\qquad
Math 423: Homework: Quotient and Product Groups Assignment
Show your work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60pts to earn here. By my count, at least 3 of these problems are solved in the videos assigned this week.

Problem 49: Chapter 7, Exercise \# 16 (Lagrange's Theorem problem)
Problem 50: Let H be a subgroup of G and $a, b \in G$. Prove $a H=b H$ if and only if $a^{-1} b \in H$.
Problem 51: Let G be a group of order p where p is prime. Prove G is cyclic.
Problem 52: Let $G=\mathbb{Z}_{3} \times \mathbb{Z}_{6}$. If $H=\langle(1,2)\rangle$ and $K=\langle(1,3)\rangle$ then find the addition table for G / H and G / K.

Problem 53: Let G be a group. Prove: If $Z(G) \unlhd G$.
Problem 54: Find the center of D_{4} and construct the Cayley table of the factor group $D_{4} / Z\left(D_{4}\right)$. To which well-known group is this factor group isomorphic ?

Remark: you should find that the center of D_{4} has two elements. I recommend you calculate using the generators and relations formulation of D_{4} given by $x^{4}=1$ and $y^{2}=1$ where $y x y=x^{-1}=x^{3}$.

Problem 55: Let $D_{3}=\left\{1, x, x^{2}, y, x y, x^{2} y\right\}$ denote a dihedral group.
(a.) Is $H=\langle x\rangle$ a normal subgroup ? If so, what \mathbb{Z}_{n} is isomorphic to D_{3} / H ?
(b.) Is $K=\langle y\rangle$ a normal subgroup ? If so, what \mathbb{Z}_{n} is isomorphic to D_{3} / K ?
(c.) Is $H \times K \cong D_{3}$?

Problem 56: List the non-isomorphic abelian groups of order 56. Circle any that are cyclic.

Remark: there are only three cases here.
Problem 57: Chapter 8, Exercise \# 35 (nonzero complex numbers under multiplication are not isomorphic to direct product of nonzero real numbers under multiplication)

Problem 58: Chapter 9, Exercise \# 11 (factor group of cyclic group is cyclic)
Problem 59: Chapter 10, Exercise \# 8 (alternating group is normal)
Problem 60: Chapter 10, Exercise \# 11 (isomorphism question, best solution is to construct appropriate homomorphism as to apply first isomorphism theorem)

