Please print this out and write your solutions on this document. 30pts to earn here. Thanks!

Problem 1: (2pt) Let $A = \{x \in \mathbb{R} \mid |x - 2| \le 1\}$ and $B = \{x \in \mathbb{R} \mid x \ge 3\}$.

- (a.) picture A and B on a number line,
- (b.) express A and B in interval notation,
- (c.) express $A \cup B$ in interval notation,
- (d.) find and express $A \cap B$ in set-builder notation.

Problem 2: (3pt) Assume x, y > 0 and use laws of algebra to determine A, B as indicated below:

(a.)
$$\frac{6x^A}{y^B} = \frac{6xy^{-2}}{(x^2y)^3\sqrt{x}}$$

(b.)
$$x^A y^B = \sqrt{\frac{x\sqrt{y}}{x^{-2}y^3}}$$

(c.)
$$x^A y^B = \left(\sqrt[5]{x^3 y^2} \sqrt[3]{x^6 y^9}\right)^2$$

Problem 3: (2pt) Find the domain of each expression. Please write your answer in interval notation.

(a.)
$$4x^2 - 9x + 3$$

(b.)
$$\sqrt{2x+7}$$

(c.)
$$\frac{5x}{x^2 + 4x + 5}$$

(d.)
$$\frac{6x+3}{x^2+5x+4}$$

Problem 4: (2pt) Peform the addition and simplify the resulting expression.

(a.)
$$\frac{3x-2}{x+1}+2$$

(b.)
$$1 + \frac{1}{1 + \frac{1}{1+x}}$$

Problem 5: (2pt) The standard form of a polynomial is an expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where $a_n \neq 0$ and a_n, \dots, a_1, a_0 are constants. Multiply the following polynomials and collect like power terms to give your answer in standard form:

(a.)
$$(x+1)(2x^2-x+1)$$

(b.)
$$x^5 + (2x+1)^3$$

Problem 6: (6pt) Factor the following polynomials completely over \mathbb{R}^1 ,

(a.)
$$30x^3 + 15x^4$$
,

(b.)
$$x^2 - 14x + 48$$
,

(c.)
$$2x^2 + 7x - 4$$
,

¹ to factor a polynomial over a set of numbers indicates the kind of coefficients you may use. For example, $x^2 + 1$ is completely factored over \mathbb{R} , but $x^2 + 1 = (x+i)(x-i)$ over \mathbb{C} .

(d.)
$$8x^2 + 10x + 3$$
,

(e.)
$$(x^2 + 10x + 25)^2$$
,

(f.)
$$x^4 - 13x^2 + 36$$
.

Problem 7: (3pt) Solve the following polynomial equations. You can just write down the answers here since they should be immediately clear from your work on the previous problem.

(a.)
$$30x^3 + 15x^4 = 0$$
,

(b.)
$$x^2 - 14x + 48 = 0$$
,

(c.)
$$2x^2 + 7x - 4 = 0$$
,

(d.)
$$8x^2 + 10x + 3 = 0$$
,

(e.)
$$(x^2 + 10x + 25)^2 = 0$$
,

(f.)
$$x^4 - 13x^2 + 36 = 0$$
.

Problem 8: (5pt) For each quadratic polynomial f(x) given below, complete the square and find all real or complex solutions of f(x) = 0:

(a.)
$$f(x) = x^2 + 6x + 13$$
,

(b.)
$$f(x) = x^2 - 8x + 16$$
,

(c.)
$$f(x) = x^2 + 3x - 3$$
,

(d.)
$$f(x) = 4x^2 - 16x + 15$$
,

(e.)
$$f(x) = 2x^2 + 8x + 10$$
.

Problem 9: (4pt) Solve the following over \mathbb{R} ,

(a.)
$$\frac{2x-1}{x+2} = \frac{4}{5}$$
,

(b.)
$$\sqrt{5-x}+1=x-2$$
,

(c.)
$$|3x+5|=11$$
.

(d.) $\sqrt{1+x} + \sqrt{1-x} = 2$,

Problem 10: (1pt) Find real numbers a, b for which $a + ib = \frac{(7-i)(4+2i)}{(3-7i)^2}$.