\qquad

Show your work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60 pts to earn here.

Problem 61: Chapter 12, Exercise \# 40 (is this a subring ?)
Problem 62: Chapter 13, Exercise \# 30 (show set is field)
Problem 63: Chapter 14, Exercise \# 41 (calculate inverse in quotient ring)
Problem 64: Chapter 15, Exercise \# 14 (ring isomorphism)
Problem 65: Suppose R is a ring with $x^{2}=x$ for each $x \in R$. Show that R is a commutative ring.
Problem 66: An idempotent of a ring is an element e such that $e^{2}=e$. Prove that the only idempotents in an integral domain are 0 and 1 where 1 denotes the multiplicative identity of the ring.

Problem 67: Suppose I is any set and let R be the collection of all subsets of I. Define addition and multiplication of subsets $A, B \subseteq I$ as follows:

$$
A+B=A \cup B \quad \& \quad A \cdot B=A \cap B
$$

Is R a commutative ring under this addition and multiplication?
Problem 68: Let $R=\mathbb{Z}_{4}[i]=\left\{a+i b \mid a, b \in \mathbb{Z}_{4}, i^{2}=-1\right\}$ where addition and multiplication are defined in the expected manner. Find the group of units for R.

Problem 69: Let R be a commutative ring with identity 1. Define $\langle a\rangle=\{r a \mid r \in R\}$. Prove $\langle a\rangle$ is an ideal of R.

Problem 70: Explain how we can construct the complex number system using a quotient space of polynomials.

Problem 71: Find each maximal ideal I of $R=\mathbb{Z}_{8} \times \mathbb{Z}_{30}$. Explain both why your choices are reasonable and why there are no other choices beyond your list.

Problem 72: Suppose a commutative ring R has an element a such that $a^{n}=0$ for some positive integer n. Also suppose u is a unit in R. Prove $u-a$ is a unit in R.
Hint: think about the geometric series.

