Please print this out and write your solutions on this document. I will only give half credit if the solutions are not written on this form. Please staple when finished. 60pts to earn here. Thanks!

Problem 46: (6pts) The disciminant for $f(x) = ax^2 + bx + c$ is $b^2 - 4ac$. Recall, non-negative discriminant implies the quadratic polynomial can be factored over \mathbb{R} whereas $b^2 - 4ac < 0$ implies $ax^2 + bx + c$ cannot be factored over \mathbb{R} .

Calculate the discriminant for each f(x) given below and factor f(x) over \mathbb{R} if possible. In addition, graph y = f(x) carefully in the plot provided:

(a.)
$$f(x) = x^2 + 4x + 6$$

(b.)
$$f(x) = x^2 + 8x + 12$$

(c.)
$$f(x) = -x^2 + 8x - 16$$

Problem 47: (2pts) Find a polynomial of least degree whose graph crosses the x-axis at x = -4 and x = 3 and bounces off the x-axis at x = 1. In addition, assume the y-intercept is 20. Find the formula for P(x).

Problem 48: (2pts) Find P(x) which could have a graph which shares the same shape and x-intercepts as the graph given below:

Problem 49: (1pts) Find P(x) which could have a graph which shares the same shape and x-intercepts as the graph given below:

Problem 50: (1pts) Find P(x) which could have a graph which shares the same shape and x-intercepts as the graph given below:

Problem 51: (2pts) Find a polynomial $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_o$ with zeros -2, 0, 1, 3 given that $a_3 = 4$.

Problem 52: (2pts) Let $P(x) = x^3 + 2x^2 - 9x - 18$. Show that -2 is a zero of P(x) and find all the other zeros of P(x). Hint: factoring by grouping is a good idea here

Problem 53: (2pts) Let $f(x) = x^4 + 2x^2 - 3x + 10$. Use long division to calculate $\frac{f(x)}{x^2 + 3}$. Is $(x^2 + 3)$ a factor of f(x)?

Problem 54: (2pts) Let $f(x) = x^5 + 12x^2 - 3x + 2$. Calculate $\frac{f(x)}{x-1}$. Is (x-1) a factor of f(x)?

Problem	55:	(2pts)	Factor	f(x) =	$= x^5 -$	$3x^{4}$ —	$2x^{3} +$	$-6x^2 -$	3x + 9	comple	etely ov	ver \mathbb{R} .	Hint: f	(3) = 0.
D., . l. l	F.C.	(9 4 -)	D: 14	1	1. 1	C	. C	.1	1	(11	m.:	(° 1	4 1:1
Problem	50:	has co	Fina t mplex z	ne star zeros 3	naara $+2i \epsilon$	nd 7 -	огар - 3 <i>i</i> w	orynon ith a y	niai wii -interc	tn real ept of 1	.0.	ents or	aegree	4 wnich

Problem 62: (3pts) Factor the following polynomials completely over the complex numbers.

(a.)
$$x^2 - 4x + 5$$

(b.)
$$x^4 + 4x^2 - 36$$

(c.)
$$x^4 + x^2$$

Problem 63: (2pts) Let $f(x) = (x^2 - 4)(x^2 - x - 2)^2$. Find all zeros of f(x) and determine the multiplicity of each zero.

Problem 64: (2pts) Find the x and y-intercepts of $f(x) = \frac{x^2 - x - 2}{x - 6}$

Problem 65: (2pts) Write the equations for each horizontal and vertical asymptote for the graph of the rational function given below:

Problem 66: (4pts) Consider the rational function $f(x) = \frac{x^2 + 4x - 5}{x^2 + x - 2}$. Find all vertical or horizontal asymptotes, as well as any holes in the graph. Graph the function carefully with each feature clearly labeled.

Problem 67: (4pts) Consider the rational function

$$f(x) = 2 + \frac{(x-1)(x-6x+9)}{(x^2-2x+1)(x-3)(x^2-16)}.$$

Find all vertical or horizontal asymptotes, as well as any holes in the graph. Graph the function carefully with each feature clearly labeled.

Problem 68: (2pts) Solve $x^3 + 4x^2 \ge 4x + 16$. Write the answer in interval notation.

Problem 69: (3pts) Solve $\frac{x-3}{2x+5} \ge 1$. Write the answer in interval notation.

Problem 70: (2pts) Find all x for which the graph $f(x) = x^2$ lies above the graph of g(x) = 3x + 10.

Problem 71: (2pts) Find the domain of $h(x) = \sqrt[4]{x^4 - 1}$.