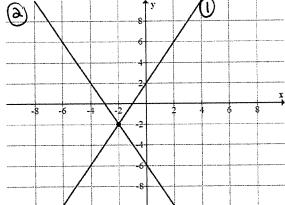
MATH 101: FALL 2020

TEST 2

You are allowed one page of notes and a calculator. No phones. More than 25pts to earn. Box your answers for full credit and show work. Thanks!

Then, X = 5 - 2y = 5 - 2(2) = 5 - 4 = 1 : X = 1We find sol^2 of (1,2)


Problem 2: (15pts) Solve
$$\begin{array}{l} 4x + 5y = 26 \\ 6x + 7y = 38 \end{array}$$

Multiply () by 3, 3(4x+59) = 3(26) = 78Multiply (2) by 2, 2(6x+79) = 2(38) = 76

Then, we can cancel the 12x terms by subtracting, $-\frac{(12x + 159 = 78)}{(12x + 149 = 76)}$

Then
$$4x + 54 = 4x + 10 = 26$$
 \Rightarrow $4x = 16$
 \Rightarrow $x = 16/4$
 $\therefore x = 4$
 $\int_{0}^{2} is$ $(4, a)$

Problem 4: (15pts) Find two linear equations whose graphs are the lines given below. Also, verify the intersection point of the lines solves both equations.

Line (1) has
$$y$$
-intercept of a .

Line (2) has y -intercept of -6

Line (1) has slope $m_1 = a$

Line (2) how slope $m_2 = -a$

Thus, $y = ax+a + y = -ax-6$

$$\begin{array}{c}
0r, \\
\hline
2x-y = -2 \\
-2x-y = 6
\end{array}$$

We can check,

$$2(-2) - (-2) = -4 + 2 = -2$$

 $-2(-2) - (-2) = 4 + 2 = 6$

Problem 5: (10pts) Let $P(x) = 3x^3 + 2x + 1$. Calculate P(1) and P(-1).

$$P(1) = 3(1)^{3} + 2(1) + 1 = 3 + 2 + 1 = 6$$

$$P(-1) = 3(-1)^{3} + 2(-1) + 1 = -3 - 2 + 1 = -5 + 1 = -4$$

Problem 6: (10pts) A fence is made such that its width is 20 feet longer than its length. In addition, the fence is constructed with 65 ft of fence. Find the length and width.

Problem 7: (10pts) Complete the square for $f(x) = x^2 + 4x + 6$ and factor f(x) completely.

$$f(x) = x^{2} + 4x + 6$$

$$= (x+a)^{2} - 4 + 6$$

$$= (x+a)^{2} + a$$
 (this is as fur as we can go w/o complex number, could also use $b^{2} - 4ac = 16 - 4(6) = -8 < 0$
to see this)

Problem 8: (10pts) Solve
$$x^2 + 6x - 20 = 0$$

$$(x+3)^2 - 9 - 20 = 0$$

$$(x+3)^2 - 29 = 0$$

$$(x+3 - \sqrt{29})(x+3+\sqrt{29}) = 0$$

$$x = -3 \pm \sqrt{29}$$

Problem 9: (60pts) Factor each polynomial below completely over \mathbb{R} ,

(a.)
$$x^3 - 16x = \times (\times^2 - 16)$$

= $\times (\times^2 - 4^2)$
= $\times (\times -4)(\times +4)$

(b.)
$$x^2 + 6x + 9 = (x+3)(x+3) = (x+3)^2$$

(c.)
$$2x^2 + 15x + 7 = (2x + 1)(x + 7)$$

(d.)
$$x^3 - 1 = (X - 1)(X^2 + X + 1)$$

 $A^3 - B^2 = (A - B)(A^2 + AB + B^2)$ with $A = X$, $B = 1$.

(e.)
$$x^4 - 16 = (\chi^2)^2 - 4^2$$

$$= (\chi^2 - 4)(\chi^2 + 4)$$

$$= (\chi^2 - \chi^2)(\chi^2 + 4)$$

$$= (\chi - \chi^2)(\chi + \chi^2)(\chi^2 + 4)$$

(f.)
$$x^4 - x^2 - 6 = (x^2 - 3)(x^2 + 2)$$

= $(x^2 - (\sqrt{3})^2)(x^2 + 2)$
= $(x - \sqrt{3})(x + \sqrt{3})(x^2 + 2)$