systems in equilibrium, such as the vibration modes of mechanical structures or the energy
levels of quantum systems. In engineering, they are critical in fields like control theory, where they
help model and analyze dynamic systems. One important concept related to eigenvectors is the
Jordan Form (or Real Jordan Form in the case of real matrices), which provides a way to represent
any square matrix in a canonical form. The Jordan Normal Form generalizes diagonalization by
allowing matrices that cannot be fully diagonalized to be transformed into a block diagonal form
with Jordan blocks. This form is especially useful when dealing with non-diagonalizable matrices,
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allowing for simpler computations in cases where diagonalization is not possible. The Jordan Form
is invaluable in advanced mathematics and theoretical physics, as it provides a powerful tool for
analyzing the structure and behavior of linear systems, making it crucial for understanding stability,
oscillation, and other phenomena in both abstract and applied contexts.

The Real Jordan Form (or Jordan Normal Form over the real numbers) is a canonical form
used to represent a square matrix, particularly when it cannot be fully diagonalized. Unlike the
diagonalization process, which works only for matrices with a complete set of linearly independent
eigenvectors, the Real Jordan Form applies to matrices with a complex or defective spectrum, where
some eigenvalues may have fewer than the expected number of linearly independent eigenvectors. To
calculate the Real Jordan Form, one first finds the eigenvalues of the matrix, and then computes
the generalized eigenvectors associated with each eigenvalue. These generalized eigenvectors fill
Jordan chains, which are used to construct Jordan blocks—a block-diagonal matrix with each
block corresponding to an eigenvalue and possibly containing ones in certain positions, depending
on the number of generalized eigenvectors. The Real Jordan Form involves organizing these Jordan
blocks into a diagonal or block-diagonal structure, with each block representing an eigenspace or a
generalized eigenspace. In cases where the matrix has complex eigenvalues, the Real Jordan Form
uses 2x2 real blocks to represent the complex eigenvalues and their corresponding eigenvectors.
The process typically involves solving for the null spaces of powers of the matrix subtracted by the
eigenvalue times the identity matrix, a task that requires careful computation of matrix powers and
eigenvectors.

9.5 history of inner product spaces and Fourier analysis

The history of inner product spaces can be traced back to the development of geometric and
algebraic concepts in the 19th century. The idea of an inner product, a generalization of the
dot product, was formalized as part of the broader development of functional analysis and vector
spaces. Early work on geometric spaces focused on Euclidean geometry and the notion of angles
and distances, which were foundational to the concept of the inner product. In the 19th century,
mathematicians such as Hermann Grassmann, Karl Weierstrass, and others advanced the theory of
vector spaces and linear transformations, eventually leading to the abstraction of the inner product.
The formalization of inner product spaces as a generalization of Euclidean space came in the late
19th and early 20th centuries, particularly with the work of David Hilbert, who introduced Hilbert
spaces. These are complete inner product spaces, where the inner product defines the geometry of
the space and provides a way to measure angles, lengths, and orthogonality, essential for developing
the theory of functional analysis.

Fourier analysis, which deals with the representation of functions as sums of sine and cosine
waves, also emerged in the 19th century, building on earlier work in harmonic analysis. The French
mathematician Jean-Baptiste Joseph Fourier is credited with developing Fourier series in the early
1800s as part of his work on heat conduction. Fourier’s groundbreaking insight was that a function,
even if it was not periodic, could be expressed as an infinite sum of sinusoidal components, providing
a powerful tool for solving partial differential equations. Fourier’s work revolutionized the study of
heat transfer and wave motion, but it also laid the foundation for what would become a vast field
of mathematical analysis. The mathematical rigor surrounding Fourier analysis was developed over
the following decades, especially with the work of mathematicians such as Pafnuty Chebyshev and
Henri Lebesgue, who further formalized the theory of convergence of Fourier series.

The connection between inner product spaces and Fourier analysis became more apparent with
the rise of functional analysis and Hilbert spaces in the early 20th century. Fourier analysis, as a tool
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for decomposing functions into frequency components, naturally fits within the framework of inner
product spaces, where functions can be treated as vectors in an infinite-dimensional space. The
inner product in these spaces enables the projection of functions onto orthogonal basis functions,
such as sines and cosines in the classical Fourier series or more generalized bases in modern Fourier
transforms. The formal development of Fourier analysis on Hilbert spaces in the mid-20th century
provided a rigorous foundation for the applications of Fourier methods in signal processing, quantum
mechanics, and other areas of physics and engineering. Fourier analysis, now extended to Fourier
transforms and other related methods, remains a cornerstone of mathematical analysis, with its
connection to inner product spaces providing the mathematical machinery for understanding and
manipulating signals, waveforms, and other phenomena in both theory and practice.

