Please print this out and write your solutions on this document. I will only give half credit if the solutions are not written on this form. Please staple when finished. 60pts to earn here. Thanks!

Problem 24: (2pts) Find the domain of each function and express it using interval notation.

(a.)
$$g(x) = \frac{\sqrt{2+x}}{3-x}$$
, $2 < x < 0$ and $x \neq 3$ $x \geq -2$ $x \geq 1$ x

Problem 25: (4pts) The difference quotient based at a for f(x) is given by $\frac{f(a)-f(a+h)}{h}$ where $h \neq 0$. Calculate and simplify the difference quotient for the following functions:

$$\frac{f(a+h)-f(a)}{h} = \frac{3(a+h)^2+2-[3a^2+2]}{h}$$

$$= \frac{1}{h} \left(3(a^2+2ah+h^2)+2-(3a^2+2)\right)$$

$$= \frac{1}{h} \left(3a^2+6ah+3h^2+2-3a^2-2\right)$$

$$= \frac{1}{h} \left(6ah+3h^2\right)$$

$$= \frac{1}{h} \left(6ah+3h^2\right)$$

(b.)
$$f(x) = \frac{x}{x+1}$$
,
 $\frac{f(a+h) - f(a)}{h} = \frac{\frac{a+h}{a+h+1} - \frac{a}{a+1}}{h}$

$$= \frac{1}{h} \left[\frac{(a+h)(a+l) - a(a+h+1)}{(a+h+1)(a+l)} \right]$$

$$= \frac{1}{h} \left[\frac{a^2 + ah + a+h - a^2 - ah - a}{(a+h+1)(a+l)} \right]$$

$$= \frac{1}{h} \left[\frac{h}{(a+h+1)(a+l)} \right]$$

- **Problem 26:** (4pts) Consider the graph y = f(x) given below. Answer the following questions using interval notation (might need a union) where appropriate. Fill in the blanks:
 - (a.) the domain of $f(x) = (-8, 2) \cup (4, 8]$.
 - (b.) the range of f(x) = [-6, 8]

 - (d.) f(3) = d.n.e.

Problem 27: (2pts) Suppose y = f(x) is the blue graph given below and y = g(x) is the green graph given below. Please use a colored pen, crayon, marker (whatever you have with color) to give the graphs the color indicated in this pdf. Then, graph y = f(x) + g(x) in red.

Problem 28: (2pts) Let $f(x) = 8 - \frac{1}{8}(x-2)^2$ for $-6 \le x \le 6$. Graph y = f(x) and find the range of this function.

$$f(0) = 8 - \frac{4}{8} = 7.5$$

$$f(-2) = 8 - \frac{16}{8} = 6$$

$$f(4) = 8 - \frac{4}{6} = 7.5$$

$$f(-4) = 8 - \frac{36}{8} \approx 3.5$$

$$f(-6) = 8 - \frac{64}{8} = 0$$

$$range (f) = (-\infty, 8]$$

Problem 29: (2pts) Let
$$f(x) = \begin{cases} -2x - 6 & : -6 < x < 0 \\ \frac{1}{4}x^2 + 2 & : 0 \le x \le 3 \end{cases}$$
.

Graph $y = f(x)$ in the plot below and find the domain and range of $f(x)$.

$$dom(f(x)) = (-6,3]$$
 $dom(f(x)) = (-6,6)$

[Tange(f(x)) = (-6,6)]

Problem 30: (1pt) For the previous problem, calculate f(-2) and f(2).

$$f(-2) = -2(-2) - 6 = -2$$
 & $f(2) = \frac{1}{4}(a)^2 + 2 = 3$

Problem 31: (3pts) Find the intervals of increase and the intervals of decrease. Also find any local maximums or minimums as best as you can given the plot below:

local max of 7 at X = -6.8 local min ut -4 at x = -2 local max of 6 at x=4

Problem 32: (2pts) Consider the function f(x) = x(x+2)(x-2)(x+4)(x-4). Sketch the graph y = f(x) and determine how many local minimums and maximums are found on the graph. Crosses $\frac{2e}{x}$ $\left(x-axi_{x}\right)$ at x=0,-2,2,4,4

- . There are two local maximums.
- · There are two local minimums.

