Матн 423: Н	Homework: 1	POLYNOMIALS A	Assignment
-------------	-------------	---------------	------------

Show **your** work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60pts to earn here.

Problem 73: Once more let $R = \left\{ \begin{bmatrix} x & y \\ y & x \end{bmatrix} \mid x, y \in \mathbb{Z} \right\}$. Define $\varphi : R \to \mathbb{Z}$ by $\varphi(X) = X_{11} - X_{12}$ for each $X \in R$ and complete the following:

- (a.) Show φ is a ring homomorphism.
- (b.) Prove φ is a surjection.
- (c.) Describe $\operatorname{Ker}(\varphi)$.
- (d.) Find a known ring to which $R/\text{Ker}(\varphi)$ is isomorphic.
- (e.) Is $\operatorname{Ker}(\varphi)$ a prime ideal?
- (f.) Is $\operatorname{Ker}(\varphi)$ a maximal ideal?

Problem 74: Chapter 16, Exercise # 2 (polynomial expression vs. function)

- **Problem 75:** Chapter 17, Exercise # 18 (irreducible polynomial)
- **Problem 76:** Chapter 17, Exercise # 19 (factoring)
- **Problem 77:** Chapter 17, Exercise # 33 (interplay between maximal ideals and irreducibility)
- **Problem 78:** Chapter 18, Exercise # 6 (associates)
- Problem 79: Find the multiplicative inverse of the given elements in the given fields:
 - (a.) [a + bx] in Q[x]/⟨x² 2⟩
 (b.) [x² 2x + 1] in Q[x]/⟨x³ 2⟩
 (c.) [x] in Z₅[x]/⟨x³ + x + 1⟩
- **Problem 80:** For which values of a = 1, 2, 3, 4 is $\mathbb{Z}_5[x]/\langle x^2 + a \rangle$ a field ?
- **Problem 81:** Prove $1 + \sqrt{-3}$ is an irreducible in $\mathbb{Z}[\sqrt{-3}]$. *hint: see Video 27.*
- **Problem 82:** Find the minimal polynomial for $\alpha \in E$ over F for:
 - (a.) $\alpha = 3 + i$ over $F = \mathbb{R}, E = \mathbb{C}$
 - (b.) $\alpha = \sqrt{2} \sqrt{3}$ over $F = \mathbb{Q}, E = \mathbb{R}$.

for part (a.) I would like you to explain how you know the polynomial you find is irreducible. Proof of irreducibility of the polynomial for part (b.) is more involved and I don't require that in the solution this week.

Problem 83: Find all the irreducible monic quadratic polynomials over \mathbb{Z}_3 . Hint: $x^2 + bx + c$ with $b, c \in \mathbb{Z}_3$ gives just nine choices to consider.

Problem 84: Prove $\mathbb{R}[x]/\langle x-a\rangle$ is isomorphic to \mathbb{R} as a ring. Hint: study $\Psi(f(x)+\langle x-a\rangle)=f(a)$.