|--|

Show **your** work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60pts to earn here.

- **Problem 25:** Let G_1, G_2 be groups. Suppose $H_1 \leq G_1$ and $H_2 \leq G_2$. Prove $H_1 \times H_2$ is a subgroup of $G_1 \times G_2$.
- **Problem 26:** Suppose a group G has an element $a \in G$ with order 30. Find **all** powers of a which have order 2, 3 and 5.
- **Problem 27:** Which of the multiplicative groups U(7), U(10), U(12), U(14) are isomorphic?
- **Problem 28:** Let G be any finite group with no proper, nontrivial subgroups, and assume |G| > 1. Prove that G must be isomorphic to \mathbb{Z}_p for some prime p.
- **Problem 29:** Prove that $\operatorname{aut}(\mathbb{Z}_n) \cong U(n)$. Here $\operatorname{aut}(\mathbb{Z}_n)$ denotes the set of all isomorphism from \mathbb{Z}_n to \mathbb{Z}_n and U(n) is the multiplicative group of units in \mathbb{Z}_n .
- **Problem 30:** Find the order of each element in D_4 and write the Cayley table for D_4
- **Problem 31:** Let $H = \left\{ \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \pm \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \pm \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \pm \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \right\} \subseteq \operatorname{GL}_2(\mathbb{C}).$ Prove D_4 is isomorphic to H.
- **Problem 32:** Show that D_n is isomorphic to a subgroup of S_n for $n \ge 3$.
- **Problem 33:** What is the largest order of an element in $S_5 \times S_8$?
- **Problem 34:** Chapter 4, Exercise # 10 (generators in cyclic group)
- **Problem 35:** $\mathbb{Z}_{10} \times \mathbb{Z}_9$ is a group of order 90.
 - (a.) Consider $\langle (2,3) \rangle \leq \mathbb{Z}_{10} \times \mathbb{Z}_9$. Find the order of the cyclic subgroup $\langle (2,3) \rangle$ and list all generators of this subgroup.
 - (b.) Is $\mathbb{Z}_{10} \times \mathbb{Z}_9$ a cyclic group ? If it is then how many distinct generators does $\mathbb{Z}_{10} \times \mathbb{Z}_9$ possess ?
- **Problem 36:** Suppose D_8 has reflection y with $y^2 = 1$ and rotation x with order 8. Simplify the expression $x^3yx^2yxyx^5$ to an expression of the form y^ax^b for appropriate non-negative integers a, b.