Problem 33: (3pts) Consider $f(t) = t^2 + 3$ for $-5 \le t \le 5$. Find:

- (a.) the average rate of change from t = -3 to t = -2 is ______
- (b.) the average rate of change from t = 1 to t = 3 is ______
- (c.) sketch y = f(t) in the ty-plane and explain where the function is increasing and where it is decreasing. Do your answers to (a.) and (b.) make sense?

(a.)
$$\frac{\Delta y}{\Delta t} = \frac{f(-2) - f(-3)}{-2 - (-3)} = \frac{(-a)^2 + 3 - [(-3)^2 + 3]}{1} = 4 - 9 = \boxed{-5}$$

(6.)
$$\frac{D4}{D4} = \frac{f(3) - f(1)}{3 - 1} = \frac{3^2 + 3 - (1^2 + 3)}{2} = \frac{8}{2} = \boxed{4}$$

note sense;

rate > 0 where increasing rate < 0 where decreasing.

Problem 34: (6pts) Suppose f(2) = 3 and g(2) = 7 and g(3) = 10 and f(7) = 0. Calculate the following:

(a.)
$$(f+g)(2) = f(2) + g(2) = 3+7 = (0)$$

(b.)
$$(f-g)(2) = f(2) - g(2) = 3 - 7 = F(4)$$

(c.)
$$(fg)(2) = f(2)g(2) = 3.7 = 21$$

(d.)
$$\left(\frac{f}{g}\right)(2) = \frac{f(y)g(z)}{g(z)} = \frac{3/7}{2}$$

(e.)
$$(f \circ g)(2) = f(g(2)) = f(7) = 0$$

(f.)
$$(g \circ f)(2) = 9 (f(2)) = 9(3) = 10$$

Problem 35: (4pts) Let $f(x) = \sqrt[3]{x+6}$ and $g(x) = \sqrt{2x-9}$. Find the domain and formula for each of the following: notice f/g is another notation for $\frac{f}{g}$ just like 2/3 can be written $\frac{2}{3}$.

(a.)
$$(f+g)(x) = \sqrt[3]{X+6} + \sqrt{2X-9}$$
 and $dom(f+g) = \sqrt{9/2}$

(b.)
$$(f/g)(x) = \frac{\sqrt[3]{\chi + 6}}{\sqrt{2\chi - 9}}$$
 and $dom(f/g) = \frac{(9/2, \infty)}{2}$.

dom
$$(f) = (-\infty, \infty)$$
 be cause tuberosts allow negative inputs.
 $2x - 9 \ge 0 \implies 2x \ge 9 \implies x \ge \frac{9}{2}$, dom $(9) = [\frac{9}{2}, \infty)$

Problem 36: (2pts) Let $f(x) = \sqrt{-x}$ and let $g(x) = \sqrt{2+x}$. Find the domain and formula for f+g.

$$-x \ge 0$$

$$x \le 0$$

$$dom(f) = (-\infty, 0)$$

$$(f+g)(x) = \sqrt{-x} + \sqrt{2+x}$$

$$dom(f+g) = [-2, 0]$$

Problem 37: (1pts) Suppose a graph in the xy-plane is defined by $x^2 - 6x + y^2 + 8y = 0$. Can we view the graph of the equation as the graph of a function y = f(x).

$$X^{2}-6X+Y^{2}+8Y=0$$

$$(X-3)^{2}+(Y+Y)^{2}=9+16=25$$
NOT GRAPH OF FUNCTION,
FAILS VERTICAL LINE TEXT.

Problem 38: (1pts) Suppose a graph in the xy-plane is defined by $x^2y + 2 = y$. Can we view the graph of the equation as the graph of a function y = f(x).

$$\lambda = \frac{x_{s}-1}{x_{s}-1} = f(x)$$

$$\lambda = \frac{x_{s}-1}{x_{s}-1} = f(x)$$

Yes, it's a graph.