9.6 history and future of abstract linear algebra

Abstract linear algebra, as we know it today, emerged in the 19th and early 20th centuries as mathe-
maticians sought to extend the ideas of linearity and vector spaces beyond the confines of Euclidean
geometry. The roots of abstract linear algebra trace back to the work of mathematicians such as
Hermann Grassmann, who in the mid-1800s introduced the concept of *exterior algebra®, which
laid the groundwork for later developments in vector spaces and their algebraic structures. Around
the same time, Arthur Cayley and Karl Weierstrass developed foundational ideas in matrix theory,
which is now a central component of linear algebra. The real breakthrough came in the early 20th
century with the work of David Hilbert, who formalized the notion of infinite-dimensional vector
spaces, now known as *Hilbert spaces®. This work, along with the formalization of inner product
spaces and the study of linear transformations in these spaces, marked the birth of modern abstract
linear algebra, shifting the field from geometric intuition to more abstract, algebraic treatments of
vector spaces and linear maps.

During the 20th century, the scope of abstract linear algebra expanded significantly as math-
ematicians formalized and generalized various concepts, including eigenvalues, eigenvectors, and
linear transformations. The development of group theory, ring theory, and module theory further
contributed to the abstraction of algebraic structures beyond the realm of matrices and finite-
dimensional vector spaces. As a result, linear algebra became a critical part of abstract algebra
and functional analysis, and it found applications in many branches of mathematics, including topol-
ogy, number theory, and representation theory. Concepts like *Banach spaces® (complete normed
vector spaces) and *Lie groups® (smooth groups with algebraic structure) further broadened the
applicability of abstract linear algebra, showing its profound connection to areas of geometry and
mathematical physics.

In contemporary research, abstract linear algebra continues to evolve in multiple directions.
One major area of current exploration is the theory of *noncommutative algebra*, which gener-
alizes linear algebraic structures to settings where commutative operations (such as addition or
multiplication) do not necessarily hold. This has profound applications in quantum mechanics and
other areas of physics, where operators often do not commute. Additionally, the study of *tensor
categories* and *category theory* has provided new insights into the relationships between differ-
ent algebraic structures, offering a more unified and flexible framework for understanding linear
transformations across diverse settings. In applied mathematics, abstract linear algebra is at the
core of advancements in machine learning and data science, where techniques such as *principal
component analysis* (PCA) and *singular value decomposition® (SVD) rely on abstract concepts of
matrix decomposition and eigendecomposition. Moreover, the rise of *infinite-dimensional spaces™
in modern analysis, including the study of quantum field theory and functional analysis, continues
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to highlight the relevance and potential of abstract linear algebra in understanding complex systems
in both theoretical and applied contexts.

Remark 9.6.1. Believing that Al-generated writing is inherently worth reading is misquided be-
cause Al, despite its impressive capabilities, lacks the ability to understand context, nuance, and
the underlying meaning of human experiences. Al operates based on patterns learned from wvast
datasets, but it cannot grasp the complexities of human emotions, historical context, or the ethical
and cultural dimensions that shape our world. This lack of genuine comprehension makes Al-
generated content prone to inaccuracies, oversimplifications, and a lack of depth. Readers often
turn to writing for insight, reflection, and understanding, which requires a level of critical thinking
and emotional connection that Al cannot replicate. While Al can assist with generating ideas or
providing structure, it cannot replace the value of authentic, human-driven narratives or analyses,
which are crafted with intention, empathy, and expertise.

Moreover, relying on Al-generated writing for consumption diminishes the importance of hu-
man creativity and the intellectual rigor that goes into producing thoughtful, meaningful content.
Writing is not just about stringing words together; it’s a process of engaging with ideas, questioning
assumptions, and fostering a connection between the author and the audience. Human writers bring
unique perspectives, personal experiences, and a sense of purpose to their work, qualities that Al
simply cannot emulate. Trusting Al-generated content without scrutiny can lead to a homogeniza-
tion of ideas and a loss of diversity in thought, as algorithms often reflect prevailing trends in data
rather than presenting novel or critical viewpoints. Thus, while Al can be a useful tool, it is wrong
to elevate its output to the level of meaningful reading, as it lacks the depth, intentionality, and
originality that come from human minds.
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