MATH 101: FALL 2020

Quiz 2

You are allowed one page of notes and a calculator. No phones. More than 25pts to earn. Box your answers for full credit and show work. Thanks!

Problem 1: (4pts) Solve
$$\begin{pmatrix} 2x + y = 9 \\ 3x - y = -4 \end{pmatrix}$$

 $5x = 5 \implies x = 1$

Then
$$y = 9 - 2X = 9 - 2(1) = 7 : \boxed{y = 7}$$

Problem 2: (4pts) Solve
$$3x + 4y = 5 \Rightarrow 5(3x + 4y) = 5(5)$$

$$5x + 6y = 9$$

$$4 = 3(5x + 20y) = 3(9)$$

$$-(15x + 18y) = 27$$

$$2y = -2$$

$$3x + 4(-1) = 5$$

$$3x = 5 + 4 = 9$$

$$3x = 9$$

$$x = 3$$

Problem 3: (2pts) Determine if (1, 2) is a solution of the system of equations: $\begin{aligned}
x + y &= 3 \\
x - y &= 2
\end{aligned}$

Well,
$$X=1$$
, $Y=2$ means $X+Y=1+2=3$ (good)
But, $X-Y=1-2=-1 \neq 2$ (bad). Thus, No (1,2) is
not a sulf.

Problem 4: (2pts) A fence is made such that its width is twice its length. In addition, the fence is constructed with 43 ft of fence. Find the length and width. Hint: let the length be x and the width be y, find two equations and two unknowns which x and y must solve.

Problem 5: (3pts) Find two linear equations whose graphs are the lines given below. Also, verify the intersection point of the lines solves both equations.

- ① has y intercept b = 0Slope = -1 thus $\frac{y = -x}{x}$
- (a) how x-intercept of 6 thus y = A(x-6)then y = -6 when x = -6so -6 = A(-6-6) A = -6/-12 = 1/2 $y = \frac{1}{2}(x-6)$

From * and ** I find,

Problem 6: (2pts) Let $P(x) = 2x^3 - 3x^2 + 7$. Calculate P(2) and P(-1).

$$P(a) = a(a)^{3} - 3(a)^{2} + 7 = 16 - 12 + 7 = 11$$

$$P(-1) = a(-1)^{3} - 3(-1)^{2} + 7 = -a - 3 + 7 = 2$$

Problem 7: (7pts) Factor each polynomial below completely over \mathbb{R} ,

(a.)
$$x^2 - 37 = \chi^2 - (\sqrt{37})^2 = (\chi - \sqrt{37})(\chi + \sqrt{37}).$$

(b.)
$$3x^2 + 6x + 3 = 3(x^2 + 3x + 1) = 3(x+1)(x+1) = 3(x+1)^2$$

(c.)
$$2x^2 - 11x + 5 = (2 \times -1)(\times -5)$$
.

(d.)
$$x^3 + 4x^2 = X^2 (X + Y)$$
.

Remember:
$$A^{2}-B^{3} = (A-B)(A^{2}+AB+B^{2})$$
, where $A=X$, $B=3$
(e.) $x^{3}-27 = X^{3}-3^{3} = (X-3)(X^{2}+3X+9)$
Note: $B^{2}-4AC = 9-4(1)(1) = -27 < 0$
 $S_{0} = X^{2}+3X+9$ is irreducible.

(f.)
$$x^4 - 81 = (x^2)^2 - 9^2$$

= $(x^2 - 9)(x^2 + 9)$
= $(x - 3)(x + 3)(x^2 + 9)$.

(g.)
$$x^4 - 5x^2 + 4 = (X^2 - 1)(X^2 - 4)$$

= $(X-1)(X+1)(X-2)(X+2)$.

Problem 8: (2pts) Complete the square for $f(x) = x^2 + 6x - 20$ and factor f(x) completely.

$$f(x) = x^{2} + 6x - 20$$

$$= (x+3)^{2} - 9 - 20$$

$$= (x+3)^{2} - 29$$

$$= (x+3 - \sqrt{29})(x+3 + \sqrt{29})$$

Problem 9: (1pts) Solve $x^2 + 6x - 20 = 0$

$$(X+3-\sqrt{29})(X+3+\sqrt{29}) = 0$$

$$(X+3-\sqrt{29})(X+3+\sqrt{29}) = 0$$

$$(X+3-\sqrt{29})(X+3+\sqrt{29}) = 0$$

Problem 10: (3pts) The disciminant for $f(x) = ax^2 + bx + c$ is $b^2 - 4ac$. Calculate the discriminant for each f(x) given below and factor f(x) over \mathbb{R} if possible.

(a.)
$$x^2 + 4x + 5$$
 $\alpha = 1$, $b = 4$, $c = 5$
 $b^2 - 4ac = 16 - 4(1)(5) = 16 - 20 = -4 < 0$
hence $x^2 + 4x + 5$ is irreducible over IR.

(b.)
$$x^2 + 10x - 13$$
 $a = 1$, $b = 10$, $c = -13$
 $b^2 - 4ac = (00 - 4(1)(-13)) = 152 > 0$: Can helder
 $x^2 + 10x - 13 = (x + 5)^2 - 25 - 13$
 $= (x + 5)^2 - 38 = (x + 5 - \sqrt{38})(x + 5 + \sqrt{36})$
(c.) $x^2 - 6x + 9 = (x - 3)(x - 3)$
and $a = 1$, $b = -6$, $c = 9$
 $b^2 - 4ac = (-6)^2 - 4(1)(9) = 36 - 36 = 0$.

Yep. It was a repeated factor we expected.