Problem 39: (3pts) Begin with y = f(x) and provide a sequence of transformations which produces the graph y = g(x) given that:

(a.)
$$f(x) = |x|$$
 and $g(x) = 3 - |x - 4|$

(b.)
$$f(x) = \sqrt{x} \text{ and } g(x) = 2\sqrt{3-x} = 2\sqrt{-(x-3)}$$

Problem 40: (2pts) Finish drawing the graphs under the assumption:

Problem 41: (2pts) If possible, graph the inverse function for each function graph below. If the function does not have an inverse explain why.

Problem 42: (1pts) Let $f(x) = \frac{1}{3x+2}$. Show f(x) is a one-to-one function by showing that f(a) = f(b)implies a = b.

$$f(a) = f(b) \implies \frac{1}{3a+a} = \frac{1}{3b+a}$$

$$\Rightarrow 3b+a = 3a+a$$

$$\Rightarrow b = a.$$

Problem 43: (4pts) For each formula given below identify an outside function f(x) and an inside function g(x) for which:

(a.)
$$(f \circ g)(x) = \sqrt{x^2 + 3x + 2}$$
 has $f(x) = \frac{\sqrt{x}}{\sqrt{x + 2}}$ and $g(x) = \frac{x^2 + 3x + 2}{x^2 + 3x}$.

(b.)
$$(f \circ g)(x) = \frac{1}{3 + \sqrt{x}}$$
 has $f(x) = \frac{1}{x}$ and $g(x) = 3 + \sqrt{x}$.

(c.)
$$(f \circ g)(x) = 2 + (3 + \sqrt{x})^3$$
 has $f(x) = 2 + (3 + \sqrt{x})^3$ and $g(x) = 3 + \sqrt{x}$.

(d.)
$$(f \circ g)(x) = \frac{1}{(3x-7)^2} \text{ has } f(x) = \frac{1}{X^2} \text{ and } g(x) = \frac{3X-7}{3X}$$
.

Remark: There are many other correct answers possible, I give 2^{nd} answer in red

Problem 44: (1pts) Suppose f is an invertible function and f(2) = 3. Calculate $f^{-1}(3)$.

$$f(a) = 3 \implies f_{-1}(b(a)) = f_{-1}(3)$$

Problem 45: (8pts) Given the function f(x) calculate the formula for $f^{-1}(y)$.

(a.)
$$f(x) = 3x - 8$$

(b.)
$$f(x) = 3 - \frac{1}{x-2}$$

(c.)
$$f(x) = x^2 + 6$$
 given that $x \ge 0$

(d.)
$$f(x) = 6 + \frac{1}{\sqrt[3]{x-4}}$$

(a.)
$$\lambda = 3x - 8$$

 $x = \frac{3}{3}(\lambda + 8)$
 $x = 3x - 8$

(6.)
$$y = 3 - \frac{1}{x-2}$$

 $y-3 = \frac{-1}{x-2}$
 $x-2 = \frac{-1}{y-3} = \frac{1}{3-y}$
 $x = 2 + \frac{1}{3-y}$
 $x = 3 + \frac{1}{3-y}$

(C.)
$$y = x^{2} + 6$$
, $x \ge 0$
 $x^{2} = y - 6$
 $x = \pm \sqrt{y - 6}$
but, $x \ge 0$; $x = \sqrt{y - 6}$
Hence, $f^{-1}(y) = \sqrt{y - 6}$

(d.)
$$y = 6 + \sqrt{3 \times -4}$$

 $y - 6 = \sqrt{3 \times -4}$
 $(\sqrt[3]{x-4})^3 = (\sqrt[1]{y-6})^3$
 $x - 4 = \sqrt[1]{(y-6)^3}$
 $x = 4 + \sqrt[4]{(y-6)^3}$
 $f^{-1}(y) = 4 + \sqrt[4]{(y-6)^3}$