\qquad

Show your work carefully. Use full sentences, proper grammar and be precise. You don't have to copy the problem statement again, but, your solution must be self-contained. 60 pts to earn here.

Problem 85: Consider $E=\mathbb{Z}_{7}[x] /\left\langle x^{4}+3 x^{2}+x-1\right\rangle$. Write $\alpha=x+\left\langle x^{4}+3 x^{2}+x-1\right\rangle$ thus a typical element in $z \in E$ has the form $z=a+b \alpha+c \alpha^{2}+d \alpha^{3}$ where $a, b, c, d \in \mathbb{Z}_{7}$. Find α^{-1}.

Problem 86: Suppose E is a finite extension field of F and suppose K is a finite extension field of E then K is a finite extension field of F. We denote the dimension of E over F as a vector space by $[E: F]$. Likewise, $[K: E]$ is the dimension of K as a vector space over E. Prove $[K: F]=[K: E][E: F]$. hint: see video 30

Problem 87: Chapter 20, Exercise \# 7 (extension by elements of base field goes nowhere)
Problem 88: Chapter 20, Exercise \# 29 (two rings to compare)
Problem 89: Chapter 20, Exercise \# 31 (the answer should be in terms of β)
Problem 90: Chapter 21, Exercise \# 3 (infinite algebraic extension)
Problem 91: Chapter 21, Exercise \# 9 (think about using Problem 85 here)
Problem 92: Chapter 21, Exercise \# 16 (you do not have to prove irreducibility of your minimal polynomial)

Problem 93: Chapter 17, Exercise \# 14 (I might have a problem on the Final Exam which needs Eisenstein's Criteria to prove irreducibility)

Problem 94: Explain the relation between prime ideals and integral domains. What important theorem connects these concepts?

Problem 95: Explain the relation between maximal ideals and fields. What important theorem connects these concepts?

Problem 96: A typical quaternions has the form $t+a i+b j+c k$ where $t, a, b, c \in \mathbb{R}$ and i, j, k are imaginary units with the following algebraic rules:

$$
i j=k, j k=i, k i=j, j i=-k, k j=-i, i k=-j, i^{2}=j^{2}=k^{2}=-1
$$

Why are the quaternions not a field ?

