\qquad
MATH 423:
Homework: Cyclic and Dihedral Groups Assignment
Show your work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60pts to earn here.

Problem 25: Let G_{1}, G_{2} be groups. Suppose $H_{1} \leq G_{1}$ and $H_{2} \leq G_{2}$. Prove $H_{1} \times H_{2}$ is a subgroup of $G_{1} \times G_{2}$.

Problem 26: Suppose a group G has an element $a \in G$ with order 30. Find all powers of a which have order 2, 3 and 5.

Problem 27: Which of the multiplicative groups $U(7), U(10), U(12), U(14)$ are isomorphic ?
Problem 28: Let G be any finite group with no proper, nontrivial subgroups, and assume $|G|>1$. Prove that G must be isomorphic to \mathbb{Z}_{p} for some prime p.

Problem 29: Prove that $\operatorname{aut}\left(\mathbb{Z}_{n}\right) \cong U(n)$. Here aut $\left(\mathbb{Z}_{n}\right)$ denotes the set of all isomorphism from \mathbb{Z}_{n} to \mathbb{Z}_{n} and $U(n)$ is the multiplicative group of units in \mathbb{Z}_{n}.

Problem 30: Find the order of each element in D_{4} and write the Cayley table for D_{4}
Problem 31: Let $H=\left\{ \pm\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \pm\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right], \pm\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right], \pm\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]\right\} \subseteq \mathrm{GL}_{2}(\mathbb{C})$. Prove D_{4} is isomorphic to H.

Problem 32: Show that D_{n} is isomorphic to a subgroup of S_{n} for $n \geq 3$.
Problem 33: What is the largest order of an element in $S_{5} \times S_{8}$?
Problem 34: Chapter 4, Exercise \# 10 (generators in cyclic group)
Problem 35: $\mathbb{Z}_{10} \times \mathbb{Z}_{9}$ is a group of order 90 .
(a.) Consider $\langle(2,3)\rangle \leq \mathbb{Z}_{10} \times \mathbb{Z}_{9}$. Find the order of the cyclic subgroup $\langle(2,3)\rangle$ and list all generators of this subgroup.
(b.) Is $\mathbb{Z}_{10} \times \mathbb{Z}_{9}$ a cyclic group ? If it is then how many distinct generators does $\mathbb{Z}_{10} \times \mathbb{Z}_{9}$ possess ?

Problem 36: Suppose D_{8} has reflection y with $y^{2}=1$ and rotation x with order 8. Simplify the expression $x^{3} y x^{2} y x y x^{5}$ to an expression of the form $y^{a} x^{b}$ for appropriate non-negative integers a, b.

