\qquad

Show your work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60pts to earn here.

Problem 73: Once more let $R=\left\{\left.\left[\begin{array}{ll}x & y \\ y & x\end{array}\right] \right\rvert\, x, y \in \mathbb{Z}\right\}$. Define $\varphi: R \rightarrow \mathbb{Z}$ by $\varphi(X)=X_{11}-X_{12}$ for each $X \in R$ and complete the following:
(a.) Show φ is a ring homomorphism.
(b.) Prove φ is a surjection.
(c.) Describe $\operatorname{Ker}(\varphi)$.
(d.) Find a known ring to which $R / \operatorname{Ker}(\varphi)$ is isomorphic.
(e.) Is $\operatorname{Ker}(\varphi)$ a prime ideal?
(f.) Is $\operatorname{Ker}(\varphi)$ a maximal ideal?

Problem 74: Chapter 16, Exercise \# 2 (polynomial expression vs. function)
Problem 75: Chapter 17, Exercise \# 18 (irreducible polynomial)
Problem 76: Chapter 17, Exercise \# 19 (factoring)
Problem 77: Chapter 17, Exercise \# 33 (interplay between maximal ideals and irreducibility)
Problem 78: Chapter 18, Exercise \# 6 (associates)
Problem 79: Find the multiplicative inverse of the given elements in the given fields:
(a.) $[a+b x]$ in $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$
(b.) $\left[x^{2}-2 x+1\right]$ in $\mathbb{Q}[x] /\left\langle x^{3}-2\right\rangle$
(c.) $[x]$ in $\mathbb{Z}_{5}[x] /\left\langle x^{3}+x+1\right\rangle$

Problem 80: For which values of $a=1,2,3,4$ is $\mathbb{Z}_{5}[x] /\left\langle x^{2}+a\right\rangle$ a field ?
Problem 81: Prove $1+\sqrt{-3}$ is an irreducible in $\mathbb{Z}[\sqrt{-3}]$. hint: see Video 27.
Problem 82: Find the minimal polynomial for $\alpha \in E$ over F for:
(a.) $\alpha=3+i$ over $F=\mathbb{R}, E=\mathbb{C}$
(b.) $\alpha=\sqrt{2}-\sqrt{3}$ over $F=\mathbb{Q}, E=\mathbb{R}$.
for part (a.) I would like you to explain how you know the polynomial you find is irreducible. Proof of irreducibility of the polynomial for part (b.) is more involved and I don't require that in the solution this week.

Problem 83: Find all the irreducible monic quadratic polynomials over \mathbb{Z}_{3}. Hint: $x^{2}+b x+c$ with $b, c \in \mathbb{Z}_{3}$ gives just nine choices to consider.

Problem 84: Prove $\mathbb{R}[x] /\langle x-a\rangle$ is isomorphic to \mathbb{R} as a ring. Hint: study $\Psi(f(x)+\langle x-a\rangle)=f(a)$.

